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Abstract: Let X be a compact Riemann surface of genus g 2≥ and E6� ( ) be the moduli space of E6-Higgs
bundles over X . We consider the automorphisms σ+ of E6� ( ) defined by σ E φ E φ, , t( ) ( )= −+

∗ , induced by
the action of the outer involution of E6 in E6� ( ), and σ− defined by σ E φ E φ, , t( ) ( )=−

∗ , which results from
the combination of σ+ with the involution of E6� ( ), which consists on a change of sign in the Higgs field.
In this work, we describe the fixed points of σ+ and σ−, as F4-Higgs bundles, F4-Higgs pairs associated with
the fundamental irreducible representation of F4, and PSp 8, �( )-Higgs pairs associated with the second
symmetric power or the second wedge power of the fundamental representation of Sp 8, �( ). Finally,
we describe the reduced notions of semistability and polystability for these objects.
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1 Introduction

In this article, we are interested in a family of Higgs pairs over a compact Riemann surface X whose
structure group is the exceptional simple complex Lie group F4 or the classical complex Lie group
PSp 8, �( ), and the centerless group whose universal cover is Sp 8, �( ). Given a complex reductive Lie group
G together with a complex representation ρ G V: GL( )→ ofG, aG-Higgs pair over X is a pair E φ,( ), where E
is a principal G-bundle over X and φ is a holomorphic global section of the vector bundle E V K( ) ⊗ , where
E V( ) is the vector bundle associated with E by ρ with typical fiberV and K is the canonical line bundle over
X (Definition 1). The notion ofG-Higgs bundle can be reconstructed from that ofG-Higgs pair by considering
the adjoint representation of G. The geometry of the moduli spaces associated with G-Higgs pairs has been
intensively studied and admits a great amount of applications to very diverse areas of Mathematics and
Theoretical Physics such as non-abelian Hodge theory, integrable systems, string theory, and the theory of
branes among others (for details, see [1]). In this work, we study F4-Higgs bundles and F4-Higgs pairs whose
associated complex representation is the fundamental irreducible representation of F4, which is 26 dimen-
sional, and PSp 8, �( )-Higgs pairs associated with the 36-dimensional representation ιSym2 or the 28-
dimensional representation ι2∧ , where ι is the inclusion Sp 8, GL 8,� �( ) ( )→ . These bundles and pairs
appear as fixed points of certain automorphisms of the moduli space of E6-Higgs bundles over X , as we
will see in Proposition 3.2. We will also give in Propositions 4.1–4.3 a concrete description of the reduced
notions of semistability and polystability for these objects.
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Consider the exceptional simple complex Lie group E6. Details about this group can be found in [2,
Chapter 5, Sections 1.3 and 1.5] and also in [3,4]. The group E6 is the only exceptional simple complex Lie
group that admits outer automorphisms. In particular, it admits only one outer automorphism σ, which is
an involution. This automorphism acts in the moduli space E6� ( ) of E6-Higgs bundles over X according to
an action of the group of outer automorphisms of G in the moduli space of G-Higgs bundles, which is
described for a general complex Lie group G in [5]. We will denote by σ+ the automorphism of E6� ( )

induced by the outer involution σ of E6. This automorphism acts as follows: if E φ,( ) is an E6-Higgs bundle
over X , then σ E φ E φ, , t( ) ( )= −+

∗ . In this work, we study the subvariety of E6� ( ) of fixed points of σ+. These
fixed points are described in Proposition 3.2 as F4-Higgs bundles over X or PSp 8, �( )-Higgs pairs associated
with the representation ιSym2 . We also consider the automorphism σ− of E6� ( ) that results from combining
σ+ with the involution of E6� ( ) defined by a change of sign in the Higgs field, that is, σ E φ E φ, , t( ) ( )=−

∗ . In
Proposition 3.2, it is also proved that the fixed points of σ− can be described as F4-Higgs pairs with an
associated complex representation of the fundamental irreducible representation of F4 or PSp 8, �( )-Higgs
pairs with the representation ι2∧ . In Propositions 4.1–4.3, the stability and polystability conditions for all
these fixed points are discussed.

The study of automorphisms of moduli spaces of principal bundles and Higgs bundles over compact
Riemann surfaces and the corresponding subvarieties of fixed points is a topic of great interest in Geometry,
which is being worked on intensively. In [6], for example, we study fixed points of certain automorphism of
the moduli space of principal Spin 8, �( )-bundles over a curve induced by the action in it of the triality
automorphism, and in [5], we extend the study to the case of Spin 8, �( )-Higgs bundles, and we obtain that
the fixed points of certain automorphisms of the moduli space of Spin 8, �( )-Higgs bundles over the
Riemann surface are described as certainG2-Higgs pairs or PSL 3, �( )-Higgs pairs whose notions of stability,
semistability, and polystability are described following the general concepts explained in [7]. In [8,9], the
group of automorphisms of the moduli space of symplectic principal bundles over a compact Riemann
surface is computed, and in [4], the same is computed for the moduli space of principal E6-bundles. Finally,
in [10], the groups of automorphisms of vector Higgs bundles moduli spaces are determined. In this work,
we study the case of E6� ( ) in the spirit of [5] and the following [7]. In fact, in [7,11], the authors study fixed
points of automorphisms of the moduli space of Higgs bundles in the general case where the gauge groupG
is semisimple, but here an explicit description of these fixed points is given for the group E6, using specific
techniques adjusted to the particular groups we are working with, and in addition, we provide reduced
versions of the notions of stability of the fixed points obtained.

This article is organized as follows: in Section 2, we introduce the concept of the G-Higgs pair over
a compact Riemann surface and explain the notions of stability, semistability, and polystability as they are
introduced in [7]. The moduli space of E6-Higgs bundles and the automorphisms of this moduli space that
will be the subject of our interest are introduced in Section 3, where we also prove that the fixed points of
these automorphisms can be described as certain types of F4 or PSp 8, �( )-Higgs pairs. Finally, in Section 4,
we study the reduced notions of stability, semistability, and polystability conditions for the families
of Higgs pairs introduced in the previous section.

2 Higgs pairs and stability conditions

In this section, we will introduce the notion of Higgs pair and the corresponding stability conditions needed
to define the moduli space of Higgs pairs over a compact Riemann surface X of genus g 2≥ and with a given
complex semisimple structure group G as set out in [7]. The whole theory developed in this section can be
extended to the case in which G is reductive, but we limit ourselves to the semisimple case for simplicity,
given that all the groups we will work with will be semisimple.

Definition 1. Let G be a complex semisimple Lie group and let ρ G V: GL( )→ be a complex representation
ofG. AG-Higgs pair over X (or simply a Higgs pair, if the structure group is clear) is a pair E φ,( ), where E is
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a principal G-bundle over X and φ H X E V K,0( ( ) )∈ ⊗ . Here, E V E Vρ( ) = × is the quotient of E V× by the

equivalence relation defined by e v eg ρ g v, ~ , 1( ) ( ( ) )− for all g G∈ , and K denotes the canonical line bundle
over X .

Let G be a complex semisimple Lie group with Lie algebra g and let H be a compact connected Lie
subgroup ofG with Lie algebrah and such that H G�

= (soh g�
= ). Let c be a Cartan subalgebra of g. For any

δ c∈
∗, we denote by δg the root subspace of g, which corresponds to δ. Let R be the set of roots of g and Δ be

the subset of R of simple roots. For any subset A Δ⊆ , the subset of roots RA defined by

R m β m β A: 0A
β

β β
Δ

⎧

⎨
⎩

⎫

⎬
⎭

∑= ≥ ∀ ∈

∈

satisfies that the subspace Ap of g defined by

,A
δ R

δ
A

p c g= ⊕ ⊕

∈
(1)

which is a parabolic subalgebra of g. Moreover, if RA
0 denotes the subset of roots

R m β m β A: 0 ,A
β

β β
0

Δ

⎧

⎨
⎩

⎫

⎬
⎭

∑= = ∀ ∈

∈

then the subspace Al of g defined by

A
δ R

δ
A
0

l c g= ⊕ ⊕

∈
(2)

is a Levi subalgebra of Ap . Let PA and LA be the subgroups ofG whose Lie algebras are Ap and Al , respectively.
The group PA thus defined is a parabolic subgroup ofG and LA is a Levi subgroup of PA. For different subsets
A of Δ, the corresponding parabolic subgroups are not isomorphic, and all the parabolic subgroups of G
may be constructed in this way (for details, see [12, Chapter VII]).

For any δ Δ∈ , we define

λ δ
δ δ
2
,

,δ
( )

= (3)

where ,( ) denotes the Killing form defined in R. Given any parabolic subgroup PA of G with Lie algebra Ap

defined in (1) for some A Δ⊆ , an antidominant character χ of PA is said to be an element of c∗ of the form

χ n λ ,
δ A

δ δ∑=

∈

where n 0δ ≤ for any δ A∈ and λδ is defined in (3). It is called strictly antidominant if n 0δ < for all δ A∈ .
Each antidominant character χ of PA induces an element sχ c∈ through the isomorphism c c≅

∗ induced by
the Killing form. This sχ belongs in fact to ih. So each pair composed of a parabolic subgroup P of G and an
antidominant character χ of P induces an element s ih∈ .

Let now E φ,( ) be a G-Higgs pair associated with some complex representation ρ G V: GL( )→ of G.
For any A Δ⊆ and any antidominant character χ associated with PA, we define

V v V ρ e v t

V v V ρ e v v t

: is bounded as

: .
χ

ts

χ
ts0

χ

χ

{ ( ) }

{ ( ) }

= ∈ → ∞

= ∈ = ∀

−

(4)

From [7, Lemmas 2.5 and 2.6], it follows thatVχ
− is invariant under the action of PA andV χ

0 is invariant under
the action of LA.

Definition 2. Let ρ G V: GL( )→ be a complex representation of G and let E φ,( ) be a G-Higgs pair over X
associated to the representation ρ of G. The G-Higgs pair E φ,( ) is said to be semistable (resp. stable) if for
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every subset A of Δ, any antidominant character χ of PA and any reduction of structure group EA of E to PA

such that φ H X E V K, A χ
0( ( ) )∈ ⊗

− , where PA is the parabolic subgroup ofG whose Lie algebra is defined in (1)
and Vχ

− is defined in (4), we have that χ Edeg 0A ≥
∗

(resp. χ Edeg 0A >
∗

).

Definition 3. Let ρ G V: GL( )→ be a complex representation of G and let E φ,( ) be a G-Higgs pair over X
associated to the representation ρ ofG. TheG-Higgs pair E φ,( ) is said to be polystable if it is semistable and
for every subset A of Δ, any antidominant character χ of PA and any reduction of structure group EA of E to
PA such that φ H X E V K, A χ

0( ( ) )∈ ⊗
− and χ Edeg 0A =

∗
, where PA is the parabolic subgroup of G whose Lie

algebra is defined in (1) and Vχ
− is defined in (4), there exists a reduction of structure group EA′ of EA to LA

such that φ H X E V K, A χ
0 0( ( ) )∈ ′ ⊗ , where LA is the Levi subgroup of PA whose Lie algebra is defined in (2) and

V χ
0 is defined in (4).

We will use a formulation of the stability and polystability conditions in terms of filtrations of certain
vector bundle associated with the corresponding principal bundle of the Higgs pair. This vector bundle is
defined as in the next result, by making use of a fixed representation ρG defined in the case in which the
representation ρ that defines the principal bundles is faithful. We could have presented the formulation in
terms of filtrations as the definition, but we have opted for this presentation of the theory to make this
section survey material on this topic. This formulation in terms of filtrations is constructed in detail in [7,
Lemma 2.12], which we adapt to formulate the following.

Proposition 2.1. Let G be a semisimple complex Lie group, ρ G V: GL( )→ be a faithful complex representa-
tion of G, and E φ,( ) be a G ρ,( )-Higgs pair over X. Suppose that there exists a representation ρ G W: GLG ( )→ ,
with W n�≅ for some n �∈ , such that for any a b dρ, Ker G( )∈

⊥ we have that a b dρ a dρ b, Tr G G( ) ( )⟨ ⟩ = ,
where the product is the Euclidean product of W. Denote E E W( )= . Then
(1) The G ρ,( )-Higgs pair E φ,( ) is semistable if for every parabolic subgroup P of G, every antidominant

character χ of P and every filtration E E E E0 k0 1= ⊊ ⊊ ⋯ ⊊ = induced by a reduction of structure group
of E to P and such that φ takes values, in each fiber over X, in the spaceVχ

− defined in (4), we have that the
degree of the filtration, defined by

λ E λ λ Edeg deg ,k
j

k

j j j
1

1

1( )∑+ −

=

−

+ (5)

is greater than or equal to 0, where λ λk1 <⋯< are the eigenvalues of dρ sG χ( ).
(2) It is stable if for every P and χ as before and any filtration E E E E0 k0 1= ⊊ ⊊ ⋯ ⊊ = induced by

a reduction of structure group of E to P and such that φ takes values in Vχ
−, the degree of the filtration

defined in (5) is greater than 0.
(3) The G ρ,( )-Higgs pair E φ,( ) is polystable if it is semistable, and there exists a parabolic subgroup P of G and

an antidominant character χ of P such that E admits a decomposition of the form E E Ej
k j j1 1= ⊕ /
= − into vector

subbundles, where E 00 = and E Ej j 1/ − is the eigenspace of the eigenvalue λj of dρ sG χ( ) for all j k1, ,= … ,

the degree defined in (5) equals 0 and φ takes values, in each fiber over X, in the space V χ
0 defined in (4).

The degree defined in (5) coincides with the degree χ Edeg A∗
considered in the definitions of stable and

semistable Higgs pairs considered here, as shown in [7, Lemma 2.12].

3 E6-Higgs bundles

Let X be a compact Riemann surface of genus g 2≥ . A principal E6-bundle over X can be understood
through the fundamental 27-dimensional representation of E6, as a complex vector bundle E of rank 27 and
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trivial determinant bundle equipped with a global holomorphic non degenerate symmetric trilinear form Ω
(see [4, Section 3], where principal E6-bundles are studied).

Definition 4. An E6-Higgs bundle over X is a pair E φ,( ), where E is a principal E6-bundle over X and
φ H X E K,0

6e( ( ) )∈ ⊗ , so φ can be seen as a homomorphism from E to E K⊗ , which preserves the sym-
metric trilinear form of E (here, 6e denotes the Lie algebra of E6 and E 6e( ) is the adjoint vector bundle of E).

We have studied principal E6-bundles in [4], so most of the details about what we present here
concerning these bundles can be found in that reference. In particular, a reduction of the structure group
of a principal E6-bundle E to a parabolic subgroup of E6 comes with a filtration E E E0 r0⊂ ⊂⋯⊂ ⊂ of E into
isotropic subbundles for Ω, since every maximal parabolic subgroup of E6 comes with a filtration of this
form (recall that, given a vector subbundle F of a principal E6-bundle E with holomorphic symmetric
trilinear form Ω, we say that F is isotropic for Ω if F F FΩ , , 0( ) = ) and a reduction of structure group
to a Levi subgroup of a parabolic subgroup of E6 can be seen as a decomposition of E of the form
E E E E E Er0 1 0= ⊕ / ⊕⋯⊕ / .

In this section, we first give the reduced stability and polystability conditions for E6-Higgs bundles,
which are compatible with the perspective explained in the last part of the previous section, which follows
[7]. For the moment, we do not present the proof, because it is absolutely analogous to that of Proposition
4.1 and will be covered by it.

Proposition 3.1. Let E φ,( ) be an E6-Higgs bundle with associated symmetric trilinear form Ω. Then E φ,( )

is semistable if for every subbundle F of E isotropic for Ω and preserved by φ we have that Fdeg 0≤ .
The Higgs bundle E φ,( ) is stable if for every filtration E E E0 r0⊂ ⊂⋯⊂ ⊂ of E composed by isotropic

subbundles forΩ preserved by φ, we have that Edeg 0j ≤ for all j, and there exists some k such that Edeg 0k < .
The Higgs bundle E φ,( ) is polystable if it can be written as a direct sum of vector subbundles

E E E E E E ,r0 1 0= ⊕ / ⊕⋯⊕ /

where E E E, , , r0 1 … are degree 0 proper subbundles of E isotropic for Ω, which form a filtration of E,
E E E Er0 1⊊ ⊊ ⋯ ⊊ ⊊ , and the Higgs field φ preserves this decomposition.

Definition 5. Themoduli space E6� ( ) of E6-Higgs bundles over X is then the complex algebraic variety that
parametrizes isomorphism classes of polystable E6-Higgs bundles over X .

The group EOut 6( ) of outer automorphisms of E6 is isomorphic to 2� , since it coincides with the groups
of symmetries of the Dynkin diagram of 6e . In [5], we proved that there is a natural action of GOut( ) on the
moduli space of G-Higgs bundles for any complex reductive Lie group G: if f GOut( )∈ and A GAut( )∈

represents f , then f E φ A E A φ, , d( ) ( ( ) ( ))⋅ = , where A E( ) is the principal G-bundle whose total space is that
of E and the action of G in A E( ) is defined by e g eA g1( )⋅ =

− for e A E( )∈ and g G∈ . This construction
depends only on the equivalence class of the automorphism A by the following equivalence relation defined
on the group GAut( ): two automorphisms of G are equivalent if they are conjugate by an inner auto-
morphism ofG [6]. We will explicitly describe this action for the case of E6� ( ). Let σ be the outer involution
of E6. The involution σ induces the following automorphism of E6� ( ):

σ E φ E φ, , ,t( ) ( )= −+
∗ (6)

since the involution σ acts in E6 by transposing the automorphisms (we are considering the elements of E6
through its 27-dimensional fundamental representation), dσ A At( ) = − for any A 6e∈ and the transformation
on the Higgs field coincides with the action of dσ in it, that is, φ dσ φt ( )− = . We are also interested in the
automorphism that results from composing σ+ with the involution ι of E6� ( ) whose effect is a change of
sign on the field: ι E φ E φ, ,( ) ( )= − . We then define the automorphism σ− of E6� ( ) as follows:

σ E φ E φ, , .t( ) ( )=−
∗ (7)
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The Lie algebra involution dσ : 6 6e e→ induces a vector space decomposition of 6e of the form

6e g g= ⊕
+ −

, where g
+
is the Lie subalgebra of fixed points of dσ and g

−
is the 1( )− -eigenspace of dσ.

In [13, Theorem 5.10], it is proved that the subalgebra of fixed points of dσ is isomorphic to 4f or to 8,sp �( ),
so g

+
is isomorphic to 4f or to 8,sp �( ). If 4g f≅

+
, then, since the dimension of 6e is 78 and the dimension of 4f

is 52, the dimension of g
−
is 26. The restriction of the adjoint representation of 6e to g

+
induces the adjoint

representation of 4f when it is restricted in the image to gl g( )
+
, and also a representation dρ : g gl g( )→

+ −
of

4f is induced, since dσ is a Lie algebra automorphism. The first representation gives the adjoint representa-
tion of F4 and the second induces its fundamental irreducible representation,

ρ F: GL4 g( )→
−

(8)

(observe that dim 26g =
−

), as we will notice in Proposition 3.2.
We consider now the case in which 8,g sp �( )≅

+
. The corresponding subgroup of E6 is PSp 8, �( )

(observe that the center of Sp 8, �( ) is isomorphic to 2� , while the center of E6 is isomorphic to 3� ), which admits
the symplectic groupSp 8, �( ) as its universal cover through a 2 to 1 coveringmap π : Sp 8, PSp 8,Sp � �( ) ( )→ . It
is also relevant to consider the general symplectic group GSp 8, �( ), defined as the group of invertible 8 8×

complex matrices that leave invariant certain symplectic form modulo scalars (a classical reference on this group
where details about its definition and properties can be found is [14]). We would like to point out that the notions
of isotropic vector subspace and symplectic complement make sense when a general symplectic structure is
considered in a complex vector space (and also the corresponding notions on principalGSp-bundles). The general
symplectic group admits a projection

π : GSp 8, PSp 8,GSp � �( ) ( )→ (9)

over PSp 8, �( ). This is a 4:1 covering map that factors through the 2:1 covering map GSp 8, Sp 8,� �( ) ( )→

defined by the universal covering of Sp 8, �( ), with the standard projection Sp 8, PSp 8,� �( ) ( )→ , defined
by the quotient by the center of Sp 8, �( ). Given a principal PSp 8, �( )-bundle E0 over X , it always admits a
lift to a GSp 8, �( )-bundle E through πGSp, two of such lifts differing by a line bundle with trivial second
power.

Let now ι : Sp 8, GL 8,� �( ) ( )→ be the representation of Sp 8, �( ) induced by the natural inclusion of
groups. Then the representations

ιSym2 (10)

and

ι2∧ (11)

of Sp 8, �( ) clearly descend to define representations of PSp 8, �( ). If E φ,0( ) is a ιPSp 8, , Sym2�( ( ) )-Higgs
pair over X and E is a principal GSp 8, �( )-bundle that lifts E0, then φ can be seen as a holomorphic global
section of the vector bundle E KSym2

⊗ . Analogously, a ιPSp 8, , 2�( ( ) )∧ -Higgs pair E φ,0( ) induces the
existence of a principal GSp 8, �( )-bundle E, which lifts E0 such that φ takes values in E K2∧ ⊗ . As it will be
proved in Proposition 3.2, the representation g

+
of PSp 8, �( ) should be isomorphic to ιSym2 and g

−
to ι2∧ .

Proposition 3.2.
(1) Let E φ,( ) be an E6-Higgs bundle fixed by σ+ defined in (6). Then E admits a reduction of structure group E′

to F4 or to PSp 8, �( ) such that φ E E K( )′ ⊆ ′ ⊗ . In the case of F4, φ defines an endomorphism of E′ tensored

by K and, in the case of PSp 8, �( ), φ defines a holomorphic global section of E KSym2
′ ⊗ .

(2) Let E φ,( ) be an E6-Higgs bundle fixed by σ− defined in (7). Then E admits a reduction of structure group E′

to F4 or to PSp 8, �( ) andφ takes values in E Kg( )′ ⊗
−

. In the case of F4, φ 0= and in the case ofPSp 8, �( ),
φ defines a holomorphic global section of E K2∧ ′ ⊗ .

Proof. Under the conditions of the statement of the proposition, since E φ E φ, , t( ) ( )≅ ±
∗ (where the + or −

sign depends on whether E φ,( ) is a fixed point of σ− or σ+, respectively), there exists an isomorphism
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f E φ E φ: , , t( ) ( )→ ±
∗ . Then f E E: →

∗ is an isomorphism of vector bundles. Let g f ft 1( )= ∘
− , which is an

automorphism of E. Exactly one of the following possibilities is satisfied:
• The automorphism g is represented by a central element of E6. Then there exists λ �∈ with λ 13

= such
that g λI= . This implies that f λf t

= . By transposing, we have that f λft
= , so f λ f t2

= . Finally, λ λ2
= ,

so λ 1= . Therefore, f f t
= and E admits a reduction of the structure group to F4.

• The automorphism g is not represented by a central element of E6. Let θ 1≠ be an eigenvalue of g . Let v be
an eigenvector of g of eigenvalue θ. Then f v θf vt( ) ( )= . Since v f θfKer t( )∈ − , it is also true that
v f θfKer t( )∈ − , so f v θ f v2( ) ( )= . This implies that θ 12

= , so θ 1= − . Then E admits a reduction of
structure group to some group of type Cn. Therefore, E admits a reduction of the structure group to
a copy of PSp 8, �( ), since this group is the maximal subgroup of E6 of type Cn, as it is proved in [15], and
the center of Sp 8, �( ) is isomorphic to 2� , while the center of E6 is isomorphic to 3� .

All this proves that E admits a reduction of structure group E′ to F4 or PSp 8, �( ) defined by f and such that
φ takes values in g

+
or g

−
depending on the considered automorphism, σ+ or σ−, respectively.

In the F4 case, we have the following:
(1) For the automorphism σ+, the Higgs field φ always satisfies f φ φ f 0t

∘ + ∘ = , that is, f defines
a quadratic form in E′, which φ respects, so φ is an endomorphism of E′ as a principal F4-bundle.

(2) For the automorphism σ−, φ satisfies f φ φ ft
∘ = ∘ . Since the dimension of g

−
is 26 in this case, the only

possibility for φ is to define a holomorphic global section of E KEnd( )′ ⊗ , in view of the possibilities for

the representations of F4. The condition f φ φ ft
∘ = ∘ tells us that this global section should satisfy

φ a φ b a φ b φ φ a φ b φ b a φ, , , , , , , , 0⟨⟨ ⟩ ⟩ − ⟨ ⟨ ⟩ ⟩ = ⟨ ⟩⟨ ⟩ − ⟨ ⟩⟨ ⟩ =

for any a b E, ∈ ′ (we are omitting the reference to the element in the canonical bundle K ), so E φ,( )′

defines an F4-Higgs pair for the representation ρ defined in (8).
We now analyze the case of PSp 8, �( ).

(1) For the automorphism σ+. By the description of the representations of PSp 8, �( ) and the dimensional
restrictions (see the discussion before the statement), φ should be a holomorphic global section of

E KSym2
′ ⊗ or E K2∧ ′ ⊗ . In any case, if E0 is a lift of E′ by the projection map defined in (9), φ can be

understood as a global section of E K2 0⊗ ⊗ . Without loss of generality, we can assume that φ v w= ⊗ ,
by making a slight abuse of notation, for certain v w E, 0∈ , instead of a linear combination of summands
of this kind. If ,⟨ ⟩ denotes the symplectic form defined in E0 and a b E, ∈ ′, we have that

φ a b a φ b w a v b v a w b, , , , , , ,( ) ( )⟨ ⟩ + ⟨ ⟩ = ⟨ ⟩⟨ ⟩ − ⟨ ⟩⟨ ⟩

becauseφ a w a v,( ) = ⟨ ⟩ andφ b w b v,( ) = ⟨ ⟩ , the fieldφ understood as a vector endomorphism of E′ (again,
we omitted the reference to the K element). Now, since φ satisfies f φ φ f 0t

∘ + ∘ = , one has that the

aforementioned expression should be equal 0, which is equivalent to the state that φ E KSym2
∈ ′ ⊗ .

(2) For the automorphism σ−, the same argument shows that φ defines a global section of E K2∧ ′ ⊗ in this

case, only by observing that f φ φ ft
∘ = ∘ . □

Remark. Proposition 3.2 can be seen as a consequence of [11, Proposition 3.9], which addresses the general
case of a complex semisimple Lie group G. The novelty here is that we have made a specific proof for the
particular case of G E6= .

4 Stability conditions for the F4 and �( )PSp 8, -Higgs pairs

Proposition 3.2 tells that, among the fixed points of the automorphism σ+ of E6� ( ) defined in (6), we find
F4-Higgs bundles over X , and among the fixed points of σ− defined in (7), F4-Higgs pairs associated to the
fundamental representation of F4 are found. In the first part of this section, we will give the reduced notions
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of stability for the bundles and pairs with structure group F4, which will be done by using the theory set out
in Section 2.

The group F4 is the subgroup of E6 which consists of automorphisms of a complex vector space V of
dimension 26 that preserve a certain holomorphic nondegenerate symmetric trilinear form Ω and a certain
holomorphic nondegenerate symmetric bilinear form ω. A principal F4-bundle over the compact Riemann
surface X is then a rank 26 holomorphic complex vector bundle E equipped with a global holomorphic
nondegenerate symmetric trilinear form Ω and with a global holomorphic symmetric bilinear form ω
(for details, see [4, Section 3]).

In [4], we described the parabolic subgroups of F4. We will recall here the form of the filtrations induced
on a principal F4-bundle by a reduction of the structure group of the bundle to a parabolic subgroup of F4.

Let E be a principal F4-bundle over X . A reduction of structure group of E to a parabolic subgroup of F4
induces a filtration of E into vector subbundles of the form

E E E E E E E0 ,r r0 1 1 0⊊ ⊊ ⊊ ⋯ ⊊ ⊆ ⊊ ⋯ ⊊ ⊊ ⊊
⊥ ⊥ ⊥ (12)

where the orthogonality ⊥ is taken with respect to ω and E E, , r0 … are isotropic for ω and Ω.

Proposition 4.1. Let E φ,( ) be an F4-Higgs bundle, Ω be the holomorphic nondegenerate symmetric trilinear
form defined in E, and ω be the holomorphic nondegenerate symmetric bilinear form defined in E. Then E φ,( )

is semistable if for every proper subbundle F of E isotropic for ω and Ω such that φ F F K( ) ⊆ ⊗ , we have
that Fdeg 0≤ .

The Higgs bundle E φ,( ) is stable if for every filtration as in (12), where E E, , r0 … are isotropic for ω and Ω
and such that φ E E Kk k( ) ⊆ ⊗ for all k with k r0 ≤ ≤ , we have that Edeg 0j ≤ for all j and there exists some k
such that Edeg 0k < .

The Higgs bundle E φ,( ) is polystable if E admits a filtration into vector subbundles as in (12), where
E E, , r0 … are isotropic for ω and Ω, E E Edeg deg deg 0r0 1= = ⋯= = , such that φ E E Kk k( ) ⊆ ⊗ for all k with

k r0 ≤ ≤ and E can be written in the following form:

E E E E E E E E E E E E E E E E .r r r r r r0 1 0 2 1 1 1 0 1 0= ⊕ / ⊕ / ⊕⋯⊕ / ⊕ / ⊕ / ⊕⋯⊕ / ⊕ /−

⊥

−

⊥ ⊥ ⊥ ⊥ ⊥

Proposition 4.2. Let E φ,( ) be an F4-Higgs pair associated with the representation of F4 defined in (8). LetΩ be
the holomorphic nondegenerate symmetric trilinear form defined in E and ω be the holomorphic nondegener-
ate symmetric bilinear form defined in E. The Higgs pair E φ,( ) is semistable if for every proper subbundle F
of E isotropic for ω and Ω such that φ takes values in F K⊗

⊥ , we have that Fdeg 0≤ .
The Higgs pair E φ,( ) is stable if for every filtration of the form (12), where E E, , r0 … are isotropic for ω and

Ω and such that φ takes values in E Kr ⊗
⊥ , we have that Edeg 0j ≤ for all j and there exists some k such

that Edeg 0k < .
The Higgs pair E φ,( ) is polystable if E admits a filtration into vector subbundles as in (12), where E E, , r0 …

are isotropic for ω and Ω, E E Edeg deg deg 0r0 1= = ⋯= = and such that φ takes values in E E Kr r/ ⊗
⊥ and E

can be written in the following form:

E E E E E E E E E E E E E E E E .r r r r r r0 1 0 2 1 1 1 0 1 0= ⊕ / ⊕ / ⊕⋯⊕ / ⊕ / ⊕ / ⊕⋯⊕ / ⊕ /−

⊥

−

⊥ ⊥ ⊥ ⊥ ⊥

Due to their absolute similarity, we give together the proofs of Propositions 4.1 and 4.2.

Proof. Let E φ,( ) be an F4-Higgs pair for the adjoint representation or for the representation of F4 defined in
(8). Let Ω be the holomorphic nondegenerate symmetric trilinear form defined on E and ω be the holo-
morphic nondegenerate symmetric bilinear form defined on E. Let P be a parabolic subgroup of F4, χ be an
antidominant character of P and sχ be the corresponding element of ih. A reduction of structure group of E
to P induces a filtration of E of the form

E E E E E E E0 ,r r0 1 1 0⊊ ⊊ ⊊ ⋯ ⊊ ⊆ ⊊ ⋯ ⊊ ⊊ ⊊
⊥ ⊥ ⊥
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where E E, , r0 … are isotropic for ω and Ω. Let dj be the rank of Ej for each j r0, ,= … . The element s then
diagonalizes in the following form:

λ I

λ I
I

λ I

λ I

0 ,

d

r d d

d

r d d

d

0

26 2

0

r r

r

r r

0

1

1

0

⎛

⎝

⎜

⎜

⎜

⎜

⎜

⎜
⎜

⎞

⎠

⎟

⎟

⎟

⎟

⎟

⎟
⎟

⋱

−

⋱

−

−

−

−

−

−

(13)

where λ 0k < , Ik denotes the identity matrix of rank k for each k and λ λ λr0 1< <⋯< . A few simple
computations show that the degree defined in (5) becomes

λ E E λ λ E Edeg deg deg deg .r r r
j

r

j j j j
0

1

1( ) ( )( )∑+ + − +
⊥

=

−

+

⊥

This shows that the expression (5) is a linear combination of the numbers E Edeg degj j+
⊥ with negative

coefficients. Then we have the following:
(1) For the automorphism σ+.

(a) The Higgs bundle E φ,( ) is semistable if Edeg 0j ≤ for all j and for every filtration as mentioned

earlier for which φ E E Kk k( ) ⊆ ⊗ for all k with k r0 ≤ ≤ (this is the condition for φ expressed in
Proposition 2.1). This is clearly equivalent to the assertion of the statement since every isotropic
subbundle of E can be placed in a filtration as the considered one.

(b) Analogously, by Proposition 2.1, the Higgs bundle E φ,( ) is stable if for every filtration as mentioned

earlier for which φ E E Kk k( ) ⊆ ⊗ for all k with k r0 ≤ ≤ , we have that λ E Edeg degr r r( )+ +
⊥

λ λ E Edeg deg 0j
r

j j j j0
1

1( )( )∑ − + >
=

−

+

⊥ , which is equivalent to requiring that Edeg 0j ≤ for all j and

that there exists at least one k r0, 1, ,{ }∈ … such that Edeg 0k < .
(c) Finally, the third part of the statement is clearly a re-reading of the third part of Proposition 2.1.

(2) For the automorphism σ−.
(a) The Higgs pair E φ,( ) is semistable if and only if for each filtration as mentioned earlier for which φ

takes values in E Kr ⊗
⊥ , Edeg 0j ≤ for all j, by Proposition 2.1. As in the first case, this is again

equivalent to the assertion of the statement.
(b) Analogously, by Proposition 2.1, E φ,( ) is stable if and only if for each filtration as mentioned earlier

for whichφ takes values in E Kr ⊗
⊥ , it is satisfied that Edeg 0j ≤ for all j and that there exists at least

one k r0, 1, ,{ }∈ … such that Edeg 0k < .
(c) As in the case of σ+, the third part of the result is a re-reading of the third part of Proposition

2.1. □

We will now deal with the case of Higgs pairs with the structure group PSp 8, �( ).

Proposition 4.3. Let ιSym2 (resp. ι2∧ ) be the representation of PSp 8, �( ) defined in (10) (resp. in (11)), let
E φ,0( ) be a ιPSp 8, , Sym2�( ( ) )-Higgs pair (resp. ιPSp 8, , 2�( ( ) )∧ -Higgs pair) over X , and let E be a principal

GSp 8, �( )-bundle over X, which lifts E0. Then E φ,0( ) is semistable if F
F

E
E

deg
rk

deg
rk≤ for every isotropic subbundle

F of E satisfying that φ takes values in the subbundle

F E F F F F KS S(( ) ( ))⊗ ⊕ / ⊗ / ⊗
⊥ ⊥

(resp.

F E F F F F K(( ) ( )) )∧ ⊕ / ∧ / ⊗
⊥ ⊥

of E KSym2
⊗ (resp. of E K2∧ ⊗ ).
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The pair E φ,0( ) is polystable if E admits a decomposition of the form E E E E E Er r0 1 0 1= ⊕ / ⊕⋯⊕ / ⊕−

E E E Er r 0/ ⊕⋯⊕ /
⊥ ⊥ with E

E
E

E
deg
rk

deg
rk

0

0
= , Edeg 0j = for all j 1≥ and such that φ takes values in the subbundle

E E E E E E E Ki
r i S i i r r S r r0

1
1( ( ) ( ))⊕ ⊗ / ⊕ / ⊗ / ⊗

=

−
+

⊥ ⊥ ⊥

(resp.

E E E E E E E Ki
r i i i r r r r0

1
1( ( ) ( )) )⊕ ∧ / ⊕ / ∧ / ⊗

=

−
+

⊥ ⊥ ⊥

of E KSym2
⊗ (resp. of E K2∧ ⊗ ).

Proof. We will develop the proof for the case of the representation ιSym2 (the case of ι2∧ is absolutely
analogous). Given a ιPSp 8, , Sym2�( ( ) )-Higgs pair E φ,0( ) and given E as in the statement, a reduction of
structure group of E φ,0( ) to a parabolic subgroup P of PSp 8, �( ) comes with a filtration of E into isotropic
subbundles for its symplectic form

E E E E E E E0 .r r0 1 1 0⊊ ⊊ ⊊ ⋯ ⊊ ⊆ ⊊ ⋯ ⊊ ⊊ ⊊
⊥ ⊥ ⊥

If χ is an antidominant character of P and sχ is the associated element of ih, then sχ diagonalizes as in (13).
The degree defined in (5) has the following form

λ E λ E E λ λ E Edeg deg deg deg deg ,r r r
j

r

j j j j0
0

1

1( ) ( )( )∑− + + + − +
⊥

=

−

+

⊥

so it is greater than or equal to 0 for every family of weights λi{ } if and only if E
E

E
E

deg
rk

deg
rk

i

i
≤ for every i 0≥ and

it is equal to 0 for every such family if E
E

E
E

deg
rk

deg
rk

0

0
= and Edeg 0j = for all j 1≥ . On the other hand, if v wS⊗ is a

generic element that belongs to a summand of the differentiable decomposition E E E Er0 1 0⊕ / ⊕⋯⊕ /

E E E E Er r r1 0⊕ / ⊕⋯⊕ /−

⊥ ⊥, then

ι e v w e v wSym ,ts S t α β S2 χ ( ) ( )
( ) ⊗ = ⊗

+

where α is the eigenvalue of v and β is the eigenvalue of w. This expression is bounded as t → ∞ if and only
if α β 0+ ≤ . If we suppose that α β≤ , this implies that v belongs to some Ei (i.e., α coincides with some λi

and w belongs to Ei 1−

⊥ , or both vectors v and w belong to E Er r/
⊥ . The semistability condition then demands

that E
E

E
E

deg
rk

deg
rk

i

i
≤ for every i whenever φ takes values in

E E E E E E .j
r j S j r r S r r1 1( ) ( )⊕ ⊗ ⊕ / ⊗ /
= −

⊥ ⊥ ⊥

The semistability condition applied to a filtration of the form F F E0 ⊊ ⊊ ⊊
⊥ induced by a reduction of

structure group to a maximal parabolic subgroup then demands the condition exposed in the statement.
Since the satisfaction of the semistability condition for these filtrations given by reductions to maximal
parabolic subgroups implies the satisfaction of the semistability condition for every other filtration,
the result for semistability holds.

For polystability, observe that, with the preceding notation, α β 0+ = if and only if α β 0= = or α λi=

and β λi= − for some i, and so polystability requires that E
E

E
E

deg
rk

deg
rk

0

0
= , Edeg 0j = for all j 1≥ whenever φ

takes values in E E E E E E E Ki
r i S i i r r S r r0

1
1( ( ) ( ))⊕ ⊗ / ⊕ / ⊗ / ⊗

=

−
+

⊥ ⊥ ⊥ . □

5 Conclusion

Let X be a compact Riemann surface of genus g 2≥ and let E6� ( ) be the moduli space of E6-Higgs bundles
over X . It is well known that E6 is the only exceptional simple complex Lie group that admits a nontrivial
outer automorphism. This automorphism, which has been called σ in the paper, is an involution, and it acts
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on E6� ( ). By combining this with the multiplication by 1+ or 1− on the Higgs field, the automorphisms σ+

and σ− of E6� ( ), defined in (6) and (7), are obtained. The main result of this article describes the subvariety
of fixed points of E6� ( ) for these two automorphisms (Proposition 3.2). The techniques employed make use
of the specific properties of group E6, so the proof is also specific for this case. As a result, it has been
obtained that the indicated fixed points can be described as certain Higgs pairs associated with the struc-
ture groups F4 and PSp 8, �( ) and to certain representations of these groups, which are defined in (8), (10),
and (11). Finally, in Section 4, the stability conditions for these Higgs pairs are obtained from the general
theory of G-Higgs pairs developed in Section 2 (Propositions 4.1–4.3). A study of how the group inclusions
F E4 6↪ and EPSp 8, 6�( ) ↪ influences the natural maps of the moduli spaces of F4 orPSp 8, �( )-Higgs pairs
in E6� ( ) is proposed as a line of future research.
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