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ONE-SIDED INDECOMPOSABLE PURE INJECTIVE MODULES
OVER STRING ALGEBRAS

MIKE PREST AND GENA PUNINSKI

Abstract. We classify one-sided indecomposable pure injective modules over

(finite dimensional) string algebras.

1. Introduction

Let A be a finite dimensional string algebra over a field k (as an example one

may consider the Gelfand–Ponomarev algebra G2,3 given by generators α, β and

relations αβ = βα = α2 = β3 = 0). A classification of indecomposable finite

dimensionalA-modules has been known since Butler and Ringel
B-R
[2]: they are exactly

the so-called string and band modules.

Although the classification of arbitrary infinite dimensional modules over a string

algebra A is hardly possible, some particular classes of such modules are of special

interest. For instance Ringel
Rin1
[11] announced a program to classify indecomposable

pure injective modules over string algebras. It is known that over a finite dimen-

sional algebra pure injective modules may be characterized as direct summands of

direct products of finite dimensional modules.

Every indecomposable finite dimensional module is pure injective, but there are

less obvious examples. For every band (see Section 2) C over a string algebra A

there is a one-parameterized family of ‘Prüfer’ modules and a one-parameterized

family of ‘adic’ modules. Also there is one ‘generic’ module corresponding to C.

We will refer to these modules as infinite dimensional band modules.

Moreover, if v is a one-sided almost periodic string or a two-sided biperiodic

string over A, then Ringel
Rin
[10] associated to v a module, M(v) which is, in his

terminology, a direct sum, direct product or ‘mixed’ module and which is pure

injective and indecomposable.

Conjecture 1.1. (Ringel’s conjecture — see
Rin
[10, p. 48, p. 51]) Let A be a finite

dimensional domestic string algebra. Then every infinite dimensional indecompos-

able pure injective A-module is either a band module or is of the form M(v), where

v is either a one-sided almost periodic string or a two-sided biperiodic string.
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There is a natural construction which assigns to every element m of a pure

injective module M over a string algebra A an (infinite) word w(m). We will say

that M is one-sided, if for some m ∈ M , w(m) is a one-sided word. Otherwise M

is two-sided. For instance every finite dimensional string module is one-sided.

In this paper we classify one-sided indecomposable pure injective modules over a

string algebra A. We prove that ifM is an indecomposable pure injective A-module,

and 0 6= m ∈M is such that w(m) is a one-sided word, then the isomorphism type

of M is determined by w(m). Moreover, for every one-sided word w there is an

indecomposable pure injective A-module M and m ∈ M such that w(m) = w and

we show that this correspondence is bijective for infinite words.

Thus one-sided indecomposable pure injective modules over a string algebra A

are classified by one-sided words over A. Using this we show that over a non-

domestic string algebra A there are precisely 2ω non-isomorphic one-sided inde-

composable pure injective modules.

However the methods used in the proofs do not give much information about the

structure of such modules. For domestic string algebras, using Ringel results, we are

able to give a completely satisfactory description of one-sided indecomposable pure

injective modules. Precisely, every such module has the form M(v) from Ringel’s

list, and M(v) ∼= M(w) iff v = w or v = w−1.

Given a domestic string algebra A, we calculate the Cantor–Bendixson rank of

the open set in the Ziegler spectrum formed by the one-sided indecomposable pure

injective modules. We prove that this rank is equal to n+ 1, where n is the length

of a maximal path in the bridge quiver of A. Note that conjecturally the Cantor–

Bendixson rank of the Ziegler spectrum of a domestic string algebra A is equal to

n + 2 (Schröer’s conjecture — see
Sch0
[12, p. 84]): we prove that the rank is at least

n+ 2.

The paper consists of two parts. In the first part we show how to analyze the

open subset of the Ziegler spectrum given by a chain in the lattice of pp-formulae.

This part works for modules over an arbitrary ring. In the second part we apply

these results to the family of uniserial functors constructed by Prest and Schröer
P-S
[7] and combine them with Ringel’s results.

Note that the problem of classifying indecomposable pure injective modules over

a non-domestic string algebra appears to be extremely difficult. Some examples

were collected in Baratella and Prest
B-P
[1], and we use them in this paper to illustrate

results. Recently Puninski
Pun1
[9] proved that in the case of a countable field every non-

domestic string algebra has a pure injective module without indecomposable direct

summands.

So, it may be instructive to see that a general model-theoretic approach combined

with relatively unsophisticated algebraic methods (what Ringel
Rin1
[11, p. 48] refers to

as ‘bare hands’) clarifies the situation without exhaustive calculations.
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2. String algebras

Almost everywhere in this paper modules will be left modules over a finite di-

mensional algebra A. Upper case letters such as C, D and E will always denote

finite strings.

Given a finite quiver (i.e. an oriented graph) Q we may construct a possibly

infinite dimensional algebra A = kQ with a k-basis given by the paths in Q and

with multiplication given by the composition of paths. For instance for every vertex

i ∈ Q there is the path of length 0 which is an indecomposable idempotent ei ∈ A.

Given an arrow α in Q its starting point will be denoted by s(α) and its end point

will be denoted by e(α). Thus αβ (β then α) is a path in Q if s(α) = e(β) (this

fits with our convention that we consider left modules).

We impose some monomial relations (i.e. relations of the form α1 . . . αn = 0,

where αi are arrows in Q forming a path) on A to make A finite dimensional. Then

A is a string algebra, if the following holds:

1) every vertex is the starting point of at most two arrows and the end point of

at most two arrows;

2) if α, β, γ are arrows such that e(α) = s(β) = s(γ) (i.e. βα and γα are paths

in Q), then either βα = 0 or γα = 0 is a relation on A;

3) if α, β, γ are arrows such that s(α) = e(β) = e(γ) (i.e. αβ and αγ are paths

in Q), then either αβ = 0 or αγ = 0 is a relation on A.

For instance

R1

◦

α

��

β

		
◦

γ

ee

with relations γα = 0 and βγ = 0 is a string algebra (the relations are indicated by

dotted curves).

For every arrow α we introduce a formal inverse α−1 for α with s(α−1) = e(α)

and e(α−1) = s(α). A string (of length k) over A is a sequence of letters (that is,

arrows or inverses of arrows) C = c1c2 . . . ck such that

1) cici+1 is neither of the form αα−1 nor of the form β−1β for any arrows α or

β, for 1 ≤ i ≤ k − 1;

2) ci+1 . . . ci+t, 1 ≤ i + 1 < i + t ≤ k is neither of the form α1 . . . αt nor of the

form α−1
t . . . α−1

1 , where α1 . . . αt = 0 is any relation on A.

Roughly, a string represents a reduced, non-zero “walk” in Q where arrows may

be traversed in either direction.

For instance αβ−1αγ is a string over R1 (interpreted as ‘go along γ then along

α, then lift through β and go along α again’). Every string C = c1 . . . ck over A

defines a string module M(C) as follows. M(C) is a (k + 1)-dimensional vector
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space with basis z0, z1, . . . , zk. Informally ci will be between zi−1 and zi in M(C)

and the action of ci will be to map zi to zi−1 or vice versa. If ci is a direct arrow

(that is, an arrow), say ci = α, then put zi−1 = αzi. If ci is an inverse arrow, say

ci = β−1, then set βzi−1 = zi. For each such relation αzi = zj , say s(α) = k and

e(α) = l, set ekzi = zi and elzj = zj . All the remaining actions of generators of kQ
on these basis elements zi are defined to be zero. It is easy to check that M(C) is

a left A-module.

In the sequel we will draw direct arrows from the upper right to the lower left

and inverse arrows from the upper left to the lower right. Thus the string module

M(αβ−1αγ) over R1 has the following diagram:

◦
γ

����
��

z4

◦
α

����
��

β ��9
99

9
z1

◦
α

����
�� z3

◦
z0

◦
z2

It is known (see
B-R
[2]) that any string module is indecomposable, and M(C) ∼=

M(D) iff either C = D or C−1 = D.

An infinite sequence of letters v = c0c1c2 . . . is called a one-sided string if c0 . . . ck
is a string for every k. Similarly we can define a one-sided string v = . . . c−1c0

directed to the left. For instance ∞(β−1α), meaning . . . β−1αβ−1α, is a one-sided

string over R1, and (β−1α)∞, meaning β−1αβ−1α . . . .

For every one-sided string we may define a direct sum module with basis z0, z1, . . .

such that ci acts between zi and zi−1 as in a finite dimensional string module. If we

admit arbitrary (not necessarily finite) tuples and use the same action “pointwise”,

we obtain a direct product module.

A one-sided string v is called almost periodic if v is not periodic (that is, of the

form D∞ or ∞D for some string D) and v = CD∞ or v = ∞DC for finite strings C

and D. According to Ringel
Rin
[10] every almost periodic string is either “expanding”

or “contracting” (depending on whether the last letters of C and D are direct or

inverse): we will not need the definitions of these terms here.

Fact 2.1.
Rin
[10, p. 424],

Rin1
[11, p. 50] Let v be a one-sided almost periodic string over att

string algebra A. If v is expanding then the direct product module, which we denote

M(v), is pure injective and indecomposable. If v is contracting, then the direct sum

module, denoted M(v), is pure injective and indecomposable.

Note that we use M(v) to denote either the direct sum or direct product module

depending on whether v is contracting or expanding (in the above references, M(v)

is used for the direct product module).

A band over A is a string C = c1 . . . ck such that following holds:

1) every power Cm is defined;
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2) C is not a power of a proper substring;

3) c1 is a direct arrow and ck is an inverse arrow.

Thus every band C over A is of the form α . . . β−1, and clearly α 6= β. Note that

then C−1 = β . . . α−1 is also a band. For instance over R1 we have the following

bands: C = αβ−1 and C−1 = βα−1.

Let C,D be finite strings with the same first letter c. One defines C < D if one

of the following holds:

1) D = CβD′ or

2) C = Dγ−1C ′ or

3) C = Eγ−1C ′ and D = EδD′ for some strings D′, C ′, E and arrows β, γ, δ.

Clearly < is a linear order. Also every string C (except the maximal one) has an

immediate successor C+ with respect to this order. For instance, if Cβ is a string

for some arrow β, then C+ = Cβγ−1 . . . (as many inverse arrows as possible).

This order obviously can be extended to infinite one-sided strings v = c . . . .

Then v defines a cut on the set of finite strings with first letter c: the ‘lower part’

of this cut is {C | C < v} and the ‘upper part’ is {D | D > v}.
Similarly we may define the ‘left order’ <′ on the set of one-sided strings ending

with the same letter c by setting C <′ D if C−1 < D−1. The immediate successor

of C with respect to this order will be denoted by +C.

3. Some model theory

We recall some basic notions from the model theory of modules. For more on

this the reader is referred to
Preb
[4].

A pp-formula ϕ(x) (in one free variable x) is a formula of the form ∃ ȳ Bȳ = b̄x,

where ȳ = (y1, . . . , yn), B is an m×n matrix over A and b̄ is a column over A with

m rows. This pp-formula is interpreted as ‘B divides b̄x’. For instance a divisibility

formula is a pp-formula of the form ∃ y (ry = x) where r ∈ A; we write r | x for

short.

If ϕ is a pp-formula as above and m is an element of a module M we say that ϕ is

satisfied by m in M , written M |= ϕ(m), if there is m = (m1, . . . ,mn) ∈Mn such

that Bm = b̄m. Then ϕ(M) = {m ∈ M | M |= ϕ(m)} is a pp-definable subgroup

of M . Note that ϕ(M) is a (right) S-submodule of M where S = End(M). For

instance, for a divisibility formula we have (r | x)(M) = rM .

Let ϕ and ψ be pp-formulae. We write ψ → ϕ (ψ implies ϕ) if ψ(M) ⊆ ϕ(M)

holds for every module M . The implication relation is reflexive and transitive,

therefore defines a (quasi-) order on the set of all pp-formulae. Thus we will often

write ψ ≤ ϕ instead of ψ → ϕ. We say that pp-formulae ϕ and ψ are equivalent if

ψ ≤ ϕ ≤ ψ, i.e. ψ(M) = ϕ(M) for every module M .

Factorizing the set of all pp-formulae by the equivalence relation, we obtain a

partial order L(A). In fact L(A) is a modular lattice, where the meet operation ∧
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(“and”) is conjunction of pp-formulae and the join operation + is given by the rule

(ϕ + ψ)(x) = ∃ y (ϕ(y) ∧ ψ(x − y)). If ψ < ϕ are pp-formulae then (ϕ/ψ) will, in

this paper, denote the interval [ψ;ϕ] in L(A).

A pp-type p(x) is a collection of pp-formulae which is closed with respect to

implication and (finite) conjunction. For instance, if m is an element of a module

M , then the set of all pp-formulae satisfied by m in M is a pp-type, denoted

ppM (m). By
Preb
[4, Ch. 4] for every pp-type p there is a ‘minimal’ pure injective

module M = N(p) containing an element m ∈ M such that p = ppM (m). This

module is unique (up to isomorphism over m) and will be called a pure injective

envelope of p.

We say that a pp-type p is indecomposable, if N(p) is an indecomposable module.

The positive part, p+, of a pp-type p consists of all pp-formulae ϕ ∈ p (i.e. p+ = p)

and its negative part p− consists of those pp-formulae ψ with ψ /∈ p.
We say that an interval (ϕ/ψ) is open in a pp-type p, writing p ∈ (ϕ/ψ), if ϕ ∈ p+

and ψ ∈ p−. In this case p defines a cut on (ϕ/ψ), whose ‘upper’ part consists of

pp-formulae in p+ (and below ϕ) and whose ‘lower’ part consists of pp-formulae in

p− (and above ψ):

◦ L
C

�

|
r

r
|

�

C
L

ϕ

p+
. poo

..

◦
ψ

p−

The following useful result says that the pure injective envelope of an indecom-

posable pp-type p is uniquely determined by any (local) cut of p.

cut Fact 3.1. Let ψ < ϕ be pp-formulae and let p, q ∈ (ϕ/ψ) be indecomposable pp-

types which define the same cut on the interval (ϕ/ψ). Then N(p) ∼= N(q).

Proof. We have ϕ ∈ p, q and ψ ∈ p−, q−. If N(p) and N(q) were non-isomorphic

then, by a result of Ziegler,
Zig
[15], see

Preb
[4, Lemma 9.2], there would exist a pp-formula

θ such that ψ < θ < ϕ and either θ ∈ p \ q or θ ∈ q \ p. Thus p and q would define

different cuts on the interval (ϕ/ψ), a contradiction. �

In general not every cut on an interval (ϕ/ψ) leads to an indecomposable pp-

type. But this is the case if (ϕ/ψ) is a chain.

chain Lemma 3.2. Given any cut on a chain (ϕ/ψ) there is an indecomposable pp-type

q which defines this cut on (ϕ/ψ). Moreover the (indecomposable pure injective)

module N(q) is uniquely (up to an isomorphism) determined by the original cut.

Proof. Since (ϕ/ψ) is a chain, the upper part of the cut, denote it p+, is closed with

respect to conjunctions and the lower part of the cut, p−, is closed with respect to

sums. Also the set of formulas p+ ∪ ¬ p− is consistent.
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Let us extend p+ ∪ ¬ p− to a maximal pp-type q (i.e. such that q+ ⊇ p+ and

is maximal with respect to q+ ∩ p− = ∅). From
Preb
[4, Thm. 4.32] it follows that q is

indecomposable. By the construction, q defines the original cut on the chain (ϕ/ψ).

Suppose that q′ is another indecomposable pp-type that defines the same cut on

(ϕ/ψ). Then N(q) ∼= N(q′) by Fact
cut
3.1. �

We say that an indecomposable pure injective module M opens an interval

(ϕ/ψ), written M ∈ (ϕ/ψ), if there is m ∈ M such that m ∈ ϕ(M) \ ψ(M),

i.e. p ∈ (ϕ/ψ) where p = ppM (m).

Thus we obtain the following ‘rough’ classification of indecomposable pure injec-

tive modules living on the chain.

chclas Theorem 3.3. Let (ϕ/ψ) be a chain in the lattice of all pp-formulae over A. Then

there is a natural surjection from the set of cuts on (ϕ/ψ) to the set of (isomorphism

types of) indecomposable pure injective A-modules opening this interval.

Proof. This follows from Fact
cut
3.1 and Lemma

chain
3.2. �

In general this map is not monic: different cuts may lead to isomorphic inde-

composable pure injective modules.

4. Preliminary results

We say that a pair (M,m) is a free realization of a pp-formula ϕ(x) if M is

a finitely presented (=finite dimensional in the context of modules over finite-

dimensional algebras) module, M |= ϕ(m), and ϕ → ψ for every pp-formula ψ

such that M |= ψ(m). In particular ppM (m) is generated as a pp-type by ϕ. By
Preb
[4, Ch. 8] every pp-formula has a free realization. For instance the pair (A, r) is a

free realization of the formula r | x.
The following example of a free realization will be of special importance. Let

M = M(CD) be a string module over a string algebra A (we allow C or D to be

empty) and let z be the element of a canonical basis of M lying between C and

D (in the sense of the construction of string modules). Let (C.) be a pp-formula

describing the part of M to the left of z. For instance, continuing the notation of

an earlier example, if M = M(αβ−1αγ) over R1 and C = αβ−1, D = αγ, then

z = z2 and (C.) will say ‘there exist z0, z1 such that αz1 = z0 ∧ βz1 = z’, and is

equivalent to β | x.
If C = ∅ then we take C. to be the conjunction of any formulas necessary to

specify the annihilator of z.

Similarly let (.D) be a pp-formula describing the part of M to the right of z (in

this example αγ | x will do but in general one will need more complicated formulas).

By (C.D) we denote the conjunction of the formulae (C.) and (.D). Note that if

ej ∈ A is the unique basic idempotent such that ejz = z, then (C.D) → ej | x.
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CD Remark 4.1. Let M = M(CD) be a string module and let z be an element of the

canonical basis of M between C and D. Then (M, z) is a free realization of (C.D).

Proof. By definition (C.D) ∈ p = ppM (z). Let (N,n) be a free realization of (C.D).

From the description of (C.D) it it easy to construct a morphism f : M → N such

that f(z) = n. Now, if ψ ∈ p, then M |= ψ(z) so N |= ψ(n), therefore (C.D) → ψ

by the definition of a free realization. �

If M is a module and D is a string then (.D)M is a pp-subgroup of M . For

instance, in our example, if D = α then for (.D) we may take ∃z1 (αz1 = x∧βz1 =

0), so (.α)M = α annM (β), and if D = β−1 then for (.D) we may take γβx = 0 so

(.β−1)M = annM (γβ).

It is quite straightforward to check that if E,F are finite strings such that E ≤ F

then (.F ) → (.E). Similarly, if C,D are finite strings such that C ≤′ D, then

(D.) → (C.).

The following lemma says that (.D) defines a homogeneous subspace in every

direct sum or direct product module (we allow the sum below to be infinite in a

direct product module).

hom Lemma 4.2. Let M = M(v) be either the direct sum or direct product module

corresponding to a one-sided string v and let D be a finite string. Then (.D)(M) is

a homogeneous subspace of M , i.e.
∑

i λizi ∈ (.D)(M) iff zi ∈ (.D)(M) for every

i such that λi 6= 0.

Proof. Similar to
B-P
[1, Lemma 3.4]. �

The following (almost obvious lemma) will be useful in what follows.

aux Lemma 4.3. Let (M,m) be a free realization of a pp-formula ϕ. Suppose that

m = n + k, that (M,n) is a free realization of ϕ1, and M |= ϕ2(k). If ψ is a

pp-formula such that ϕ2 → ψ, then ϕ+ ψ is equivalent to ϕ1 + ψ.

Proof. Since (M,m) is a free realization of ϕ, and M |= (ϕ1 + ϕ2)(m), we obtain

ϕ→ ϕ1 + ϕ2 → ϕ1 + ψ. Therefore ϕ+ ψ → ϕ1 + ψ.

So it remains to prove that ϕ1 + ψ → ϕ + ψ. Since (M,n = m − k) is a free

realization of ϕ1, and M |= (ϕ + ϕ2)(n), we conclude that ϕ1 → ϕ + ϕ2. Then

ϕ1 + ψ → ϕ+ ϕ2 + ψ = ϕ+ ψ. �

Note that in the above lemma it may happen that ϕ < ϕ1 +ϕ2 even if k is also a

free realization of ϕ2. For instance, let A = G2,2, and let M be the following string

module:

◦
z1

α

����
��

� β

��<
<<

<<

◦
z0

◦
z2
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Set m = z0 + z2, n = z0, and k = z2. Then ϕ may be taken to be the formula

(α + β) | x which is stronger than α | x+ β | x (the sum of the pp-types of n and

k in M).

The next result is a key one in what follows.

uni Lemma 4.4. Let CD be a string over a string algebra A. Then every formula in

the interval (C.D)/(+C.D), apart from (+C.D), is equivalent to a formula (+C.D)+

(C.Di) for some Di ≥ D such that CDi is a string. In particular the interval

(C.D)/(+C.D) is a chain.

Proof. All this follows from
P-S
[7, Thm. 3.2]. We just add some explanations.

It is clear that the formulae (C.Di) with Di ≥ D are linearly ordered, therefore

the same is true for the formulae (+C.D) + (C.Di). Thus it suffices to prove that

every pp-formula strictly between (C.D) and (+C.D) is of the required form. Note

that such a formula can be obtained in the following way: take any pp-formula ϕ

below (C.D) and add (+C.D).

Let z be the element of a canonical basis of M = M(CD) between C and D.

Let (N,m) be a free realization of ϕ. Since (C.D) ≥ ϕ, there is a morphism f :

M → N taking z to m. Since any sum of pp-formulas of the form (+C.D)+ (C.Di)

is equivalent to a single one of them we may assume that N is indecomposable,

therefore is either a string or a band module.

If N is a band module, then from the proof of Theorem 3.2 in
P-S
[7] it follows that

ϕ→ (+C.D), therefore ϕ is taken to (+C.D) by summation.

Otherwise N is a string module, therefore (by Crawley-Boevey
CB
[3]) f is a linear

combination of graph maps fi : M → N = Mi = M(CiDi), i = 1, . . . , n, where

fi(z) = z′i with z′i lying between Ci and Di.

To understand the situation better let us look at the following example of pp-

formulas over R1, where (C.D) is the formula ∃ z1 (αz1 = z ∧ γβz1 = 0) (that is

stronger than α | x).

◦
α

����
��

� β

��<
<<

<< ◦
α

����
��

�
β ��<

<<
<< ◦

α

����
��

� β

��<
<<

<<

•
(C.D)

◦ ◦ •
(+C.D)

◦44

Thus C is empty in this case, and (+C.) is β | x.
Let fi : M → N , i = 1, 2, 3 extend the map z 7→ z′i as the following diagram

shows:
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◦
α

����
��

� β

��<
<<

<<

•
z

◦

◦
α����

��
� β

��<
<<

<< ◦
α����

��
� β

��<
<<

<< ◦
α����

��
� β

��<
<<

<<

•
z′1

•
z′2

◦ ◦
γ

��<
<<

<<

◦
α ��<

<<
<< ◦

β����
��

� α

��<
<<

<<

◦ •
z′3

f1

��

f2

��

f3

��

Let f = f1 + f2 + f3 : M → N , in particular m = f(z) = z′1 + z′2 + z′3.

Note that f1, f2 preserve the orientation of M , but f3 flips it over. By Re-

mark
CD
4.1, (Ci, Di) generates the pp-type pi of z′i in N .

Clearly there is an endomorphism h of N which send z′1 to z′3. Since N is

indecomposable, and h strictly increases pp-types (since there is more divisibility

on z′3 than z′1 does), by
Preb
[4, Thm. 4.27], h is in the Jacobson radical of End(N).

Since 1 + h is an automorphism of N , the pp-type of (1 + h)(z′1) = z′1 + z′3 = n in

N is p1 = pp(z′1).

Note that p2 includes β | x, hence ϕ2 = (C2.D2) → ψ = (+C.D). If k = z′2, then

m = n + k. By Lemma
aux
4.3, ψ + ϕ is equivalent to ψ + (C1.D1), and C1 = C is

empty.

Now we consider the general case.

Comparing pp-types λ1z
′
1 and λnz

′
n as above (and using that E 6= E−1 for every

finite string E), we may drop one of these elements. Now, using Lemma
aux
4.3, we

may dispose of all z′i in the ‘middle’ of N . �

Note that in the above lemma, if +CD is not a string or if +C is undefined, then

(+C.D) degenerates to x = 0, hence the interval (C.D)/x = 0 in the lattice of all

pp-formulae is a chain.

5. One-sided pure injective modules

Let M be an indecomposable pure injective A-module, and let m ∈ Mei for

some i. Using the standard ε-σ formalism (see
B-R
[2, p. 158]) we may separate strings

going in and out of the vertex i into two classes, such that the notions of a ‘right

hand’ string and a ‘left hand string’ make sense. If w is a right hand string, then

m ∈ wM is defined in an obvious manner.

For every n let un be a maximal (with respect to <) string of length ≤ n such

that m ∈ unM . Since M is pure injective, there is a (usually infinite) string u

10



such that u|n = un for every n and m ∈ uM . Similarly m determines a left hand

(infinite) string v. Then w(m) = vu is a (two-sided) string constructed using m.

def Definition 5.1. An indecomposable pure injective module M is said to be one-

sided, if M opens an interval (C.D)/(+C.D) for some string CD (then say that M

ends with C on the left) or M opens an interval (C.D)/(C.D+) (then say that M

ends with D on the right).

Otherwise we say that M is two-sided.

Clearly this is the same as to say that there exists m ∈ M such that the string

w(m) is one-sided.

For instance every finite dimensional string module M(CD) opens both pairs

(C.D)/(+C.D) and (C.D)/(C.D+), hence M(CD) is one-sided. Also, if v is a one-

sided almost periodic string, then (the direct sum or direct product) module M(v)

from Ringel’s list is one-sided.

Let M be a one-sided indecomposable pure injective module and, with notations

as in the definition, choose m ∈ (C.D)(M) \ (+C.D)(M) (and such that m ∈ eiM

for a basic idempotent that corresponds to the vertex between C and D). Then the

pp-type p = ppM (m) defines a cut, by intersection with p+ and p−, in the chain

(C.D)/(+C.D):

◦

?�

(C,D)

•p+

p // ◦ (C,E)

•p−

◦

� _

(+C,D)
◦ (C,F )

Moreover, by Fact
cut
3.1, M is determined up to isomorphism by this cut. However

this cut (therefore this pp-type) may be ‘non-homogeneous’. For instance, it is (at

least conjecturally) possible to have (C.E) ∈ p− but (+C.D)+(C.E) ∈ p+. To avoid

this possibility we will improve p slightly. We say that a pp-type p ∈ (C.D)/(+C.D)

is homogeneous (with respect to this chain) if (+C.D)+(C.E) ∈ p+ implies (C.E) ∈
p+ for every E ≥ D such that CE is a string.

homo Lemma 5.2. Let p ∈ (C.D) \ (+C.D) be an indecomposable pp-type. Then there is

a homogeneous pp-type q such that N(p) ∼= N(q).

Proof. First include in q+ all pp-formulae (C.E) such that (+C.D) + (C.E) ∈ p+.

Since C is fixed, these formulae in q+ form a chain. Now include in q− all pp-

formulae (+C.D) + (C.F ) ∈ p−. These also form a chain.

We prove that q+ ∪ ¬ q− is consistent. Indeed otherwise we obtain that (C.E) →
(+C.D) + (C.F ), for some E and F such that (+C.D) + (C.E) ∈ p+ and (+C.D) +

(C.F ) ∈ p−. Note that (C.E) > (C.F ). If M = M(CE) and z is between C and

11



E in the canonical basis of M , then, by Remark
CD
4.1, (M, z) is a free realization of

(C.E).

Since z ∈ (C.E)(M) and (C.E) → (+C.D) + (C.F ), therefore z ∈ (+C.D)(M) +

(C.F )(M). By Lemma
hom
4.2 we deduce that either z ∈ (+C.D)(M) or z ∈ (C.F )(M),

therefore either (C.E) → (+C.D) or (C.E) → (C.F ).

Thus we obtain either a morphism f : M(+CD) → M(CE), with f(z′) = z

where z′ is between +C and D; or a morphism g : M(CF ) → M(CE), with

g(z′′) = z where z′′ is between C and F . From the description of morphisms

between string modules in
CB
[3] we may assume that f , respectively g, is a graph map

in either case, which clearly leads to a contradiction.

Thus q+ ∪ ¬ q− is consistent. Now we extent this type to a maximal pp-type con-

taining q+ and omitting q−. The result (denote it also by q) will be indecomposable

by
Preb
[4, Thm. 4.32] and N(p) ∼= N(q) by Fact

cut
3.1 and Lemma

uni
4.4. �

Recall that the Ziegler spectrum of A, ZgA, is a topological space whose points

are isomorphism types of indecomposable pure injective A-modules (e.g. see
Pre
[6]).

The topology on ZgA is given by basic open sets (ϕ/ψ) = {M ∈ ZgA | ψ(M) <

ϕ(M)}, where ψ < ϕ are pp-formulae. It is known that ZgA is quasi-compact.

open Lemma 5.3. Let q be a homogeneous pp-type as in Lemma
homo
5.2. Then the pairs

(C.E)/((+C.D) + (C.F )), where D ≤ E < F such that CE and CF are strings,

(C.E) ∈ q+ and (+C.D) + (C.F ) ∈ q−, form a neighbourhood basis of open sets for

N(q).

Proof. Since p opens the interval (C.D)/(+C.D), by Ziegler
Zig
[15, Thm. 4.9], a

neighbourhood basis of N(q) can be taken to be those pairs (ϕ/ψ) such that

(+C.D) ≤ ψ < ϕ ≤ (C.D). It remains to apply Lemma
uni
4.4 and homogeneity

of q. �

Now we are in a position to prove the main theorem of the paper.

main Theorem 5.4. Let A be a finite dimensional string algebra. Then there is a natural

one-to-one correspondence between the set of pairs {v, v−1} of one-sided strings over

A and the set of isomorphism types of one-sided indecomposable pure injective A-

modules.

Proof. Let M be a one-sided indecomposable pure injective A-module. First we

assign to M a one-sided string w = w(M).

Since M is one-sided, M opens a pair, say (C.D)/(+C.D), on a (nonzero) m ∈M
(such that m ∈Mei for some i).

Shifting along C we may further assume that C is empty. Thus M opens the

interval ((.D)/(+.D)), and this interval is a chain by Lemma
uni
4.4.

Moreover, by Lemma
homo
5.2, we may assume that m is such that p = ppM (m)

is a homogeneous pp-type, so M = N(p). Then the isomorphism type of M is

12



determined by the cut of p on the above interval (see Lemma
chain
3.2). If E is a string,

then (.E)+(+.D) ∈ p+∩(.D)/(+.D) iff E is an initial part of the one-sided string w

determined by m (as before Definition
def
5.1). Thus the cut and the string determine

each other and we assign this string to M .

Conversely, let w be a one-sided infinite (right hand) string. Take any finite

string D such that D ≤ w. Then the interval (.D)/(+.D) is a chain and w defines

a cut on it as above. By Lemma
homo
5.2 and Lemma

chain
3.2 there is an indecomposable

(homogeneous) pp-type p such that p defines on this interval the same cut as w.

Then we assign to w the (one-sided) indecomposable pure injective module N(p).

Since N(p) is determined by w, we may use notation N(w).

It remains to prove that for different one-sided strings v 6= w, both infinite to the

right, the corresponding modules M = N(v) and N = N(w) are not isomorphic.

Assume first that v and w start at the same vertex (so we may compare v and w

with respect to the ordering < on strings).

Looking for a contradiction, we may assume that v < w and M ∼= N . By

Corollary
open
5.3, a basis for N in ZgA can be chosen to consist of pairs of the form

(.G)/((.H) + (+.)), where G ≤ w < H are finite strings. Choose G,H such that

G | n = H | n for some n large enough that the initial segments of v and w of

length n are different. In particular, M ∼= N ∈ (.G)/((.H) + (+.)).

Similarly, a basis of open sets for M can be chosen to consist of pairs of the form

(.E)/((.F )+(+.)), where E ≤ v < F are finite strings. We have two neighbourhood

bases ofM so we may choose E, F such that (.E)/((.F )+(+.)) ⊆ (.G)/((.H)+(+.)).

We prove that this leads to a contradiction.

Indeed, let vk be an initial part of v of length k. If k is large enough, E ≤ vk < F ,

and also vk < G. Let Mk = M(vk) be the corresponding indecomposable string

module with the basis z1, . . . , zk. Clearly Mk ∈ (.E)/((.F )+(+.)), where z1 realizes

the corresponding pp-type. By choice of E and F , Mk ∈ (.G)/((.H) + (+.)),

therefore there is z ∈Mk which opens this pair.

By homogeneity,
hom
4.2, we may assume that z is one of the basis elements zi. Since

(+.) is in the pp-type of zi for 2 ≤ i ≤ k − 1, we conclude that z = z1 or z = zk.

From vk < G it follows that the pp-type of z1 does not contain (.G), contradiction.

Thus we must have z = zk.

Thus for every (large enough) k, the pp-type of zk in Mk would open the pair

(.G)/(.H), in particular the n-initial part of the string defined from zk in Mk would

be equal to w | n, which is clearly not possible (as k varies).

A similar argument applies if v and w start at different vertices. �

6. Applications

mnogo Corollary 6.1. Let A be a non-domestic string algebra. Then there are 2ω one-

sided indecomposable pure injective modules over A.
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Proof. Since A is non-domestic, by Ringel
Rin
[10, Prop. 2], A has 2ω one-sided (non-

periodic) strings. So we can apply Theorem
main
5.4. �

If the field k is countable, the existence of 2ω points in the Ziegler spectrum of A

was already known (see
Pre1
[5, p.450] and

Sch1
[13, Prop. 2]) and can be proved as follows.

Using Shröer
Sch
[14] it is not difficult to show that some interval (.D)/(+.D) + (.E)

(where E > D are strings) contains a dense subchain. Then apply a result of

Ziegler, see
Preb
[4, Thm. 10.15].

str Question 6.2. What is the algebraic structure of one-sided indecomposable pure

injective modules over a non-domestic string algebra?

We have defined a one-sided pure injective module M to be a module with

an element m such that the string w(m) is one-sided. A negative answer to the

following question would allow us to separate one-sided and two-sided pure injective

modules completely.

two Question 6.3. Let M be a one-sided indecomposable pure injective module. Is it

possible to have m ∈M such that the string w(m) is two-sided?

It will follow from what we show below that the answer to this question is

negative for domestic string algebras.

Given a string algebra A, nd(A) will denote the number of 1-parameterized fami-

lies required to cover all but finitely many indecomposable A-modules of dimension

d. We say that A is domestic if there is N such that for every d, nd(A) ≤ N .

The following characterization of domestic string algebras is contained in
Rin
[10,

Prop. 8.2].

alm Fact 6.4. A string algebra A is domestic if and only if every one-sided string over

A is almost periodic.

For instance the following string algebra

R2

◦

α1

��

α2

��

◦δoo

◦
β

// ◦

γ2

FF

γ1

XX

(all zero-relations have length 2 and are shown by dotted curves) is domestic. Indeed

up to inversion every (one-sided or two-sided) string v over R2 is a substring of the

following string:

∞(α−1
1 α2)δγ1(γ−1

2 γ1)nβ(α1α
−1
2 )∞ , n ∈ Z ,

therefore v is almost periodic.
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2clas Theorem 6.5. Let M be a one-sided indecomposable pure injective module over a

domestic string algebra A. Then M is isomorphic to a module M(v) from Ringel’s

list, where v is a one-sided string. Moreover M(v) ∼= M(w) iff v = w or v = w−1.

Proof. Choose m ∈M , m 6= 0 and set v = w(m). Choose a finite string D ≤ v. By

Theorem
main
5.4 we may assume that M = N(v) = N(p), where p is a homogeneous

pp-type in the interval (.D)/(+.D) determined by D.

Since A is domestic, Fact
alm
6.4 yields that v is almost periodic. Let M = M(v)

be the direct sum or direct product module determined by v. Let z1 be the first

element of a standard basis of M , and let q = ppM (z1). By Lemma
hom
4.2, q is

homogeneous.

Calculating in M(v) we see that q and p coincide on formulas (.E), E ≥ D (since

realizations of q and p define the same string v). Since p and q are homogeneous,

they define the same cut on the chain (.D)/(+.D). Then N(v) ∼= M(v) by Fact
cut
3.1.

The last assertion can be checked directly. �

To highlight that some new effects may occur in a non-domestic case, let us

consider some examples.

Example 6.6.
B-P
[1] Let A = G2,2, where the characteristic of k is not equal to 2,ex1

and let M be the following direct sum module:

◦α

����
��

β ��>
>>

>
z1

◦α

����
��

β ��>
>>

>
z3

◦α

����
��

β

��>
>>

>
z5

◦
z0

◦
z2

◦
z4

◦
z6

. . .

Let p = ppM (z0). Then p is homogeneous but decomposable. Moreover the

embedding of M into the corresponding direct product module is not pure.

Proof. The pp-type p is homogeneous by Lemma
hom
4.2. Also z0 = 1/2 · (z0 + z2) +

1/2 · (z0 − z2). But clearly (α ± β) | x ∈ ppM (z0 ± z2). Calculating strings on

z0 ± z2 as in
B-P
[1, p. 26] we obtain that p ⊂ ppM (z0 ± z1). That p is decomposable

then follows from
Preb
[4, Cor. 4.30].

Since (α − β)(z1 + z3 + . . . ) = z0, α − β divides z0 in the corresponding direct

product module M . Also clearly α − β does not divide z0 in M . Thus M is not

pure in M . �

Note that in this example the defining string v = (αβ−1)∞ for M is expanding.

Therefore in the direct product module M(v) the pp-type of z0 is indecomposable.

But in general there are indecomposable pp-types of a completely different shape.

If v = v1v2 . . . is a one-sided string, then v(i) will denote the string vivi+1 . . . and

v | i will denote the string v1 . . . vi.

w Lemma 6.7. Let v be a one-sided string over a string algebra A and let M = M(v)

be a direct sum module with the standard basis z1, z2, . . . . Suppose that there is i
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such that for some n, v(i) | n 6= v(j) | n holds for every j 6= i. Then the pp-type

ppM (zi) is indecomposable.

Proof. Similar to
B-P
[1, Prop. 6.2]. �

ex2 Example 6.8. Let A = G2,3, a = αβ−1, b = αβ−2 and let v = aba2ba3b . . . . Let

M = M(v) be the corresponding direct sum module, and let zi be an element of the

canonical basis of M . Then the pp-type pi = ppM (zi) is indecomposable.

Proof. Using Lemma
w
6.7 it is easy to check that pi is indecomposable. For instance,

for z1 we may take n = 5, i.e. ab, as the required part of v. �

Nevertheless, even in this case we do not know if the pure injective envelope of

M is indecomposable.

Note also that theN(pi) are not isomorphic to any module of the kind on Ringel’s

list for the domestic case.

7. The Cantor–Bendixson rank

The Cantor–Bendixson analysis on ZgA runs as follows. At the first step we

delete from ZgA the isolated points, i.e. by
Preb
[4, Cor. 13.4] exactly the indecomposable

finite dimensional A-modules. What remains is a closed subset, Zg′A, the first

derivative of ZgA. Removing isolated points from this space we obtain the second

derivative Zg′′A and so on. At limit stages we put Zg(λ)
A =

⋂
µ<λ Zg(µ)

A .

If this process reaches the empty set at stage λ+ 1, then the CB-rank of ZgA is

defined to be λ. In this case for every point M ∈ ZgA we may define the CB-rank

of M to be the least µ such that M ∈ Zg(µ)
A \Zg(µ+1)

A .

Note that if V is an open subset in ZgA, then the CB-rank of every point in

V can be calculated inside V . We define CB(V ) as the supremum of CB-ranks of

points in V .

The notion of m-dimension of a lattice L, mdim(L), can be found in
Preb
[4, Ch. 10].

For instance the m-dimension of a finite lattice is zero and mdim(ω + 1) = 1.

Let (ϕ/ψ) be a chain in the lattice of pp-formulae over A and let p ∈ (ϕ/ψ) be an

indecomposable pp-type. We define the m-dimension of p, mdim(p), as the infimum

of m-dimensions of intervals (ϕ′/ψ′) such that ψ ≤ ψ′ < ϕ′ ≤ ϕ and p ∈ (ϕ′/ψ′).

◦

?�

ϕ
• ϕ′

p //

• ψ′
◦

� _

ψ

sv Proposition 7.1. Let A be any ring. Let (ϕ/ψ) be a chain in the lattice of all pp-

formulae over A and let p ∈ (ϕ/ψ) be an indecomposable pp-type. Then CB(p) =
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mdim(p). Also mdim(ϕ/ψ) is the supremum of m-dimensions of indecomposable

pp-types p ∈ (ϕ/ψ).

Proof. The proof in
Pun
[8, Thm. 3.1] can be applied in this situation to show that the

isolation property (see e.g.
Pre
[6, p. 382]) holds true for the open set (ϕ/ψ): for every

theory T of A-modules every isolated point in T ∩ (ϕ/ψ) is isolated by a minimal

pair.

Now the result is easily proved by induction, similarly to
Preb
[4, Prop. 10.19]. �

It follows from
Sch
[14, Prop. 6.1] that for every non-domestic string algebra A, the

CB-rank of ZgA is undefined. For a domestic string algebra Schröer conjectured

(see
Sch0
[12, p. 84]) that CB(ZgA) is finite and can be calculated from the bridge quiver

of A.

The precise definition of the bridge quiver of a domestic string algebra A can

be found in
Sch
[14]. We hope that from the following example it will be clear how to

calculate the bridge quiver for a particular string algebra.

Let A be the domestic string algebra R2 (see after Fact
alm
6.4). The bands over A

are the following: C = α1α
−1
2 , C−1 = α2α

−1
1 , and D = γ1γ

−1
2 , D−1 = γ2γ

−1
1 .

¿From the description of the two-sided strings over A (see above) we read off the

following paths in the bridge quiver of A:

_^]\XYZ[α2α
−1
1

α2δ // _^]\XYZ[γ1γ
−1
2

γ1β // _^]\XYZ[α1α
−1
2

Inverting this we obtain:

_^]\XYZ[α2α
−1
1

β−1γ−1
1 // _^]\XYZ[γ2γ

−1
1

δ−1α−1
2 // _^]\XYZ[α1α

−1
2

Gluing these together we get the bridge quiver of A:

GFED@ABCD

$$III
II

ONMLHIJKC−1

%%KKK
KK

99sssss GFED@ABCC

ONMLHIJKD−1

::uuuuu

Fact 7.2.
Sch
[14, Lemma 4.2] Let A be a domestic string algebra. Then the bridgebridge

quiver of A is a finite oriented graph without oriented cycles.

Note that, directly from the definition, for a string algebra A the one-sided

indecomposable pure injective A-modules form an open subset in ZgA. In the

following theorem we calculate the CB-rank of this set.

br Theorem 7.3. Let A be a domestic string algebra and let n be the maximal length

of a path in the bridge quiver of A. Let U be the open set in ZgA formed by the

one-sided indecomposable pure injective A-modules. Then CB(U) = n+ 1.
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Proof. Given a string CD, UCD will denote the open set (C.D)/(+C.D) in ZgA.

We prove that CB(UCD) ≤ n+1. Since U is a union of such sets it will then follow

that CB(U) ≤ n+ 1.

Proposition
sv
7.1 yields CB(UCD) = mdim(ϕ/ψ), where ϕ = (C.D) and ψ =

(+C.D). From Lemma
uni
4.4 it follows that mdim(ϕ/ψ) is equal to the m-dimension

of the chain {(C.Di) | Di ≥ D,CDi is a string}. Then the result is easily derived

from
Sch
[14, Thm. 4.3].

For the converse let C0, . . . , Cn be bands such that C0 . . . Ci . . . Cn is a path of

maximal length in the bridge quiver of A. Along this path we obtain one-sided

strings vi = Ck0
0 . . . Ck1

1 . . . C∞i , where dots also replace bridges between bands. By

induction on i = n, . . . , 0 we prove that (the direct sum or direct product) module

M(vi) has CB-rank ≥ n− i+ 1.

For i = n, the indecomposable pure injective module M(v0) = M(Ck0
0 . . . C∞n )

is infinite dimensional, therefore its CB-rank is not less than 1.

For i < n note that M(vi) is in the Ziegler closure of the modules Mk = M(wk)

where wk = Ck0
0 . . . Ck

i . . . C
∞
i+1, k = 1, . . . . Indeed take any finite string D ≤ vi.

By Lemma
uni
4.4 and

Zig
[15, Thm. 4.9] a basis of open neighborhoods of M(vi) can be

chosen as {(.E)/((+.D) + (.F )) | D ≤ E ≤ vi < F}. Clearly for every such pair

there exists k such that E ≤ wk < F . Taking a homogeneous realization in Mk we

obtain that Mk ∈ (.E)/((+.D) + (.F )).

By the induction assumption CB(Mk) ≥ n− (i+ 1) + 1 = n− i for every k. By

the definition of CB-rank we deduce that CB(M(vi)) ≥ n− i+ 1.

Finally for i = 0 we have CB(M(C∞0 )) ≥ n+ 1, therefore CB(U) = n+ 1. �

e Corollary 7.4. Let A be a domestic string algebra and let n be the maximal length

of a path in the bridge quiver of A. Then CB(ZgA) ≥ n+ 2.

Proof. From the proof of Theorem
br
7.3 we have CB(M) = n+1 where M = M(C∞0 ).

Clearly it suffices to prove that the theory T of M contains a non-isolated point.

Indeed otherwise M is the only isolated point of T . Let C0 = α . . . β−1 and let

ϕ be the pp-formula α | x∧ β | x. Then ϕ(M) is a uniserial right S-module, where

S = End(M). As in
Pun
[8, Thm. 3.1] it follows that M is isolated in T by a minimal

pair. Then as in
Preb
[4, Prop. 10.17] we obtain that the interval (ϕ/x = 0) in T has

finite length. Therefore ϕ(M) has finite length as an S-module, a contradiction. �

References

B-P [1] S. Baratella, M. Prest, Pure injective modules over the dihedral algebras, Comm. Algebra,

25(1) (1997), 11–31.

B-R [2] M.C.R. Butler, C.M. Ringel, Auslander–Reiten sequence with few middle terms and applica-

tions to string algebras, Comm. Algebra, 15(1-2) (1987), 145–179.

CB [3] W.W. Crawley-Boevey, Maps between representations of zero relation algebras, J. Algebra,

126 (1989), 259–263.

18



Preb [4] M. Prest, Model Theory and Modules. Cambridge University Press, London Math. Soc.

Lecture Note Series, 130 (1987).

Pre1 [5] M. Prest, Maps between finitely presented modules and infinite-dimensional representations,

pp. 447–455 in Canad. Math. Soc. Conf. Proc., 24 (1998).

Pre [6] M. Prest, Topological and geometric aspects of the Ziegler spectrum, pp. 369–392 in H. Krause

and C.M. Ringel (eds.), Infinite Length Modules, Birkhäuser, 2000.
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