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Abstract: Let X be a compact Riemann surface of genus ≥g 2, G be a semisimple complex Lie group and
( )→ρ G V: GL be a complex representation of G. Given a principal G-bundle E over X , a vector bundle ( )E V

whose typical fiber is a copy ofV is induced. A ( )G ρ, -Higgs pair is a pair ( )E φ, , where E is a principalG-bundle
over X and φ is a holomorphic global section of ( ) ⊗E V L, L being a fixed line bundle over X . In this work,
Higgs pairs of this type are considered for �( )=G Spin 8, and the three irreducible eight-dimensional complex
representations which �( )Spin 8, admits. In particular, the reduced notions of stability, semistability, and
polystability for these specific Higgs pairs are given, and it is proved that the corresponding moduli spaces are
isomorphic, and a precise expression for the stable and not simple Higgs pairs associated with one of the three
announced representations of �( )Spin 8, is described.
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1 Introduction

Let X be a compact Riemann surface of genus ≥g 2 andG be a semisimple complex Lie group that is equipped
with a complex representation ( )→ρ G V: GL . Every principal G-bundle E over X induces a vector bundle

( )E V whose typical fiber is a copy of V and which is defined from the direct product ×E V by identifying
( ) ( ( )( ))−e v eg ρ g v, ~ , 1 for all ∈e E , ∈v V and ∈g G. A ( )G ρ, -Higgs pair (or simply G-Higgs pair, Higgs pair,
or pair, when there is not possibility of doubt) over X is defined to be a pair ( )E φ, , where E is a principal
G-bundle over X and φ is a holomorphic global section of the vector bundle ( ) ⊗E V L, the bundle L being a
fixed line bundle over X (Definition 1). When the representation ρ is the adjoint one andV coincides with the
Lie algebra g of G, this concept corresponds to that of G-Higgs bundle over X . Higgs bundles were introduced
by Hitchin [1,2] for �( )=G SL 2, and studied in the general case of semisimple (in fact, reductive) Lie groups by
Simpson [3,4], who provided notions of stability and polystability aimed at constructing the moduli space of
G-Higgs bundles over X . Since these foundational articles were published, moduli spaces of G-Higgs bundles
over a compact Riemann surface have been intensely studied from different points of view, including auto-
morphisms and subvarieties of the moduli space [5], stratifications [6,7], representations of the Riemann
surface X [8], or Langlands program [9]. The concept of ( )G ρ, -Higgs pair was first introduced in Banfield
[10] as a natural generalization of that of G-Higgs bundle and has been studied in recent years because they
appear in certain geometric contexts, for example as fixed points of certain automorphisms of moduli spaces
of Higgs bundles [11]. The latter concept extends, in turn, that of the principal bundle over a curve X , whose
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geometry and topology are also intensively studied, in part along lines analogous to those followed with Higgs
pairs and Higgs bundles, such as the study of automorphisms of the corresponding moduli space [12].

In this work, Higgs pairs over X are studied for the structure group �( )Spin 8, , the universal cover of
�( )SO 8, and �( )PSO 8, , and associated with the three eight-dimensional irreducible complex representations

that �( )Spin 8, admits, which are defined in (5), (6), and (7) and will be denoted by ρ, +ρ , and −ρ . The group
�( )Spin 8, is the only simple complex structure group that admits an order 3 outer automorphism, called

triality. This singular fact makes �( )Spin 8, a group with interesting geometric peculiarities, which has been
the subject of great interest in the literature. For example, fixed point subvarieties have been specifically
studied for automorphisms of the moduli space of principal �( )Spin 8, -bundles induced by the action of outer
automorphismsm of �( )Spin 8, [13]. After that, it was proved that the fixed points for the action of the triality
automorphism on the moduli space of �( )Spin 8, -Higgs bundles can be described through certain Higgs pairs
with structure group isomorphic to G2 and �( )PSL 3, [5]. In addition, further objects are related to

�( )Spin 8, -bundles, such as Galois �( )Spin 8, -bundles [14], which are essentially fixed points of certain
S3-action defined in the moduli space of principal �( )Spin 8, -bundles over a curve and whose moduli space
was constructed by Oxbury and Ramanan [14]. The interest in �( )Spin 8, -Higgs pairs responds, therefore, to
the interest in G-Higgs pairs in general (because they appear in many situations, such as in descriptions of
fixed point of automorphisms) and in the interest in �( )Spin 8, -bundles over curves in particular.

The three representations ρ, +ρ and −ρ of �( )Spin 8, do not descend to induce representations of either
�( )SO 8, or �( )PSO 8, , which is why this research is focused on the group �( )Spin 8, . Following the general

theory on ( )G ρ, -Higgs pairs developed in the studies by Garcia-Prada et al. [15,16], in Propositions 4.1, 4.2, and
4.3, the reduced notions of stability, semistability, and polystability for that three types of �( )Spin 8, -Higgs
pairs are described. The triality automorphism of �( )Spin 8, gives isomorphisms between the three considered
representations of �( )Spin 8, , which will be proved in Corollary 4.1 that induce isomorphisms between the
moduli spaces of polystable �( ( ) )ρSpin 8, , , �( ( ) )+ρSpin 8, , , and �( ( ) )−ρSpin 8, , -Higgs pairs over X . After that,
an application of this whole study is provided. Specifically, a description of the stable but not simple

�( ( ) )ρSpin 8, , -Higgs pairs over X is provided, in the spirit of previous works devoted to principal or vector
bundles [17]. Given any semisimple complex Lie group G, the deformation theory of G-Higgs bundles makes it
possible to describe the tangent space of the moduli space of these objects at smooth elements in terms
of certain hypercohomology groups. In particular, the smooth points of the moduli space of G-Higgs bundles
over X can be identified as the stable and simple Higgs bundles. Taking advantage of this theory, in the
study by Garcia-Prada et al. [16], a description of the singular points of the moduli space of G-Higgs bundles is
given. That deformation theory is not directly adaptable, as far it has been studied, to the general case of Higgs
pairs. However, in Theorem 5.1, it is proved the following description of the stable and not simple

�( ( ) )ρSpin 8, , -Higgs pairs over X .

Theorem. Let ( )E φ, be a stable and non-simple �( ( ) )ρSpin 8, , -Higgs pair over X, where �( ) →ρ : Spin 8,

� �( ) ( )↪SO 8, GL 8, is given by the double cover � �( ) ( )→Spin 8, SO 8, . Let ESO be the principal �( )SO 8, -bundle
over X associated with E through ρ. Then the underlying vector bundle of ESO is isomorphic to one of
the following vector bundles:
(1) ⊕ −L Lk k8 for =k 0, 1, 2, 3, 4;
(2) ⊕ ⊕ − −F L Lr k r k2 8 2 for =r 1, 2, 3 and = −k r0, 1,…, 4 ;
(3) ⊕ ⊕ ⊕ − − −F F L Lr s k r s k2 2 8 2 2 for =r 1, 2, 3, = −s r r,…, 4 , and = − −k r s0,…, 4 ;
(4) ⊕ ⊕ ⊕ ⊕ − −F F F L Lr k r k2 2 2 4 2 for =r 1, 2 and = − −k r r2 ,…, 4 2 ,

where Fj is an �( )jSL , -bundle and Lj is an �( )jSO , -bundle for all ≥j 1, =F 00 , =L 00 , and �=L1 .

This article is organized as follows. In Section 2, the concept of ( )G ρ, -Higgs pair over a compact Riemann
surface X associated with a semisimple complex Lie group G and a complex representation ρ of it is defined,
and the notions of stability, semistability, and polystability for Higgs pairs are presented to establish the
precise formulation of the Hitchin-Kobayashi correspondence for Higgs pairs. Section 3 is devoted to pre-
senting the main properties of the groups �( )nSpin 2 , for ≥n 2, focusing on �( )Spin 8, . The interest in Spin

groups with even rank other than 8 is that they will naturally appear in the description of stable and not
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simple �( ( ) )ρSpin 8, , -Higgs pairs made in Theorem 5.1. The reduced notions of stability and polystability for
Higgs pairs with structure group �( )Spin 8, and associated with the representations ρ, +ρ , and −ρ introduced
earlier are stated and proved in Section 4, where it is also proved that the Higgs pairs corresponding to the
three representations mentioned earlier are in bijective correspondence through a correspondence that
preserves the polystability condition. Finally, in Section 5, a precise description of the stable and not simple

�( ( ) )ρSpin 8, , -Higgs pairs over X is given.

2 Stability and polystability notions for Higgs pairs

Let X be a compact Riemann surface of genus ≥g 2, G be a semisimple complex Lie group, and ( )→ρ G V: GL

be a complex representation of G. In this section, the concept of ( )G ρ, -Higgs pair over X is introduced and
reduced notions of stability, semistability, and polystability are provided for such pairs. The survey material
presented in this section has been adapted from the study by Garcia-Prada et al. [16].

Definition 1. Let G be a semisimple complex Lie group and ( )→ρ G V: GL be a complex representation of G. A
( )G ρ, -Higgs pair over X is a pair ( )E φ, , where E is a principal G-bundle over X and ( ( ) )∈ ⊗φ H X E V L,0 , ( )E V

being the vector bundle obtained by making the quotient of ×E V where the identification ( ) ( ( )( ))−e v eg ρ g v, ~ , 1

is made for all ∈g G and all ( ) ∈ ×e v E V, , and L being a fixed line bundle over X .

Observe that the notion of ( )G ρ, -Higgs pair extends that ofG-Higgs bundle, for which the representation ρ

is the adjoint one and V is the underlying vector bundle of the Lie algebra g of G.
Let G be a semisimple complex Lie group with Lie algebra g. Having fixed a maximal compact connected

Lie subgroup H ofG with Lie algebrah and such thath g� = , and denoting by Δ the set of simple roots of g, and
in the stud by Garcia-Prada et al. [16, Section 2.5], it is proved that the proper subsets of Δ and the parabolic
subalgebras of g (hence the parabolic subgroups of G) are in bijective correspondence. Given any parabolic
subgroup P ofG and any antidominant character χ ofG, which belongs to the dual c* of the Cartan subalgebra
c of g, the Killing form induces an element c∈sχ , which is in fact an element of hi . Denote by Psχ

the maximal
parabolic subgroup induced by sχ and by Lsχ

a choice of a Levi subgroup of Psχ
.

Let now ( )→ρ G V: GL be a complex representation of G. Given a parabolic subgroup P of G and
an antidominant character χ of P, the following subspaces of V are defined [11]:

{ ( ) }

{ ( ) }

= ∈ → ∞

= ∈ = ∀

−
V v V ρ e v t

V v V ρ e v v t

: is bounded as ,

: .

χ
ts

χ
ts0

χ

χ

(1)

The subspaces −
V χ and V χ

0 thus defined are invariant under the action of Psχ
and Lsχ

, respectively, on them.

Definition 2. Let G be a semisimple complex Lie group, ( )→ρ G V: GL be a complex representation of G, and
( )E φ, be a ( )G ρ, -Higgs pair over X . Then ( )E φ, is stable (resp. semistable) if for every parabolic subgroup P of
G, every antidominant character χ of P , and every reduction of structure group EP of E to P such that φ takes
values in ( ) ⊗−

E V LP χ , where −
V χ is defined in (1), and it is satisfied that >χ Edeg

*
0P (resp. ≥χ Edeg

*
0P ).

The ( )G ρ, -Higgs pair ( )E φ, is polystable if it is semistable, and for every parabolic subgroup P of G, every
antidominant character χ of P, and every reduction of structure group EP of E to P such that φ takes values in

( ) ⊗−
E V LP χ , where −

V χ is defined in (1), and such that =χ Edeg
*

0P , there exists a reduction of structure group EL

of EP to a Levi subgroup L of P such that φ takes values in ( ) ⊗E V LL χ

0 , where V χ

0 is also defined in (1).

The precise notions of stability and polystability of Higgs pairs, which extend that of Higgs bundles,
were given by García-Prada et al. [16] to obtain a bijective correspondence between polystable Higgs pairs
and solutions to the Hermite-Einstein equations.
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The condition of polystability of a ( )G ρ, -Higgs pair ( )E φ, when applied to a faithful representation ρ can
be expressed in terms of filtrations of certain vector bundle associated with E through other fixed representa-
tion ρ

G
of G satisfying the hypothesis stated in the following result, which is derived from the study by Garcia-

Prada et al. [16, Lemma 2.12]. The idea is applying this in the cases in which G is naturally embedded in some
�( )nGL , , for example, �( )nSL , , where ρ

G
is the natural embedding.

Proposition 2.1. Let G be a semisimple complex Lie group, ( )→ρ G V: GL be a faithful complex representation of
G, and ( )E φ, be a ( )G ρ, -Higgs pair over X . Suppose that there exists a representation ( )→ρ G W: GL

G
, with

�≅W n for some �∈n , such that for any ( )∈ ⊥a b ρ, Kerd
G

it is satisfied that ⟨ ⟩ ( ) ( )=a b ρ a ρ b, Trd d
G G

, where
the product is the Euclidean product of W . Denote ( )=E E W . Then
(1) The ( )G ρ, -Higgs pair ( )E φ, is semistable if for every parabolic subgroup P of G, any antidominant character

χ of P, and any filtration = ⊊ ⊊ ⋯ ⊊ =E E E E0 k0 1 induced by a reduction of structure group of E to P and
such that φ takes values in the space −

V χ defined in (1) in each fiber over X, it is satisfied that the degree of the
filtration, defined by

( )∑+ −
=

−

+λ E λ λ Edeg deg ,k

j

k

j j j

1

1

1 (2)

is greater than or equal to 0, where <⋯<λ λk1 are the eigenvalues of ( )ρ sd χ .
(2) The ( )G ρ, -Higgs pair ( )E φ, is polystable if it is semistable, and there exists a parabolic subgroup P of G and

an antidominant character χ of P such that E admits a decomposition of the form = ⊕ ∕= −E E Ej
k

j j1 1 into vector
subbundles, where =E 00 and ∕ −E Ej j 1 is the λj-eigenspace of ( )ρ sd χ for all =j k1,…, , the degree defined in (2)

equals 0, and φ takes values, in each fiber over X, in the space V χ

0 defined in (1).

The Hitchin-Kobayashi correspondence for Higgs pairs will be now introduced. This was first formulated
and proved by Hitchin [2] for the case of rank 2 Higgs bundles and was generalized by Simpson [3,4] for Higgs
bundles whose structure group is any semisimple complex Lie group. The version presented in this work,
developed in the study by Garcia-Prada et al. [16], covers the case of Higgs pairs, which are the objects of
interest. Given a semisimple complex Lie groupG and any complex representation ( )→ρ G V: GL , and having
fixed a maximal compact subgroup H ofG, a Hermitian structure h onV , and a Hermitian metric hL on the line
bundle L over X , whose curvature will be denoted by FL, let ( )→ρ H V: U

H
be the unitary representation of H

obtained by restriction of ρ to H . Given also a ( )G ρ, -Higgs pair ( )E φ, as in Definition 1, the vector bundle ( )E V

admits a Hermitian metric induced by that of V and the same is true for the vector bundle ( )E VH , which
is canonically isomorphic to ( )E V , where EH is any reduction of structure group of E to H . Let FH be the curva-
ture on ( )E VH , which corresponds to the Chern connection. From the fact that (( ( ) ) )⊗ =H X V L, End *

0

u( ( ) ) ( ( ( )) )=H X V H X E V, End * , *
0 0 , the existence of a skew-symmetric element ⊗φ φ*

h h, L of u( ( ( )) )H X E V, *
0

is deduced. Define

( ) = ⎛
⎝− ⊗ ⎞

⎠μ φ ρ
i

φ φ*
2

* ,
H

h h, L (3)

which may be understood as an element of h( ( ))H X E, H
0 , since h h≅ * and ρd *

H
induces an isomorphism

u h( ( )) ( )≅E V E* *H . Notice that, throughout this explanation, the same symbols have been used to denote
the �∞-objects and their holomorphic structures, by a slight abuse of notation.

Theorem 2.1. Let G be a semisimple complex Lie group, ( )→ρ G V: GL be a complex representation of G, and
( )E φ, be a ( )G ρ, -Higgs pair over X. Then ( )E φ, is polystable if and only if E admits a reduction of structure group
EH to a maximal compact subgroup H of G such that

( ) ( )∧ + + =F F μ φ 0,H L

where ( )μ φ is defined in (3) and ∧ denotes the adjoint wedging with the volume form on X .
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The following result, which is where the interest in the Hitchin-Kobayashi correspondence lies, derives
directly from Theorem 2.1.

Corollary 2.1. Let G be a semisimple complex Lie group, ( )→ρ G V: GL be a complex representation of G, ′G be a
subgroup of G, and ′ρ

G
be the restriction of ρ to ′G . Let ( )E φ, be a polystable ( )G ρ, -Higgs pair over X and let ′EG

be a reduction of structure group of E to ′G such that φ takes values in ( ) ⊗′E V LG . Then the ( )′ ′G ρ,
G

-Higgs pair
( )′E φ,G over X is polystable.

3 The groups (( ))Spin 8, ℂ and (( ))nSpin 2 , ℂ

It will now be considered the simple complex Lie group �( )Spin 8, , whose Lie algebra is so �( )8, , of type D4.
The group �( )Spin 8, is the simply connected complex group with Lie algebra so �( )8, , and it is a double cover
of �( )SO 8, , and a cover of order 4 of the projective group �( )PSO 8, , the centerless group with Lie algebra
so �( )8, . Let Z be the center of �( )Spin 8, , which is isomorphic to� �×2 2. The group �( ( ))Out Spin 8, of outer
automorphisms of �( )Spin 8, acts faithfully on Z , from which follows the existence of a nontrivial injective

homomorphism �( ( )) ( { })→ ⧹S ZOut Spin 8, 1 . Since the last group is isomorphic to the group S3 of permutations
of three elements and �( ( ))Out Spin 8, is isomorphic to the group of symmetries of the Dynkin diagram of D4,

which is also a copy of S3, it is deduced that the homomorphism �( ( )) ( { })→ ⧹S ZOut Spin 8, 1 is actually
an isomorphism of groups [18, Section 1].

The three elements of { }⧹Z 1 correspond, in the following sense, to the three irreducible complex repre-
sentations of dimension 8 that �( )Spin 8, admits: each one of these representations leaves invariant exactly

one element of { }⧹Z 1 and permutes the other two. The set of nontrivial outer involutions of �( )Spin 8, , the set

of eight-dimensional irreducible complex representations of G, and the set { }⧹Z 1 are in bijective correspon-

dence in a way that each { }∈ ⧹z Z 1 admits exactly one outer involution σ of �( )Spin 8, such that every
representative of order 2 of σ in �( ( ))Aut Spin 8, leaves z invariant, and exactly one eight-dimensional irre-
ducible complex representation ρ of �( )Spin 8, such that ( ) =ρ z 1. This representation ρ thus defined actually
descends to a representation of � �( ) ⟨ ⟩ ( )∕ ≅zSpin 8, 1, SO 8, . The triality automorphism τ of �( )Spin 8, is a
choice of a nontrivial outer automorphism of �( )Spin 8, of order 3 whose effect on Z turns out to be to permute
the three nontrivial elements of Z without leaving fixed points. The triality automorphism τ interchanges then
the three eight-dimensional irreducible complex representations of �( )Spin 8, , in the sense that a choice of an
order 3 representative T of τ in �( ( ))Aut Spin 8, acts as an order 3 permutation on the set of the aforemen-
tioned three representations [18].

Notice that the triality automorphism τ defines an outer automorphism of order 3 of �( )PSO 8, , but it does
not define an outer automorphism of �( )SO 8, , because for that to happen, a representative of τ in

�( ( ))Aut Spin 8, should leave invariant the center of �( )SO 8, , which is not possible. On the other hand, the
three announced eight-dimensional complex representations of �( )Spin 8, do not descend to give rise to
representations of �( )PSO 8, (specifically, they descend to projective representations of �( )PSO 8, ). For these
reasons, throughout the article, only Higgs pairs over a compact Riemann surface whose structure group
is �( )Spin 8, are considered.

The construction of the three eight-dimensional irreducible complex representations of �( )Spin 8, , which
have been considered in the previous paragraphs will now be sketched following the study by Fulton and
Harris[19, Chapter 20]. Let V be an eight-dimensional complex vector space equipped with a nondegenerate
quadratic form q. Then �( )SO 8, is isomorphic to the group ( )V qSL , of determinant 1 complex automorphisms
of the vector space V , which preserves the quadratic form q. Let

� �( ) ( )→π : Spin 8, SO 8, (4)

be the double covering. The representation ρ of �( )Spin 8, , which will be faithful, is then defined to be
the representation
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� �( ) ( ) ( ) ( )→ ≅ ↪ρ V q V: Spin 8, SO 8, SL , GL ,
π (5)

where the last map ( ) ( )↪V q VSL , GL is the natural inclusion of ( )V qSL , in the general linear group associated
with V . The different choices of the isomorphism �( ) ( )≅V qSL , SO 8, induce of course equivalent representa-
tions of �( )Spin 8, .

Consider now the Clifford algebra ( )C V q, associated with V . It can be understood as a quotient of the
tensor algebra of V where the identification ( )⊗ = ⋅v v q v 1 is made for all ∈v V . Let now W be a maximal
isotropic complex subspace ofV (recall that a subspace ofV is isotropic if ( ) =q v 0 for all v in that subspace). In
the study by Fulton and Harris [19, Lemma 20.9], it is proved that ( )C V q, is isomorphic to gl( )∧W , where
∧ = ⊕ ∧=W Wk

k
0

8 . Let ∧ = ∧ ⊕ ∧+ −W W W be the decomposition of ∧W into the direct sum of even and odd
exterior powers, respectively, and let ( )+C V q, be the subalgebra of ( )C V q, of even tensor powers. In [19,
Lemma 20.7], it is also proved that the Lie algebra gl( )V q, is contained in ( )+C V q, , which is, by [19, Lemma
20.9], isomorphic to gl gl( ) ( )∧ ⊕ ∧+ −W W , so the Lie algebra so �( )8, comes with two representations:
so gl�( ) ( )→ ∧+W8, and so gl�( ) ( )→ ∧−W8, , thus constructed. Since W has complex dimension 4, it is easy
to check that ∧ = ∧ =+ −W Wdim dim 8. This defines two eight-dimensional faithful complex representations
of �( )Spin 8, :

�( ) ( )→ ∧+
+ρ W: Spin 8, GL , (6)

�( ) ( )→ ∧−
−ρ W: Spin 8, GL . (7)

These representations are irreducible [19, Proposition 20.15]. The triality automorphism τ interchanges the
three representations ρ, +ρ , and −ρ of �( )Spin 8, . Specifically, in the study by Fulton and Harris [19, Section
20.3], it is constructed a complex linear automorphism of vector spaces

⊕ ∧ ⊕ ∧ → ⊕ ∧ ⊕ ∧+ − + −J V W W V W W: , (8)

such that ( ) = ∧+J V W , ( )∧ = ∧+ −J W W , and ( )∧ =−J W V , which satisfies

( )∘ = ∘ ∘+J ρ ρ T J , (9)

( )∘ = ∘ ∘+ −J ρ ρ T J , (10)

( )∘ = ∘ ∘−J ρ ρ T J , (11)

in the sense that ( ( )( )) ( ( ))( ( ))= +J ρ g v ρ T g J v for all �( )∈g Spin 8, and all ∈v V , where T is some order 3
representative of τ in �( ( ))Aut Spin 8, (and analogous expressions for the other two identities).

For the study of �( ( ) )ρSpin 8, , -Higgs pairs made in Theorem 5.1, it will be necessary to consider Higgs
pairs whose structure group is �( )nSpin 2 , for =n 2, 3. For any integer number ≥n 2, �( )nSpin 2 , is the simply
connected complex Lie group with Lie algebra so �( )n2 , , and it is the universal cover of the group �( )nSO 2 ,

through the double covering

� �( ) ( )→π n n: Spin 2 , SO 2 , .n2 (12)

Let V n2 be a complex vector space of dimension n2 equipped with a holomorphic nondegenerate quadratic
form q

n2
. Then the representation so gl� �( ) ( )→n n2 , 2 , given by the natural inclusion lifts to a faithful

complex irreducible representation

� �( ) ( )→ρ n n: Spin 2 , GL 2 , ,
n2

(13)

which factors through �( )nSO 2 , , so it induces a representation

� �( ) ( )→ρ n n: SO 2 , GL 2 ,
n2

SO (14)

given by the inclusion of groups. Observe that, with this notation, =π π8 and =ρ ρ
8

, where π and ρ were
defined in (4) and (5), respectively.

To conclude, it is useful to establish some facts about the parabolic subgroups of �( )nSpin 2 , for ≥n 2,
which will be done following the study by Procesi [20, Chapters 10 and 11]. Parabolic subgroups of �( )nSpin 2 ,
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are in bijective correspondence, through the covering map π n2 defined in (12), with the parabolic subgroups
of �( )nSO 2 , . For its part, a parabolic subgroup of �( )nSO 2 , corresponds to a filtration of V of the form

⊂ ⊂⋯⊂ ⊆ ⊂⋯⊂ ⊂⊥ ⊥
U U U U V0 ,k k n1 1 2 (15)

where U U,…, k1 are complex vector subspaces of V n2 isotropic for q
n2
and ⊥ denotes the orthogonality with

respect to the nondegenerate symmetric bilinear form induced by q
n2
in V n2 . The conjugacy class of the parabolic

subgroup is univocally determined by the number k and the ranks of the subbundles. The parabolic subgroup is
maximal exactly when =k 1 in the preceding filtration, that is, when the induced filtration of V n2 is of the form

⊂ ⊆ ⊂⊥
U U V0 n1 1 2 (16)

for some isotropic subbundle U1 of V n2 .

4 Stability conditions for Higgs pairs with structure group
(( ))Spin 8, ℂ

Let X be a compact Riemann surface of genus ≥g 2. In this section, the reduced stability, semistability,
and polystability conditions for Higgs pairs over X with structure group �( )Spin 8, and associated with
the representations ρ, +ρ , and −ρ of it defined, respectively, in (5), (6), and (7), will be given.

Given any principal �( )Spin 8, -bundle E over X , the covering map π defined in (4) induces a principal
�( )SO 8, -bundle ESO given by the image of E by the map

� �( ( )) ( ( ))→ ↦H X H X E E, Spin 8, , SO 8, , ,1 1
SO (17)

which comes from the exact sequence of groups

� � �( ) ( )→ → → →1 Spin 8, SO 8, 1.2

The principal �( )SO 8, -bundle ESO can be understood as a holomorphic complex vector bundle of rank 8 over
X equipped with a global nondegenerate holomorphic symmetric bilinear form ω. For any ≥n 2, the covering
map π n2 defined in (12) also defines a map

� �( ( )) ( ( ))→ ↦H X n H X n E E, Spin 2 , , SO 2 , , ,1 1
SO (18)

where ESO is a holomorphic complex vector bundle of rank n2 over X equipped with a global nondegenerate
holomorphic symmetric bilinear form ω n2 (of course, =ω ω8 ).

LetV be an eight-dimensional complex vector space equipped with a nondegenerate quadratic form q and
letW be a maximal isotropic vector subspace ofV . Let ρ, +ρ , and −ρ be the representations of �( )Spin 8, defined
in (5), (6), and (7), whose associated vector spaces areV , ∧+W , and∧−W , respectively. The rank 8 holomorphic
vector bundle ( )E V is also a special orthogonal vector bundle, and the vector bundles ( )∧+E W and ( )∧−E W are
also rank 8 holomorphic vector bundles, which are subbundles of ∧+ESO and ∧−ESO, the even and odd exterior
powers, respectively, of ESO.

From the description in terms of filtrations of the parabolic subgroups of �( )nSpin 2 , given in (15) and (16),
if follows that a reduction of structure group of a principal �( )nSpin 2 , -bundle E over X to a parabolic
subgroup of �( )nSpin 2 , gives a filtration of ESO of the form

⊂ ⊂⋯⊂ ⊆ ⊂⋯⊂ ⊂⊥ ⊥
F F F F E0 ,k k1 1 SO (19)

where F F,…, k1 are isotropic holomorphic vector subbundles of ESO for ≤ ≤k n1 (isotropy and orthogonality
are taken with respect to the holomorphic symmetric bilinear form ω n2 of ESO). A reduction of structure group
of E to a maximal parabolic subgroup of �( )nSpin 2 , gives a filtration of the form

⊂ ⊆ ⊂⊥F F E0 ,SO (20)

where F is an isotropic subbundle of ESO.
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Proposition 4.1. Let ( )E φ, be a �( ( ) )n ρSpin 2 , ,
n2
-Higgs pair over X for the representation ρ

n2
of �( )nSpin 2 ,

defined in (13) for some ≥n 2. Let ESO be the principal �( )nSO 2 , -bundle defined in (18), and let ω n2 be its
associated global nondegenerate holomorphic symmetric bilinear form. The �( ( ) )n ρSpin 2 , ,

n2
-Higgs pair

( )E φ, is stable (resp. semistable) if for every proper subbundle F of ESO, which is isotropic for ω n2 and such
that φ takes values in ⊗⊥F L, it is satisfied that <Fdeg 0 (resp. ≤Fdeg 0). In particular, if ( )E φ, is a

�( ( ) )ρSpin 8, , -Higgs pair over X for the representation ρ of �( )Spin 8, defined in (5) and ω is the global
nondegenerate holomorphic symmetric bilinear form of ESO, then ( )E φ, is stable (resp. semistable) if for every
proper subbundle F of ESO isotropic for ω and such that φ takes values in ⊗⊥F L we have that <Fdeg 0

(resp. ≤Fdeg 0).
The �( ( ) )ρSpin 8, , -Higgs pair ( )E φ, is polystable if it is semistable and ESO admits a filtration of the form

⊂ ⊂⋯⊂ ⊆ ⊂⋯⊂ ⊂⊥ ⊥
F F F F E0 k k1 1 SO

described in (19), where F F,…, k1 are holomorphic vector subbundles of ESO isotropic for ω with =⋯=Fdeg 1

=Fdeg 0k , such that φ takes values in ∕ ⊗⊥
F F Lk k , and ESO admits the following decomposition into a direct sum

of subspaces:

= ⊕ ∕ ⊕⋯⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕⋯⊕ ∕−
⊥

−
⊥ ⊥ ⊥

E F F F F F F F F F E F .k k k k k kSO 1 2 1 1 1 SO 1

Proof. Let P be a parabolic subgroup of �( )Spin 8, , χ be any antidominant character of P, and sχ

be the associated element of hi . If the filtration of ESO is as described in (19), then the element sχ diagonalizes
in the form

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⋱

−
⋱

−

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

∕

∕

∕

∕

−

⊥

−
⊥ ⊥

⊥

λ I

λ I

I

λ I

λ I

0 ,

F

k F F

F F

k F F

E F

1

1

k k

k k

k k

1

1

1

SO 1

where �∈λ λ,…, k1 and <⋯< <λ λ 0k1 . The degree defined in (2) takes the value

( )( )∑ − +
=

+
⊥

λ λ F Fdeg deg ,

i

k

i i i i

1

1

so it is greater than or equal to 0 exactly when ≤Fdeg 0i for all i and it is equal to 0 when =Fdeg 0i for all i. On
the other hand, the condition for φ of taking values in the space −

V χ (resp. inV χ

0) defined in (1) clearly requires
that φ takes values in ⊗⊥

F Lk (resp. in ∕ ⊗⊥
F F Lk k ). Then the semistability condition requires that ≤Fdeg 0i for

all i whenever φ takes values in ⊗⊥
F Lk and for every filtration as the considered one. Since the satisfaction of

this condition for filtrations induced by reductions to a maximal parabolic subgroup as in (20) gives the
fulfilment of the condition for every filtration, the first part of the result is proved. For polystability, observe
that a reduction of structure group of ( )E φ, to a Levi subgroup of P gives a decomposition of ESO into a direct
sum of vector subbundles of the form

= ⊕ ∕ ⊕⋯⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕⋯⊕ ∕−
⊥

−
⊥ ⊥ ⊥

E F F F F F F F F F E F .k k k k k kSO 1 2 1 1 1 SO 1

Therefore, ( )E φ, is polystable if it admits a decomposition into direct sum of vector subbundles as those
described in the statement such that =Fdeg 0j for all j and φ takes values in ∕ ⊗⊥

F F Lk k . □

The reduced notions of stability and polystability for �( ( ) )+ρSpin 8, , and �( ( ) )−ρSpin 8, , -Higgs pairs over
X , where +ρ and −ρ are the eight-dimensional complex representations of �( )Spin 8, defined in (6) and (7),
respectively, will be now described. The proofs of Propositions 4.2 and 4.3 keep many analogous elements with
each other and with the proof of Proposition 4.1. However, it has been preferred to keep the details of the
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proofs, at the risk of being repetitive, to make explicit the differences that exist between the cases considered
in the three results.

Proposition 4.2. Let ( )E φ, be a �( ( ) )+ρSpin 8, , -Higgs pair over X for the representation +ρ of �( )Spin 8, defined
in (6). Let ESO be the principal �( )SO 8, -bundle defined in (17), and let ω be its global nondegenerate holomorphic
symmetric bilinear form. The �( ( ) )+ρSpin 8, , -Higgs pair ( )E φ, is stable (resp. semistable) if for every proper
isotropic subbundle F of ESO such that φ takes values in

( ) ( )∐∧ + ∧ ∧ ∧ ∧ + ∧ ∧ ∧ + ∧ ∧ ∧⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥F E F F F F E E F F F E F F F F ,SO SO SO SO

where the reference to the line bundle L is omitted for clarity, and it is satisfied that <Fdeg 0 (resp. ≤Fdeg 0).
The �( ( ) )+ρSpin 8, , -Higgs pair ( )E φ, is polystable if one of the following conditions holds (again,

the reference to L has been omitted in the vector subbundles where, in each case, φ takes values, for clarity):
(1) There exists a proper isotropic subbundle F of ESO with ≤Frk 3 such that ESO admits a decomposition

of the form

= ⊕ ∕ ⊕ ∕⊥ ⊥E F F F E FSO SO

and φ takes values in

( )

( )

∐∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F

F F E F E F F F F F F E F F F F F F F F F .

SO

SO SO SO

(2) There exists a rank 4 isotropic subbundle F of ESO such that ESO admits a decomposition of the form

= ⊕ ∕E F E FSO SO

and φ takes values in

( ) ( )∐∧ ∕ ∧ ∧ ∕ ∧ ∕⊥ ⊥ ⊥F E F F F E F E F .SO SO SO

(3) There exists a filtration ⊊ ⊊F F0 1 2 of ESO into isotropic subbundles with ≤ ≤F2 rk 32 such that ESO admits
a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥
E F F F F F F F E FSO 1 2 1 2 2 1 2 SO 1

and φ takes values in

( )

(

)

∐∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕

⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F F F F F

F F E F E F F F F F F E F

F F F F F E F F F F F F F F F

F F F F F F F F F F F F F F F F .

1 SO 1 2 1 1 2 2 2 2 2

1 1 SO 1 SO 1 1 2 2 2 2 SO 1

1 2 1 1 2 SO 1 2 2 2 2 2 2 2 2

2 1 2 2 2 2 1 2 2 1 2 1 1 2 1 2

(4) There exists a filtration ⊊ ⊊F F0 1 2 of ESO into isotropic subbundles with =Frk 42 such that ESO admits
a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥
E F F F F F E F1 2 1 1 2 SO 1

and φ takes values in

( )

( )

∐∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F

F F E F E F F F F F F E F F F F F F F F F .

1 SO 1 2 1 1 2

1 1 SO 1 SO 1 1 2 1 1 2 SO 1 2 1 2 1 1 2 1 2

(5) There exists a filtration ⊊ ⊊ ⊊F F F0 1 2 3 of ESO into isotropic subbundles with =Frk 33 such that ESO admits
a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥ ⊥ ⊥
E F F F F F F F F F F F E FSO 1 2 1 3 2 3 3 2 3 1 2 SO 1

and φ takes values in
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( )

(

)

∐∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕

⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F F F F F F F F F

F F E F E F F F F F F E F

F F F F F E F F F F F F E F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F .

1 SO 1 2 1 1 2 3 2 2 3 3 3 3 3

1 1 SO 1 SO 1 1 2 1 1 2 SO 1

1 3 2 2 3 SO 1 1 3 3 3 3 SO 1

2 1 2 1 1 2 1 2 2 1 3 2 2 3 1 2

2 1 3 3 3 3 1 2 3 2 3 2 2 3 2 3

3 2 3 3 3 3 2 3 3 3 3 3 3 3 3 3

(6) There exists a filtration ⊊ ⊊ ⊊F F F0 1 2 3 of ESO into isotropic subbundles with =Frk 43 such that ESO admits
a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥ ⊥
E F F F F F F F F F E FSO 1 2 1 3 2 2 3 1 2 SO 1

and φ takes values in

( )

(

)

∐∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕

⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F F F F F

F F E F E F F F F F F E F

F F F F F E F F F F F F F F F

F F F F F F F F F F F F F F F F .

1 SO 1 2 1 1 2 3 2 2 3

1 1 SO 1 SO 1 1 2 1 1 2 SO 1

1 3 2 2 3 SO 1 2 1 2 1 1 2 1 2

2 1 3 2 2 3 1 2 3 2 3 2 2 3 2 3

(7) There exists a filtration ⊊ ⊊ ⊊ ⊊F F F F0 1 2 3 4 of ESO into isotropic subbundles such that ESO admits
a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
E F F F F F F F F F F F F F E FSO 1 2 1 3 2 4 3 3 4 2 3 1 2 SO 1

and φ takes values in

( )

(

)

∐∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ⊕ ∕ ∧ ∕
∧ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕

⊕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F E F F F F F F F F F F F F F

F F E F E F F F F F F E F

F F F F F E F F F F F F E F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F F F F F F F F F F F F .

1 SO 1 2 1 1 2 3 2 2 3 4 3 3 4

1 1 SO 1 SO 1 1 2 1 1 2 SO 1

1 3 2 2 3 SO 1 1 4 3 3 4 SO 1

2 1 2 1 1 2 1 2 2 1 3 2 2 3 1 2

2 1 4 3 3 4 1 2 3 2 3 2 2 3 2 3

3 2 4 3 3 4 2 3 4 3 4 3 3 4 3 4

Proof. Let P be any parabolic subgroup of �( )Spin 8, and χ be any antidominant character of P.
With the notation of Section 2, the associated element h∈s iχ diagonalizes in the form

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⋱

−
⋱

−

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

∕

∕

∕

∕

−

⊥

−
⊥ ⊥

⊥

λ I

λ I

I

λ I

λ I

0 .

F

k F F

F F

k F F

E F

1

1

k k

k k

k k

1

1

1

SO 1

for the filtration

⊂ ⊂⋯⊂ ⊆ ⊂⋯⊂ ⊂⊥ ⊥
F F F F E0 k k1 1 SO

of ESO induced by a restriction of structure group of ESO to P, where <⋯< <λ λ 0k1 . Since the spaceVχ defined
in (1) is a subspace of the corresponding space induced by a reduction to a maximal parabolic subgroup

10  Álvaro Antón-Sancho



(that is, when =k 1), it is enough to check the semistability condition on filtrations of the form ⊂ ⊆ ⊂⊥F F E0 SO.
In this case, the space −

V χ is clearly

( ) ( )∐∧ + ∧ ∧ ∧ ∧ + ∧ ∧ ∧ + ∧ ∧ ∧⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥F E F F F F E E F F F E F F F F ,SO SO SO SO

so the first part of the result is proved. It is easily checked that the kernel of the corresponding endomorphism
of ∧+ESO is exactly the space announced in each one of the seven cases described in the second part of the
statement; the case depends on the value of =k 1, 2, 3, 4 and the ranks of the isotropic subspaces involved:
(1) =k 1 and ≤Frk 3. In this case, ⊊ ⊥F F .
(2) =k 1 and =Frk 4. In this case, = ⊥F F .
(3) =k 2 and ≤Frk 32 . In this case, ⊊ ⊥

F F2 2 .
(4) =k 2 and =Frk 42 . In this case, = ⊥

F F2 2 .
(5) =k 3 and ≤Frk 33 . In this case, ⊊ ⊥

F F3 3 .
(6) =k 3 and =Frk 43 . In this case, = ⊥

F F3 3 .
(7) =k 4. In this case, necessarily = ⊥

F F4 4 .

This finally shows the result. □

Proposition 4.3. Let ( )E φ, be a �( ( ) )−ρSpin 8, , -Higgs pair over X for the representation −ρ of �( )Spin 8, defined
in (7). Let ESO be the principal �( )SO 8, -bundle defined in (17), and let ω be its global nondegenerate holomorphic
symmetric bilinear form. The �( ( ) )−ρSpin 8, , -Higgs pair ( )E φ, is stable (resp. semistable) if for every proper
isotropic subbundle F of ESO such that φ takes values in

( ) ( )

( )

∐
∐

∧ ∧ ⊕ ∧ ∧

∧ ∧ ∧ ∧ ⊕ ∧ ∧ ∧ ∧

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

F F F E F F F

F F F E E F F F F E ,

SO

SO SO SO

where the reference to the line bundle L is omitted for clarity, it is satisfied that <Fdeg 0 (resp. ≤Fdeg 0).
The �( ( ) )−ρSpin 8, , -Higgs pair ( )E φ, is polystable if one of the following conditions holds (again,

the reference to L has been omitted in the vector subbundles where, in each case, φ takes values, for clarity):
(1) There exists a proper isotropic subbundle F of ESO with ≤Frk 3 such that ESO admits a decomposition

of the form

= ⊕ ∕ ⊕ ∕⊥ ⊥E F F F E FSO SO

and φ takes values in

( ) ( )

( )

∐
∐

∕ ∧ ∕ ∧ ∕ ⊕ ⋀ ∕

⋀ ∧ ∕ ∧ ⋀ ∕ ⊕ ∧ ⋀ ∕ ∧ ∕

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

F F F F F E F F F

F F F E F F F F E F .

SO
3

2 2
SO

3
SO

(2) There exists a filtration ⊊ ⊊F F0 1 2 of ESO into isotropic subbundles of ESO with ≤ ≤F2 rk 32 such that ESO

admits a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥
E F F F F F F F E FSO 1 2 1 2 2 1 2 SO 1

and φ takes values in

( ) ( )

(

)

∐
∐

∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ⊕ ⋀ ∕

⋀ ∧ ∕ ∧ ⋀ ∕ ⊕ ∧ ⋀ ∕ ∧ ∕
⊕ ∧ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ⋀ ∕
⊕ ∕ ∧ ⋀ ∕ ∧ ∕ ⊕ ⋀ ∕ ∧ ∕ ∧ ⋀ ∕

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F F F F F E F F F F F F F F F

F F F E F F F F E F

F F F F F F F E F F F

F F F F F F F F F F F F .

2 2 1 2 2 SO 1 2 1 2 2 1 2
3

2 2

2
1 2 2

2
SO 1 1

3
2 2 SO 1

1 2 1 2 2 1 2 SO 1
5

2 2

2 1
3

2 2 1 2
2

2 1 2 2
2

1 2

(3) There exists a filtration ⊊ ⊊ ⊊F F F0 1 2 3 of ESO into isotropic subbundles of ESO with =Frk 33 such that ESO

admits a decomposition of the form

= ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕ ⊕ ∕⊥ ⊥ ⊥ ⊥ ⊥ ⊥
E F F F F F F F F F F F E FSO 1 2 1 3 2 3 3 2 3 1 2 SO 1
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and φ takes values in

( )

( )

(

)

∐
∐

∕
∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ∕ ∧ ∕ ⊕ ⋀ ∕

⋀ ∧ ∕ ∧ ⋀ ∕ ⊕ ∧ ∕ ∧ ∕ ∧ ∕ ∧ ∕
⊕ ∧ ⋀ ∕ ∧ ∕ ⊕ ⋀ ∕ ∧ ∕ ∧ ⋀ ∕
⊕ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ∕ ∧ ⋀ ∕ ∧ ∕
⊕ ∧ ∕ ∧ ∕ ∧ ∕ ∧ ∕ ⊕ ⋀ ∕ ⊕ ∕ ∧ ⋀ ∕ ∧ ∕
⊕ ⋀ ∕ ∧ ∕ ∧ ⋀ ∕

⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

F F

F F F E F F F F F F F F F F F F F F F

F F F E F F F F F F F F E F

F F F E F F F F F F F

F F F F F F F F F F F F F F F F

F F F F F F F E F F F F F F F F F

F F F F F F .

3 3

1 3 3 SO 1 2 1 3 3 1 2 3 2 3 3 2 3
3

3 3

2
1 3 3

2
SO 1 1 2 1 3 3 1 2 SO 1

1
3

2 2 SO 1
2

2 1 3 3
2

1 2

2 1 3 2 3 3 2 3 1 2 2 1
3

3 3 1 2

1 3 2 3 3 2 3 SO 1
5

3 3 3 2
3

3 3 2 3

2
3 2 3 3

2
2 3

Proof. The same proof of Proposition 4.2, with the necessary formal differences, works here. A few words to
the reduced notion of polystability. If P is any parabolic subgroup of �( )Spin 8, , χ is any antidominant
character of P and

⊂ ⊂⋯⊂ ⊆ ⊂⋯⊂ ⊂⊥ ⊥
F F F F E0 k k1 1 SO

is the filtration of ESO induced by a restriction of structure group of E to P , then the kernel of the endo-
morphism of ∧−ESO induced by sχ is 0 when =Frk 4k , since ∕ =⊥

F F 0k k in this case and each wedge product has
an odd number of factors, so a factor of type ∕⊥F Fk k must appear in every element of the considered kernel.
Then it must be ≤k 3 and ≤Frk 3k . Therefore, the possible cases are the following:
(1) =k 1 and ≤Frk 3.
(2) =k 2 and ≤Frk 3.
(3) =k 3 and =Frk 3.

These three cases turn to the cases described in the statement. □

Example. Let E be a rank 8 and trivial determinant vector bundle over X , which admits a globally defined
nondegenerate symmetric bilinear form, and whose second Stiefel-Whitney class is 0. Suppose that the max-
imal isotropic subbundle of E is F . Take L to be the trivial line bundle� over X . Then E can be understood as a
principal �( )SO 8, -bundle over X and it lifts to a principal �( )Spin 8, -bundle over X (because the second
Stiefel-Whitney class is 0). A Higgs pair associated with the representation ρ defined in (5) is, in this situation,
given by E together with a holomorphic global section of E . Similarly, a Higgs pair for the representation +ρ

defined in (6) (resp, −ρ defined in (7)) is given by E together with a holomorphic global section of∧ Fk for some
even number k with ≤k 8 (resp. odd number k with ≤k 7). In the case of the representation ρ, the stability
of E as a Higgs pair depends on the degree of F and where the global section takes values. If ≥Fdeg 0, then
it should be required that the global section does not take values in ⊥F for the Higgs pair to be stable,
by Proposition 4.1.

In Proposition 4.4, the action of the group ( )GOut of outer automorphisms of G on the set of principal
G-bundles over X , introduced in [21, Section 5] for a semisimple complex Lie group G, is considered. Speci-
fically, if ( )∈σ GOut and E is a principal G-bundle over X , ( )σ E is defined to be the principal G-bundle over X

whose total space coincides with that of E and such that the action of G on it derives from that of G in E in
the following way: if ∈g G and ∈e E , then

( )⋅ = −e g eS g ,1 (21)

where S is an automorphism of G that represents σ .

Proposition 4.4. Let G be a semisimple complex Lie group, ( )→ρ G V: GL and ( )′ →ρ G W: GL be complex
representations of G, σ be an outer automorphism of G, S be a representative of σ in ( )GAut , and →F V W: be
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an isomorphism of vector spaces such that ( )∘ = ′ ∘ ∘F ρ ρ S F . Then F induces a bijective correspondence
between polystable ( )G ρ, -Higgs pairs and ( )′G ρ, -Higgs pairs over X that preserves polystability.

Proof. Under the conditions and the notation of the statement, the map f is defined in the following way: if
( )E φ, is a polystable ( )G ρ, -Higgs pair over X , then ( ) ( ( ) ( ))=f E φ σ E F φ, , , where ( )σ E is defined in (21) and

( )F φ acts on each fiber by taking the image by F of the image ofφ, that is, if ∈x X and ( ) [ ]= ⊗φ x e v l, , where
∈e E , ∈v V and ∈l L, then ( ( )) [ ( )]= ⊗F φ x e F v L, . Notice that this ( )F φ is well defined, and gives a global

section of ( )( ) ⊗σ E W L. To prove this, take any ∈g G. Since [ ] [ ( )( )]= −e v eg ρ g v, ,1 and ( )∘ = ′ ∘ ∘F ρ ρ S F ,
it follows that

[ ( ( )( ))] [ ( ( ))( ( ))] [ ( ( )) ( ( ))( ( ))]= ′ = ′− − − −eg F ρ g v eg ρ S g F v eσ S g ρ S g F v, , , ,1 1 1 1

so ( )F φ is well defined, and it takes values in W . In fact, ( ) ( ( )( ))∈F φ H X σ E W,0 .
If ( )E φ, is a semistable ( )G ρ, -Higgs pair over X then ( )F E φ, is also semistable. To show this, take any

parabolic subgroup P of G, any antidominant character χ of P , and a representative S of σ in ( )GAut . Then
( )S P and ∘ −χ S 1 are generic parabolic subgroup of G and antidominant character of ( )S P , so it suffices to

check the semistability condition stated in Definition 2, applied to ( ) ( ( ) ( ))=F E φ σ E F φ, , , for ( )S P and ∘ −χ S 1.
Let ( ) ( )σ E S P be a reduction of structure group of ( )σ E to ( )S P such that ( )F φ takes values in ∘

−
−W

χ S
1. It is then

clear that ( ( ) )( )
−σ σ E S P

1 defines a reduction of structure group EP of E to P , and this reduction satisfies that φ

takes values in −
V χ because ( ) =−

∘
−

−S V Wχ χ S
1, as an immediate consequence of the expression ( )∘ = ′ ∘ ∘F ρ ρ S F

of the hypotheses, the definition of the spaces −
V χ and ∘

−
−W

χ σ
1 given in (1), and the fact that F is linear. Then the

reduction EP satisfies that φ takes values in −
V χ . Since ( )E φ, is semistable, then ≥χ Edeg

*
0P . This together with

the observation that the line bundles ( ) ( ) ( )∘ −χ S σ E
*

S P
1 and χ E

*
P over X are isomorphic, concludes that ( )F E φ,

is semistable.
Let now ( )E φ, be a polystable ( )G ρ, -Higgs pair over X . Then ( )F E φ, is itself semistable. Let P and χ

be a parabolic subgroup of G and an antidominant character of P such that ( ) ( ( ) ( ))=F E φ σ E F φ, , admits
a reduction of structure group ( ) ( )σ E S P to ( )S P with

( ) ( ( ) ( ) )( )∈ ⊗∘
−

−F φ H X σ E W L, S P χ S

0
1

and ( ) ( ) ( )∘ =−χ S σ Edeg
*

0S P
1 . Then, as mentioned earlier, ( ( ) )( )= −E σ σ EP S P

1 is a reduction of structure group
of E to P such that φ takes values in −

V χ and

( ) ( ) ( )= ∘ =−χ E χ S σ Edeg
*

deg
*

0.P S P
1

Since ( )E φ, is polystable, there exists a reduction of structure group EL of EP to a Levi subgroup L of P such that
φ takes values in the spaceV χ

0 defined in (1). Then it is easily checked that ( )σ EL defines a reduction of structure
group of ( ) ( )σ E S P to ( )S L , which is a Levi subgroup of ( )S P , and ( )F φ takes values in ∘ −W

χ S

0
1 since it is satisfied

that ( ) = ∘ −S V Wχ χ S

0 0
1, due to the hypothesis relation ( )∘ = ′ ∘ ∘F ρ ρ S F . This proves that ( )F E φ, is polystable.

All this proves that the correspondence f is well defined. Observe that the isomorphism of vector spaces
−F 1 defines also a correspondence, which is clearly inverse to f , what proves that f is bijective. □

Corollary 4.1. The automorphism J defined in (8) induces bijective correspondences between polystable
�( ( ) )ρSpin 8, , -Higgs pairs, �( ( ) )+ρSpin 8, , -Higgs pairs, and �( ( ) )−ρSpin 8, , -Higgs pairs over X that preserves

the polystability, where the representations ρ, +ρ , and −ρ are defined in (5), (6), and (7), respectively.

Proof. Let V be the eight-dimensional vector space on which �( )Spin 8, acts through the representation ρ

defined in (5), and let q be its nondegenerate quadratic form. Let W be the maximal isotropic subspace of V

such that the representations +ρ and −ρ of �( )Spin 8, defined in (6) and (7), respectively, define actions
of �( )Spin 8, on ∧+W and ∧−W . Consider the automorphism

⊕ ∧ ⊕ ∧ → ⊕ ∧ ⊕ ∧+ − + −J V W W V W W:
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defined in (8). It takes values in ∧+W when restricted to V , so it defines an isomorphism → ∧+J V W: . From
the relation expressed in (9), it is satisfied that ( )∘ = ∘ ∘+J ρ ρ T J for a representative T in �( ( ))Aut Spin 8, of
the triality automorphism τ of �( )Spin 8, . The hypotheses of Proposition 4.4 are satisfied, so the correspon-
dence defined by ( ) ( ( ) ( ))=j E φ τ E J φ, , given in Proposition 4.4 is bijective. □

5 Stability and simplicity of (( (( )) ))ρSpin 8, ,ℂ -Higgs pairs

Let X be a compact Riemann surface of genus ≥g 2. Let ( )E φ, be a �( ( ) )n ρSpin 2 , ,
n2
-Higgs pair over X . Denote

by ( )E φAut , the group of automorphisms of ( )E φ, , that is,

( ) { ( ) ( ) }= ∈ =E φ f E f φ φAut , Aut : ,
ρ

n2
(22)

where f
ρ

n2

denotes the automorphism of ( )E V n2 induced by f . The space of infinitesimal automorphisms
of ( )E φ, is also defined to be the space

( ) { ( ) ( ) }= ∈ =E φ f E f φaut , End : 0 ,
ρ

n2
(23)

Let �( ( ))Z nSpin 2 , be the center of �( )nSpin 2 , , which satisfies � � �( ( )) ≅ ×Z nSpin 2 , 2 2. Let �( ( ))∈z Z nSpin 2 ,

be a choice of a central element. This choice induces the definition of an automorphism →f E E:z of E given by
multiplication by z. The corresponding automorphism f

ρ

z

n2

of ( )E V n2 is defined by ([ ]) [ ( )( )]=f e v ez ρ z v, ,
ρ

z

n2
n2

,
where ∈e E and ∈v V n2 . This is a good definition since, for any �( )∈g nSpin 2 , ,

[ ( ) ( )( )] [ ( ) ( )( )] [ ( )( )]= =− −egz ρ z ρ g v ezg ρ g ρ z v ez ρ z v, , , .
n n n n n2 2

1

2

1

2 2

This fact, together with the additional observation that every central element of �( )nSpin 2 , has order 2, proves
that �( ( ))Z nSpin 2 , can be understood as a subgroup of ( )E φAut , .

Definition 3. A �( ( ) )n ρSpin 2 , ,
n2
-Higgs pair ( )E φ, over X is said to be simple if the group ( )E φAut , coincides

with �( ( ))Z nSpin 2 , .

In previous studies [13,16,22], it is proved that stable and simple Higgs bundles represent smooth points of
the moduli space of Higgs bundles for any reductive complex structure group. They use arguments that involve
deformation theory and that, as far as it has been studied, are not easily adaptable to the situation in which
pairs associated with a representation different from the adjoint one are considered.

Proposition 5.1. Let ( )E φ, be a stable �( ( ) )n ρSpin 2 , ,
n2
-Higgs pair over X . Then every element of ( )E φAut ,

is semisimple, where ( )E φAut , is defined in (22).

Proof. Under the conditions of the statement, the identity component ( )E φAut , 0 of ( )E φAut , is semisimple,
since every element of its Lie algebra, the space ( )E φaut , of infinitesimal automorphisms of ( )E φ, , is semi-
simple as a consequence of [16, Proposition 2.14]. Let ( )∈g E φAut , , and let g

u
be the unipotent part of g .

Let ( ) ( ( ))→p E φ π E φ: Aut , Aut ,0 be the projection. Since p is a morphism that preserves the unipotent parts
and ( ( ))π E φAut ,0 is a finite group, then every element of ( ( ))π E φAut ,0 is also semisimple, so ( ) =p g 0

u

and ( )∈g E φAut ,
u 0; hence, g

u
is itself 0 because the elements of ( )E φAut , 0 are all of them semisimple. □

Lemma 5.1. Let G be any semisimple complex Lie group, and let ∈g G. Then the centralizer ( )Z gG of g in G
is defined up to conjugation.

Proof. Let ∈g V , ( )∈x Z gG , and ∈h G. It is clear that −hxh 1 commutes with −hgh 1 (because g and x commute).
This proves that the inner automorphism →i G G:h defined by ( ) = −i y hyhh

1 restricts to an isomorphism
between ZG and ( )−Z hghG

1 . □
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Lemma 5.2. Let n be any integer number with ≥n 2, � �( ) ( )→π n n: Spin 2 , SO 2 ,n2 be the covering map defined
in (12), and let �( )∈g nSpin 2 , . Then � �( ( )) ( ( ))( ) ( )=π Z g Z π gn n n n2 Spin 2 , SO 2 , 2 .

Proof. Since π n2 is a homomorphism of groups, it is obvious that

� �( ( )) ( ( ))( ) ( )⊆π Z g Z π g .n n n n2 Spin 2 , SO 2 , 2

To prove the other contention, take any � ( ( ))( )∈x Z π gn nSO 2 , 2 and let �( )∈h nSpin 2 , be such that ( ) =π h xn2 .
Then ∈− −hgh g πker n

1 1
2 . It may be supposed that =− −hgh g 11 1 (if this is not the case, then the other element in

the fiber ( )−
π gn2

1 should satisfy this relation), so � ( )( )∈h Z gnSpin 2 , , hence �( )( )∈x π Zn n2 Spin 2 , . □

Lemma 5.3. Let n be any integer number with ≥n 2, and let g be any element of �( )nSO 2 , . Then � ( )( )Z gnSO 2 ,

is isomorphic to one of the following groups:
(1) �( )nSO 2 , (if and only if g is a central element).
(2) � � � �( ) ( ) ( ) ( )×⋯× × ×r r k kSL 2 , SL 2 , SO , SO ,d1 1 2 , where ≥d 0, ≥k k, 01 2 , and +⋯+ + + =r r k k n2 2 2d1 1 2 .

Proof. Let � �( ) ( )= ×⋯ ×T SO 2, SO 2,
n

be a maximal torus of �( )nSO 2 , . Every element in �( )nSO 2 , can be
conjugated into T , since �( )nSO 2 , is connected. Then every element in �( )nSO 2 , is conjugate to an element
of the form

=

⎛

⎝

⎜
⎜
⎜
⎜

⋱

−

⎞

⎠

⎟
⎟
⎟
⎟

M

M

M

I

I

,

d

d

k

k

1

1

2

where

=
⎛

⎝

⎜
⎜ ⋱

⎞

⎠

⎟
⎟

M

A

A

,i

i

r

i

i

each Ai being an element in �( )SO 2, different from ±I and such that ≠A Ai j for ≠i j. An element in �( )nSO 2 ,

that commutes with M should preserve the blocks. Since the centralizer of each Mi is isomorphic to �( )rSL 2 ,i ,
the result comes. □

Lemma 5.4. Let n be any integer number with ≥n 2, let ( )E φ, be a polystable �( ( ) )n ρSpin 2 , ,
n2
-Higgs pair over

X, and let ( )E φ,SO the associated �( ( ) )n ρSO 2 , ,
n2

SO -Higgs pair over X, where the representations ρ
n2
and ρ

n2

SO

are defined in (13) and (14), respectively. Then ( )E φ, is simple if and only if ( )E φ,SO is simple.

Proof. Observe first that every automorphism of ( )E φ, descends to give an automorphism of ( )E φ,SO in such a
way that two automorphisms of ( )E φ, that descend to the same automorphism of ( )E φ,SO differ in one central
element of �( )nSpin 2 , . This proves that if ( )E φ,SO is simple then ( )E φ, is also simple. Reciprocally, suppose
that ( )E φ, is simple, and take any automorphism f of ( )E φ,SO . The automorphism f defines an element of the
adjoint bundle ( )EAd SO , which is isomorphic to ( )EAd , so f defines an endomorphism of ( )E φ, , say f̄ , such that
f̄ descends to f . For the same reason, there exists an endomorphism −f 1 of ( )E φ, that descends to −f 1.
The endomorphisms f̄ and −f 1 clearly differ in one central element of �( )nSpin 2 , , so they are isomorphisms.
Since ( )E φ, is simple, f̄ must consist of multiplication by a central element of �( )nSpin 2 , , so f consists
also in multiplication by a central element of �( )nSO 2 , , what proves that ( )E φ,SO is itself simple. □

Theorem 5.1. Let ( )E φ, be a stable and non-simple �( ( ) )ρSpin 8, , -Higgs pair over X, where the representation
� �( ) ( )→ρ : Spin 8, GL 8, is defined in (5). Let ESO be the principal �( )SO 8, -bundle over X defined in (17)

associated with E. Then the underlying vector bundle of ESO is isomorphic to one of the following vector bundles:
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(1) ⊕ −L Lk k8 for =k 0, 1, 2, 3, 4;
(2) ⊕ ⊕ − −F L Lr k r k2 8 2 for =r 1, 2, 3 and = −k r0, 1,…, 4 ;
(3) ⊕ ⊕ ⊕ − − −F F L Lr s k r s k2 2 8 2 2 for =r 1, 2, 3, = −s r r,…, 4 , and = − −k r s0,…, 4 ;
(4) ⊕ ⊕ ⊕ ⊕ − −F F F L Lr k r k2 2 2 4 2 for =r 1, 2 and = − −k r r2 ,…, 4 2 ,

where Fj is an �( )jSL , -bundle and Lj is an �( )jSO , -bundle for all ≥j 1, =F 00 , =L 00 , and �=L1 .

Remark. All the Higgs pairs described in the four cases stated in Theorem 5.1 are polystable, as a consequence
of Corollary 2.1.

Proof of Theorem 5.1. Let ( )E φ, be a stable and non-simple �( ( ) )ρSpin 8, , -Higgs pair over X . Then there exists
an automorphism f of ( )E φ, that does not belong to the center Z of �( )Spin 8, . Since the group �( )Spin 8, is
semisimple and ( )E φ, is stable, it is ensured [16, Proposition 2.14] that the space ( )E φaut , defined in (23) is 0.
This space is the Lie algebra of the group ( )E φAut , at the identity, so ( ) { }= =E φ ZAut , 10 0 and, moreover, since

( ( ))π E φAut ,0 is finite because it is an algebraic group, and Z is a normal subgroup of ( )E φAut , , the quotient
( )∕E φ ZAut , is a finite group. Let f f,…,

k1
be a family of automorphisms of ( )E φ, not coming from the center of

�( )Spin 8, such that the nontrivial elements of ( )∕E φ ZAut , are exactly the set of their classes modulo Z ,
{[ ] [ ]}f f, …,

k1
. Each f

i
corresponds to an element �( )∈g Spin 8,

i
. In the study by Garcia-Prada and Oliveira

[23, Theorem 3.17], it is shown that, in this situation, E admits a reduction of structure group to the centralizer
� ( )( )Z g

iSpin 8, of g
i
for every =i k1,…, . Of course,φ takes values in that reduction, since f

i
is an automorphism of

( )E φ, . Notice that the choice of representatives is well defined except for one element of the center Z , but this
does not change the centralizers that are being considered. Let ( )E φ,g g

1 1 be the reduction of structure group of
( )E φ,SO to � ( ( ))( )Z π gSpin 8, 1

, which exists by Lemma 5.2. Then, since g
1
does not belong to Z , from Lemma 5.3

applied to =n 4, we deduce the result. □

Remark. The same proof made in Theorem 5.1 works to give a similar description of stable and non-simple
�( ( ) )ιSO 8, , -Higgs pairs, where ι is the representation of �( )SO 8, induced by the natural inclusion of groups
� �( ) ( )→SO 8, GL 8, . Specifically, if ( )E φ, is a stable and non-simple �( ( ) )ιSO 8, , -Higgs pair over X , then it

admits exactly one of the three forms described in Theorem 5.1.

Example. Take a rank 8 and trivial determinant vector bundle E over X , which admits a globally defined
nondegenerate symmetric bilinear form, and whose second Stiefel-Whitney class is 0. Then this vector bundle
can be understood as a principal �( )SO 8, -bundle over X . The bundle E lifts to a principal �( )Spin 8, -bundle
over X . Suppose that this principal bundle is stable and not simple. Suppose, in addition, that E admits a
nonzero holomorphic global section, whose induced line subbundle of E is not isotropic. The pair consisting of
E together with this global section is a stable Higgs pair for the representation ρ (5), where the fixed line
bundle L considered is the trivial line bundle � over X . In this situation, E satisfies the conditions of Theorem
5.1. Then it is deduced that E admits a decomposition into 2, 3, 4, or 5 vector subbundles. Moreover, if there are
more than 2 subbundles, all but perhaps two of them must be of even rank.

6 Conclusion

The group �( )Spin 8, is the only simple complex Lie group that admits an outer automorphism of order 3,
called triality automorphism. It also admits three non-isomorphic irreducible eight-dimensional complex
representations, so that the triality automorphism acts as an order 3 permutation on the set of these repre-
sentations. One of them is the representation ρ induced by the double covering � �( ) ( )→Spin 8, SO 8, with
which �( )Spin 8, is equipped. If �( ) ( )→α V: Spin 8, GL is a complex representation of �( )Spin 8, and E is a
principal �( )Spin 8, -bundle over a compact Riemann surface X , then a complex rank 8 vector bundle ( )E V is
induced by E and α. A �( ( ) )αSpin 8, , -Higgs pair over X is a pair ( )E φ, , where E is a principal �( )Spin 8, -bundle
over X and ( ( ) )∈ ⊗φ H X E V L,0 , L being a fixed line bundle over X . In this work, reduced notions of stability
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and polystability for Higgs pairs over X with structure group �( )Spin 8, and associated with the representa-
tions cited above are given, and it is proved that the three moduli spaces of Higgs pairs considered are
isomorphic. It is also given an explicit expression of the vector bundles associated with the stable and not
simple �( ( ) )ρSpin 8, , -Higgs pairs over X through the representation ρ of �( )Spin 8, . Specifically, it has been
shown that, if ( )E φ, is a stable and non-simple �( ( ) )ρSpin 8, , -Higgs pair over X , then the vector bundle
induced by E and ρ is isomorphic to one of the following:
(1) ⊕ −L Lk k8 for =k 0, 1, 2, 3, 4;
(2) ⊕ ⊕ − −F L Lr k r k2 8 2 for =r 1, 2, 3 and = −k r0, 1,…, 4 ;
(3) ⊕ ⊕ ⊕ − − −F F L Lr s k r s k2 2 8 2 2 for =r 1, 2, 3, = −s r r,…, 4 and = − −k r s0,…, 4 ;
(4) ⊕ ⊕ ⊕ ⊕ − −F F F L Lr k r k2 2 2 4 2 for =r 1, 2 and = − −k r r2 ,…, 4 2 ,

where Fj is an �( )jSL , -bundle and Lj is an �( )jSO , -bundle for all ≥j 1, =F 00 , =L 00 , and �=L1 .
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