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Abstract. The Paterson–Stockmeyer method is an evaluation scheme for matrix polynomials
with scalar coefficients that arise in many state-of-the-art algorithms based on polynomial or rational
approximation, for example, those for computing transcendental matrix functions. We derive a
mixed-precision version of the Paterson–Stockmeyer method that is particularly useful for evaluating
matrix polynomials with scalar coefficients of decaying magnitude. The key idea is to perform
computations on data of small magnitude in low precision, and rounding error analysis is provided
for the use of lower-than-working precisions. We focus on the evaluation of the Taylor approximants of
the matrix exponential and show the applicability of our method to the existing scaling and squaring
algorithms, particularly when the norm of the input matrix (which in practical algorithms is often
scaled towards to origin) is sufficiently small. We also demonstrate through experiments the general
applicability of our method to the computation of the polynomials from the Padé approximant of the
matrix exponential and the Taylor approximant of the matrix cosine. Numerical experiments show
our mixed-precision Paterson–Stockmeyer algorithms can be more efficient than its fixed-precision
counterpart while delivering the same level of accuracy.
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1. Introduction. The Paterson–Stockmeyer (PS) method [19] is an evaluation
scheme for matrix polynomials with scalar coefficients that is used in many state-
of-the-art algorithms based on polynomial or rational approximants for computing
transcendental functions of matrices, for example, the matrix exponential [8], [21], the
matrix logarithm [7], and the matrix trigonometric and hyperbolic functions and their
inverses [2], [3], [4], [20]. In the PS scheme, a matrix polynomial pm(X) =

∑m
i=0 biX

i

at X ∈ Cn×n is written as

(1.1) pm(X) =

r∑
i=0

Bi · (Xs)i, r = ⌊m/s⌋,

where s is an integer parameter and

Bi =



s−1∑
j=0

bsi+jX
j , i = 0, . . . , r − 1,

m−sr∑
j=0

bsr+jX
j , i = r.

The first s positive powers of X are computed once the parameter s is chosen;
then (1.1) is evaluated by the matrix version of Horner’s method, with each coef-
ficient polynomial Bi formed via explicit powers reusing the computed powers of X.
In the evaluation of polynomials of matrices, matrix multiplications have the highest
asymptotic cost amongst all the matrix operations, so it is sensible to measure the
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efficiency of an evaluation scheme by the number of matrix multiplications required.
This quantity is known to be minimised by setting s =

√
m (which is not necessar-

ily an integer) for a given matrix polynomial pm(X), and the practical choices of
s = ⌊

√
m⌋ or s = ⌈

√
m⌉ yield exactly the same cost [6], [9, pp. 29–30], which is about

2
√
m. The above discussion is most relevant to the case when the polynomial p is

dense (most of the coefficients bi are nonzero), and the economics of the evaluation
can be rather different if pm is sparse, which is not the focus of the work.

One downside of the PS method is that it requires (s+2)n2 = O(
√
mn2) memory

locations including the storage of the first s powers ofX, in contrast to the n2 elements
of storage from Horner’s method. Van Loan [17] proposed a modification of the PS
method which reduces the storage requirement to 4n2 by computing pm one column
at a time, at the price of about 40% extra flops. A more efficient block variant of Van
Loan’s algorithm is developed in [16], where it is shown that the computation of all
the three mentioned schemes can be accelerated by reducing the argument matrix to
its Schur form if the degree m is sufficiently large—so the savings from performing
matrix multiplications between triangular (instead of full) matrices outweigh the extra
costs in reducing the matrix to Schur form.

In this work we aim to utilize multiple precisions in the computation of p by
the PS method so as to achieve ∥p − p̂∥ ≲ cnu∥p∥, where c is some mild constant,
given that its scalar coefficients bi enjoy a certain fast decaying property. Our idea
is inspired by the fundamental fact that computations performed on data of small
magnitude can use low precision. For example, in the computation of X = C + AB
where |A||B| ≪ |C| then the matrix product AB can be computed in lower precision
than the subsequent summation without significantly impacting the overall accuracy.

We begin in section 2 by stating the main theorems which are the building block
for analysing the errors in the evaluation of pm(X) in (1.1) and discuss the evaluation
scheme following from the error analysis. In section 3, we apply the framework derived
in the previous section to Taylor approximants of the matrix exponential and show
the applicability of our method to existing scaling and squaring algorithms for that
function, particularly when the norm of the input matrix is sufficiently small, in which
case accuracy of the mixed-precision method is shown to be guaranteed. Numerical
experiments are presented to demonstrate the accuracy and potential efficiency of
the algorithms. In section 4, we illustrate with examples the general applicability of
our framework to the computation of matrix polynomials with scalar coefficients that
decay in modulus. Conclusions are drawn in section 5.

Throughout this work we denote by ∥·∥ any consistent matrix norm, by N the set
of nonnegative integers, and by N+ the set of positive integers. We denote by u the
unit roundoff of the floating-point arithmetic. An inequality expressed as “a ≪ b”
can be read as “a is sufficiently less than b”.

2. Rounding error analysis and evaluation scheme. We use the standard
model of floating-point arithmetic [10, sect. 2.2]

(2.1) f l(x op y) = (x op y)(1 + δ), |δ| ≤ u,

where x and y are floating-point numbers and op denotes addition, subtraction, mul-
tiplication, or division. For matrix multiplication, we have [10, sect. 3.5]

(2.2) f l(AB) = AB + E, |E| ≤ γn|A||B|,

where γn := nu/(1− nu), assuming nu < 1.
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If more than one precision is involved in a computation, we will use the operator
f lj(·) to denote an operation executed in precision uj and γjn := nuj/(1 − nuj),
assuming nuj < 1. Define θi,j = ui/uj , i, j = 0: r, so we have

(2.3) γin = γjnθi,j .

The evaluation of pm(X) in (1.1) is customarily performed via Horner’s method,
that is, we compute

(2.4) pm(X) = B0 +Xs

(
B1 +Xs

(
B2 +Xs

(
B3 + · · ·+Xs(Br−1 +XsBr)

)))
starting from the quantities in the innermost brackets. In this paper we are most
interested in the case where the |bi| decay quickly, so we have, for some positive
integer ν ∈ [1, r],

(2.5) ∥Bi∥∥Xs∥ = τi∥Bi−1∥, τi ≪ 1, i = ν : r.

This set of conditions can be written as, for i = ν : r,

∥bsiI + bsi+1X + · · ·+ bsi+s−1X
s−1∥∥Xs∥ ≪ ∥bsi−sI + bsi−s+1X + · · ·+ bsi−1X

s−1∥,

which will hold if ∥X∥ is sufficiently small. The intuition is that the dominant terms
in Bi and Bi−1 are linear combination of powers of X generally from the same set
with each pair of corresponding scalar coefficients being s indices apart from the series
{bi}, of which the modulus decays rapidly. Consider simply X =

[−1 1
2 1

]
with bi = 1/i!

and s = 6, for example; we have

∥B2∥1∥Xs∥1 ≈
∥∥∥∥ 1

12!
I +

1

13!
X

∥∥∥∥
1

∥Xs∥1 = 6.5× 10−8

≪ 1.8× 10−3 =

∥∥∥∥ 1

6!
I +

1

7!
X

∥∥∥∥
1

≈ ∥B1∥1,

where the dominant terms in B1 and B2 are both from {I,X}. Later we will discuss
to what extent the conditions (2.5) can hold for the polynomial pm(X).

Define the polynomial

(2.6) q(X) := Bν−1 +Xs
(
Bν +Xs

(
Bν+1 + · · ·+Xs(Br−1 +XsBr)

))
,

which is exactly pm(X) if ν = 1. Assuming that (2.5) is satisfied, our idea for
computing q(X) is to start with the lowest precision in forming the matrix product in
the innermost brackets, and then gradually and adaptively increase the precision (up
to the working precision) for the subsequent matrix products outwards, aiming to still
deliver the full working precision accuracy for the computation of q(X). The following
theorem provides a rounding error bound on the forward error of the process, and the
proof is given in Appendix A.

Theorem 2.1. If ∥B̂i−Bi∥ ≤ ui∥Bi∥, i = ν− 1: r and ∥Ŷ −Y ∥ ≤ uν∥Y ∥ where
Y ≡ Xs, then for the matrix q̂, computed in finite precision, for q(X) in (2.6), the
evaluation scheme

φ̂r = B̂r

for j = r:−1: ν
φ̂j−1 = flj−1(B̂j−1 + flj(Ŷ φ̂j))

end
q̂ = φ̂ν−1
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satisfies

(2.7) ∥q̂−q(X)∥ ≤ γν−1
fr
∥Xs∥r−ν+1∥Br∥+γν−1

fr−1
∥Xs∥r−ν∥Br−1∥+· · ·+γν−1

fν−1
∥Bν−1∥,

where

fr =
nur
uν−1

+
(n+ 1)

uν−1
(ur−1 + ur−2 + · · ·+ uν) + 1,

fr−1 =
(n+ 2)ur−1

uν−1
+

(n+ 1)

uν−1
(ur−2 + ur−3 + · · ·+ uν) + 1,

...

fν =
(n+ 2)uν
uν−1

+ 1,

fν−1 = 2.

The constants fi in (2.7) can be bounded above by

fi ≤ (n+ 2)

(
ui
uν−1

+
ui−1

uν−1
+ · · ·+ uν

uν−1

)
+ 1, i = ν : r.

If (2.5) is satisfied, then in Theorem 2.1 we choose the precisions

(2.8) ui =
∥Bν−1∥uν−1

∥Bi∥∥Xs∥i−ν+1
, i = ν : r,

which implies ui−1 = τiui, and take τ = maxi τi ≪ 1 to have

(2.9) ui−1 ≤ τui, i = ν : r.

It follows that, for i = ν : r,

uν−1fi
ui

≤ (n+ 2)

(
1 +

ui−1

ui
+ · · ·+ uν−1

ui

)
≤ (n+ 2)

(
1 + τ + · · ·+ τ i−ν+1

)
= n+ 2 +O(nτ),

and therefore we have fi ≲ (n+ nτ + 2)ui/uν−1 and thus

fi∥Bi∥∥Xs∥i−ν+1 ≲
(n+ nτ + 2)ui

uν−1
∥Bi∥∥Xs∥i−ν+1 = (n+ nτ + 2)∥Bν−1∥.

Then, since iγν−1
k ≤ γν−1

ik [10, Lem. 3.3] we have the bound

∥q̂ − q(X)∥ ≤ γν−1
fr
∥Xs∥r−ν+1∥Br∥+ γν−1

fr−1
∥Xs∥r−ν∥Br−1∥+ · · ·+ γν−1

fν−1
∥Bν−1∥

≲ (r − ν + 1)γν−1
(n+nτ+2)∥Bν−1∥ + γν−1

2 ∥Bν−1∥

≲
(r − ν + 1)(n+ nτ + 2) + 2

1− (n+ nτ + 2)∥Bν−1∥uν−1
∥Bν−1∥uν−1

≈ (r − ν + 1)n

1− (n+ nτ + 2)∥Bν−1∥uν−1
∥q(X)∥uν−1.
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Therefore, if ((1 + τ)n+ 2) ∥Bν−1∥uν−1 ≪ 1, then we can choose the precisions ui
by (2.8) such that the computed matrix q̂ of q(X) has approximately a normwise
relative error of (r− ν + 1)nuν−1, where r = ⌊m/s⌋, and, in particular, if (2.5) holds
for ν = 1 then the computed matrix q̂m of qm(X) has approximately a normwise
relative error of rnu0.

For s = 1 the PS scheme (2.4) reduces to Horner’s method, in which case the
conditions (2.5) become

(2.10) |bi|∥X∥ = τi|bi−1|, τi ≪ 1, i = ν : m,

for some positive integer ν ∈ [1,m]. We can obtain an analogous result to Theorem 2.1.
In this case it can be shown that if ((1 + τ)n+ 2) |bν−1|uν−1 ≪ 1, then we can choose
the precisions by

ui =
|bν−1|uν−1

|bi|∥X∥i−ν+1
, i = ν : m

such that the computed matrix q̂ of q(X) has approximately a normwise relative error
of (m− ν + 1)nuν−1, and, in particular, if (2.10) holds for ν = 1 then the computed
matrix q̂m of qm(X) has approximately a normwise relative error of mnu0.

The requirement (2.10) is made between any two consecutive coefficients and it
can only hold if ∥X∥ is sufficiently small and the decay rate of |bi| is sufficiently large.
On the other hand, the PS scheme with sufficiently large s can mitigate this potentially
very strict requirement. The requirement in (2.10) is on adjacent coefficients bi−1 and
bi, but in (2.5) the dominant terms are s indices apart so the condition is more likely
to be satisfied. Also, the error bound associated with the PS scheme is smaller than
that of Horner’s method by at most a factor of approximately r/m = ⌊m/s⌋/m ≈ 1/s.
We henceforth focus on the PS evaluation scheme (2.4) in the general case (s is not
necessarily equal to 1).

The framework of the mixed-precision PS scheme is that we exploit lower preci-
sions ur ≥ ur−1 ≥, . . . ,≥ uν in the computation of q(X) and then perform the matrix
products and sums in the evaluation of

(2.11) pm(X) = B0 +Xs

(
B1 +Xs

(
B2 + · · ·+Xs

(
Bν−3 +Xs(Bν−2 +Xsq(X))

)))
in the working precision u := uν−1. The required powers of X are formed explicitly
and each Bi is formed by reusing these computed powers, which involves only matrix
scaling and additions, so we will form the powers ofX in the working precision u. From
the earlier discussion, the computed matrix q̂ of q(X) has approximately a normwise
relative error bounded above by (r−ν+1)nu, which is satisfactory for the evaluation
of (2.11) in precision u. However, this error bound is from Theorem 2.1 and is subject

to ∥Ŷ − Y ∥ ≤ uν∥Y ∥, where Y ≡ Xs, and ∥B̂i −Bi∥ ≤ ui∥Bi∥, i = ν − 1: r. Among

the latter requirements, we just need to ensure that ∥B̂ν−1 − Bν−1∥ ≤ u∥Bν−1∥ is
satisfied by the choice of the precisions (2.8), as we do the matrix scaling and additions
required in assembling the Bi in the working precision u. In fact, since Bν−1 is only
involved in the final matrix summation in the evaluation of q(X) via (2.6), it is not
hard to see that we can ease the condition to

(2.12) ∥B̂ν−1 −Bν−1∥ ≤ cnu∥Bν−1∥,

where c denotes some mild constant, and still achieve the same error bound on the
computed q̂.
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We next provide rounding errors analysis for the computation of matrix powers
and polynomials and discuss its practical implications for our use case.

2.1. Powers and polynomials of matrices. We first derive an upper bound
on the rounding errors in the computation of Xk in a fixed precision. In our results,
when we writeX ∈ Rn×n it is understood thatX is a matrix of floating-point numbers.

Lemma 2.2. For X ∈ Rn×n and Xt = Xt with t ∈ N+, the computed matrix
X̂t = fl(Xt) obtained by repeated multiplication X̂k = fl(X̂k−1X), k = 1: t, X̂0 = X

in precision u satisfies |X̂t −Xt| ≤ γ(t−1)n|X|t.
Proof. For t = 2 the bound holds by (2.2). Suppose the bound holds for t = k−1:

|X̂k−1 −Xk−1| ≤ γ(k−2)n|X|k−1.

We have, for t = k,

|X̂k −Xk| ≤ |X̂k − X̂k−1X|+ |X̂k−1X −Xk| ≤ γn|X̂k−1||X|+ |X̂k−1 −Xk−1||X|
≤ γn(1 + γ(k−2)n)|X|k−1|X|+ γ(k−2)n|X|k ≤ γ(k−1)n|X|k,

where we have used [10, Lem. 3.3], and so the proof is completed by induction.

Based upon Lemma 2.2, we obtain the following result, which bounds the forward
error of a polynomial formed by assembling matrix powers that have already been
computed via repeated multiplication. The proof is straightforward by induction and
is thus omitted.

Theorem 2.3. If the first t positive powers of X are formed by repeated mul-
tiplication in precision u (with X̂t = fl(Xt) denoting the computed matrix) and
ψ =

∑t
j=0 ajX

j is evaluated in precision u by

φ̂0 = fl(a0I)
for j = 1: t

φ̂j = fl(φ̂j−1 + fl(ajX̂j))
end

ψ̂ = φ̂t

then the computed ψ̂ satisfies

(2.13) |ψ̂ − ψ(X)| ≤ γt|a0|I +
t∑

j=1

γ(j−1)(n−1)+t+1|aj ||X|j .

The bound of the theorem can be pessimistic, in the sense that inequalities such as
|Xi| ≤ |X|i are used in the derivation, but as an a priori bound it cannot be improved
without further assumptions. The bound is immediately applicable to the computed
polynomial B̂ν−1 in precision u = uν−1, and we have

|B̂ν−1 −Bν−1(X)| ≤ γs−1|bs(ν−1)|I +
s−1∑
j=0

γ(j−1)(n−1)+s|bs(ν−1)+j ||X|j

≤ γ(s−2)(n−1)+s

s−1∑
j=0

|bs(ν−1)+j ||X|j =: γ(s−2)n+2B̃ν−1(|X|),(2.14)

where B̃ν−1(X) =
∑s−1

j=0|bs(ν−1)+j |Xj . Hence a sufficient condition for (2.12) to hold

is ∥Bν−1(X)∥ ≈ ∥B̃ν−1(|X|)∥, which is true if there is no significant cancellation
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in forming Bν−1(X). This is the case, for example, when the coefficients bs(ν−1)+j ,
j = 0: s − 1 are one-signed and X > 0, or, when the |bs(ν−1)+j | decay rapidly and
there is no significant cancellation in forming the first few terms of Bν−1(X).

On the other hand, since all the required powers of X are formed in precision u,
we have ∥Ŷ − Y ∥ ≤ γ(s−1)n∥X∥s from Lemma 2.2. Therefore, from (2.9) we have

(2.15) ∥Ŷ − Y ∥ ≲ snu∥X∥s = snτνuν∥X∥s ≲ uν∥Xs∥

if snτν∥X∥s ≲ ∥Xs∥. In any case, the validity of this relation will depend on the
matrix X and τν . A special instance is when X ̸= 0 is nilpotent with index s (so

Xs = 0), where the condition ∥Ŷ −Y ∥ ≤ uν∥Xs∥ cannot possibly be satisfied (Ŷ can
contain significant rounding errors), but we are not interested in this case where the
evaluation of (2.4) becomes trivial because pm(X) = B0.

3. Taylor approximants to the matrix exponential. In this section we con-
sider the concrete setting when the matrix polynomial pm(X) of (1.1) is the truncated
Taylor approximant of order m to the matrix exponential of X, where the coefficients
bi = 1/i! decay super-exponentially. We can show that if the 1-norm of X is suffi-
ciently small, then in general the conditions (2.5) are satisfied with ν = 1 and accuracy
of the computed polynomial p̂m of pm(X) is guaranteed.

Suppose ∥X∥1 = σ for some 0 < σ ≤ s/e, where e ≈ 2.718 is Euler’s constant.
We have, for i = 2: r,

τi =
∥Bi∥1∥Xs∥1
∥Bi−1∥1

=

∥∥∥ 1
(is)!I +

1
(is+1)!X + · · ·+ 1

(is+s−1)!X
s−1

∥∥∥
1
∥Xs∥1∥∥∥ 1

((i−1)s)!I +
1

((i−1)s+1)!X + · · ·+ 1
((i−1)s+s−1)!X

s−1
∥∥∥
1

≤
1

(is)!

(
1 + σ

is+1 + · · ·+ σs−1

(is+1)s−1

)
s!

1
((i−1)s)! −

σ
((i−1)s+1)!

(
1 + σ

(i−1)s+2 + · · ·+ σs−2

((i−1)s+2)s−2

) =: γ(s, i).

Since σ ≤ s/e implies, for i ≥ 2,

r1 :=
σ

(i− 1)s+ 2
<

1

e
< 1, r2 :=

σ

is+ 1
<

1

2e
< 1,

it follows that, for r1 and r2 sufficiently close to zero (which is true when σ ≈ 0 or
when s or i is large),

γ(s, i) =

s!
(is)! ·

1−rs2
1−r2

1
((i−1)s)! −

σ
((i−1)s+1)! ·

1−rs−1
1

1−r1

≈ s!(is− s)!

(is)!
(
1− σ

(i−1)s+1

)
≤

(
1− 1

e(i− 1)

)−1 (
is

s

)−1

≤ e

e− 1
· ss

(is)s
=

e

e− 1
i−s.(3.1)

This shows that, for a chosen s, τi ≤ γ(s, i) (recall that τi is from (2.5)) decreases
at least polynomially as i increases, and that, for a fixed i ≥ 2, τi decreases at least
exponentially as s increases.

We have

(3.2) ∥B1∥1 ≤
1

s!

(
1 +

σ

s
+ · · ·+ σs−1

ss−1

)
=

1− (σ/s)s

s!(1− σ/s)
≤ 1

(s− σ)(s− 1)!
.
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Both the bound and ∥B1∥1 tend to 1/s! as σ → 0, which shows this bound tends to
be a good approximation to ∥B1∥1 as ∥X∥1 tends to zero. We noticed that s

√
s! can

be very well approximated by s/e + 1 ≥ σ + 1 for s in a practical range (we noted
that Stirling’s approximation gives s

√
s! ∼ s 2s

√
2πs/e for large s), and so from (3.2) we

have

τ1 =
∥B1∥1∥Xs∥1
∥B0∥1

≤ e∥X∥s1
(e− 1)s!∥B0∥1

· ∥X
s∥1

∥X∥s1

≲
(s/e)s

s!∥B0∥1
· ∥X

s∥1
∥X∥s1

≤ 1

∥B0∥1
· ∥X

s∥1
∥X∥s1

,(3.3)

where ∥B0∥1 ≈ ∥eX∥1 ≥ e−∥X∥1 [11, Thm. 10.10] and ∥Xs∥1/∥X∥s1 is bounded above
by 1 but can be arbitrarily small. This shows that τ1 is bounded above by a quantity
which tends to zero as s increases.

Now consider the effects of rounding errors on the evaluation of Y = Xs and
B0 in precision u = u0 (as now we consider ν = 1). From (2.15) we need to check
whether we have snτ1∥X∥s ≲ ∥Xs∥. We have, using the approximation B0(X) ≈ eX

from (2.4) and (2.5),

snτ1∥X∥s1
∥Xs∥1

=
sn∥B1∥1∥X∥s1
∥B0∥1

≲
sn · s!
∥eX∥1

· 1− (σ/s)s

s!(1− σ/s)
≲ sne∥X∥1 ,

which shows, given that ∥X∥1 is nicely bounded, snτ1∥X∥s1 is approximately bounded
above by a mild multiple of ∥Xs∥1, and therefore, we should expect Y = Xs to
be evaluated to satisfying accuracy. On the other hand, since B0 has all positive
coefficients, it follows from (2.14) that

∥B̂0 −B0(X)∥1 ≤ γ(s−2)n+2B0(∥X∥1) ≈ γ(s−2)n+2e
∥X∥1 .

We deduce, using [11, Thm. 10.10], that

∥B̂0 −B0(X)∥1 ≲ γ(s−2)n+2e
∥X∥1e∥X∥1∥eX∥1

≈ γ(s−2)n+2∥B0(X)∥1e2∥X∥1 ≤ γ(s−2)n+2∥B0(X)∥1e2s/e.

Hence the relative error in B̂0 is bounded approximately by γ(s−2)n+2e
2s/e, which is

a satisfactory bound for practical values of s. We have empirically found that B̂0

is typically computed to close to full working precision (the relative error in B̂0 is
typically close to u) for matrices of varying size generated pseudo-randomly and from
the MATLAB gallery. This is consistent with the analysis which shows the rounding
errors in the evaluation of B0 are nicely bounded, and it is also a possible consequence
of the fact that the underlying BLAS in MATLAB uses blocked algorithms to reduce
the error constant [12].

3.1. Applicability in the scaling and squaring algorithms for the matrix
exponential. The discussion in the previous subsection implies that we could build
a mixed-precision PS algorithm for the mth-order Taylor approximant to the matrix
exponential under the constraint ∥X∥1 ≤ s/e, where the parameter s could exceed
⌈
√
m⌉ in order for the desired decaying property of the polynomial coefficients (2.5)

to hold, and accuracy of the algorithm could in general be guaranteed. However, in
the stat-of-the-art algorithms for the matrix exponential [1], [8], which employ the
scaling and squaring idea

(3.4) eA =
(
eX

)2ℓ ≈ pm(X)2
ℓ

, ℓ ∈ N,
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the admittable (scaled) matrix X := 2−ℓA can have a 1-norm that does not satisfy
the constraint ∥X∥1 ≤ s/e. This is because the thresholds for accepting certain X in
these algorithms are determined by forward or backward truncation error bounds of
the approximant to the exponential on the scaled matrix in exact arithmetic, and these
thresholds in fact disregard the rounding errors in the computation of the approximant
pm(X). For example, the Taylor-based algorithm of [8] requires that X satisfy

(3.5) ∥eX − pm(X)∥1 ≤ |eαm(X) − pm(αm(X))| ≤ uξ(X),

where ξ(X) is some practical estimate to ∥eX∥1 and

αm(X) = max
(
∥Xd∗

∥1/d
∗

1 , ∥Xd∗+1∥1/(d
∗+1)

1

)
,

d∗ = max
d
{d ∈ N+ : d(d− 1) ≤ m+ 1} =

⌊
1 +
√
4m+ 5

2

⌋
.

In principle, the constraint ∥X∥1 ≤ s/e does not prevent the potential algorithm
from being embedded into any existing scaling and squaring algorithm based on the
Taylor approximants, for example, those employ the αm-based bound (3.5). This is
because, for a scaled matrix X accepted by one of such algorithms with ∥X∥1 > s/e,
one can always further scale X to Z = 2−ℓ0X, ℓ0 ∈ N+ such that ∥Z∥1 ≤ s/e and
Z remain admittable by the algorithm since αm(Z) = 2−ℓ0αm(X) < αm(X). In this
way, instead of invoking (3.4), the algorithm will use the approximation

eA =
(
e2

−(ℓ+ℓ0)A
)2ℓ+ℓ0

≈ pm(Z)2
ℓ+ℓ0

,

which, from our discussion in the previous subsection, has more refined bound on the
rounding errors in the computed approximant p̂m. But the algorithm can nevertheless
require substantially more squaring steps in the final squaring phase, which is very
sensitive to rounding errors [11, p. 247], because αm(X) can be much smaller than
∥X∥1 for nonnormal X [1] and a matrix X accepted by an αm-based bound can have
huge 1-norm. For example, consider the matrix

(3.6) A =

[
−0.1 106

0 −0.1

]
,

for which the 1-norms of the powers of A decay exponentially and the Taylor-based
algorithm of [8] with u = 10−64 chooses m = 42 and accepts X = A/2 (ℓ = 1), despite
the large (1, 2) element. In this case αm(X) ≈ 0.66 but ∥X∥1 = 5 × 105 and with
s = ⌈

√
m⌉ the number of extra squarings required is ℓ0 ≥ ⌈log2 (e∥X∥1/s)⌉ = 18.

In fact, the scaling and squaring algorithms for the matrix exponential [1], [5],
[8], [21], which disregard the occurrence of rounding errors in the computed approxi-
mant p̂m when determining the thresholds for accepting the scaled matrix, have been
observed to work well in practice, even for X with a large 1-norm but a small or mod-
erate αm(X) associated with the chosen m. Disregarding the constraint ∥X∥ ≤ s/e,
which can cause overscaling issue for the scaling and squaring algorithms, does not
appear to be harmful for the accuracy of a practical algorithm in the occurrence of
rounding errors. Then in this case the question is to what extend (2.5) can be satis-
fied. We have found the condition often holds with ν = 1 if ∥Xs∥ is small, which is
consistent with the discussion following (2.5). In the scaling and squaring algorithms
that employ the αm-based bound (3.5), for example, [8], the αm(X) can be very small
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Fragment 3.1: Computing B0 and Y = Xs in precision u.

1 function EvalB0(X , s ∈ N+)
▷ Form the first s− 1 positive powers of X in X and then compute
B0 =

∑s−1
j=0X

j/j! and Y = Xs using elements of X .
2 B0 ← I
3 for j ← 1 to s− 1 do
4 Xj ← Xj−1X
5 B0 ← B0 + Xj/j!

6 Y ← Xs−1X
7 return X , B0, Y

(associated with the chosen m) on some tested matrices even if ∥X∥ is large, in which
case the value of ∥Xd∗∥1 is necessarily small, where d∗ ≈

√
m just matches the default

parameter s = ⌊
√
m⌋ or s = ⌈

√
m⌉ in the fix-precision PS scheme, so (2.5) often holds

with ν = 1. In the least preferred case where (2.5) is not met for any ν ∈ [1, r], still,
we can simply compute q(X) from (2.6) in the working precision, in which case the
algorithm recovers the fix-precision PS scheme.

Summarising the discussion in the section, we now present the mixed-precision PS
algorithm in Algorithm 3.2, which is readily employable by the Taylor-based scaling
and squaring algorithms for the matrix exponential. The algorithm takes the matrix
X ∈ Cn×n, the order m of the used Taylor approximant, and the working precision
u as input arguments. It starts with computing B0 straightly in precision u with the
default parameter s = ⌈

√
m⌉ and then proceeds differently depending on ∥X∥1.

If ∥X∥1 ≤ s/e, the algorithm increments s and updates B0 and Y until the bound
τ1 ≤ ∥Xs∥1/ (∥B0∥1∥X∥s1) ≤ 1 from (3.3) is satisfied. Here we only check (2.5) for
i = 1 since we have shown that the τi, i = 2: r tend to decay at least polynomially
as i increases (see (3.1)) and we found if the first condition of (2.5) is satisfied,
then the remaining conditions therein are met for ∥X∥1 ≤ s/e. After Bi and ui
are computed for all i the algorithm then executes the Horner’s method (2.4) for
pm(X) with the matrix products and sums done in the appropriate precisions. The
economics of our mixed-precision PS scheme are different from its fixed-precision
counterpart: the matrix multiplications performed in computing B0 are potentially
the most expensive while the others are potentially done in lower precisions, therefore
a smaller s with a larger r = ⌊m/s⌋ is potentially better for efficiency, if the cost of
the matrix multiplications in lower precisions are negligible compared with those done
in the working precision. Overall, Algorithm 3.2 requires ⌈

√
m⌉ − 1 ≤ s− 1 ≤ m− 1

matrix multiplications in precision u and one matrix multiplication in each of ui > u,
i = 1: r, where 1 ≤ r = ⌊m/s⌋ ≤ ⌈

√
m⌉ (when s = m the PS scheme actually

degenerates to evaluation via explicit powers and hence no matrix multiplications are
formed in ui). In the case of optimal efficiency, Algorithm 3.2 requires ⌈

√
m⌉−1 matrix

multiplications in u, which is only approximately half of the matrix multiplications
required by the fix-precision PS scheme.

For ∥X∥1 > s/e the algorithm sticks with s = ⌈
√
m⌉ to form the Bi and then sets

the ui by max (u, right-hand side of (2.8)), i = 1: r (where a good estimation of ∥Bi∥1
can be obtained by using only the first few terms of Bi since |bi| decays quickly) until
ui ≥ δu (say, i = ν), so lower precisions ur ≥ ur−1 ≥ · · · ≥ uν are exploited in the
computation of q(X) and the remaining part of pm(X) is then computed via (2.11)
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Algorithm 3.2: Mixed-precision Paterson–Stockmeyer scheme for the Tay-
lor approximants of the matrix exponential.

Given X ∈ Cn×n this algorithm computes an mth order Taylor approximant P ≡
pm(X) in the form of (1.1) using the Paterson–Stockmeyer scheme in floating-
point arithmetic. The algorithm starts with the user-specified precision u and
potentially uses multiple lower precisions ui ≥ u aiming to produce a relative
error of order nu. The pseudocode of EvalB0 is given in Fragment 3.1.

1 s← ⌈
√
m⌉

2 u0 ← u
3 X0 ← I
4 [X , B0, Y ]← EvalB0(X , s)
5 if ∥X∥1 ≤ s/e then
6 while ∥Y ∥1 > ∥B0∥1∥X∥s1 and s < m do
7 B0 ← B0 + Y/s!
8 s← s+ 1
9 Xs ← XY in precision u0

10 Y ← Xs

11 r ← ⌊m/s⌋
12 for i← 1 to r do
13 Form Bi using elements in X and then estimate ∥Bi∥1
14 ui ← ∥B0∥1u0/(∥Bi∥1∥Y ∥i1)
15 else
16 r ← ⌊m/s⌋
17 ν ← r + 1
18 for i← 1 to r do
19 Form Bi using elements in X and then estimate ∥Bi∥1
20 ui ← max

(
u, ∥B0∥1u0/(∥Bi∥1∥Y ∥i1)

)
21 if ui ≥ δu then
22 ν = i, break

23 for i← ν + 1 to r do
24 Form Bi using elements in X and then estimate ∥Bi∥1
25 ui ← ∥Bν−1∥1u0/(∥Bi∥1∥Y ∥i−ν+1

1 )

26 P = Br

27 for i← r down to 1 do
28 Compute P ← PY in precision ui
29 Form P ← P +Bi−1 in precision ui−1

30 return P

in the working precision u. We set by default δ = 10 (so the algorithm will switch to
a lower precision when appropriate, even if the number of significant digits decreases
by just 1). In this case, Algorithm 3.2 requires ⌈

√
m⌉+ν−2 matrix multiplications in

precision u and one matrix multiplication in each of uν , uν+1, . . . , ur, where 1 ≤ ν ≤ r.
Obviously, a smaller ν means more matrix products are performed in precisions lower
than u and when ui ≥ δu does not hold for any i, the algorithm recovers the fix-
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Fig. 3.1. The relative errors ϵv = ∥p̂m−pm(X)∥1/∥pm(X)∥1 produced by Algorithm 3.2 against
different values of m on normalised matrices with n = 50 and ∥X∥1 = ⌈

√
m⌉/e, in comparison

with the relative errors ϵf produced by the fixed-precision Paterson-Stockmeyer with s = ⌈
√
m⌉ in

precision u = 10−64. Left: X = rand(n). Right: X = randn(n).

precision PS scheme. Since the algorithm now does not have restriction on ∥X∥ and
our analysis only accounts for the potential use of lower precisions, the caveat is that
there is no guarantee of the accuracy in the part of the PS scheme done in the working
precision.

We remark that the framework of Algorithm 3.2 can be adjusted with little mod-
ification for the computation of other matrix polynomials with scalar coefficients that
quickly decay in modulus, such as the polynomials in the numerator and denominator
of the Padé approximants of exponential-like functions. We will further comment on
the generality of the framework in section 4.

3.2. Numerical experiments. All our experiments are performed using the 64-
bit version of MATLAB 2023b on a desktop equipped with an Intel i7-6700 processor
running at 3.40GHz and with 64GB of RAM. The code uses the chop1 function [15]
to simulate the bfloat16 half precision and the Advanpix Multiprecision Computing
Toolbox (Version 5.1.1.15444) [18] for simulating precisions other than half, single,
and double precisions.

3.2.1. Behaviour in variable-precision arithmetic. In the setting of variable-
precision arithmetic, the algorithms start with u and can potentially use internally
multiple lower precisions ui ≥ u, i = 1: r that can be arbitrarily chosen.

We first test Algorithm 3.2 on pseudorandom matrices normalised such that
∥X∥1 = ⌈

√
m⌉/e against different values of m in the working precision u = 10−64. In

general, for the chosen degree m the norm of the highest order term Xm/m! should
not be smaller than the unit roundoff u. In the experiments we therefore choose the
value for the largest tested m from the condition that m is the smallest integer such
that

(3.7)
⌈
√
m⌉m

m!em
≤ u.

Figure 3.1 reports the results, where the reference solution is computed by using the
Multiprecision Computing Toolbox with 400 decimal digits of precision. We observe

1https://github.com/higham/chop

https://github.com/higham/chop
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Table 3.1
The minimal degree m such that the difference between pm(X) and eX in the 1-norm is no larger

than u. The di represents the equivalent decimal digits of precision ui and Cp is approximately the
complexity reduction in percentage of Algorithm 3.2 compared with its fixed-precision counterpart
in precision u. The di such that di ≤ d0/2 (d0 is the decimal digits of the working precision u) is
highlighted in red text.

(u,m) (s, r) (d1, d2, . . . , dr) Cp

(10−32, 37) (7, 5) (30, 25, 18, 11, 3) 20.7%
(10−64, 60) (8, 7) (61, 55, 47, 38, 28, 18, 7) 21.6%
(10−128, 99) (10, 9) (124, 115, 104, 92, 78, 64, 49, 34, 18) 20.6%
(10−256, 169) (13, 13) (249, 237, 221, 203, 184, 164, 143, 121, 99, 75, 52, 28, 3) 24.2%

in all tested cases the algorithm is producing a relative error of order u, which is
comparable to that of its fixed-precision counterpart and is a couple of magnitudes
smaller than the error bound rnu derived in section 2. We repeated the experiments
in a working precision of 256 digits, finding similar behavior of the algorithm.

We next fix the test matrix to be X = gallery('cauchy',n) with n = 100 and
compute the Taylor approximant from its matrix exponential with several choices of
(u,m). Now ∥X∥1 ≈ 4.20 and we report in Table 3.1 some important algorithmic
characteristics on the matrix. We see from the table that the default s = ⌈

√
m⌉

is chosen in all tested cases and that τi = ui−1/ui is in general decreasing, which
is consistent with our analysis (see (3.1)). Recall that the algorithm requires s −
1 + r matrix multiplications and we see that approximately a fifth of the matrix
multiplications were performed in precision u1/2 or much lower in all tested cases. If
the algorithmic complexity (measured in number of matrix multiplications) is assumed
to be linearly proportional to the number of digits used, then we can calculate the
approximate percentage of complexity reduction of Algorithm 3.2 compared with its
fixed-precision counterpart in precision u as

(3.8) Cp =
r log10 u+

∑r
i=1 di

(s+ r − 1) log10 u
.

Note that the assumption on the algorithmic complexity is realistic yet slightly pes-
simistic because scalar multiplications and divisions scale even faster with the number
of digits. As shown, the new algorithm is able to reduce the computational cost of
computing the exponential of these test matrices by a percentage between 20.6% and
24.2%.

Finally, we test Algorithm 3.2 on various matrices from the literature of the matrix
exponential [1], [8] and from the gallery group of Anymatrix [13], [14]. For these
matrices, the condition ∥X∥1 ≤ s/e is often not satisfied and the degree m of the
approximant is given data. The 97 non-Hermitian test matrices are of size ranging
from 2 to 100 and are possibly scaled with the scaling factor chosen by the Taylor-
based algorithm of [8], which is the state-of-the-art aiming for arbitrary precision
environment. The Hermitian matrices are excluded because they are handled by
diagonalization instead of scaling and squaring by the algorithm. Again, we see from
Figure 3.2 (a)–(b) that the relative errors produced by the algorithm are close to that
of its fixed-precision counterpart in all cases and in most cases no larger than rnu.
On the other hand, we see that in most cases the computational cost of Algorithm 3.2
is at least 25% lower compared with its fixed-precision counterpart on the real test
set, and in few cases the savings can reach 40%.
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Fig. 3.2. Left: The relative error ϵv = ∥p̂m − pm(X)∥1/∥pm(X)∥1 produced by Algorithm 3.2
compared with the relative errors ϵf produced by the fixed-precision Paterson–Stockmeyer with s =
⌈
√
m⌉ on various matrices with 2 ≤ n ≤ 100. Right: The associated approximate percentages of

complexity reduction Cp in (3.8) of the algorithm compared with its fixed-precision counterpart with
s = ⌈

√
m⌉. Top (a): u = 10−64. Middle (b): u = 10−256. Bottom (c): u = 2−53.

3.2.2. Low-precision variant of the algorithm. We also implemented Algo-
rithm 3.2 using potentially only three precisions: fp64 (IEEE double), fp32 (IEEE
single), and bfloat16 (by Google Brain2), aiming to achieve accuracy of level of the
unit roundoff of double precision. This means the ui chosen by (2.8) in the algo-
rithm will be set to the nearest higher precision among uf = 2−8 ≈ 3.9 × 10−3,

2https://www.wikiwand.com/en/Google Brain

https://www.wikiwand.com/en/Google_Brain
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us = 2−24 ≈ 6.0× 10−8, and u = 2−53 ≈ 1.1× 10−16. We are using bfloat16 instead
of fp16 because the latter has the drawback of having a limited range, the smallest
representable positive number being xmin ≈ 5.96 × 10−8, while the former has much
larger exponential range with xmin ≈ 1.18×10−38 and this makes loss of accuracy due
to underflow less likely to happen. This is particularly important for Algorithm 3.2,
whose spirit is computing smaller numbers in a lower precision.

We test the low-precision variant of Algorithm 3.2 on the same set of 97 non-
Hermitian matrices used in the previous subsection. The results are reported in
Figure 3.2 (c). Similarly to the variable-precision variant, the algorithm is in all cases
producing relative errors that are close to the double-precision counterpart and are
no larger than order nu. But from the plot in the right panel, we note that the advan-
tage in efficiency of the mixed-precision algorithm has greatly reduced, and in most
cases the algorithm just degenerates to solely use double precision. The difference
is largely because the chosen degree m is generally much smaller in a lower working
precision, and this restricts more matrix products being formed in lower precisions
and hence limits the efficiency gain of the mixed-precision algorithm. Also, in the
double-single-half precision environment the algorithm loses the complete freedom to
choose arbitrary precision and it in many cases has to use an unnecessarily higher
precision.

4. A mixed-precision Paterson–Stockmeyer algorithm for general poly-
nomials of matrices. Following the discussion in section 3.1, we now exploit the
mixed-precision PS framework for the computation of general matrix polynomials with
scalar coefficients decaying in modulus. The algorithm is presented as Algorithm 3.3.

We will test Algorithm 3.3 in the next subsections on different types of polyno-
mials of matrices arising from the computation of exponential-like matrix functions.

4.1. Padé approximants to the matrix exponential. Again, we take the
97 non-Hermitian matrices from the same matrix set tested in the previous section
with the degree m and the scaling parameter chosen by the Padé-based algorithm
of [8] and use Algorithm 3.3 to compute the matrix polynomials pkm and q−1

km from
the [k/m] Padé approximants rkm = q−1

kmpkm, where pkm and qkm are of degrees at
most k and m, respectively.

Figure 4.1 (a)–(b) reports the result. We observe that the relative errors pro-
duced by Algorithm 3.3 have the same order of magnitude as those produced by the
fixed-precision counterpart. Also, the reduction in computational complexity of the
algorithm is on average around 10%, which is significantly smaller than the 25% reduc-
tion obtained when applying the algorithm to the Taylor Approximants of the matrix
exponential (c.f. Figure 3.2 (a)). Again, the smaller (approximately halved) chosen
degreesm in the matrix Padé approximants than the matrix Taylor approximant have
prevented the algorithm from carrying out more low-precision matrix multiplications,
outweighing the fact that the algorithm can potentially employ lower precisions early
(since the scalar coefficients of the matrix polynomials from the Padé approximant
decay much faster).

4.2. Taylor approximants to the matrix cosine. Next we test the algorithm
on the Taylor approximants of the matrix cosine, denoted by cm. The 98 test matrices
are nonnormal and are from [2] (with the 2 × 2 nilpotent matrix therein excluded)
and of size between 4 and 100. Most of the test matrices have only real elements and
are set to be of size 100 × 100. The degree m and the scaling parameter for these
matrices are determined by the Taylor-based scaling and recovering algorithm of [2].
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Algorithm 3.3: Mixed-precision Paterson–Stockmeyer scheme for matrix
polynomials with scalar coefficients

Given X ∈ Cn×n and a set of polynomial coefficients {bi}mi=0, this algorithm
computes the matrix polynomial with scalar coefficients decaying in modulus P ≡
pm(X) in the form of (1.1) using the Paterson–Stockmeyer scheme in floating-
point arithmetic. The algorithm starts with the user-specified precision u and
potentially uses multiple lower precisions ui ≥ u aiming to produce a relative
error of order nu.

1 s← ⌈
√
m⌉

2 r ← ⌊m/s⌋
3 ν ← r + 1
4 u0 ← u
5 X0 ← I
6 B0 ← b0X0 in precision u0
7 for j ← 1 to s− 1 do
8 Xj ← Xj−1X in precision u0
9 B0 ← B0 + bjXj in precision u0

10 Y ← Xs−1X in precision u0
11 for i← 1 to r do
12 Form Bi using elements in X and then estimate ∥Bi∥1
13 ui ← max

(
u, ∥B0∥1u0/(∥Bi∥1∥Y ∥i1)

)
14 if ui ≥ ηu then
15 ν = i, break

16 for i← ν + 1 to r do
17 Form Bi using elements in X and then estimate ∥Bi∥1
18 ui ← ∥Bν−1∥1u0/(∥Bi∥1∥Y ∥i−ν+1

1 )

19 P = Br

20 for i← r down to 1 do
21 Compute P ← PY in precision ui
22 Form P ← P +Bi−1 in precision ui−1

23 return P

Figure 4.1 (c) shows that the accuracy of Algorithm 3.3 in this case is similar to
that of the fixed-precision PS algorithm so is satisfying. The modulus of the coeffi-
cients in the Taylor approximants of the matrix cosine also decay considerably faster
than that of the matrix exponential, for the same reasons discussed in section 4.1, the
reduction in computational cost of the algorithm is marginal, at typically less than
5%. Moreover, in the algorithm we are actually evaluating the polynomial cm(X2) via
the PS scheme since the polynomial only contains even powers of X, and this makes
the chosen degree m even smaller.

5. Conclusions. In this work we have developed a mixed-precision Paterson–
Stockmeyer (PS) method for evaluating matrix polynomials with scalar coefficients
that decay in modulus. The key idea is to perform computations on data of small
magnitude in low precision, and driven by this idea we show with rigorous error
analysis that, if the coefficients satisfy a certain decaying property, then we can exploit
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Fig. 4.1. Left: The relative error ϵv = ∥p̂m−pm(X)∥1/∥pm(X)∥1 produced by Algorithm 3.3 in
precision u = 10−64 compared with the relative errors ϵf produced by the fixed-precision Paterson–
Stockmeyer with s = ⌈

√
m⌉ on various matrices with 2 ≤ n ≤ 100. Right: The associated approxi-

mate percentages of algorithmic complexity reduction Cp in (3.8) of the algorithm compared with its
fixed-precision counterpart with s = ⌈

√
m⌉. Top (a): pm = pmm from the [m/m] Padé approximant

of the matrix exponential. Middle (b): pm = qmm from the [m/m] Padé approximant of the matrix
exponential. Bottom (c): pm = cm from the Taylor approximant of the matrix cosine.

a set of suitably chosen lower precisions (relative to the working precision) in the
evaluation of the polynomial via a Horner scheme and still achieve the same level of
accuracy as the evaluation being done solely in the working precision.

We applied the method to the computation of the Taylor approximants of the ma-
trix exponential and showed the applicability of the mixed-precision PS framework to
the existing scaling and squaring algorithms for the matrix exponential, particularly
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when the norm of the input matrix is sufficiently small. The algorithm (Algorithm 3.2)
puts no restriction on the input matrix and switches to lower precisions when appropri-
ate, and it is readily employable by the Taylor-based scaling and squaring algorithms
for the matrix exponential. Taking advantage of the generality of the mixed-precision
PS framework, we finally designed an algorithm (Algorithm 3.3) for the computation
of general polynomials of matrices and demonstrated its efficiency on polynomials
from the Padé approximant of the matrix exponential and the Taylor approximant of
the matrix cosine.

Numerical experiments show comparable accuracy of our mixed-precision PS al-
gorithms to its fixed-precision counterparts (in the working precision). By measuring
the computational complexity in terms of matrix multiplications and assuming the
complexity is linearly proportional to the number of used digits, we find that the new
algorithm is more efficient on various synthetic and real test problems in both variable
precision arithmetic and the arithmetic that only involves IEEE double, IEEE single,
and Google bfloat16 half precisions, and the reduction in complexity can be up to
around 40% amongst our tested cases.

In principle, the new mixed-precision PS algorithm can be recommended for eval-
uating matrix polynomials with scalar coefficients that decay fast in modulus. Our
MATLAB code is available from https://github.com/Xiaobo-Liu/mp-ps.

Appendix A. Proof of Theorem 2.1. The proof is by induction. Defining

Ej := φ̂j − φj , j = ν − 1 : r,

we have ∥Er∥ = ∥φ̂r − φr∥ = ∥B̂r −Br∥ ≤ ur∥Br∥. Consider

Er−1 = φ̂r−1 − φr−1 = flr−1

(
B̂r−1 + flr(Ŷ φ̂r)

)
−Br−1 − Y φr

:= Er−1,s + Er−1,p + Er−1,a,

where

∥Er−1,s∥ ≤ γr−1
1 ∥Br−1∥, ∥Er−1,p∥ ≤ γrn∥Y ∥∥Br∥,

and

∥Er−1,a∥ ≤ γr−1
1 ∥Br−1 + Er−1,s + Y Br + Er−1,p∥.

So by using (2.3) we have

∥Er−1∥ ≤
(
γrn + γr−1

1 + γrnγ
r−1
1

)
∥Y ∥∥Br∥+ γr−1

2 ∥Br−1∥
≤ γr−1

nθr,r−1+1∥Y ∥∥Br∥+ γr−1
2 ∥Br−1∥.

Then we have

Er−2 = φ̂r−2 − φr−2 = flr−2

(
B̂r−2 + flr−1

(
Ŷ (φr−1 + Er−1)

))
−Br−2 − Y φr−1

= Y Er−1 + Er−2,s + Er−2,p + Er−2,a,

where

∥Er−2,s∥ ≤ γr−2
1 ∥Br−2∥, ∥Er−2,p∥ ≤ γr−1

n ∥Y ∥∥φr−1 + Er−1∥,

https://github.com/Xiaobo-Liu/mp-ps
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and

∥Er−2,a∥ ≤ γr−2
1 ∥Br−2 + Er−2,s + Y (φr−1 + Er−1) + Er−2,p∥,

so we have

∥Er−2∥ ≤ γr−2
2 ∥Br−2∥+

(
1 + γr−2

nθr−1+1

)
∥Y ∥∥Er−1∥+ γr−2

nθr−1+1∥Y ∥∥φr−1∥

≤ γr−2
fr−2,r

∥Y ∥2∥Br∥+ γr−2
fr−2,r−1

∥Y ∥∥Br−1∥+ γr−2
fr−2,r−2

∥Br−2∥,

where

fr−2,r = nθr,r−2 + (n+ 1)θr−1,r−2 + 1

fr−2,r−1 = (n+ 2)θr−1,r−2 + 1

fr−2,r−2 = 2.

Now assume a bound for ∥Er−k∥ of the following form:

(A.1) ∥Er−k∥ ≤ γr−k
fr−k,r

∥Y ∥k∥Br∥+γr−k
fr−k,r−1

∥Y ∥k−1∥Br−1∥+ · · ·+γr−k
fr−k,r−k

∥Br−k∥,

where

fr−k,r = nθr,r−k + (n+ 1) (θr−1,r−k + θr−2,r−k + · · ·+ θr−k+1,r−k) + 1,

fr−k,r−1 = (n+ 2)θr−1,r−k + (n+ 1) (θr−2,r−k + θr−3,r−k + · · ·+ θr−k+1,r−k) + 1,

...

fr−k,r−k+1 = (n+ 2)θr−k+1,r−k + 1,

fr−k,r−k = 2.

Then we have

Er−(k+1) = φ̂r−(k+1) − φr−(k+1)

= flr−(k+1)

(
B̂r−(k+1) + flr−k

(
Ŷ (φr−k + Er−k)

))
−Br−(k+1) − Y φr−k

= Y Er−k + Er−(k+1),s + Er−(k+1),p + Er−(k+1),a,

where∥∥Er−(k+1),s

∥∥ ≤ γr−(k+1)
1

∥∥Br−(k+1)

∥∥ , ∥∥Er−(k+1),p

∥∥ ≤ γr−k
n ∥Y ∥∥φr−k + Er−k∥,

and∥∥Er−(k+1),a

∥∥ ≤ γr−(k+1)
1

∥∥Br−(k+1) + Er−(k+1),s + Y (φr−k + Er−k) + Er−(k+1),p

∥∥ ,
and we have∥∥Er−(k+1)

∥∥ ≤ γr−(k+1)
2

∥∥Br−(k+1)

∥∥+
(
1 + γ

r−(k+1)
nθr−k,r−(k+1)+1

)
∥Y ∥∥Er−k∥

+ γ
r−(k+1)
nθr−k,r−(k+1)+1∥Y ∥∥φr−k∥,

where φr−k = Y kBr + Y k−1Br−1 + · · · + Y 2Br−k+2 + Y Br−k+1 + Br−k. Then by
writing the gamma constants in (A.1) as

γr−k
fr−k,j

= γr−k+1
θr−k,r−(k+1)fr−k,j

, j = r − k : r,
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and by noting the bounds

γr−k+1
θr−k,r−(k+1)fr−k,j

(
1 + γ

r−(k+1)
nθr−k,r−(k+1)+1

)
+ γ

r−(k+1)
nθr−k,r−(k+1)+1 ≤ γ

r−k+1
θr−k,r−(k+1)(n+fr−k,j)+1,

we have∥∥Er−(k+1)

∥∥ ≤ γr−(k+1)
fr−(k+1),r

∥Y ∥k+1∥Br∥+ γ
r−(k+1)
fr−(k+1),r−1

∥Y ∥k∥Br−1∥+ · · ·

+ γ
r−(k+1)
fr−(k+1),r−(k+1)

∥∥Br−(k+1)

∥∥ ,
where fr−(k+1),r−(k+1) = 2 and

fr−(k+1),r = θr−k,r−(k+1) (n+ fr−k,r) + 1

= nθr,r−(k+1)+

(n+ 1)
(
θr−1,r−(k+1) + θr−2,r−(k+1) + · · ·+ θr−k,r−(k+1)

)
+ 1,

and similarly, fr−(k+1),j = θr−k,r−(k+1) (n+ fr−k,j) + 1 for j = r − k : r − 1, so

fr−(k+1),r−1 = (n+ 2)θr−1,r−(k+1)+

(n+ 1)
(
θr−2,r−(k+1) + θr−3,r−(k+1) + · · ·+ θr−k,r−(k+1)

)
+ 1,

...

fr−(k+1),r−k+1 = (n+ 2)θr−k+1,r−(k+1) + (n+ 1)θr−k,r−(k+1) + 1,

fr−(k+1),r−k = (n+ 2)θr−k,r−(k+1) + 1.

This proves (A.1) for i = k + 1 and so the proof is completed by induction.
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