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Abstract. Bidiagonal matrices are widespread in numerical linear algebra, not least because of their use in the
standard algorithm for computing the singular value decomposition and their appearance as LU factors of tridiagonal
matrices. We show that bidiagonal matrices have a number of interesting properties that make them powerful tools
in a variety of problems, especially when they are multiplied together. We show that the inverse of a product of
bidiagonal matrices is insensitive to small componentwise relative perturbations in the factors if the factors or their
inverses are nonnegative. We derive componentwise rounding error bounds for the solution of a linear system 𝐴𝑥 = 𝑏,
where 𝐴 or 𝐴−1 is a product 𝐵1𝐵2 . . . 𝐵𝑘 of bidiagonal matrices, showing that strong results are obtained when the
𝐵𝑖 are nonnegative or have a checkerboard sign pattern. We show that given the factorization of an 𝑛 × 𝑛 totally
nonnegative matrix 𝐴 into the product of bidiagonal matrices, ∥𝐴−1 ∥∞ can be computed in 𝑂(𝑛2) flops and that
in floating-point arithmetic the computed result has small relative error, no matter how large ∥𝐴−1 ∥∞ is. We also
show how factorizations involving bidiagonal matrices of some special matrices, such as the Frank matrix and the
Kac–Murdock–Szegö matrix, yield simple proofs of the total nonnegativity and other properties of these matrices.
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1. Introduction. Bidiagonal matrices

𝐵 =


𝑏11 𝑏12

𝑏22
. . .

. . . 𝑏𝑛−1,𝑛
𝑏𝑛𝑛


∈ C𝑛×𝑛

have 2𝑛 − 1 parameters, appearing on two diagonals. Despite their simplicity, bidiagonal
matrices are powerful tools in a variety of problems, especially when they are multiplied
together. Their properties and uses have been explained by various authors, but the full range
of them may be underappreciated. Indeed, in the 1139-page book Matrix Mathematics [4]
the word “bidiagonal” appears on only one page and bidiagonal matrices appear little in the
Handbook of Linear Algebra [31] apart from in the chapter by Fallat [17].

The purpose of this work is to show the utility of bidiagonal matrices, and in particular
to show how factorizations of matrices into bidiagonal factors can be exploited. Our main
contributions are as follows, where 𝐴 = 𝐵1𝐵2 . . . 𝐵𝑘 with each 𝐵𝑖 either upper bidiagonal or
lower bidiagonal.

• We show that small componentwise perturbations in the 𝐵𝑖 produce small compo-
nentwise perturbations in 𝐴−1 if the 𝐵𝑖 or the 𝐵−1

𝑖
are nonnegative (Theorem 2.3).

• We show that the condition number 𝜅∞(𝐴) = ∥𝐴∥∞∥𝐴−1∥∞ can be computed in
𝑂(𝑘𝑛) flops when the 𝐵𝑖 are nonnegative or have a checkerboard sign pattern,
without explicitly forming 𝐴 (section 3).

• We give a unified derivation of backward error bounds and forward error bounds for
the computed solution of 𝐴𝑥 = 𝑏 when 𝐴 or 𝐴−1 is a product of bidiagonal matrices
and the system is solved using the factors (section 4).

∗Draft version of November 6, 2023. This paper is based on the Hans Schneider Prize talk given at the 25th
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• We show that for a totally nonnegative 𝑛 × 𝑛 matrix 𝐴, 𝜅∞(𝐴) can be computed in
𝑂(𝑛2) flops, given a factorization of 𝐴 into a product of bidiagonal matrices and that
the computed solution is highly accurate (Algorithm 5.5).

• We explore functions of bidiagonal matrices and show that the exponential of a totally
nonnegative bidiagonal matrix is totally nonnegative.

• We give new observations on how factorizations involving bidiagonal matrices can
help us to understand properties of some well-known matrices (section 8).

Bidiagonal matrices arise in some classical contexts in numerical linear algebra, which
we briefly summarize as they will not be the focus of our attention.

Computing the singular value decomposition (SVD). The first step of the Golub–Reinsch
algorithm for computing the SVD is a two-sided reduction by Householder transformations
to upper bidiagonal form 𝐵, as proposed by Golub and Kahan [22]. The SVD of 𝐵 is then
computed by the QR algorithm implicitly applied to 𝐵∗𝐵, and this can be done in a way that
guarantees high relative accuracy in all the computed singular values of 𝐵 [10].

LU factorization of tridiagonal matrices. If 𝐴 ∈ C𝑛×𝑛 is tridiagonal and has an LU
factorization 𝐴 = 𝐿𝑈 then 𝐿 is unit lower bidiagonal and 𝑈 is upper bidiagonal.

Lanczos bidiagonalization. For large, sparse matrices the solution to a linear system or
the least squares solution to an overdetermined system can be computed using a method based
on unitary reduction to bidiagonal form by the Lanczos process [5, sec. 7.6], [22], [41].

In perturbation and rounding error analyses products of terms of the form 1 + 𝛿𝑖 arise.
Their distance from 1 will be bounded using the following result [28, Lem. 3.1].

Lemma 1.1. If |𝛿𝑖 | ≤ 𝛿 and 𝜌𝑖 = ±1 for 𝑖 = 1: 𝑛, and 𝑛𝛿 < 1, then

(1.1)
𝑛∏
𝑖=1

(1 + 𝛿𝑖)𝜌𝑖 = 1 + 𝜃𝑛, |𝜃𝑛 | ≤
𝑛𝛿

1 − 𝑛𝛿
.

We also need a componentwise bound for perturbations in a matrix product [28, Lem. 3.8].
Here and throughout, |𝐴| = (|𝑎𝑖 𝑗 |) and inequalities between matrices hold componentwise.

Lemma 1.2. If 𝑋 𝑗 + 𝛥𝑋 𝑗 ∈ C𝑛×𝑛 satisfies |𝛥𝑋 𝑗 | ≤ 𝛿 𝑗 |𝑋 𝑗 | for 𝑗 = 1: 𝑚 then

���� 𝑚∏
𝑗=1

(𝑋 𝑗 + 𝛥𝑋 𝑗 ) −
𝑚∏
𝑗=1

𝑋 𝑗

���� ≤ ( 𝑚∏
𝑗=1

(1 + 𝛿 𝑗 ) − 1
)

𝑚∏
𝑗=1

|𝑋 𝑗 |.

We use the standard model of floating-point arithmetic [28, sec. 2.2] and denote by 𝑢 the
unit roundoff. We need the constant, for 𝑛𝑢 < 1,

𝛾𝑛 =
𝑛𝑢

1 − 𝑛𝑢
.

We will make use of the one-parameter bidiagonal matrix

(1.2) 𝑇𝑛(𝜃) =



1 𝜃

1 𝜃

1
. . .
. . . 𝜃

1


∈ C𝑛×𝑛.
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2. Basic Properties of Bidiagonal Matrices. First we consider the inverse of a nonsin-
gular bidiagonal matrix. It is instructive to look at the 4 × 4 case:


𝑎 𝑥 0 0

𝑏 𝑦 0
𝑐 𝑧

𝑑


−1

=


1
𝑎

− 𝑥
𝑎 𝑏

𝑥 𝑦

𝑎 𝑏 𝑐
− 𝑥 𝑦 𝑧

𝑎 𝑏 𝑐 𝑑

1
𝑏

− 𝑦

𝑏 𝑐

𝑦 𝑧

𝑏 𝑐 𝑑

1
𝑐

− 𝑧
𝑐 𝑑

1
𝑑


.

Notice that every element in the upper triangle is a product of off-diagonal elements of 𝐵 and
inverses of diagonal elements, that the superdiagonals have alternating signs attached, and
that there are no additions. These properties hold for general 𝑛, as the explicit form of the
inverse in the following result shows.

Lemma 2.1. If 𝐵 ∈ C𝑛×𝑛 is nonsingular and upper bidiagonal then

(2.1) (𝐵−1)𝑖 𝑗 =
1
𝑏 𝑗 𝑗

𝑗−1∏
𝑘=𝑖

(
−𝑏𝑘,𝑘+1

𝑏𝑘𝑘

)
, 𝑗 ≥ 𝑖.

We will make use of the fact that when 𝐵 has nonnegative elements, 𝐵−1 has a checker-
board (alternating) sign pattern.

We introduce the comparison matrix 𝑀(𝐴) of 𝐴 ∈ C𝑛×𝑛:

(
𝑀(𝐴)

)
𝑖 𝑗
=

{
|𝑎𝑖𝑖 |, 𝑖 = 𝑗 ,

−|𝑎𝑖 𝑗 |, 𝑖 ≠ 𝑗 .

It is easy to see that

(2.2) |𝐵−1 | = 𝑀(𝐵)−1,

an observation that we will need later.
Using the representation (2.1) of the inverse we can bound the effect of a componentwise

perturbation of 𝐵. Let

(2.3) 𝜏 =
(2𝑛 − 1)𝛿

1 − (2𝑛 − 1)𝛿
.

Theorem 2.2. If 𝐵 ∈ C𝑛×𝑛 is a nonsingular bidiagonal matrix and 𝛥𝐵 is a perturbation
satisfying |𝛥𝐵 | ≤ 𝛿 |𝐵 | then

|(𝐵 + 𝛥𝐵)−1 − 𝐵−1�� ≤ 𝜏 |𝐵−1 |,

where 𝜏 is defined in (2.3).
Proof. Assume, without loss of generality, that 𝐵 is upper bidiagonal. Write 𝛥𝑏𝑖 𝑗 =

𝛿𝑖 𝑗𝑏𝑖 𝑗 , where |𝛿𝑖 𝑗 | ≤ 𝛿. From (2.1) we obtain

(𝐵 + 𝛥𝐵)−1
𝑖 𝑗 − (𝐵−1)𝑖 𝑗 =

1
𝑏 𝑗 𝑗 (1 + 𝛿 𝑗 𝑗 )

𝑗−1∏
𝑘=𝑖

(
−𝑏𝑘,𝑘+1(1 + 𝛿𝑘,𝑘+1)

𝑏𝑘𝑘(1 + 𝛿𝑘𝑘)

)
− 1

𝑏 𝑗 𝑗

𝑗−1∏
𝑘=𝑖

(
−𝑏𝑘,𝑘+1

𝑏𝑘𝑘

)
= (𝐵−1)𝑖 𝑗

(
1

1 + 𝛿 𝑗 𝑗

𝑗−1∏
𝑘=𝑖

(
1 + 𝛿𝑘,𝑘+1

1 + 𝛿𝑘𝑘

)
− 1
)

= (𝐵−1)𝑖 𝑗𝜃2( 𝑗−𝑖)+1,

where |𝜃𝑘 | ≤ 𝛾
𝑘
= 𝑘𝛿/(1 − 𝑘𝛿) by Lemma 1.1.
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This result, which is essentially the same as [28, Prob. 22.8], shows that a componentwise
relative perturbation in 𝐵 produces a componentwise relative perturbation in 𝐵−1 at most
about 2𝑛 times larger: a strong result that does not hold for triangular matrices in general.

We now extend this result to a product of bidiagonal matrices. In all the products of
bidiagonal matrices in this paper each matrix can be upper bidiagonal or lower bidiagonal.

Theorem 2.3. Let 𝐵 = 𝐵1𝐵2 . . . 𝐵𝑘 ∈ C𝑛×𝑛, where the 𝐵𝑖 are nonsingular bidiagonal
matrices, and let 𝐵 + 𝛥𝐵 = (𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2) . . . (𝐵𝑘 + 𝛥𝐵𝑘), where |𝛥𝐵𝑖 | ≤ 𝛿 |𝐵𝑖 | for all
𝑖. Then

(2.4)
��(𝐵 + 𝛥𝐵)−1 − 𝐵−1�� ≤ ((1 + 𝜏)𝑘 − 1

)
|𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 |,

where 𝜏 is defined in (2.3), and if the 𝐵𝑖 or the 𝐵−1
𝑖

are all nonnegative then

(2.5)
��(𝐵 + 𝛥𝐵)−1 − 𝐵−1�� ≤ ((1 + 𝜏)𝑘 − 1

)
|𝐵−1 |.

Proof. We have

(𝐵 + 𝛥𝐵)−1 = (𝐵𝑘 + 𝛥𝐵𝑘)−1(𝐵𝑘−1 + 𝛥𝐵𝑘−1)−1 . . . (𝐵1 + 𝛥𝐵1)−1

= (𝐵−1
𝑘 + 𝐸𝑘)(𝐵−1

𝑘−1 + 𝐸𝑘−1) . . . (𝐵−1
1 + 𝐸1),

where by Theorem 2.2, |𝐸𝑖 | ≤ 𝜏 |𝐵−1
𝑖
|, 𝑖 = 1: 𝑘 . Hence by Lemma 1.2,

|(𝐵 + 𝛥𝐵−1) − 𝐵−1 | ≤
(
(1 + 𝜏)𝑘 − 1

)
|𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 |.

The bound (2.5) is immediate if the 𝐵−1
𝑖

are all nonnegative. If the 𝐵𝑖 are all nonnegative. then
(2.5) follows from considering the checkerboard sign pattern of the inverses; see Theorem 3.2
below.

The bound (2.5) shows that if the 𝐵𝑖 or the 𝐵−1
𝑖

are all nonnegative then componentwise
relative perturbations in the 𝐵𝑖 produce componentwise relative perturbation in the inverse of
the product at most about a factor 2𝑛𝑘 times larger.

Like the inverse, the singular values of a bidiagonal matrix are very well behaved under
componentwise perturbations. Let 𝜎𝑖(𝐵) denote the 𝑖th largest singular value of 𝐵.

Theorem 2.4. Let 𝐵 ∈ C𝑛×𝑛 and 𝐵 + 𝛥𝐵 be upper bidiagonal and suppose that (𝐵 +
𝛥𝐵)𝑖𝑖 = 𝛼2𝑖−1𝑏𝑖𝑖 and (𝐵 + 𝛥𝐵)𝑖,𝑖+1 = 𝛼2𝑖𝑏𝑖,𝑖+1, where the 𝛼𝑖 are nonzero. Then

𝜎𝑖(𝐵)
𝜇

≤ 𝜎𝑖(𝐵 + 𝛥𝐵) ≤ 𝜇𝜎𝑖(𝐵), 𝑖 = 1: 𝑛,

where

𝜇 =
2𝑛−1∏
𝑖=1

max(|𝛼𝑖 |, |𝛼−1
𝑖 |).

Proof. We can write 𝐵 + 𝛥𝐵 = 𝐷1𝐵𝐷2, where

𝐷1 = diag
(
𝛼1,

𝛼1𝛼3
𝛼2

,
𝛼1𝛼3𝛼5
𝛼2𝛼4

, . . .

)
, 𝐷2 = diag

(
1,

𝛼2
𝛼1

,
𝛼2𝛼4
𝛼1𝛼3

,
𝛼2𝛼4𝛼6
𝛼1𝛼3𝛼5

, . . .

)
.

An extension for singular values of a result of Ostroswki for eigenvalues [15, Thm. 3.1] gives

𝜎𝑖(𝐵)
∥𝐷−1

1 ∥2∥𝐷−1
2 ∥2

≤ 𝜎𝑖(𝐵 + 𝛥𝐵) ≤ 𝜎𝑖(𝐵)∥𝐷1∥2∥𝐷2∥2.

Using ∥𝐷1∥2∥𝐷2∥2 = max𝑖 |(𝐷1)𝑖𝑖 | max𝑖 |(𝐷2)𝑖𝑖 | ≤ 𝜇 (taking account of cancellation in the
product) and ∥𝐷−1

1 ∥2∥𝐷−1
2 ∥2 ≤ 𝜇 gives the result.
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Theorem 2.4 is from Demmel and Kahan [10, Cor. 2] and the proof is from Eisenstat
and Ipsen [15, Cor. 4.2]. The theorem shows that relative perturbations of magnitude at
most 𝜏 = max𝑖 |1 − 𝛼𝑖 | ≪ 1 to the elements on the diagonal and superdiagonal of an upper
bidiagonal matrix produce relative changes of at most (1 − 𝜏)2𝑛−1 − 1 ≈ (2𝑛 − 1)𝜏 in each
singular value. This is a much stronger result than for general perturbations of a general
𝑛 × 𝑛 matrix, where it is only the absolute changes in the singular values that are bounded:
|𝜎𝑘(𝐴 + 𝛥𝐴) − 𝜎𝑘(𝐴)| ≤ 𝜎1(𝛥𝐴) = ∥𝛥𝐴∥2, 𝑘 = 1: 𝑛 [32, Cor. 7.3.5].

Theorem 2.4 does not extend to a product of bidiagonal matrices, as the following example
shows. Let

𝐴 = 𝐼 =

[
1 𝑥

0 1

] [
1 −𝑥
0 1

]
=: 𝐵1𝐵2,

𝐴 + 𝛥𝐴 =

[
1 2𝑥𝛿
0 1

]
=

[
1 𝑥(1 + 𝛿)
0 1

] [
1 −𝑥(1 − 𝛿)
0 1

]
=: (𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2),

where 𝛿 > 0, 𝑥 > 0, and 𝑥𝛿 ≫ 1. Here, 𝐵1 and 𝐵2 have undergone a componentwise
relative change 𝛿. The singular values of 𝐴 are 𝜎1 = 1 and 𝜎2 = 1, and those of 𝐴 + 𝛥𝐴 are
approximately 𝑠̂1 = 2𝑥𝛿 and 𝑠̂2 = (2𝑥𝛿)−1 (since 𝑥𝛿 ≫ 1). Hence the relative change in 𝜎1
is |𝜎1 − 𝑠̂1 |/𝜎1 ≈ 2𝑥𝛿 ≫ 1 and that in 𝜎2 is |𝜎2 − 𝑠̂2 |/𝜎2 ≈ 1 − 1/(2𝑥𝛿) ≈ 1. We conclude
that relative changes in bidiagonal matrices 𝐵1, 𝐵2, . . . , 𝐵𝑘 can induce a much larger relative
change in the singular values of their product. The situation is different for a product of
nonnegative bidiagonal matrices 𝐵1, 𝐵2, . . . 𝐵𝑘 : small componentwise relative changes in the
𝐵𝑖 produce only small relative changes in the singular values of the product 𝐵1, 𝐵2, . . . 𝐵𝑘 , as
shown by Koev [34, Cor. 7.3].

The next result reveals some further interesting properties of the singular values of a
bidiagonal matrix.

Theorem 2.5. Let 𝐵 ∈ C𝑛×𝑛 be bidiagonal.
(a) |𝐵 | = 𝐷𝐵𝐹, where 𝐷 and 𝐹 are unitary diagonal matrices. Hence 𝐵 and |𝐵 | have

the same singular values.
(b) If 𝑏𝑖𝑖 and 𝑏𝑖,𝑖+1 are nonzero for all 𝑖 then the singular values of 𝐵 are distinct.
Proof. (a): Let 𝐷 = diag(𝑑𝑖) and 𝐹 = diag( 𝑓𝑖) with 𝑓1 = 1. We take 𝑑1 = sign(𝑏11)∗,

𝑓2 = sign(𝑑1𝑏12)∗, 𝑑2 = sign(𝑏22 𝑓2)∗, 𝑓3 = sign(𝑑2𝑏23)∗, and so on, where sign(𝑧) = 𝑧/|𝑧 | if
𝑧 ≠ 0 or 1 otherwise. Then |𝐵 | = 𝐷𝐵𝐹, where 𝐷 and 𝐹 have diagonal elements of modulus
1 and so are unitary. Therefore if 𝐵 = 𝑈𝛴𝑉∗ is an SVD of 𝐵 then |𝐵 | = (𝐷𝑈)𝛴(𝑉∗𝐹) is an
SVD of |𝐵 |.

(b): The singular values of 𝐵 are the square roots of the eigenvalues of 𝑇 = |𝐵 |∗ |𝐵 |,
by (a). The matrix 𝑇 is symmetric tridiagonal with positive superdiagonal and subdiagonal
elements, so the eigenvalues of 𝑇 are distinct [42, Lem. 7.7.1], and hence so are the singular
values of 𝐵.

It is interesting to note that the SVD codes in both LINPACK [12] and LAPACK [3]
reduce 𝐴 ∈ C𝑚×𝑛 to a real bidiagonal matrix, so that the QR iteration can be carried out in
real arithmetic, but they do so in different ways. LINPACK reduces 𝐴 to bidiagonal form
by Householder transformations and then explicitly carries out the diagonal scaling given in
part (a) of Theorem 2.5. LAPACK reduces 𝐴 to bidiagonal form using elementary unitary
matrices of the form 𝑃 = 𝐼 − 𝜌𝑣𝑣∗ with generally nonreal 𝜌 that are chosen so that the reduced
bidiagonal matrix is real [36].

3. The Condition Number of a Matrix Product. Suppose a matrix 𝑋 ∈ C𝑛×𝑛 is given
in factored form 𝑋 = 𝐴1𝐴2 . . . 𝐴𝑘 , where 𝐴𝑖 ∈ C𝑛×𝑛 for all 𝑖, and that we wish to compute or
estimate the condition number 𝜅∞(𝑋) = ∥𝑋 ∥∞∥𝑋−1∥∞ without explicitly forming 𝑋 . Initially
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we will make no assumptions about the 𝐴𝑖 , but later we will specialize to bidiagonal 𝐴𝑖 . For
dense matrices the cost of forming 𝑋 is 2(𝑘 −1)𝑛3 flops, whereas we would like to compute or
estimate 𝜅∞(𝑋) at the cost of a few matrix–vector products with 𝑋 , that is, in a small multiple
of 2(𝑘 − 1)𝑛2 flops.

The condition number estimation problem is well studied [28, Chap. 15]. Here we focus
on the problem of exactly computing the condition number. Recall that the ∞-norm satisfies

∥𝑋 ∥∞ = ∥ |𝑋 | ∥∞ = ∥ |𝑋 |𝑒 ∥∞,

where 𝑒 = [1, 1, . . . , 1]𝑇 .
In general we cannot compute ∥𝐴1𝐴2 . . . 𝐴𝑘 ∥∞ without forming the matrix product.

However, if the equality

(3.1) |𝐴1𝐴2 . . . 𝐴𝑘 | = |𝐴1 | |𝐴2 | . . . |𝐴𝑘 |

holds then

(3.2) ∥𝐴1𝐴2 . . . 𝐴𝑘 ∥∞ = ∥ |𝐴1 | |𝐴2 | . . . |𝐴𝑘 | ∥∞ = ∥ |𝐴1 | |𝐴2 | . . . |𝐴𝑘 |𝑒 ∥∞

and we can evaluate the right-hand side in 𝑂(𝑘𝑛2) flops as opposed to the 𝑂(𝑘𝑛3) flops that
are required if we explicitly form the product. If the 𝐴𝑖 are bidiagonal then the costs are 3𝑘𝑛
flops compared with up to 𝑂(𝑘𝑛2) flops if the product is explicitly formed, since in general
the product fills in.

The equality (3.1) obviously holds when the 𝐵𝑖 are all nonnegative. It can also hold
because all additions in the product 𝐴1𝐴2 . . . 𝐴𝑘 are of like-signed numbers, so that there is
no cancellation. Important such cases are when the 𝐴𝑖 are nonnegative and when each 𝐴𝑖 has
a checkerboard (alternating) sign pattern, which can be expressed as

(3.3) 𝐴𝑖 = ±𝛴 |𝐴𝑖 |𝛴, 𝑖 = 1: 𝑘,

where

(3.4) 𝛴 = diag
(
1,−1, 1, . . . , (−1)𝑛−1).

Theorem 3.1. If the matrices 𝐴𝑖 , 𝑖 = 1: 𝑘 , satisfy (3.3) then

(3.5) 𝐴1𝐴2 . . . 𝐴𝑘 = ±𝛴 |𝐴1 | |𝐴2 | . . . |𝐴𝑘 |𝛴

and hence

(3.6) |𝐴1𝐴2 . . . 𝐴𝑘 | = |𝐴1 | |𝐴2 | . . . |𝐴𝑘 |.

Proof. If the 𝐴𝑖 satisfy (3.3) then

𝐴1𝐴2 . . . 𝐴𝑘 = ±𝛴 |𝐴1 |𝛴 · 𝛴 |𝐴2 |𝛴 . . . 𝛴 |𝐴𝑘 |𝛴 = ±𝛴 |𝐴1 | |𝐴2 | . . . |𝐴𝑘 |𝛴,

which is (3.5), and (3.6) follows immediately,
We conclude that if the 𝐴𝑖 are nonnegative or have a checkerboard sign pattern then we can
compute ∥𝐴1𝐴2 . . . 𝐴𝑘 ∥∞ in 𝑂(𝑘𝑛2) flops.

If 𝐵1, 𝐵2, . . . , 𝐵𝑘 are bidiagonal and nonnegative then from Lemma 2.1 it is clear that
𝐵−1
𝑖

has a checkerboard sign pattern, that is, it satisfies (3.3). Therefore by (3.6),

(3.7) |𝐵−1
𝑘 𝐵−1

𝑘−1 . . . 𝐵
−1
1 | = |𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 |.

The same is true if the 𝐵𝑖 have a checkerboard sign pattern.
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Theorem 3.2. Let 𝐵1, 𝐵2, . . . , 𝐵𝑘 ∈ R𝑛×𝑛 be nonsingular bidiagonal matrices. If 𝐵𝑖 is
nonnegative for all 𝑖 or has a checkerboard sign pattern for all 𝑖 then

(3.8) |𝐵−1
𝑘 𝐵−1

𝑘−1 . . . 𝐵
−1
1 | = |𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 | = 𝑀(𝐵𝑘)−1𝑀(𝐵𝑘−1)−1 . . . 𝑀(𝐵1)−1.

Proof. For nonnegative 𝐵𝑖 the result follows from (3.7) on recalling (2.2). From (2.1) it
is clear that 𝐵𝑖 having a checkerboard sign pattern is equivalent to either 𝐵−1

𝑖
or −𝐵−1

𝑖
being

nonnegative and equal to 𝑀(𝐵𝑖)−1, which gives the second part of the result.
From (3.8) we have

(3.9) ∥𝐵−1
𝑘 𝐵−1

𝑘−1 . . . 𝐵
−1
1 ∥∞ = ∥𝑀(𝐵𝑘)−1𝑀(𝐵𝑘−1)−1 . . . 𝑀(𝐵1)−1𝑒∥∞,

and the right-hand side can be computed in 3𝑘𝑛flops, whereas explicitly forming the product on
the left (using substitutions) costs 3𝑘𝑛2/2 flops. We conclude that when the 𝐵𝑖 are nonnegative
for all 𝑖 or all have a checkerboard sign pattern, 𝜅∞(𝐵1𝐵2 . . . 𝐵𝑘) can be computed exactly in
6𝑘𝑛 flops. Since ∥𝐴∥1 = ∥𝐴𝑇 ∥∞, the 1-norm condition number can be computed at the same
cost by working with the transpose of the product.

In the case 𝑘 = 1, (3.9) reduces to the result that ∥𝐵−1∥∞ = ∥𝑀(𝐵)−1∥∞ = ∥𝑀(𝐵)−1𝑒∥∞
[25, sec. 2].

We can also compute the condition number of Skeel [44],

cond(𝐴, 𝑥) =
∥ |𝐴−1 | |𝐴| |𝑥 | ∥∞

∥𝑥∥∞
,

exactly in 6𝑘𝑛 flops for 𝐴 = 𝐵1𝐵2 . . . 𝐵𝑘 with nonnegative 𝐵𝑖:

cond(𝐵1𝐵2 . . . 𝐵𝑘 , 𝑥) =
∥ 𝑀(𝐵𝑘)−1 . . . 𝑀(𝐵1)−1𝐵1 . . . 𝐵𝑘 |𝑥 | ∥∞

∥𝑥∥∞
.

If the 𝐵𝑖 have checkerboard sign patterns then the same formula holds with 𝐵1𝐵2 . . . 𝐵𝑘

replaced by |𝐵1 | |𝐵2 | . . . |𝐵𝑘 |.
We will make use of (3.9) for totally nonnegative matrices in Section 5.

4. Linear Systems. We consider a linear system 𝐴𝑥 = 𝑏 in which 𝐴 is either a product
of bidiagonal matrices or a product of inverses of bidiagonal matrices. Our interest is in
what can be said about the backward error and forward error when such a system is solved in
floating-point arithmetic.

4.1. Product of Bidiagonal Matrices. Suppose 𝐴 = 𝐵1𝐵2 . . . 𝐵𝑘 is a product of 𝑘

bidiagonal matrices. We can solve the system by solving 𝑘 bidiagonal systems by substitution.
Standard rounding error analysis [28, Lem. 8.2] shows that the computed 𝑥̂ satisfies

(4.1) (𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2) . . . (𝐵𝑘 + 𝛥𝐵𝑘)𝑥̂ = 𝑏, |𝛥𝐵𝑖 | ≤ 𝛾2 |𝐵𝑖 |, 𝑖 = 1: 𝑘.

Hence the residual is

|𝑏 − 𝐵1𝐵2 . . . 𝐵𝑘 𝑥̂ | =
��((𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2) . . . (𝐵𝑘 + 𝛥𝐵𝑘) − 𝐵1𝐵2 . . . 𝐵𝑘

)
𝑥̂
��

≤
(
(1 + 𝛾2)𝑘 − 1

)
|𝐵1 | |𝐵2 | . . . |𝐵𝑘 | |𝑥̂ |,

by Lemma 1.2. If the 𝐵𝑖 are all nonnegative or, by Theorem 3.1, if they have a checkerboard
sign pattern, then the bound becomes

(4.2) |𝑏 − 𝐴𝑥̂ | ≤
(
(1 + 𝛾2)𝑘 − 1

)
|𝐴| |𝑥̂ | =

(
2𝑘𝑢 +𝑂(𝑢2)

)
|𝐴| |𝑥̂ |,
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which shows that the componentwise relative backward error is small—an ideal backward
error result. We note that this result has used the triangularity of the 𝐵𝑖 but not their bidiagonal
structure (except through the constant in (4.1)).

To obtain a forward error bound we rewrite (4.1) as

𝑥̂ = (𝐵𝑘 + 𝛥𝐵𝑘)−1(𝐵𝑘−1 + 𝛥𝐵𝑘−1)−1 . . . (𝐵1 + 𝛥𝐵1)−1𝑏.

Then

|𝑥̂ − 𝑥 | ≤
��(𝐵𝑘 + 𝛥𝐵𝑘)−1(𝐵𝑘−1 + 𝛥𝐵𝑘−1)−1 . . . (𝐵1 + 𝛥𝐵1)−1 − 𝐵−1

𝑘 𝐵−1
𝑘−1 . . . 𝐵

−1
1
��|𝑏 |

≤
(
(1 + 𝜏)𝑘 − 1

)
|𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 | |𝑏 |(4.3)

by Theorem 2.3, where

(4.4) 𝜏 =
(2𝑛 − 1)𝛾2

1 − (2𝑛 − 1)𝛾2
.

If the 𝐵𝑖 are all nonnegative or have a checkerboard sign pattern then by Theorem 3.2 this
inequality becomes

(4.5) |𝑥̂ − 𝑥 | ≤
(
2𝑘(2𝑛 − 1)𝑢 +𝑂(𝑢2)

)
|𝐴−1 | |𝑏 |.

The bound (4.5) is a strong forward error bound because it is the same as a bound for the
change in 𝑥 induced by a small componentwise relative perturbation of of 𝑏: 𝑏 → 𝑏 + 𝛥𝑏

with |𝛥𝑏 | ≤ 4𝑘𝑛𝑢 |𝑏 | [28, Thm. 7.4].

4.2. Product of Inverses of Bidiagonal Matrices. Now suppose that it is 𝐴−1 rather
than 𝐴 that is a product of bidiagonal matrices: 𝐴−1 = 𝐵1𝐵2 . . . 𝐵𝑘 . Now we solve 𝐴𝑥 = 𝑏 by
forming 𝑥 = 𝐴−1𝑏 = 𝐵1𝐵2 . . . 𝐵𝑘𝑏 and the computed 𝑥̂ satisfies

(4.6) 𝑥̂ = (𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2) . . . (𝐵𝑘 + 𝛥𝐵𝑘)𝑏, |𝛥𝐵𝑖 | ≤ 𝛾2 |𝐵𝑖 |, 𝑖 = 1: 𝑘.

Then the forward error is

|𝑥̂ − 𝑥 | =
��((𝐵1 + 𝛥𝐵1)(𝐵2 + 𝛥𝐵2) . . . (𝐵𝑘 + 𝛥𝐵𝑘) − 𝐵1𝐵2 . . . 𝐵𝑘)

)
𝑏
��,

≤
(
(1 + 𝛾2)𝑘 − 1

)
|𝐵1 | |𝐵2 | . . . |𝐵𝑘 | |𝑏 |,(4.7)

by Lemma 1.2. If the 𝐵𝑖 are all nonnegative or have a checkerboard sign pattern then by
Theorem 3.1, |𝐵1 | |𝐵2 | . . . |𝐵𝑘 | = |𝐵1𝐵2 . . . 𝐵𝑘 |, so

(4.8) |𝑥̂ − 𝑥 | ≤
(
(1 + 𝛾2)𝑘 − 1

)
|𝐴−1 | |𝑏 |.

Now we turn to the residual. Note first that by (4.6),

𝑏 = (𝐵𝑘 + 𝛥𝐵𝑘)−1(𝐵𝑘−1 + 𝛥𝐵𝑘−1)−1 . . . (𝐵1 + 𝛥𝐵1)−1𝑥̂.

Hence

|𝑏 − 𝐴𝑥̂ | =
�� [(𝐵𝑘 + 𝛥𝐵𝑘)−1(𝐵𝑘−1 + 𝛥𝐵𝑘−1)−1 . . . (𝐵1 + 𝛥𝐵1)−1 − 𝐵−1

𝑘 𝐵−1
𝑘−1 . . . 𝐵

−1
1
]
𝑥̂
��

and by Lemma 1.2 and Theorem 2.3 we obtain, with 𝜏 given by (4.4),

|𝑏 − 𝐴𝑥̂ | ≤
(
(1 + 𝜏)𝑘 − 1

)
|𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 | |𝑥̂ |

=
(
2𝑘(2𝑛 − 1)𝑢 +𝑂(𝑢2)

)
|𝐵−1

𝑘 | |𝐵−1
𝑘−1 | . . . |𝐵

−1
1 | |𝑥̂ |.
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If the 𝐵𝑖 are all nonnegative or have a checkerboard sign pattern then by Theorem 3.2 this
bound can be written

(4.9) |𝑏 − 𝐴𝑥̂ | ≤
(
2𝑘(2𝑛 − 1)𝑢 +𝑂(𝑢2)

)
|𝐴| |𝑥̂ |,

which again shows a small componentwise relative backward error.
Our conclusion is that whether it is 𝐴 or 𝐴−1 that is a product of bidiagonal matrices we

have the same satisfactory form of forward error bounds (4.5) and (4.8) and residual bounds
(4.2) and (4.9) when the 𝐵𝑖 are all nonnegative or have a checkerboard sign pattern.

4.3. Application to Vandermonde Systems. An application of these results is to the
Björck–Pereyra algorithm for solving a Vandermonde system 𝑉𝑦 = 𝑏 in 𝑂(𝑛2) flops [6],
where 𝑉 = (𝑥𝑖−1

𝑗
) ∈ C𝑛×𝑛 for given points 𝑥𝑖 ∈ C. This algorithm uses a factorization

of 𝑉−1 into a product of 2𝑛 − 2 bidiagonal matrices 𝐵2𝑛−2, . . . , 𝐵1 given in terms of the
points 𝑥𝑖 . When 0 ≤ 𝑥1 < 𝑥2 < · · · < 𝑥𝑛 the bidiagonal factors have positive diagonal and
nonpositive off-diagonal elements. Therefore the 𝐵𝑖 have a checkerboard sign pattern and so
|𝐵2𝑛−2 | . . . |𝐵1 | = |𝐵2𝑛−2 . . . 𝐵1 | = |𝐴−1 | by (3.7). From (4.8) and (4.9) we have

| 𝑦̂ − 𝑦 | ≤
(
2(2𝑛 − 2)𝑢 +𝑂(𝑢2)

)
|𝑉−1 | |𝑏 |,

|𝑏 −𝑉 𝑦̂ | ≤
(
2(2𝑛 − 2)(2𝑛 − 1)𝑢 +𝑂(𝑢2)

)
|𝑉 | | 𝑦̂ |,

which reproduce [26, Thm. 2.3] and the monomial case of [27, Cor. 4.1], respectively. Since
𝑉−1 has a checkerboard sign pattern, if (−1)𝑖𝑏𝑖 ≥ 0 then |𝑉−1 | |𝑏 | = |𝑉−1𝑏 | = |𝑦 |, and 𝑦̂

therefore has a small componentwise relative error. The analysis in [27] makes use of the
bidiagonal factorization, but that in [26] does not.

4.4. Application to Pascal Systems. We give a numerical illustration of the use of the
bidiagonal factorization for solving the linear system 𝑃𝑛𝑥 = 𝑏, where 𝑃𝑛 is the symmetric
positive definite 𝑛 × 𝑛 Pascal matrix with

(4.10) 𝑝𝑖 𝑗 =

(
𝑖 + 𝑗 − 2
𝑗 − 1

)
=

(𝑖 + 𝑗 − 2)!
(𝑖 − 1)!( 𝑗 − 1)!

and 𝑏 = 𝑒𝑛/𝑛, where 𝑒𝑛 is the 𝑛th unit vector. The Pascal matrix has a known factorization
as a product of 2𝑛 − 1 bidiagonal matrices, as we explain in section 8.3. We solve the system
using the bidiagonal factorization, solving the bidiagonal systems by substitution. We also
solve the system for the explicitly formed 𝑃 using the MATLAB backslash operator (which
exploits the symmetric positive definiteness of 𝑃𝑛 but not its bidiagonal factorization). The
working precision is double precision, with 𝑢 ≈ 1.1 × 10−16. Table 4.1 shows the relative
errors ∥𝑥 − 𝑥̂∥∞/∥𝑥∥∞, for which we take as the exact solution 𝑥 the solution computed at a
precision of 500 decimal digits using the Multiprecision Computing Toolbox [39] and then
rounded to double precision. We restrict to 𝑛 ≤ 25 to ensure that 𝑃 is exactly representable at
the working precision. We see that substitution with the bidiagonal factorization yields errors
of𝑂(𝑢) that satisfy the bound (4.5), whereas the MATLAB backslash function produces much
larger errors, which usually exceed (4.5).

5. Totally Nonnegative Matrices. A matrix 𝐴 ∈ R𝑛×𝑛 is totally nonnegative if every
minor (determinant of a square submatrix) is nonnegative and totally positive if every minor
is positive. We will need the following key result, which is a direct consequence of the
Binet–Cauchy theorem on determinants [32, sec. 0.8.7].

Theorem 5.1. If 𝐴, 𝐵 ∈ R𝑛×𝑛 are totally nonnegative then so is 𝐴𝐵.
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Table 4.1: Relative errors for the computed solution to a linear system 𝑃𝑛𝑥 = 𝑏 with 𝑃𝑛 the
𝑛 × 𝑛 Pascal matrix.

Relative errors

𝑛 Bidiagonal factorization P\b Error bound (4.5)

5 9.25e-17 9.25e-16 7.99e-15
10 1.50e-16 4.94e-9 3.80e-14
15 6.36e-17 1.05e-3 9.02e-14
20 1.34e-16 3.12e-12 1.65e-13
25 1.68e-16 2.76e-11 2.61e-13

Bidiagonal matrices play a key role in the theory of totally nonnegative matrices. Indeed
a nonnegative bidiagonal matrix is totally nonnegative. In the proof of this result we will need
the elementary lower bidiagonal matrix

(5.1) 𝐿𝑘(ℓ𝑘+1,𝑘) = 𝐼 + ℓ𝑘+1,𝑘𝑒𝑘+1𝑒
𝑇
𝑘 ,

which differs from the identity matrix only in the (𝑘 + 1, 𝑘) position, which contains ℓ𝑘+1,𝑘 .
Theorem 5.2. A bidiagonal matrix 𝐵 ∈ R𝑛×𝑛 with nonnegative elements is totally non-

negative.

Proof. Without loss of generality we take 𝐵 to be lower bidiagonal. We first assume
that 𝐵 is nonsingular. Since 0 ≠ det(𝐵) = 𝑏11𝑏22 . . . 𝑏𝑛𝑛, the 𝑏𝑖𝑖 are all positive, so with
𝐷 = diag(𝑏𝑖𝑖) and ℓ𝑖+1,𝑖 = 𝑏𝑖+1,𝑖/𝑏𝑖+1,𝑖+1 ≥ 0, 𝑖 = 1: 𝑛 − 1, we can write

(5.2) 𝐵 = 𝐷



1
ℓ21 1

ℓ32
. . .

. . .
. . .

ℓ𝑛,𝑛−1 1


≡ 𝐷𝐿.

Since 𝐷 is clearly totally nonnegative, by Theorem 5.1 it suffices to show that 𝐿 is totally
nonnegative.

For 𝑛 = 4 we have

𝐿 =


1
ℓ21 1

ℓ32 1
ℓ43 1

 =


1
ℓ21 1

1
1



1

1
ℓ32 1

1



1

1
1
ℓ43 1

 ,
and this factorization clearly generalizes to

(5.3) 𝐿 = 𝐿1(ℓ21)𝐿2(ℓ32) . . . 𝐿𝑛−1(ℓ𝑛,𝑛−1),

where 𝐿𝑘(ℓ𝑘+1,𝑘) is the elementary lower bidiagonal matrix (5.1). It is easy to see that
𝐿𝑘(ℓ𝑘+1,𝑘) is totally nonnegative for all 𝑘 , so 𝐿 is totally nonnegative by Theorem 5.1.

If 𝐵 is singular then consider the bidiagonal matrix 𝐵(𝜖) = 𝐵 + 𝜖 𝐼, which is nonsingular
for 𝜖 > 0. By the argument above, 𝐵(𝜖) is totally nonnegative for 𝜖 > 0. Any minor of 𝐵(𝜖)
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is the determinant of a submatrix of 𝐵(𝜖), which is a polynomial in 𝜖 , so it is continuous in 𝜖 .
This minor is nonnegative for all 𝜖 > 0 and so must remain nonnegative in the limit as 𝜖 → 0.
Therefore 𝐵 = 𝐵(0) is totally nonnegative.

Even if 𝐵 is not totally nonnegative, there is a an associated totally nonnegative matrix.

Theorem 5.3. If 𝐵 ∈ R𝑛×𝑛 is nonsingular and bidiagonal then 𝑀(𝐵)−1 is totally non-
negative.

Proof. Assuming that 𝐵 = 𝐿 is lower bidiagonal, by (5.2) and (5.3),

𝑀(𝐵) = 𝑀(𝐷𝐿) = |𝐷 |𝑀(𝐿) = |𝐷 |𝐿1(−|ℓ21 |)𝐿2(−|ℓ32 |) . . . 𝐿𝑛−1(−|ℓ𝑛,𝑛−1 |)

and 𝐿𝑘(−|ℓ𝑘+1,𝑘 |)−1 = 𝐿𝑘(|ℓ𝑘+1,𝑘 |), so 𝑀(𝐵)−1 = 𝐿𝑛−1(|ℓ𝑛,𝑛−1 |)𝐿𝑛−2(|ℓ𝑛−1,𝑛−2 | ) . . . 𝐿1(|ℓ21 |)×
|𝐷 |−1, which is a product of totally nonnegative matrices and hence is totally nonnegative.

The next result shows that any nonsingular totally nonnegative matrix can be written as
a product of nonnegative bidiagonal matrices.

Theorem 5.4. A nonsingular matrix 𝐴 ∈ R𝑛×𝑛 is totally nonnegative if and only if it can
be factorized as

(5.4) 𝐴 = 𝐿𝑛−1𝐿𝑛−2 . . . 𝐿1𝐷𝑈1𝑈2 . . . 𝑈𝑛−1,

where 𝐷 is a diagonal matrix with positive diagonal entries and 𝐿𝑖 and 𝑈𝑖 are unit lower and
unit upper bidiagonal matrices, respectively, with the first 𝑖 − 1 entries along the subdiagonal
of 𝐿𝑖 and 𝑈𝑇

𝑖
zero and the rest nonnegative.

The factorization (5.4) is essentially an LU factorization in which 𝐿 and 𝑈 have been
factorized into a product of specially structured nonnegative bidiagonal matrices.

Theorem 5.4 is from Gasca and Peña [21, Thm. 4.2]. Fallat and Johnson [19, sec. 2.0]
summarize the history of different forms of this factorization.

Since the bidiagonal matrices in the factorization (5.4) are all nonnegative, by (3.9) we
have

(5.5) ∥𝐴−1∥∞ = ∥𝑀(𝑈𝑛−1)−1 . . . 𝑀(𝑈1)−1𝐷−1𝑀(𝐿1)−1 . . . 𝑀(𝐿𝑛−1)−1𝑒∥∞,

and so we can compute ∥𝐴−1∥∞ by 2(𝑛 − 1) substitutions in 𝑂(𝑛2) flops for any nonsingular
totally nonnegative matrix given the factorization (5.4).

Let 𝑐̂ = fl(∥𝐴−1∥∞). Taking ∞-norms in (4.5) with 𝑏 = 𝑒 gives, using the triangle
inequality,

(5.6)
|𝑐̂ − ∥𝐴−1∥∞ |

∥𝐴−1∥∞
≤ 𝑑𝑛2𝑢

for a modest constant 𝑑. Therefore 𝑐̂ is highly accurate, essentially because there is no
cancellation in evaluating (5.5): all additions are of nonnegative quantities. Standard methods
for evaluating ∥𝐴−1∥∞ for general 𝐴 only satisfy |𝑐̂− ∥𝐴−1∥∞ |/∥𝐴−1∥∞ ≤ 𝑐𝑛3𝜅∞(𝐴)𝑢, which
is the best that can be expected in general because the condition number of 𝜅∞(𝐴) is 𝜅∞(𝐴) [24].

To obtain 𝜅∞(𝐴) we need ∥𝐴∥∞, which can either be computed from 𝐴 if it is explicitly
known, or from ∥𝐴∥∞ = ∥𝐿𝑛−1𝐿𝑛−2 . . . 𝐿1𝐷𝑈1𝑈2 . . . 𝑈𝑛−1𝑒∥∞ otherwise. We summarize
the computations in an algorithm.

Algorithm 5.5. This algorithm computes 𝑐 = 𝜅∞(𝐴) for a totally nonnegative matrix 𝐴

given the factorization (5.4).
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Table 5.1: Condition numbers and relative errors for the Hilbert matrix.

𝑛 𝜅∞(𝐻𝑛) Relative error for Algorithm 5.5

4 2.84e4 1.28e-16
8 3.39e10 2.25e-16

16 5.06e22 3.67e-17
32 1.36e47 1.75e-15
64 1.10e96 1.77e-15

1 If 𝐴 is explicitly known
2 𝛼 = ∥𝐴∥∞
3 else
4 𝛼 = ∥𝐿𝑛−1𝐿𝑛−2 . . . 𝐿1𝐷𝑈1𝑈2 . . . 𝑈𝑛−1𝑒∥∞
5 end
6 Compute 𝛽 = ∥𝑀(𝑈𝑛−1)−1 . . . 𝑀(𝑈1)−1𝐷−1𝑀(𝐿1)−1 . . . 𝑀(𝐿𝑛−1)−1𝑒∥∞

by substitutions.
7 𝑐 = 𝛼𝛽

How do we obtain the parameters in the factorization (5.4)? In some cases they are known
from the construction of the matrix. Formulas are known for totally positive Vandermonde
matrices and Cauchy matrices [34, eqs. (3.5), (3.6)] and a variety of Vandermonde-type
matrices [9]. For totally positive matrices determinantal formulas for the parameters are
available [34, Prop. 3.1]. Assuming the determinants can be computed accurately, in all these
cases the parameters can be evaluated to high relative accuracy. and so in view of Theorem 2.3
the errors in the evaluation of the parameters do not affect the form of the bound (5.6).

We give two numerical experiments in MATLAB to illustrate the accuracy of the condition
number evaluation. We take as the exact condition number the one computed at a precision
of 500 decimal digits using the Multiprecision Computing Toolbox [39] and then rounded to
double precision.

First, in Table 5.1 we show the relative errors in computing the ∞-norm condition number
of the Hilbert matrix 𝐻𝑛, which has (𝑖, 𝑗) element 1/(𝑖 + 𝑗 − 1) and is totally positive. The
parameters in the bidiagonal factorization (5.4) are computed using the function TNCauchyBD
from the TNTool toolbox.1 We see that even extremely large condition numbers are obtained
to high accuracy.

Next we consider the Pascal matrix (4.10), which is totally positive [19, Ex. 0.1.6]. Since
this matrix is exactly representable at the working precision for 𝑛 up to around 25, we can
compare Algorithm 5.5 with the MATLAB cond function. We see from the results in Table 5.2
that the MATLAB function loses accuracy as 𝑛 increases while Algorithm 5.5 returns a result
correct to the working precision.

Another use of the factorization of Theorem 5.4 is to construct totally nonnegative
matrices by choosing the 𝑛2 parameters that make up the 𝐿𝑖 , 𝐷, and the 𝑈𝑖 . The function call

A = anymatrix(’core/totally_nonneg’,X)

in the Anymatrix toolbox [30] constructs an 𝑛×𝑛 totally nonnegative matrix 𝐴 from parameters
given in the 𝑛 × 𝑛 matrix 𝑋 , whose format is as suggested in [34, sec. 4]. The Pascal matrix
is generated when X = ones(n). In a call

1http://www.math.sjsu.edu/∼koev/software/TNTool.html
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Table 5.2: Condition numbers and relative errors for the Pascal matrix.

Relative errors

𝑛 𝜅∞(𝑃𝑛) Algorithm 5.5 cond(P_n,inf)

5 1.56e4 0.00 0.00
10 8.13e9 0.00 1.49e-11
15 5.77e15 0.00 2.19e-8
20 4.50e21 4.66e-17 3.41e-4
25 3.81e27 1.70e-17 3.17e-2

A = anymatrix(’core/totally_nonneg’,n)

the parameters are chosen randomly, and this is a convenient way to generate random totally
nonnegative matrices.

Koev [34, sec. 7], [35] shows that small relative changes in the parameters in the factor-
ization (5.4) produce small relative changes in the the determinant, the eigenvalues, and the
singular values. In [34] he develops algorithms for accurate computation of eigenvalues and
the SVD of nonsingular totally nonnegative matrices, given an accurate bidiagonal factoriza-
tion, by carrying out transformations on the bidiagonal factorization in such a way that no
subtractions occur.

For later use, we note a useful theorem about the eigenvalues of a totally nonnegative
matrix [18, Thm. 3.3].

Theorem 5.6. If 𝐴 ∈ R𝑛×𝑛 is totally nonnegative and irreducible then its eigenvalues
are real and nonnegative and the positive eigenvalues are distinct.

Note that the irreducibility requirement in the theorem means that it cannot be applied to
triangular matrices, so there is no contradiction to the fact that the totally nonnegative matrix[ 1 1

0 1
]

(for example) has repeated nonzero eigenvalues.

6. Matrix Functions and Polynomial Evaluation and Interpolation. Bidiagonal ma-
trices are intimately connected with polynomial evaluation and interpolation. Horner’s method
for evaluating a polynomial at a point 𝛼 can be expressed as the solution of a linear system with
coefficient matrix 𝑇𝑛(−𝛼) [28, sec. 5.2], where 𝑇𝑛 is defined in (1.2). Premultiplying a vector
by 𝑇𝑛(−1)𝑇 corresponds to forming a backward difference, and a subsequent multiplication
by a diagonal matrix yields divided differences [28, sec. 5.3]. In fact, an explicit formula for a
function of a bidiagonal matrix is available in terms of divided differences. Recall that divided
differences of a function 𝑓 at points 𝑥𝑘 are defined recursively by (see, e.g. [7, Chap. 2] or
[29, sec. B.16] )

𝑓 [𝑥𝑘] = 𝑓 (𝑥𝑘),

𝑓 [𝑥0, 𝑥1, . . . , 𝑥𝑘+1] =


𝑓 [𝑥1, 𝑥2, . . . , 𝑥𝑘+1] − 𝑓 [𝑥0, 𝑥1, . . . , 𝑥𝑘]

𝑥𝑘+1 − 𝑥0
, 𝑥0 ≠ 𝑥𝑘+1,

𝑓 (𝑘+1)(𝑥𝑘+1)
(𝑘 + 1)!

, 𝑥0 = 𝑥𝑘+1,
(6.1)

where, since 𝑓 [𝑥1, 𝑥2, . . . , 𝑥𝑘+1] does not depend on the order of its arguments, we assume
without loss of geniality that equal points are contiguous.
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Theorem 6.1. If 𝐵 ∈ C𝑛×𝑛 is upper bidiagonal then 𝐹 = 𝑓 (𝐵) is upper triangular with
𝑓𝑖𝑖 = 𝑓 (𝑡𝑖𝑖) and

(6.2) 𝑓𝑖 𝑗 = 𝑏𝑖,𝑖+1𝑏𝑖+1,𝑖+2 . . . 𝑏 𝑗−1, 𝑗 𝑓 [𝑏𝑖𝑖 , 𝑏𝑖+1,𝑖+1, . . . , 𝑏 𝑗 𝑗 ], 𝑗 > 𝑖.

Proof. The formula (6.2) is a special case of the formula for 𝑓 (𝑇), where 𝑇 is upper
triangular, given in Davis [8], Descloux [11], and Van Loan [45].

Lemma 2.1 is the special case of Theorem 6.1 with 𝑓 (𝑥) = 1/𝑥. Since 𝑓 [𝜆, 𝜆, . . . , 𝜆] =
𝑓 (𝑛−1)(𝜆)/(𝑛 − 1)!, another special case is the formula for a function of an 𝑚 × 𝑚 Jordan
block [29, sec. 1.2]

(6.3) 𝑓



𝜆 1

𝜆
. . .
. . . 1

𝜆


 =


𝑓 (𝜆) 𝑓 ′(𝜆) . . .

𝑓 (𝑚−1)(𝜆)
(𝑚 − 1)!

𝑓 (𝜆)
. . .

...

. . . 𝑓 ′(𝜆)
𝑓 (𝜆)


.

Yet another special case is

𝑓



𝜆1 1

𝜆2
. . .

. . . 1
𝜆𝑛




1𝑛

= 𝑓 [𝜆1, 𝜆2, . . . , 𝜆𝑛],

which is a result of Opitz [40] and is used in computing divided differences of the exponential
by McCurdy, Ng, and Parlett [37].

A natural question is whether a function of a nonnegative bidiagonal matrix is totally
nonnegative. For the exponential, the answer is yes.

Theorem 6.2. If 𝐵 ∈ R𝑛×𝑛 is a nonnegative bidiagonal matrix then e𝐵 is totally nonneg-
ative.

Proof. Consider the formula [29, sec. 10.1] e𝐴 = lim𝑚→∞(𝐼 + 𝐴/𝑚)𝑚, valid for any 𝐴,
where 𝑚 ∈ Z. For nonnegative bidiagonal 𝐵, 𝐼 + 𝐵/𝑚 ≥ 0 for all 𝑚 > 0, so by Theorem 5.2
𝐼 + 𝐵/𝑚 is totally nonnegative and therefore 𝑋𝑚 = (𝐼 + 𝐵/𝑚)𝑚 is totally nonnegative for
all 𝑚 > 0 by Theorem 5.1. Suppose that lim𝑚→∞ 𝑋𝑚 is not totally nonnegative, so that
some submatrix with indices (𝛼, 𝛽) has negative determinant. Let 𝑥𝑚 = det(𝑋𝑚(𝛼, 𝛽)). Then
lim𝑚→∞ 𝑥𝑚 < 0 but 𝑥𝑚 > 0 for all 𝑚, which is a contradiction, so e𝐵 is totally nonnegative.

Note that Theorem 6.2 does not generalize to wider bandwidths, as the example

exp

([ 1 1 1
1 1

1

])
=

[ e e 3e/2
e e

e

]
shows, since the (1 : 2, 3: 4) submatrix has negative determinant.

7. Upper Triangular Toeplitz matrices. Upper triangular Toeplitz matrices 𝑇 ∈ C𝑛×𝑛
can be written in the form

𝑇 =


𝑡0 𝑡1 . . . 𝑡𝑛−1

𝑡0
. . .

...
. . . 𝑡1

𝑡0


=

𝑛∑︁
𝑗=1

𝑡 𝑗−1𝑁
𝑗−1,
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where 𝑁 is upper bidiagonal with a superdiagonal of ones:

𝑁 =


0 1

0
. . .
. . . 1

0

 ,
Note that 𝑁𝑛 = 0. It follows that the product of two upper triangular Toeplitz matrices is again
upper triangular Toeplitz and that upper triangular Toeplitz matrices commute. Furthermore,
since 𝑓 (𝑇) is a polynomial in 𝑇 , it follows that 𝑓 (𝑇) is also upper triangular and Toeplitz.
Note that as a special case, if 𝐵 is a Toeplitz bidiagonal matrix with 𝑏𝑖𝑖 = 𝑏 and 𝑏𝑖,𝑖+1 = 𝑐

then Theorem 6.1 gives 𝑓 (𝐵)𝑖 𝑗 = 𝑐 𝑗−𝑖 𝑓 [𝑏, 𝑏, . . . , 𝑏] = 𝑐 𝑗−𝑖 𝑓 ( 𝑗−𝑖)(𝑏)/( 𝑗 − 𝑖)!, of which (6.3)
is a special case.

8. Exploiting Factorizations Into Products of Bidiagonal Matrices. In this section we
show how factorizations involving bidiagonal matrices or their inverses can provide valuable
information about particular matrices.

8.1. The Frank Matrix. In 1958 Frank [20] reported that his algorithms had difficulty
computing accurately the smaller eigenvalues of the 𝑛 × 𝑛 upper Hessenberg matrix

𝐹𝑛 =



𝑛 𝑛 − 1 𝑛 − 2 . . . 2 1
𝑛 − 1 𝑛 − 1 𝑛 − 2 . . . 2 1

0 𝑛 − 2 𝑛 − 2 . . . 2 1
... 0

. . .
. . .

... 1
...

... . . . 2 2 1
0 0 . . . 0 1 1


.

Wilkinson [47, sec. 8] [48, pp. 92–93] showed that the difficulties are caused by the sensitivity
of the eigenvalues to perturbations in the matrix, which can be measured by the condition
number of a simple eigenvalue 𝜆: 𝜅2(𝜆) = ∥𝑦∥2∥𝑥∥2/|𝑦∗𝑥 |, where 𝑥 and 𝑦 are right and left
eigenvectors, respectively, corresponding to 𝜆. The eigenvalues are known to be real and
positive, and they can be expressed in terms of the zeros of Hermite polynomials [13], [46].
However, in none of these references is it shown that the eigenvalues are distinct, which is
necessary for the eigenvalue condition numbers to be defined.

If we subtract row 𝑘 +1 from row 𝑘 for 𝑘 = 1: 𝑛−1, we obtain a lower bidiagonal matrix.
For 𝑛 = 4 this transformation can be written

1 −1
1 −1

1 −1
1




4 3 2 1
3 3 2 1

2 2 1
1 1

 =


1
3 1

2 1
1 1

 ,
and in general we have

𝐹𝑛 = 𝑇𝑛(−1)−1


1

𝑛 − 1 1
𝑛 − 2 1

. . .
. . .

1 1


≡ 𝑇𝑛(−1)−1𝐿,(8.1)

where 𝑇𝑛 is defined in (1.2). This is equivalent to a factorization noted by Rutishauser [43,
sec. 9]. Note that this is a 𝑈𝐿 factorization, not an LU factorization, and it takes advantage
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of the rank-1 nature of the upper triangle of 𝐹𝑛. This factorization shows that the inverse
𝐹−1
𝑛 = 𝐿−1𝑇𝑛(−1) is lower Hessenberg with integer entries and that det(𝐹𝑛) = 1. Furthermore,

𝐿 is totally nonnegative by Theorem 5.2 and 𝑇𝑛(−1)−1 = 𝑀(𝑇𝑛(−1))−1 is totally nonnegative
by Theorem 5.3, so 𝐹𝑛 is the product of two totally nonnegative matrices and so is totally
nonnegative by Theorem 5.1—a property that to our knowledge has not previously been noted.
Since 𝐹𝑛 is nonsingular, irreducible (being upper Hessenberg with nonzero subdiagonal),
and totally nonnegative it follows from by Theorem 5.6 that 𝐹𝑛 has distinct eigenvalues.
The distinctness of the eigenvalues also follows from some rather lengthy analysis of the
characteristic polynomial in [38, Thm. 2.5].

Frank discussed two matrices in his paper. The other matrix is obtained from 𝐴𝑛 =

(min(𝑖, 𝑗)) ∈ R𝑛×𝑛 by taking the rows and columns in reverse order. We will focus on 𝐴𝑛. For
example,

𝐴4 =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 .
The determinant, the inverse, and the eigenvalues of 𝐴𝑛 can all be easily found by constructing
a factorization involving a bidiagonal matrix. Consider subtracting row 𝑘 − 1 from row 𝑘 for
𝑘 = 𝑛 : −1 : 2. For 𝐴4 this yields

1
−1 1

−1 1
−1 1




1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 =


1 1 1 1
1 1 1

1 1
1

 .
In general, 𝑇𝑛(−1)𝑇 𝐴𝑛 = 𝑈, where 𝑈 is the upper triangular matrix of 1s. Hence 𝐴𝑛 =

𝑇𝑛(−1)−𝑇𝑈, which is a Cholesky factorization 𝐴𝑛 = 𝑈𝑇𝑈 since 𝑇𝑛(−1)−1 = 𝑈, which
shows that 𝐴𝑛 is symmetric positive definite. Furthermore, det(𝐴) = det(𝑈)2 = 1 and
𝐴−1
𝑛 = 𝑈−1𝑈−𝑇 = 𝑇𝑛(−1)𝑇𝑛(−1)𝑇 , which is tridiagonal since 𝑇𝑛 is upper bidiagonal. Now

𝑇𝑛(−1)−1 is totally nonnegative, as noted above; hence 𝐴𝑛 is the product of two totally
nonnegative matrices and therefore is totally nonnegative. By Theorem 5.6, the eigenvalues
of 𝐴𝑛 are distinct. In fact, 𝐴−1

𝑛 is the almost-Toeplitz tridiagonal matrix

𝐴−1
𝑛 =



2 −1
−1 2 −1

−1
. . .

. . .
. . . 2 −1

−1 1


,

and its eigenvalues are [16], [23, Chap. 7] (and as given by Frank)

𝜇𝑘 = 2
(

1 + cos
(

2𝑘𝜋
2𝑛 + 1

))
, 𝑘 = 1: 𝑛.

The eigenvalues of 𝐴𝑛 are the reciprocals of the 𝜇𝑘 .
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8.2. The Kac–Murdock–Szegö Matrix. The Kac–Murdock–Szegö matrix is the sym-
metric Toeplitz matrix, depending on a single parameter 𝜌 ∈ R,

(8.2) 𝐴𝑛(𝜌) =



1 𝜌 𝜌2 . . . 𝜌𝑛−1

𝜌 1 𝜌 . . . 𝜌𝑛−2

𝜌2 𝜌 1
. . .

...
...

...
. . .

. . . 𝜌

𝜌𝑛−1 𝜌𝑛−2 . . . 𝜌 1


∈ R𝑛×𝑛.

It was considered by Kac, Murdock, and Szegö [33, p. 784 ff.], who investigated its spectral
properties. It arises in the autoregressive AR(1) model in statistics and signal processing.

It is straightforward to verify that 𝐴𝑛 has a factorization 𝐴𝑛 = 𝐿𝐷𝐿𝑇 with

(8.3) 𝐿 = 𝑇𝑛(−𝜌)−𝑇 , 𝐷 = diag(1, 1 − 𝜌2, 1 − 𝜌2, . . . , 1 − 𝜌2).

This factorization reveals several properties.
(1) det(𝐴𝑛(𝜌)) = (1 − 𝜌2)𝑛−1.
(2) For 𝜌 ≠ ±1, 𝐴𝑛 is nonsingular and 𝐴𝑛(𝜌)−1 = 𝑇𝑛(−𝜌)𝐷−1𝑇𝑛(−𝜌)𝑇 is the tridiagonal

(but not Toeplitz) matrix

(8.4) 𝐴𝑛(𝜌)−1 =
1

1 − 𝜌2



1 −𝜌
−𝜌 1 + 𝜌2 −𝜌

−𝜌 1 + 𝜌2 . . .
. . .

. . .
. . .

−𝜌 1 + 𝜌2 −𝜌
−𝜌 1


.

(3) For 0 ≤ 𝜌 ≤ 1, 𝑇𝑛(−𝜌) = 𝑀(𝑇𝑛(−𝜌)) and so by Theorem 5.3 𝑀(𝑇𝑛(−𝜌))−1 =

𝑇𝑛(−𝜌)−1 = 𝐿𝑇 is totally nonnegative, so 𝐴𝑛(𝜌) is the product of three totally nonnegative
matrices and is therefore totally nonnegative. For 0 < 𝜌 < 1, 𝐴𝑛(𝜌) is also nonsingular
and irreducible, so the eigenvalues are distinct by Theorem 5.6. Since 𝐴𝑛(𝜌) = 𝛴𝐴𝑛(−𝜌)𝛴
for 𝛴 in (3.4), 𝐴𝑛(𝜌) is similar to 𝐴𝑛(−𝜌) and therefore 𝐴𝑛(𝜌) has distinct eigenvalues for
0 ≠ 𝜌 ∈ (−1, 1).

8.3. The Pascal Matrix. The Pascal matrix 𝑃𝑛 ∈ R𝑛×𝑛, defined in (4.10), contains the
rows of Pascal’s triangle along the antidiagonals. For example:

𝑃5 =


1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70


.

This matrix is much-studied and most analyses involve the use of combinatorial identities.
A number of key properties can be obtained from a factorization of 𝑃𝑛 into a product of
bidiagonal matrices.

The key observation is that 𝑃𝑛 can be reduced to upper triangular form by repeatedly
subtracting a row from the row below. For 𝑛 = 5, with 𝐿𝑘(−1) denoting the unit lower
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bidiagonal matrix with −1s in subdiagonal elements (𝑘 + 1, 𝑘), . . . , (𝑛 − 1, 𝑛),

𝐿4(−1)𝐿3(−1)𝐿2(−1)𝐿1(−1)𝑃5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 −1 1




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 −1 1 0
0 0 0 −1 1


×


1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1


𝑃5

=


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1


= 𝑅.

In general, we have

𝑃𝑛 = 𝐿1(−1)−1𝐿2(−1)−1 . . . 𝐿𝑛−1(−1)−1𝑅𝑛 = 𝐿𝑛𝑅𝑛,

where 𝐿𝑛 is unit lower triangular and 𝑅𝑛 is unit upper triangular. By the uniqueness of the
LU and Cholesky factorizations of a positive definite matrix we must have 𝐿𝑛 = 𝑅𝑇

𝑛 , so
𝑃𝑛 = 𝑅𝑇

𝑛 𝑅𝑛, and it can be shown that 𝑅𝑛 = 𝐿𝑛−1(1)𝑇𝐿𝑛−2(1)𝑇 . . . 𝐿1(1)𝑇 , which contains the
binomial coefficients downs its columns.

This is the factorization (5.4) in Theorem 5.4: all the parameters are equal to 1.
We can make several deductions.
(1) 𝑃𝑛 is symmetric positive definite.
(2) det(𝑃𝑛) = 1.
(3) 𝑃𝑛 and 𝑅𝑛 are both totally nonnegative, since they are products of bidiagonal matrices

𝐿𝑖(1), each of which is totally nonnegative by Theorem 5.2. Hence the eigenvalues of 𝑃𝑛 are
distinct by Theorem 5.6.

(4) The matrix 𝑆𝑛 = 𝛴𝑅𝑛 (where 𝛴 is defined in (3.4)) is involutory, that is, 𝑆2
𝑛 = 𝐼.

This can be proved with the aid of the bidiagonal factorization but we omit the rather tedious
details. Since 𝑃𝑛 = 𝑆𝑇𝑛 𝑆𝑛, we have 𝑃−1

𝑛 = 𝑆−1
𝑛 𝑆−𝑇𝑛 = 𝑆𝑛𝑆

𝑇
𝑛 = 𝑆−𝑇𝑛 𝑃𝑛𝑆

𝑇
𝑛 , so 𝑃−1

𝑛 is similar to
𝑃𝑛, which means that the eigenvalues of 𝑃𝑛 occur in reciprocal pairs. It follows, in particular,
that ∥𝑃𝑛∥2 = ∥𝑃−1

𝑛 ∥2 and so 𝜅2(𝑃𝑛) = ∥𝑃𝑛∥2
2.

It is also interesting to note that, as an instance of Theorem 6.2, the Cholesky factor 𝑅𝑛

is the exponential of a bidiagonal matrix: 𝑅𝑛 = e𝐶𝑛 , where [2], [14]

𝐶𝑛 =



0 1
0 2

. . .
. . .

0 𝑛 − 1
0


∈ R𝑛×𝑛.

The matrix 𝐶𝑛 is called the creation matrix in [1], [2] because of its role in generating matrix
representations of polynomials and providing simple proofs of identities.
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8.4. Tridiagonal Matrices from Partial Differential Equations. Consider a linear
system 𝐴𝑥 = 𝑏, where 𝐴 = 𝐷 + 𝐿 + 𝑈 with 𝐷 = diag(𝐴) and 𝐿 and 𝑈 the strictly lower
triangular and strictly upper triangular parts of 𝐴, respectively. The powers of the matrix
𝐵 = −(𝐷 + 𝐿)−1𝑈 govern the convergence of the Gauss–Seidel iteration. Note that 𝐵 is
nonsymmetric and so in general can have complex eigenvalues.

Suppose 𝐴 is tridiagonal with negative diagonal elements and nonnegative elements
on the superdiagonal and subdiagonal, as is frequently the case in discretizations of partial
differential equations, in which 𝐴 is typically a Toeplitz matrix. For example,

𝐴 =


−2 1
1 −2 1

1 −2 1
1 −2

 ⇒ 𝐵 =


0 1/2 0 0
0 1/4 1/2 0
0 1/8 1/4 1/2
0 1/16 1/8 1/4

 .
The matrix (−𝐷−𝐿)−1 is totally nonnegative by Theorem 5.3, because −𝐷−𝐿 = 𝑀(−𝐷−𝐿),
and 𝑈 is totally nonnegative by Theorem 5.2. Hence 𝐵 = (−𝐷 − 𝐿)−1𝑈 is lower Hessenberg
and totally nonnegative. Furthermore, 𝐵 is irreducible if the subdiagonal of 𝐿 and the
superdiagonal of 𝑈 are nonzero. Then Theorem 5.6 shows that the eigenvalues of 𝐵 are
real and nonnegative and the positive eigenvalues are distinct. The eigenvalues of 𝐵 can be
deduced from the analysis of Young [49], [50, Chap. 5].

Acknowledgement. I thank Massimiliano Fasi and Xiaobo Liu for their helpful com-
ments on a draft manuscript.
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