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Abstract
A cross-shaped matrix X ∈ Cn×n has nonzero elements located on the main

diagonal and the anti-diagonal, so that the sparsity pattern has the shape of a
cross. It is shown that X can be factorized into products of identity-plus-rank-two
matrices and can be symmetrically permuted to block diagonal form with 2 × 2
diagonal blocks and, if n is odd, a 1 × 1 diagonal block. Exploiting these prop-
erties we derive explicit formulae for its determinant, inverse, and characteristic
polynomial.

1 Introduction

In this note we study some properties of a class of cross-shaped matrices, which
can be viewed as a generalization of a type of compound Jacobi rotation matri-
ces used in the parallel Jacobi algorithm for symmetric eigenvalue problems [2,
sect. 5.5], [3]. Any matrix X ∈ Cn×n in the class has the form

X =



x11 x1,2k+1

x22 x2,2k

. . . ...

xk+1,k+1

... . . .

x2k,2 x2k,2k

x2k+1,1 x2k+1,2k+1


, (1.1)

for n = 2k + 1, k ∈ N+, and, if n = 2k,

X =



x11 x1,2k

x22 x2,2k−1

. . . ...

xkk xk,k+1

xk+1,k xk+1,k+1

... . . .

x2k−1,2 x2k−1,2k−1

x2k,1 x2k,2k


. (1.2)
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To the best of our knowledge, this class of matrices were first exploited in [1,
sect. 5.8] for studying eigenvalues of real symmetric matrices. Any real symmet-
ric matrix A can be transformed to a symmetric cross-shaped matrix through
orthogonal similarity transformations that preserve the eigenvalues of A, which
then can be calculated exploiting the cross-shaped form by solving uncoupled
quadratic characteristic equations.

2 Factorization into products of identity-plus-rank-two ma-
trices

Let us first consider the case where X in (1.1) has order n = 2k+1. The matrix
can be factorized as

X =

 x11 x1,2k+1

I2k−1

x2k+1,1 x2k+1,2k+1

1 0
X(2 : 2k, 2: 2k)

0 1

 , (2.1)

where I2k−1 denotes the identity matrix of order 2k − 1, and the submatrix
X(2 : 2k, 2: 2k) of order 2k − 1 has the same cross-shape form so can be fac-
torized in the same way as

X(2 : 2k, 2: 2k) =

 x22 x2,2k

I2k−3

x2k,2 x2k,2k

1 0
X(3 : 2k − 1, 3: 2k − 1)

0 1

 ,

where the submatrix X(3 : 2k − 1, 3: 2k − 1) of order 2k − 3 has the same cross-
shape form. This process can be continued k times, until we obtain in the (2, 2)
block of the right-hand factor the matrix xkk xk,k+2

xk+1,k+1

xk+2,k xk+2,k+2

 ≡X(k : k + 2, k : k + 2)

=

 xkk xk,k+2

1
xk+2,k xk+2,k+2

1 0
xk+1,k+1

0 1

 .
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On completion of the process, we obtain a factorization

X =

 x11 x1,2k+1

I2k−1

x2k+1,1 x2k+1,2k+1



1 0

x22 x2,2k

I2k−3

x2k,2 x2k,2k

0 1

 · · ·


Ik−1 0

xkk xk,k+2

1
xk+2,k xk+2,k+2

0 Ik−1


Ik xk+1,k+1

Ik

 , (2.2)

and each of the first k factors is a rank-2 perturbation of the identity matrix and
the last one is a rank-1 perturbation of the identity matrix.

For the case where X in (1.2) has order n = 2k, it is easy to show by using
the technique above that the factorization has a similar form to (2.2) except that
the last factor is a rank-2 perturbation of the identity matrix:

X =

 x11 x1,2k

I2k−2

x2k,1 x2k,2k



1 0

x22 x2,2k−1

I2k−4

x2k−1,2 x2k−1,2k−1

0 1

 · · ·


Ik−2 0

xk−1,k−1 xk−1,k+2

I2
xk+2,k−1 xk+2,k+2

0 Ik−2



Ik−1

xkk xk,k+1

xk+1,k xk+1,k+1

Ik−1

 ,

(2.3)

where the ith factor is the identity matrix with the intersection of its ith and
(2k + 1− i)st rows and columns replaced by that of X.

The factorizations (2.2) and (2.3) can be exploited to derive many important
properties of the cross-shaped matrices, as we will show in the next sections.
Before that we now derive a formula for the determinant and inverse of the
matrix factors in these factorizations.

Consider first the 2k × 2k matrix

Yi :=


Ii−1 0

xii xi,2k+1−i

I2k−2i

x2k+1−i,i x2k+1−i,2k+1−i

0 Ii−1

 , (2.4)
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which is the identity matrix I2k with the intersection of its ith and (2k+1− i)st
rows and columns replaced by that of X. We can form

PiYiPi =


Ii−1 0

xii xi,2k+1−i

x2k+1−i,i x2k+1−i,2k+1−i

I2k−2i

0 Ii−1

 =: Ỹi, (2.5)

where Pi is the elementary permutation matrix (which is symmetric) formed by

swapping the (i+1)st and (2k+1−i)st columns of the identity matrix I2k, and Ỹi

is in block diagonal form so its determinent and inverse can be easily computed.
It follows from (2.5) that

det(Yi) = det(Pi) det(Ỹi) det(Pi) = det(Ỹi)

= det

([
xii xi,2k+1−i

x2k+1−i,i x2k+1−i,2k+1−i

])
= xiix2k+1−i,2k+1−i − xi,2k+1−ix2k+1−i,i =: αi (2.6)

and, if αi ̸= 0,

Y −1
i = PiỸ

−1
i Pi = Pi


Ii−1 0

x2k+1−i,2k+1−i/αi −xi,2k+1−i/αi

−x2k+1−i,i/αi xii/αi

I2k−2i

0 Ii−1

Pi

=


Ii−1 0

x2k+1−i,2k+1−i/αi −xi,2k+1−i/αi

I2k−2i

−x2k+1−i,i/αi xii/αi

0 Ii−1

 , (2.7)

which shows that the computation of the determinent and inverse of Yi only
involves that of a 2× 2 principal submatrix Yi([i, 2k + 1− i], [i, 2k + 1− i]).

Note that the determinant and inverse of the first k factors of size (2k+ 1)×
(2k + 1) in (2.2) are easily seen to have the same form as (2.6) and (2.7) (albeit
with slightly different indices) since these factors have exactly the same form as
Yi in (2.4). Specifically, for the (2k + 1)× (2k + 1) matrix

Zi :=


Ii−1 0

xii xi,2k+2−i

I2k+1−2i

x2k+2−i,i x2k+2−i,2k+2−i

0 Ii−1

 (2.8)
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the determinant and inverse are given by

det(Zi) = det

([
xii xi,2k+2−i

x2k+2−i,i x2k+2−i,2k+2−i

])
= xiix2k+2−i,2k+2−i − xi,2k+2−ix2k+2−i,i =: βi (2.9)

and, if βi ̸= 0,

Z−1
i =


Ii−1 0

x2k+2−i,2k+2−i/βi −xi,2k+2−i/βi

I2k+1−2i

−x2k+2−i,i/βi xii/βi

0 Ii−1

 . (2.10)

3 Permutation into block diagonal form

Indeed, more can be said about the cross-shaped matrices X: one can always
permute X into block diagonal form PXP T with 2 × 2 diagonal blocks and a
1× 1 diagonal block if n is odd, where P is a permutation matrix. To illustrate
this, we again start from the definitions (1.1) and (1.2) of X. Consider first the
case n = 2k. We have, using the elementary permutation matrices Pi defined
in (2.5),

P1XP1 =


x11 x1,2k

x2k,1 x2k,2k

X(3 : 2k − 2, 3 : 2k − 2)
x2k−1,2k−1 x2k−1,2

x2,2k−1 x22


≡

B1

X(3 : 2k − 2, 3: 2k − 2)
C1

 ,

where we have defined the 2× 2 matrices

Bi :=

[
x2i−1,2i−1 x2i−1,2k+2−2i

x2k+2−2i,2i−1 x2k+2−2i,2k+2−2i

]
, Ci :=

[
x2k+1−2i,2k+1−2i x2k+1−2i,2i

x2i,2k+1−2i x2i,2i

]
,

and then

P3P1XP1P3 =


B1

B2

X(5 : 2k − 4, 5: 2k − 4)
C2

C1

 .
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Then we apply a similarity transformation with P5 to the resulting matrix to
exchange the second and last columns and rows of the submatrix X(5 : 2k −
4, 5: 2k − 4). This process can be continued ⌊n/4⌋ times until we obtain (for
either n = 4m or n = 4m+2, m ∈ N+, we need m two-side permutations applied
to X in total)

PXP T =

{
diag(B1, . . . , Bm, Cm, . . . , C1), n = 4m,

diag(B1, . . . , Bm, X(k : k + 1, k : k + 1), Cm, . . . , C1), n = 4m+ 2,

where P := P2m−1 · · ·P3P1 (note that P T = P T
1 P

T
3 · · ·P T

2m−1 = P1P3 · · ·P2m−1

since Pi = P T
i ) is a permutation matrix.

The case for n = 2k + 1 is rather similar but can be slightly different in the
final step. Starting with the X from (1.1), we have

Q1XQ1 =


x11 x1,2k+1

x2k+1,1 x2k+1,2k+1

X(3 : 2k − 1, 3 : 2k − 1)
x2k,2k x2k,2

x2,2k x22


≡

E1

X(3 : 2k − 2, 3: 2k − 2)
G1

 ,

where Qi is the elementary permutation matrix (which is symmetric) formed by
swapping the (i+1)st and (2k+2− i)st columns of the identity matrix I2k+1 and
we have defined the 2× 2 matrices

Ei :=

[
x2i−1,2i−1 x2i−1,2k+3−2i

x2k+3−2i,2i−1 x2k+3−2i,2k+3−2i

]
, Gi :=

[
x2k+2−2i,2k+2−2i x2k+2−2i,2i

x2i,2k+2−2i x2i,2i

]
,

and then

Q3Q1XQ1Q3 =


E1

E2

X(5 : 2k − 3, 5: 2k − 3)
G2

G1

 .

Then we apply a two-side permutation with Q5 to the resulting matrix to ex-
change the second and last columns and rows of the submatrixX(5 : 2k−3, 5: 2k−
3). We can continue this process ⌊n/4⌋ times to arrive at

QXQT =

{
diag(E1, . . . , Em, xk+1,k+1, Gm, . . . , G1), n = 4m+ 1,

diag(E1, . . . , Em, X(k : k + 2, k : k + 2), Gm, . . . , G1), n = 4m+ 3,
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where Q := Q2m−1 · · ·Q3Q1. So for the case of n = 4m+ 1 the right-hand side is
already in the desired form, while for the other case one more transformation is
needed for the central 3× 3 block X(k : k + 2, k : k + 2):

Q̃XQ̃T = diag(E1, . . . , Em, Em+1, xk+1,k+1, Gm, . . . , G1),

where Q̃ := Q2m+1Q. To summarize, for n = 4m + 1 we need m two-side
permutations and for n = 4m+3 the number of permutations required is m+1,
and we have

QXQT = diag(E1, . . . , Em, xk+1,k+1, Gm, . . . , G1), n = 4m+ 1,

Q̃XQ̃T = diag(E1, . . . , Em, Em+1, xk+1,k+1, Gm, . . . , G1), n = 4m+ 3,

where Q = Q2m−1 · · ·Q3Q1 and Q̃ = Q2m+1Q are permutation matrices.
We have shown the cross-shaped matrix X is unitarily similar to a block

diagonal matrix with 2 × 2 blocks and a 1 × 1 block if n is odd. This actually
provides a more straightforward proof to the formulas of the determinant and
eigenvalues of X. It is not hard to see from the discussion above that any powers
of X has the same shape (including negative powers if X is nonsingular), as we
are essentially powering the symmetrically permuted block diagonal form and
then recovering the permutation. Furthermore, with a similar argument we can
conclude that any matrix functions, for example, the matrix exponential and the
matrix logarithm, of X has the same cross-shaped form.

4 The determinant

From the factorizations (2.2), (2.3), using the explicit formulae (2.6), (2.9) for
each of the factors, it is straightforward to obtain the formula

det(X) =

{∏k
i=1(xiix2k+1−i,2k+1−i − xi,2k+1−ix2k+1−i,i) n = 2k,

xk+1,k+1

∏k
i=1(xiix2k+2−i,2k+2−i − xi,2k+2−ix2k+2−i,i), n = 2k + 1.

(4.1)

5 The inverse

We start by showing an important proerty of the factorizations of X discussed
in Section 2 which we will need later in this section. Again, let us consider the
case where X has order n = 2k+1 to illustrate. At the start of the factorization
process (2.1), we could alternatively form

X =

1 0
X(2 : 2k, 2: 2k)

0 1

 x11 x1,2k+1

I2k−1

x2k+1,1 x2k+1,2k+1

 ,
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(In fact, it is not hard to see that the two factor matrices on the right-hand side
commute) and, similarly, for the submatrix X(2 : 2k, 2: 2k) we can have

X(2 : 2k, 2: 2k) =

1 0
X(3 : 2k − 1, 3: 2k − 1)

0 1

 x22 x2,2k

I2k−3

x2k,2 x2k,2k

 .

This process can also be continued for k times, until we obtain xkk xk,k+2

xk+1,k+1

xk+2,k xk+2,k+2

 ≡X(k : k + 2, k : k + 2)

=

1 0
xk+1,k+1

0 1

 xkk xk,k+2

1
xk+2,k xk+2,k+2

 .

On completion of this process we obtain a factorization

X =

Ik xk+1,k+1

Ik



Ik−1 0

xkk xk,k+2

1
xk+2,k xk+2,k+2

0 Ik−1

 · · ·


1 0

x22 x2,2k

I2k−3

x2k,2 x2k,2k

0 1


 x11 x1,2k+1

I2k−1

x2k+1,1 x2k+1,2k+1

 , (5.1)

where the factors are in the reverse order of that in (2.2). Similarly, for the case
where X has order n = 2k, the alternative form of the factorization is

X =


Ik−1

xkk xk,k+1

xk+1,k xk+1,k+1

Ik−1



Ik−2 0

xk−1,k−1 xk−1,k+2

I2
xk+2,k−1 xk+2,k+2

0 Ik−2

 · · ·


1 0

x22 x2,2k−1

I2k−4

x2k−1,2 x2k−1,2k−1

0 1


 x11 x1,2k

I2k−2

x2k,1 x2k,2k

 . (5.2)
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Now assume that X is nonsingular. For n = 2k + 1, we invert both sides
of (2.2), using the explicit inversion formula (2.10) for Zi, to get

X−1 =

Ik xk+1,k+1

Ik

−1

Z−1
k Z−1

k−1 · · ·Z
−1
2 Z−1

1

=

Ik 1/xk+1,k+1

Ik



Ik−1 0

xk+2,k+2/βk −xk,k+2/βk

1
−xk+2,k/βk xkk/βk

0 Ik−1

 · · ·


1 0

x2k,2k/β2 −x2,2k/β2

I2k−3

−x2k,2/β2 x22/β2

0 1


x2k+1,2k+1/β1 −x1,2k+1/β1

I2k−1

−x2k+1,1/β1 x11/β1

 ,

whose right-hand side has exactly the same form as that of the factorization (5.1),
and so, by comparing them, we have

X−1 =



x2k+1,2k+1/β1 −x1,2k+1/β1

x2k,2k/β2 −x2,2k/β2

. . . ...

1/xk+1,k+1

... . . .

−x2k,2/β2 x22/β2

−x2k+1,1/β1 x11/β1


,

where the βi, i = 1: k, are defined in (2.9).
Similarly, for n = 2k, we invert both sides of (2.3), using the explicit inversion

formula (2.7) for Yi, to obtain

X−1 =Y −1
k Y −1

k−1 · · ·Y
−1
2 Y −1

1

=


Ik−1

xk+1,k+1

αk

−xk,k+1

αk

−xk+1,k

αk

xkk

αk

Ik−1



Ik−2 0

xk+2,k+2

αk−1
−xk−1,k+2

αk−1

I2
−xk+2,k−1

αk−1

xk−1,k−1

αk−1

0 Ik−2

 · · ·


1 0

x2k−1,2k−1/α2 −x2,2k−1/α2

I2k−4

−x2k−1,2/α2 x22/α2

0 1


 x2k,2k/α1 −x1,2k/α1

I2k−2

−x2k,1/α1 x11/α1

 ,
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whose right-hand side has exactly the same form as that of the factorization (5.2),
and so, by comparing them, we have

X−1 =



x2k,2k

α1
−x1,2k

α1x2k−1,2k−1

α2
−x2,2k−1

α2

. . . ...
xk+1,k+1

αk
−xk,k+1

αk

−xk+1,k

αk

xkk

αk

... . . .

−x2k−1,2

α2

x22

α2

−x2k,1

α1

x11

α1


,

where the αi, i = 1: k are defined as in (2.6).
An alternative approach to get the inverse is via the adjugate of X, which is

defined by adj(X) =
(
(−1)1+j det(Xji)

)
, where Xji denotes the submatrix of X

obtained by deleting row j and column i. Since all Xji are in the cross-shaped
form, the right-hand side of the formula X−1 = adj(X)/ det(X) essentially only
involves the determinant of cross-shaped matrices, for which we have already
obtained explicit formulas.

6 Eigenvalues

Let us first consider the case where n = 2k. To study the eigenvalues of X we
consider its characteristic polynomial, which, by exploiting the factorization (2.3),
is the deterninant of

X − λI =

x11 − λ x1,2k

I2k−2

x2k,1 x2k,2k − λ



1 0

x22 − λ x2,2k−1

I2k−4

x2k−1,2 x2k−1,2k−1 − λ
0 1



· · ·


Ik−1

xkk − λ xk,k+1

xk+1,k xk+1,k+1 − λ
Ik−1

 ,

and each of the factors on the right-hand side is in the form of (2.4). So using
the determinantal formula (2.6), we obtain

det(X − λI) =
k∏

i=1

(
(xii − λ)(x2k+1−i,2k+1−i − λ)− xi,2k+1−ix2k+1−i,i

)
.

Similarly, for n = 2k + 1, using (2.2), (2.8), and (2.9) we have

det(X−λI) = (xk+1,k+1−λ)
k∏

i=1

(
(xii−λ)(x2k+2−i,2k+2−i−λ)−xi,2k+2−ix2k+2−i,i

)
.
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Hence the eigenvalues ofX are the roots of these ⌊n/2⌋ scalar quadratic equations.
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