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Abstract

A cross-shaped matrix X € C"*™ has nonzero elements located on the main
diagonal and the anti-diagonal, so that the sparsity pattern has the shape of a
cross. It is shown that X can be factorized into products of identity-plus-rank-two
matrices and can be symmetrically permuted to block diagonal form with 2 x 2
diagonal blocks and, if n is odd, a 1 x 1 diagonal block. Exploiting these prop-
erties we derive explicit formulae for its determinant, inverse, and characteristic
polynomial.

1 Introduction

In this note we study some properties of a class of cross-shaped matrices, which
can be viewed as a generalization of a type of compound Jacobi rotation matri-
ces used in the parallel Jacobi algorithm for symmetric eigenvalue problems [2,
sect. 5.5], [3]. Any matrix X € C"*" in the class has the form

11 T1,2k+1 i
T22 X222k
X — Lh+1,k+1 5 (11)
Tok,2 Lok 2k
LL2k+1,1 Lok+1,2k+1_]
for n =2k + 1, k € N*, and, if n = 2k,
[ 211 X1,2k ]
X992 T2 2k—1
X = Lkk Ll k+1 (1 2)
Tht1,k Thilk+1
Tok—1,2 Tok—1,2k—1
LT2k,1 Lok, 2k |
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To the best of our knowledge, this class of matrices were first exploited in [I,
sect. 5.8] for studying eigenvalues of real symmetric matrices. Any real symmet-
ric matrix A can be transformed to a symmetric cross-shaped matrix through
orthogonal similarity transformations that preserve the eigenvalues of A, which
then can be calculated exploiting the cross-shaped form by solving uncoupled
quadratic characteristic equations.

2 Factorization into products of identity-plus-rank-two ma-
trices

Let us first consider the case where X in (1.1) has order n = 2k + 1. The matrix
can be factorized as

x11 X1,2k+1 1 0
X = Ioi_q X(2: 2k,2: 2k) , (2.1)
Tok+1,1 Toky1,2k+1 | |0 1

where Io, ;1 denotes the identity matrix of order 2k — 1, and the submatrix
X(2: 2k,2: 2k) of order 2k — 1 has the same cross-shape form so can be fac-
torized in the same way as

X2 Took | |1 0
X(2: 2k,2: 2k) = Lo X(3:2k—1,3:2k—1) |,

Tok 2 Tokok | |0 1

where the submatrix X (3: 2k — 1,3: 2k — 1) of order 2k — 3 has the same cross-
shape form. This process can be continued & times, until we obtain in the (2, 2)
block of the right-hand factor the matrix

Tkk T k+2
Th+1,k+1 EX(k k+27k k+2)
Ti12k Tp42 k42
Tk T kt2 1 0
= 1 Tht1,k+1
Thi2.k Tpyonps2]| [0 1



On completion of the process, we obtain a factorization

1 0

[ T11 T1,2k+1 X22 X2 2k

X = Lop—y Iop_3

| L2k+1,1 T2k41,2k+1 L2k,2 Lok 2k
0 1

(114 0

Tk Tl k+2 I,
1 Tl+1,k+1 s (22)
Tpi2k Lle+2,k+2 I
| 0 Iy

and each of the first k factors is a rank-2 perturbation of the identity matrix and
the last one is a rank-1 perturbation of the identity matrix.

For the case where X in (1.2) has order n = 2k, it is easy to show by using
the technique above that the factorization has a similar form to (2.2) except that
the last factor is a rank-2 perturbation of the identity matrix:

1 0
x11 X1,2k X22 X2 2k—1
X = Io—o Y
Lok T2k, 2k T2k—1,2 T2k—1,2k—1
0 1
Ii_o 0 I
k—1
Th—1,k—1 Lh—1,k+2
I Tk T k+1
2 )
Tr+1,k Thk+1,k+1
Th+2,k—1 Tk4-2,k+2 I
-1
| 0 Iy
(2.3)

where the ith factor is the identity matrix with the intersection of its ¢th and
(2k + 1 — 4)st rows and columns replaced by that of X.

The factorizations (2.2) and (2.3) can be exploited to derive many important
properties of the cross-shaped matrices, as we will show in the next sections.
Before that we now derive a formula for the determinant and inverse of the
matrix factors in these factorizations.

Consider first the 2k x 2k matrix

Ii 4 0
i i 2k+1—i
Y, = Lop_o; , (2.4)

Lok41—iy Lok41—4,2k+1—i
0 Iy



which is the identity matrix 5, with the intersection of its ith and (2k 4+ 1 —7)st
rows and columns replaced by that of X. We can form

[i—l 0
Lig L4, 2k+1—i _
PY,P;, = Tok41—ii  L2k+1—i,2k+1—i =Y, (2-5)

Lop—o;
0 I 4

where P; is the elementary permutation matrix (which is symmetric) formed by

swapping the (i+1)st and (2k+1—1)st columns of the identity matrix Io;, and Y;

is in block diagonal form so its determinent and inverse can be easily computed.
It follows from (2.5) that

det(Y;) = det(P;) det(Y;) det(F;) = det(Y;)

— det L Ti2k4+1—i
Lok+1—ii  L2k41—i,2k+1—i

= TjiTok41—i2k+1—i — Li2k+1—iT2k41—ii = O (2.6)
and, if oy # 0,
]i—l 0
" $2k+1—i,2k+1—z‘/az‘ —$¢,2k+1—i/04i
-1 -1
Y; = PiYi P, =P —$2k+1—i,i/04i %’i/Oéi P,
Lo
0 Iy
I 0
x2k+17i,2k+17i/05i —ﬂfi,zkﬂﬂ'/%
= Iop—o; ) (2-7)
—$2k+1—z‘,i/04i $z‘z‘/az‘
0 Iy

which shows that the computation of the determinent and inverse of Y; only
involves that of a 2 x 2 principal submatrix Y;([¢, 2k + 1 — ], [¢, 2k + 1 — 1]).

Note that the determinant and inverse of the first k factors of size (2k + 1) x
(2k + 1) in (2.2) are easily seen to have the same form as (2.6) and (2.7) (albeit
with slightly different indices) since these factors have exactly the same form as
Y; in (2.4). Specifically, for the (2k 4 1) x (2k + 1) matrix

Lii i 2k+2—1
Zi = Dopy1-2i (2-8)
Lok42—ii L2k42—i,2k+2—i
0 I 4



the determinant and inverse are given by

det(Zi) — det ({ L Ti2k4+2—i ])

Tok+2—ii  L2k42—i,2k+2—1i

= X5 X2k+2—i2k+2—i — Lj2k4+2—iT2k+42—i5 —- Bi (2-9)
and, if 8; # 0,
I 0
$2k+2—i,2k+2—i/5¢ —Il’i,2k+2—i/5i
Zz-_l - [2k+172i . (210)
_$2k+2—i,i/ﬂi iUu/Bz
0 Ii 4

3 Permutation into block diagonal form

Indeed, more can be said about the cross-shaped matrices X: one can always
permute X into block diagonal form PXPT with 2 x 2 diagonal blocks and a
1 x 1 diagonal block if n is odd, where P is a permutation matrix. To illustrate
this, we again start from the definitions (1.1) and (1.2) of X. Consider first the
case n = 2k. We have, using the elementary permutation matrices P; defined
in (2.5),

[ Z11 L1,2k
Tok1 T2k 2k
PXP = X(3:2k—2,3:2k¢—2)
Tok—12k—1 T2k—12
L T2 2k—1 X22
_Bl
= X(3: 2k —2,3: 2k — 2) ,
= Cl
where we have defined the 2 x 2 matrices
B — T2i—1,2i—1 L2i—1,2k+2—2i C = Tok41—2i,2k+1—2i  L2k+1—2i,2
Lok+2-2i,2i—1 L2k4+2—2¢,2k+2—2i v T2i2k+1-2i X24,24
and then
By
By
PP X PP = X(5: 2k —4,5: 2k—4)
Cy
Ch



Then we apply a similarity transformation with Ps to the resulting matrix to
exchange the second and last columns and rows of the submatrix X (5: 2k —
4,5: 2k — 4). This process can be continued |n/4] times until we obtain (for
either n = 4m or n = 4m+2, m € N, we need m two-side permutations applied
to X in total)

PXPT— diag(Bl,...,Bm,C’m,...,C’l), n:4m,

~ \diag(By, ..., B, X(k: k+1,k: k+1),Cpn,...,C1), n=4m+2,
where P := Pgmfl"‘ngl (note that PT = P1TP3TP2Tm_1 = Plpg"'Pmel
since P; = PT') is a permutation matrix.

The case for n = 2k + 1 is rather similar but can be slightly different in the
final step. Starting with the X from (1.1), we have

T11 T1,2k+1
Tok+1,1  T2k+1,2k+1
L XQ = X(3:2k—1,3:2k:—1)
Lok2k L2k,2
| T2k  T22
_El
= X(3:2k—2,3:2k:—2) ,
L Gl

where @; is the elementary permutation matrix (which is symmetric) formed by
swapping the (i +1)st and (2k +2 —4)st columns of the identity matrix I and
we have defined the 2 x 2 matrices

B — T2i—1,2i—1 L2i—1,2k+3—2i G — Lok42-2i,2k+2—2i L2k+2—-2i,2i
= ;=

Lok+3-2i,2i—1 L2k+3—2i,2k+3—2i T2i,2k+2—2i X24,2i

and then
Ey
Fy
Q3Q1XQ1Q3: X(5 2]{?—3,5 2]{3—3)
G
Gy

Then we apply a two-side permutation with )5 to the resulting matrix to ex-
change the second and last columns and rows of the submatrix X (5: 2k—3,5: 2k—
3). We can continue this process |n/4]| times to arrive at

diag(El,--~,Em,$k+1,k+1,Gm,---,G1), n:4m+1,

QXQT =<
diag(Ey, ..., Epm, X(k: k+2,k: k+2),Gum,...,G1), n=4m+3,

6



where @ 1= Qa1 -+ - Q3Q1. So for the case of n = 4m + 1 the right-hand side is
already in the desired form, while for the other case one more transformation is
needed for the central 3 x 3 block X (k: k+2,k: k + 2):

QVX@/T = diag(El, e ,Em, Em—i—la $k+1,k+1, Gm, ey Gl),

where Qv = Qom1Q. To summarize, for n = 4m + 1 we need m two-side
permutations and for n = 4m + 3 the number of permutations required is m + 1,
and we have

QXQT - diag(E17 SR Em7xk+1,k+17 Gma ce 7G1)7 n = 4m + ]'7
@X@T - diag(Ely ey Em7 Em+17 Th+1,k+1, Gm7 sy Gl)v n = 4m + 37

where ) = Q9,1 - - - Q31 and CNQ = Q2m+1Q) are permutation matrices.

We have shown the cross-shaped matrix X is unitarily similar to a block
diagonal matrix with 2 x 2 blocks and a 1 x 1 block if n is odd. This actually
provides a more straightforward proof to the formulas of the determinant and
eigenvalues of X. It is not hard to see from the discussion above that any powers
of X has the same shape (including negative powers if X is nonsingular), as we
are essentially powering the symmetrically permuted block diagonal form and
then recovering the permutation. Furthermore, with a similar argument we can
conclude that any matrix functions, for example, the matrix exponential and the
matrix logarithm, of X has the same cross-shaped form.

4 The determinant

From the factorizations (2.2), (2.3), using the explicit formulae (2.6), (2.9) for
each of the factors, it is straightforward to obtain the formula

k
det(X) _ {Hizl(xiix2k+l—i,2k+l—i - xi,2k+1—ix2k+1—i,i) n = 2k,

k
Tl4-1,k+1 Hi:1(fcii$2k+2ﬂ',2k+2fi - $¢,2k+27¢$2k+24,i), n=2k+1.
(4.1)

5 The inverse

We start by showing an important proerty of the factorizations of X discussed
in Section 2 which we will need later in this section. Again, let us consider the
case where X has order n = 2k + 1 to illustrate. At the start of the factorization
process (2.1), we could alternatively form

1 0 T11 m172k+1
X = X(2 2]{3,22 2]{') I2k:—1 N

0 I |®okt11 Tok41,2k+1



(In fact, it is not hard to see that the two factor matrices on the right-hand side
commute) and, similarly, for the submatrix X (2: 2k,2: 2k) we can have

1 O] | 722 T2 2k
X(2:2k,2:2k) = | X(3:2k—1,3: 2k — 1) Lo
0 1] [zor2 Lok 2k

This process can also be continued for k£ times, until we obtain

Tk Th kt2
Ll+1,k+1 EX(]{I k+2,k‘2 /{3+2)
Ti12k Tk42,k+2
1 0 Tk T k2
= Tht1,k+1 1
0 1] [Zktok Tht2, k42

On completion of this process we obtain a factorization

I 0
p Tk T k42
X = Thil ksl 1
i Iy, Thiok Tt 2, k42
0 I

1 0

X2 X2 2k x11 X1,2k+1

I3 Iop—q : (5.1)

Tok,2 Lok 2k Tok+1,1 T2k+1,2k+1

0 1

where the factors are in the reverse order of that in (2.2). Similarly, for the case
where X has order n = 2k, the alternative form of the factorization is

- I, _o 0
fi Th—1k Th—1k
—1,k—1 —1,k+2
xZ T 1
X — kk kk+ I
Tr+1,k Thk+1k+1
I, Tp42,k-1 Tg42,k+2
-1
- 0 Iy
1 0
X22 T22k—1 T11 T1,2k
Loy Lo . (5.2)
Lok—1,2 Lok—1,2k—1 Lok,1 Lok 2k
0 1




Now assume that X is nonsingular. For n = 2k + 1, we invert both sides
of (2.2), using the explicit inversion formula (2.10) for Z;, to get

- -1

I
X '= Thi1 ki ZZ - Zy Z
L Ik
]k—l O
[ 1, Tht2k+2/ Bk — T t2/ Bk
= 1/ Tk 1
L I —$k+2,k/5k xkk/ﬂk
0 I

1 0

9€2k,2k/52 —$2,2k/52 $2k+1,2k+1/ﬁ1 —$1,2k+1/51

J Py Iy

—Izk,2/ﬂ2 $22/52 —l‘2k+1,1/51 $11/51

0 1

whose right-hand side has exactly the same form as that of the factorization (5.1),
and so, by comparing them, we have

_332k+1,2k+1/51 —$1,2k+1/51_

5621@,%/52 *432,%//32
. . .
X = 1/Tpg1041 )

—372k,2/52 1'22/52
L —$2k+1,1/51 xll/ﬁl

where the f3;,i = 1: k, are defined in (2.9).
Similarly, for n = 2k, we invert both sides of (2.3), using the explicit inversion
formula (2.7) for Y;, to obtain

X*l :Y];lY];_ll . 1/271}/171

_ I, _o 0
]k—l Th42, k42 _ Tk—1,k+2
LTh+1,k+1 —Tk,k+1 Q1 Ap_1
_— (e%% (827 [
- Thi1,k Tk 2
T T o _ Tk42,k—1 Th—1,k—1
[k 1 Ap—1 Ap—1
- - 0 Ty
1 0
$2k—1,2k—1/042 —$2,2k—1/a2 $2k,2k/041 —$1,2k/a1
Loy Loy
—1’21%1,2/062 9522/062 —xzk,l/Oél 1’11/041
0 1



whose right-hand side has exactly the same form as that of the factorization (5.2),
and so, by comparing them, we have

r L2k,2k _ 1,2k
aq Qi
T2k—1,2k—1 _x2,2k—1

a2 a2
Lh41,k+1 _ Tk, k+1
X -1 = Kol Qg
_ Tk41,k Tkk )
ap (73
_ T2k—1,2 22
g Qa2
_ T2k, 11
L aq aq .

where the a;,i = 1: k are defined as in (2.6).

An alternative approach to get the inverse is via the adjugate of X, which is
defined by adj(X) = ((—1)" det(X};)), where Xj; denotes the submatrix of X
obtained by deleting row j and column 7. Since all Xj; are in the cross-shaped
form, the right-hand side of the formula X' = adj(X)/ det(X) essentially only
involves the determinant of cross-shaped matrices, for which we have already
obtained explicit formulas.

6 Eigenvalues

Let us first consider the case where n = 2k. To study the eigenvalues of X we
consider its characteristic polynomial, which, by exploiting the factorization (2.3),
is the deterninant of

T — A T2k Tag — A T22k—1
X =M= Iop—o Ipp—y4
T2k,1 Lok 2k — A Tok—1,2 Tok—12k—1 — A
0 1
Iy
Tk — A T k41
Thiik  Thtlhsel — A

b
Ty

and each of the factors on the right-hand side is in the form of (2.4). So using
the determinantal formula (2.6), we obtain

k
det(X - )\I) = H ((ﬁu - )\)($2k+1—¢,2k+1—i - >\) - Iz’,2k+1—i$2k+1—i,i)-
i=1
Similarly, for n = 2k + 1, using (2.2), (2.8), and (2.9) we have
k
det(X - )\I) = ($k+1,k+1 - >\) H ((xu - /\)($2k+2—i,2k+2—z‘ - /\) - $i,2k+2—z‘$2k+2—i,z‘)-
i=1

10



Hence the eigenvalues of X are the roots of these |n/2] scalar quadratic equations.
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