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Abstract

Given a matrix polynomial A(1) of degree d and the associated vector space of pencils
DIL(A) described in Mackey, Mackey, Mehl, and Mehrmann [SIAM J. Matrix Anal.
Appl., 28 (2006), pp. 971-1004], we construct a parametrization for the set of left and
right transformations that preserve the block structure of such pencils, and hence pro-
duce a new matrix polynomial A() that is still of degree d and is unimodularly equiv-
alent to A(4). We refer to such left and right transformations as structure-preserving
transformations (SPTs). Unlike previous work on SPTs, we do not require the lead-
ing matrix coeflicient of A(1) to be nonsingular. We show that additional constraints
on the parametrization lead to SPTs that also preserve extra structures in A(1) such
as symmetric, alternating, and 7-palindromic structures. Our parametrization allows
easy construction of SPTs that are low-rank modifications of the identity matrix. The
latter transform A(A) into an equivalent matrix polynomial A(1) whose jth matrix co-
efficient A j is a low-rank modification of A ;. We expect such SPTs to be one of the key
tools for developing algorithms that reduce a matrix polynomial to Hessenberg form or
tridiagonal form in a finite number of steps and without the use of a linearization.
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1. Introduction

LetA(Y) = Z‘;:O A;A) with A; € F™" be a matrix polynomial of degree d, where F
denotes either C or R. We assume throughout that A(1) is regular, i.e., det(A(1)) # 0
for some A € C. The matrix polynomial A(2) cannot in general be reduced to simpler
forms such as, for example, triangular, Hessenberg, tridiagonal, and diagonal forms
with strict equivalences, that is, transformations of the form PA(1)Q for some constant
and nonsingular matrices P and Q. Unimodular transformations P(1)A(1)Q(1), where
P(1) and Q(1) have nonzero constant determinants can be used to achieve simpler
forms while preserving the degree d [12], [13], [17]. Unfortunately, the A-dependence
of the unimodular transformations makes them impractical for computation. Structure-
preserving transformations (SPTs) offer a way around this. They allow computation
of the coefficient matrices of the matrix polynomial A(1) = P(1)A(1)Q(A) of degree d
without explicitly forming P(1) and Q(A).

When the leading coefficient A; of A(A) is nonsingular, an easy way to compute
a monic matrix polynomial of degree d that is equivalent to A(A) is through standard
pairs (X, Ca), where

_A(;lAd—l T _AZlAl _AZIAO
I
Cy = . (1.1

I

is the companion matrix associated with the monic matrix polynomial A;lA(/l) and
X € 4" i any matrix such that

xcq!

© | i=T e pmdn (1.2)
XCa
X

is nonsingular. The matrix T in (1.2) defines a structure-preserving similarity trans-
formation for Cy4 in the sense that TC47 ! is the companion form of the monic matrix
polynomial Z(/l) = A+ Ay 4 -+ZO whose coefficient matrices can be read from
the first block row of TC4T~! [9, Prop. 5]. This transformation is parametrized by the
n X dn matrix X with the constraint that 7" in (1.2) is nonsingular. This class of SPTs is
used in [12] and [17] to reduce matrix polynomials with nonsingular leading matrix co-
efficient to simpler forms such as Hessenberg, (quasi-)triangular, and (block-)diagonal
forms. The computation of these simpler forms using the approach in [12] and [17]
remains expensive since the construction of the parameter matrix X defining 7 in (1.2)
requires the dn X dn transformation matrix reducing the companion form C, to simpler
form.

The SPT defined by T in (1.2) does not preserve additional properties of A(1), such
as symmetry. To address this issue and still under the assumption that the leading coef-
ficient matrix A, is nonsingular, Lancaster and Prells [9] use standard triples (X, Ca, Y)
with X and Cy4 as in (1.1)—=(1.2), and ¥ € F¥>" such that

det(XC{'Y)#0,  XCiY=0, k=0...,d-2,



to construct SPTs that preserve the block structure of the pencil

AM4(A) — My4-1(A), (1.3)
with
Ay Ay
Ay o Ao
My(A) = S s Mg (A) = r :
A2 Ad Ad—l A2
Ag A 0 Ay A Ay

The pencil in (1.3) is a linearization of A(1) in the sense that AM;(A) — M;_1(A) is
equivalent to the block diagonal matrix polynomial A(1) @ I,,4—1). Lancaster and Prells
show that the block structure of this linearization is preserved by a pair of left and right
transformations (7', Tg) parametrized by X and Y and taking the form

T =[Cly oCaY Y[ M), Te=T7 (1.4)

with T as in (1.2) (see [9, Thm. 7]). Moreover, if the matrix coefficients of A(1) are
Hermitian, then the matrix Y in a standard triple (X, Cy4, Y) for A(2) has the form ¥ =
M (A~ X* [4], [5] leading to T, = Ty, in (1.4). As a result, the SPT (T, Tr) preserves
the block structure of the linearization (1.3) and the Hermitian property of the blocks.

Our interest is in SPTs that preserve the block structure of any pencil in the vector
space of pencils DIL(A) defined in [10] by

DL(A) := {L,(1) € F[A]¥>4" . L () is linear in A, and

LA ®IL) =v®A), (1.5a)
(AT ® I,)L,(1) = v ® A, (1.5b)
veF\ {0}},

where A = [A971,2972, ... 1]7 € C“. Note that the pencil in (1.3) belongs to DIL(A)
with vector v = e;. Here and throughout the paper, e; denotes the jth column of the
d % d identity matrix. It is shown in [7] and [10] that DIL(A) has dimension d, that
pencils in DIL(A) have a block symmetric structure, and that for a given vector v € F¢
there exists a unique L,(1) € DL(A). For example, for d = 2, any pencil in DIL(A) is a
linear combination of the two pencils

A o] (A A

L,(1) =21 [ 0 —Ao] + [Ao 0 } =1 AM;(A) — My(A), (1.6)
[0 Ay [-A, 0]

Le,(2) .—/l[Az AJ+[ 0 Ao] =1 AMs(A) — My (A), (1.7)

which we refer to as the standard basis pencils for DIL(A), since they correspond to
v = e and v = e, in (1.5). The special block-symmetric pencils in (1.6) and (1.7) are
frequently used in applications, in particular when the coefficient matrices A; of A(1)
are symmetric or Hermitian.



One of our main contributions is a parametrization of the set of nonsingular matri-
ces Ty, Ty € B preserving the block structure of any pencils in DIL(A) and thereby
constructing a new matrix polynomial A(A) that is still of degree d. Because almost all
pencils in DIL(A) preserve the finite and infinite elementary divisors of A(1) [10], the
matrix polynomials A(1) and X(/l) are isospectral (i.e., they have the same finite and
infinite eigenvalues, including partial multiplicities) and hence they are equivalent.

Unlike Lancaster and Prells’ SPTs in (1.4), our parametrization of SPTs preserving
the block structure of pencils in IDIL(A) does not rely on standard triples nor on lin-
earizations of A(1), and most importantly, our parametrization does not require the
leading coefficient A; of A(1) to be nonsingular. For the special case d = 2 (the
quadratic case), our parametrization of (7, T) takes the form

1
Fr+ 3GrA; GRIAO (18)
—GRA2 FR - EGRAI

T, =

-1
FL+3A/G,  —AG, T
AoGL Fp-1AG| ° °F

for some matrices Fp, Fg,Gr,Gg € F"™" such that Ty, Tk are nonsingular and GgF +
FrG; = 0. When A; is nonsingular, the parametrizations in (1.4) and (1.8) are related
by
-1 _ l
X = [GRAZ Fg + %GRAI], Yy = [Az (Fr 2A1GL)}.
GL

Our parametrization of the SPTs preserving the structure of DIL(A) allows for easy
construction of SPTs that also preserve extra structures in A(A1) such as (skew- )Hermi-
tian, (skew-)symmetric, *-even, *-odd, and *-(anti)palindromic structures. For example
for real symmetric quadratic matrix polynomials A(1), choosing F;, = F; € R™" and
G = Gg € R™" in (1.8) together with the parameter constraint GgF + FrGy = 0
yield SPTs that transform A(A) into an equivalent real symmetric quadratic AQD).

Finally, our parametrization allows for easy constructions of SPTs that are at most
rank-d modifications of the identity matrix and that lead to an equivalent matrix poly-
nomial A(1) whose jth coefficient matrix A j is simply a low rank modification of A},
for j = 0,...,d. For example, when d = 2, choosing F; = Fg = I,, Gg = ab* =
-Gy in (1.8) for any nonzero vectors a,b € C" implies that the parameter constraint
GrF; + FrGy = 0 holds. This leads to

—1Ajab*  Asab* lab*A,  ab*Ag

-1 _ -1 _
TL - IZn + —Aoab* %Alab* ’ TR - 1211 * —ab*Az —%ab*Al (19)
whose nonsingularity is ensured by choosing a, b such that
1
det(T;") = det(Tg') = 1 - Z(b*Ala)z + (b*Aga)(b*Ara) # 0. (1.10)

It is not difficult to see that TL‘1 and Tp ! are at most rank-2 modifications of I,,, that
their inverses can be written explicitly using the Sherman-Morrison-Woodbury for-
mula, and when applied to (1.6) or (1.7), explicit expressions for A;, j = 0,1,2 can be
obtained in terms of A;, j = 0,1,2 and a, b. We expect SPTs that are low-rank modi-
fication of the identity matrix to be one of the key tools for developing algorithms that



reduce a matrix polynomial to Hessenberg form or tridiagonal form in a finite number
of steps without the need of a linear pencil of larger dimension.

The paper is organized as follows. Section 2 contains preliminary material that is
necessary for the parametrization of the SPTs presented in section 3. Special attention
is given to the quadratic case. Section 4 describes how to select the parameters so as to
preserve symmetries in the matrix polynomial. Section 5 contains concluding remarks.
Examples are used throughout the paper to illustrate the results.

2. Preliminaries

We summarize the properties of the vector space DIL(A) in (1.5) that we need for
the construction of the parametrization of the transformations that preserve the block
structure of the pencils in DIL(A).

The one-sided factorizations (1.5a)—(1.5b) in the definition of DIL(A) lead to some
interesting relations between the solutions of linear systems involving A(1) and L,(1) €
DIL(A) with vector v.

Theorem 1. Let A(2) € F[A]™" be a matrix polynomial of degree d and let L,() €
DIL(A) with vector v € F?. Let w € F be such that the matrix A(w) is nonsingular and
define Q = [w" !, w2, 11" e T4,
(a) If x € F" is the solution of the linear system A(w)x = b for some given b € F"
then z = Q® x € F" is a solution of L,(w)z = v ® b.
(b) Ify € F" is the solution of the linear system y' A(w) = ¢! for some given ¢ € F"
thenw=QQ®ye F is g solution of W L(w)=(veb).
(c) If z € F solves the linear system L,(w)z = c for some given ¢ € F then
x =0T ®1,)z € F* solves A(w)x = (QF ® I,))c.

Proof. Follows from [6, Corollary 4.2]. 0

As already mentioned in the introduction, DIL(A) is a vector space of dimension d.
It is shown in [7, Thm. 3.5] that

d
DL(A) = {Z VLo, () v e 74, Lo () = AM(A) — My_1(A), 1 <k < d}, 2.1
k=1
where

— ‘Ek(A) 0 dnxdn
Mi(A) = [ 0 U )€ [remxan, 0<k<d (2.2)

with block Hankel matrices £;(A), U ;(A) € F/™" given by

' Ay Aj_l ... A A
A : .
LijA) = ) . .| UA) =| - U .23
o Lt : A] Lt
Ag Agr ... Agju Ag



The pencils L, (1), k = 1,...,d in (2.1) form the standard basis pencils for DIL(A)
and correspond to choosing v = ¢, k = 1,...,d in (1.5). All the pencils in DIL(A)
have a block symmetric structure—see for example, the two standard basis pencils for
DL(A) provided in (1.6)—(1.7) when d = 2. The pencils L., first appear in [8] for scalar
polynomials. They are used in [3] to define the class of SPTs of interest in this paper.

3. SPTs preserving the block structure of DL(A)

Our main objective is to parametrize the set of nonsingular matrices 77, Tx € Fé™d"
such that the statement

L,(2) € DL(A) with vector v if and only if Ty L,()Tg € ID)IL(X) with vectorv (3.1)

holds for any v € F“, where A(A) € F[A]™" is a matrix polynomial of degree d. It

follows from (2.1) that asserting that (3.1) holds for all v € F9 is equivalent to asserting

that (3.1) holds for v = ¢;, k = 1, ..., d. In other words, we are looking for nonsingular

matrices 7', T that preserve the block structure of the standard basis pencils of DIL(A).
Let B, € F™ be any nonsingular matrix and consider the linear system

A(w)X = By,
with w such that the matrix X(cu) is nonsingular. Let us define
Lo (A) := Ty Lo (DT, k=1,....d.
Then by (3.1), Zek(/l) € ]D]L(A~) with vector e¢;. With the notation
Q=[w"" w2 ... 1 eF
it follows from Theorem 1(a) that Q ® X € Fémn ig a solution of the d linear systems
Lo (w)(Q®X)=e,®B,, k=1,...d,

or, equivalently, that _
Z = Tr(Q ® X) € F™n (3.2)

solves _
Lo (w)Z =T;(ex®Br), k=1,...d.

Hence since EL is nonsingular,
T;' = Lo (@Z Lo@Z - L(wZ|(s®B"). (3.3)
In a similar way, if we consider the linear system
YT A(w) = Bg
with By € F™n nonsingular then it follows from Theorem 1(b) that

Q) Ly(w)=e ®Br, k=1,...,d,



or equivalently, that

Wl = QoY) T, e F> (3.4)
solves the d linear systems
WL, (w) = (ef ® Bp)TR', k=1,....d.
Since ER is nonsingular,
WTL, (w)
— WTLez (0‘))
T' = (I;® Bg") . (3.5)

WT Led (CL))

We show in what follows that the blocks L, (w)Z and WTLek(w) in (3.3) and (3.5)
have a special structure.

Lemma 2. Let A(2) = 27:0 AA; € FIA™", L, (A) be the kth standard basis pencil of
DL(A), and Z € F¥™" be partitioned into n x n blocks Z jaccording to Z; := (ejT. ®1,)Z.
Then

d-1
Lo(VZ = ex ® fA(Z, D) + Y Pr(A)ex ® (Ze = AZi11)), (3.6)
=1
where
=
fa(Z, ) = AoZy + AAZy + 5 ZAd—[(ZZ + AZs1), (3.7)
=
and
Y. ffi=j<{,
—Aae  ifi=j>¢
(PeAYij = {Aderie;  ifi>j j<bl+iej<d, (3.8)
—Age-ivj fi<jj>C€+i-j=0,
0 otherwise.

Proof. The proof is not difficult but readers may find helpful to go through it with
d = 2 using P;(A) in (3.20) or with d = 3 using P;(A) and P»(A) in (3.29).

Recall from (2.1) that L, (1) = AM(A)— M;—,(A), where M (A) is defined in (2.2)-
(2.3), and let us partitioned L., (1)Z into d n X n blocks (L, (1)Z),. Then

=~

14

]
=

(Le,(DZ); =

d+k—i

=k

—Agii-ice(Ze — A1)

Y

-1
faZ, )+

~
I

Z Agsi—ict(Zy — Ay11)

1

ifi <k,
1 o
EAd—[(Zf —AZpy) ifi=k,

ifi > k.



The expression for L, (1)Z in (3.6) follows. 0

Since the pencils in DIL(A) are block symmetric, LeTk(/l) is the kth standard basis pencil
of DIL(AT) and it follows from Lemma 2 that for W e F@>n,

d-1
W L) = ef ® (far W, )" + ) (ef ® (We = aWe) )(PA) . (3.9)
(=1

We are now ready to state the main result of this section.

Theorem 3. Let A(1) € F[A]™" be a matrix polynomial of degree d. The nonsingular
matrices Ty, Tg € F™ that preserve the block structure of any pencil in DIL(A) have
the form

d-1

1

To=(li®FL+ ), PAALi®GL)) (3.10)
=1
d-1 »

Te=(li® Fe+ ) (1a® GroPla™Y') 3.11)

=1

with P¢(A) as in (3.8) and parameter matrices Fy, Fgr, G, Gge € B>, €= 1,...,d—1
such that

(i) Ty and Ty are nonsingular, and
(11) FRGLk + GRkFL = GRHk(A)GL, k= 1,...,d-1, where

G
Gr = [Gm GR(d—l)] , Gp:= N
Gru-1
and Hi(A) is a block-symmetric (d — 1) X (d — 1) matrix with n X n blocks defined
b
’ —Ag-i—jre k< jk<iandi+ j—k<d,
Agicjsk k> jk>iandi+ j-k>0,
—%Ad_j ifk=iandk < j,
Hi(A)j =3-2A,;  ifk=jandk <i,
1A ifk=iandk > j,
%Ad_i ifk=jand k > i,
0 otherwise.

Proof. Readers may find helpful to check the proof with d = 3 using P;(A) and

) 0 -ia A; 14,
P»(A) in (3.29), and H,(A) = 27N Hy(A) = 272
»(A) in (3.29), and H,(A) [—%Al —Ao] »(A) [%Az 0

If we let
F. = fA(Z,w)B;", Gy =(Zr —wZe)B;', €=1,...,d-1, (3.12)
Fr=By' fir(W,w)',  Gre=Bg'(We —wWe)', €=1,....d=1 (3.13)



then the expression for TL‘l in the theorem follows from (3.3) and (3.6), and that for
T,' follows from (3.5) and (3.9).

The matrices Fr, Fg,Grs, and Gy, £ =1,...,d—1depend on Z in (3.2) and W in
(3.4),ie.,Z=Tr(Q®X)and WT = (Q®Y)'T;. It is easy to see that these two matrix
equations are equivalent to

(e —wers )T @ L)TR'Z=0, k=1,...,d=1, (f@I)T'Z=X, (3.14)
WIT\((ex —wers1)®1,) =0, k=1,...,d—1, WT; Y eq®1,) =Y. (3.15)

The matrix equations on the right hand-side of (3.14) and of (3.15) do not impose any
constraint on the parameter matrices Fr, Fg, G, and Gg since X and Y are free to
choose. On the other hand, the first d — 1 matrix equations in (3.14) and the firstd — 1
matrix equations in (3.15) do impose constraints as we now show.

We start with the d — 1 first equations in (3.14). It follows from (3.12) that

d-t
Zr = Z a)j_lGL(g+j_1)EL + wd_[Zd, 1<¢<d.
=1

Then on using the parametrization of T in (3.11), we find that ((e; — wers1)” ®
1,)Tz'Z = 0 is equivalent to

[N

1 d-1
FrGriBL + GriA(w)Zy + Gre h(w, A, GL)BL + Z GriPi(A)jGrjBr = 0, (3.16)

J=1

]
—_

i

where

U
|
i

~.

hw,A,Gp) = W Ag_iv1Griisj-1)-
i=1 j

]
—_

1]
—_

Since Z solves Ly(w)Z = C with C = TL_I(ed ® EL), it follows from Theorem 1(c) that
X = (eg ®DZ = Z, solves A(w)X = (Q ® I)C, i.e.,

Aw)Zy = QT © DT} (eq ® By)
d—1
= —h(w,A, GL)B + Z Pj(A)ddGLjBL + FB;. (3.17)

=1
Replacing A(w)Z, in(3.16) by (3.17) and using the fact that By is nonsingular yields

d-1 d-1 d-1
FrGrx + GreF'p = — GriPi(A)jGrj - Z GriPj(A)aGrj
1 =1 =
i

I
Q
=
X
=
A
&



where
—Pi(A) i ifi # k,

= {—Pkm)jk P ifi=k

Then, the expression for H(A);; in the theorem follows from (3.8) and it is not difficult
to check that H(A) is block-symmetric, i.e., that (H(A));; = (Hk(A)) ;- 0

Setting Gr¢ = Gr¢ = 01in (3.10)~(3.11) leads to SPTs (T, Tg) that transform A(2)
into a strictly equivalent matrix polynomial A(1) = FyA(4)Fr. We refer to such SPTs
as trivial SPTs.

3.1. Quadratic case

When d = 2, the constraint equation in Theorem 3(ii) does not depend on A(A).

Corollary 4. The pair of matrices Ty, Tg € F?™?" that preserve the block structure of
any pencil in DL(A) when A1) = 22A, + AA, + Ag € F[A™" have the form

1 1
sA1G -A,G >GRrA GRrA
-1 _ 2A1YL 2UL -1 _ 7 URA1 RA0
TL LF + AoG, —%AlGL y TR L ®Fg+ ZGpAs —%GRA] (3.18)
where Fy, Fr,G1,Gg are such that TL" and Tlgl are nonsingular and
FrGp + GrF =0. (3.19)
Proof. We have from (3.8) that
1 1
A1 —A r _ [341 Ao
Pi(A) = |2 , Pi(A =12 . 3.20
1(A) [Ao _%Al] 1(AY) “Ay -l (3.20)

The expressions for TL‘1 and Ty !in (3.18) are then a simple application of Theorem 3
with d = 2. We also have that H;(A) = —=(P1(AT)");; + 1A, = 0 so that (3.19) follows
from Theorem 3(ii) by setting G;; = G, and Gg; = Gg. 0

Example 5. Consider the 2 X 2 quadratic

11 1 2 0 -1
A(/l)z/lz[l 1}”[2 O}Jr[_l 3]

and construct the SPT (Ty, Tr) parametrized by
-1 -1 0 1 1 0
FL_[O l:|9 GR_[l _1], FR_[O 1:|9

_ 0 -1
GL:_FRlGRFL:[l 2}

and

10



so that the constraint (3.19) holds. Then for L,,() in (1.7), we find that

00 5 47 (54 0 0
o0 0 ol oo o o
Tl TR =215 4 16 4|70 0 11 -4
0 0 -8 —4] [0 0 12 4
[0 A [A4, 0] ~
:/1 ~ ~ | = —~ :Le /l
A2 Al} [0 —AO] -V

So the SPT (Ty, Tg) transforms A(A) into the equivalent quadratic matrix polynomial
5 4 16 4 11 4
8 —4|T|-12 -4l

0 0
We remark here that to construct Z(/l), we used the pencil L,,(1), which is not a lin-
earization of A(Q) since A, in this example is singular.

X(A)=42X2+AX1+XO=AZ[ +2

We expect the next result to be useful when transforming quadratics to simpler
forms.

Proposition 6. Let (T, Tg) be the SPT parameterized by F,Gy, Fr,Gg as in (3.18)
mapping the quadratic A(A) to the quadratic Z(/l). Then (TL, TR) = (TL_I, Tlgl) is an
SPT mapping X(/l) to A(Q) that is parameterized by the four matrices F, L GL, F, R, GR
with 5L and 5R such that

GL=Gr, Gr=Gy.

Proof. It suffices to show that 5L = Gg. Let us partition any 2n X 2n matrix T into

nXxXnblocksas T = [T“ le}. It follows from (1.8) that
Ty Txn
(T; M Ag
(T Y1 — (T D | = |Al| G, (3.21)
—(T;: 2 A
Gr [Xo A Xz] = [(7,;1)12 (751)11 - (7151)22 —(T§1)21]~ (3.22)

Since (T, Tr) preserves the block structure of the standard basis of DIL(A), we have
that M(A)T' = T;'Mi(A), k = 0,1,2. We partition these 2n X 2n matrix equalities
into n X n blocks as above and denote by (k);; the n X n matrix equality (Mk(A)Tlg' )ij =
(TL‘l Mk(Z))i ;- Then the following linear combination of these matrix equations

—(0)22 =(0)21 + (D22 (D21
—p+M2n —O) i+ -2+ Dz @) +(Dy
D12 -2 + (D -1
leads to
Ao| _ _ _ (T Y .
AT @i - T ~Tha| = [T - T[4 Al 4.
A; —(T; Y2

(3.23)

11



Since A(1) is a regular quadratic matrix polynomial, det(124, + AA| +Ag) # 0 for some
A eF. As aresult,

A
Ay

n = rank(22A, + 1A, + Ag) = rank[[/lzl Al 1]
Ao

A
< min rank([/lzl Al 1]),rank A,
Ao
As o
which implies that |A; | is of full column rank. Similarly, [Ay A; Aj]is of full row
Ao
rank and we have that
Aol [Ao I,
Al A =0 [A A A|A A A =1,
Az A2

where B* denotes the pseudoinverse of B. Then it follows from (3.22), (3.23), and
(3.21) that

5R=[(7§1)21 T = T —(T,El)u][% A A}]Jr

Aol (T 21
= |A| (T — (T2
Ar -(T; Y2
-G, 0

3.2. At most rank-d modification of the identity matrix SPTs

Our parametrization in Theorem 3 is for TL‘1 and Tlgl. Fortunately, the parametriza-
tion allows easy constructions of nontrivial SPTs that are low rank modification of 7,
so that they can be inverted efficiently or even explicitly when the update is of very low
rank. We illustrated this when d = 2 in the introduction with T, Tx in (1.9). We refer
to [2] for early work on this topic for quadratics with nonsingular leading coefficients
and a more complicated set of constraints on the parameters than (3.19). Such SPT are
used in [15] to deflate eigenpairs from quadratic matrix polynomials.

We show in this section that for arbitrary degree d we can construct SPTs that are at
most rank-d modification of the dn X dn identity matrix. A description of all the SPTs
that are low rank modification of 1, is outside the scope of this work.

For given nonzero vectors a, b € C", consider Til in (3.10) and T Uin (3.11) with

FL:FRzln, GRgzab*, G]_(:g(ab*, 521,...,d—1, (324)
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where the scalars g, are to be determined so that the constraints in Theorem 3(ii) hold.
These constraints simplify to

d-1 d-1
Zgjb*(ZHk(A)ij]a_gkzl, k=1,...,d -1,
' im1

j=1

which can be rewritten as the linear system Cg = e with g the vector of scalars g, e the
vector of all ones, and

d-1 7+ . .
iz1 b"Hi(A)ja ifk £ j,
Cij = Zd—ll R . ! (3.25)
Zi=1 b Hk(A),-ja -1 ifk= ]
With the choice (3.24), the inverse of 7, and Tx can be rewritten as
d-1
Til =gy + (Z geP(A)(1y ®a))(1d ® b*) =: Iy, + ULVZ’ (3.26)
=1
d-1
Tl;1 =lp+Us® a)(Z(Id ® b*)P[(A*)*) = Iy + URVZ’ (3.27)
=1

where V;, = I, ® b and Uy := I; ® a are dn X d matrices of rank d, and U; :=

‘;;11 geP(A)(I;®a) and Vg = ?;1' P/(A*)(1; ® b) are dn X d matrices of rank at most
d. It follows from Theorem 3 that as long as the nonzero vectors a and b are chosen
such that det(ly + V;U,) # 0 and det(Iy + VyU,) # 0, and the linear system Cg = e
with C as in (3.25) has a solution, then

Ty =1 - U, (I +ViU)'VE, Tr = Lgy — Up(ly + ViUR) 'V,

defines an SPT for pencils in DIL(A) that is made up of two at most rank-d modifications
of the identity matrix.

Example 7. As an illustration, consider the cubic matrix polynomial A(1) = 13Az +
A2As + AA| + Ay. For any nonzero vectors a, b such that

(a) the linear system

_ 1 _ _ 1= _
1 *Zb A](l* 1 21{ A*la bA()a 81 _ 1 (328)
ib Aga +b A3a Eb Aza -1 82 1

has a solution [g; ], and
(b) det(Is + ViU,) # 0 and det(Is + ViU,) # O with

Vi=5L®Db, UL = (g1P1(A) + g2P2(A)) (I3 ® a),
Up=1;®a, Ve = (P1(A") + P2(A™))(I3 ® b),

where the matrices P¢(A) are given by (see (3.8))

1Ay —A; 0 AL 0 —As
Pi(A)=| A -3A -A;z|, Py(A)=|Ay 1A -A; (3.29)
Ay 0 14 0 Ay -1A

13



thenTy = L, — U, (I3 + VzUL)‘IVZ, Tr = I3, — Ug(lz + V;;UR)‘IV; define an SPT for
any pencil in DIL(A).
Now for

10 -6 0 11 0 -6 0
R A A R I A T

and a = [7‘1 ], b= [?] we find that the linear system (3.28) has solution g = [_15]
leading to

20.5 5 -1 0 0 O
1 0 0 2 0 0
-61 -9.5 11 0 0 O
U=tz 4 1|0 Y51 L
30 -6 =205 0 0 O
10 -2 -1 2 2 =2
Then it is easy to check that the two matrices
1 0 O -2 -5 =2
ViU, =113 -4 1/[. VeUp =0 -1 =2
10 -2 -1 0 1 2

do not have —1 as an eigenvalue so that Ty = I3, — U, (I3 + VZUL)‘IVZ and Tg =
Ly, = Up(l3 + Vg UR)‘IV; form an SPT, which when applied to, for example,

A 0 0 Ay A Ay
AM{(A) + My(A) = A 0 -A; -Ag|+]|A1 Ay O
0 -4 O Ay 0 O

transforms A(Q) into the equivalent cubic polynomial A(), where A j = Aj+rank-1 update.
We find that

~ [t 2] = _[-6 475] + _[11 -1175] + _[-6 -265
A3=[o o]’ Az:[o —0.5}’ A‘z[o —1.5}’ A":[o —1}'

Note that the SPT (TL, TR) with TL =5, + U,V and TR = I, + U,V diagonalizes
the triangular cubic matrix polynomial A(Q) into A(Q).

4. Preserving symmetries in matrix polynomials

The quadratic matrix polynomials that arise in applications often have additional
structures that come from the physics of the problem and that should be preserved
by the SPTs. To be concise with the presentation, we use the x-adjoint A*(1) =

4.9 AJA of the matrix polynomial A(1) = X9, A/A; € F[A]™", where the symbol
* denotes transpose 7T in the real case I = R, and either the transpose T or conjugate
transpose * in the complex case F = C.

The three most important matrix polynomial structures are

14



(a) Hermitian/symmetric when A* () = A(Q) and skew-Hermitian/skew-symmetric
when A* (1) = —A(),

(b) *-alternating when A*(=1) = gA(Q) with & € {1, -1}, also called x-even when
£ =1 and x-odd when £ = -1, and

(c) *-palindromic when revA* (1) = eA(Q) with € € {1, —1).

Quadratic matrix polynomials with symmetric coefficient matrices arise frequently in
the vibration analysis of structural systems [16]. Gyroscopic systems leads to T-even
quadratics A(1) = A, + 1A, + A with Ag, A, symmetric and A; skew-symmetric.
We refer to the NLEVP collection of nonlinear eigenvalue problems [1] and references
therein for concrete examples of matrix polynomials having one of the structures de-
scribed above. To preserve these structures, the parameter matrices defining the SPT
(T, Tg) in (3.10)—(3.11) must satisfy additional constraints as shown in the following
theorem.

Theorem 8. Let A(1) € F[A]™" be a matrix polynomial of degree d and let Ty, Tg €
Fddn be qs in (3.10) and (3.11) with parameter matrices F, Fr, Gr¢, Gre € F™,
¢ =1,...,d — 1 such that (i) and (ii) in Theorem 3 hold. Let A(Q) be the matrix
polynomial of degree d that results from applying Ty, Tg to any pencil in DIL(A). Let
ge{-1,1}
(@) If A*(A) = A()) and Fp = F}¥, Gro = Gy, £ = 1,....d — | then A*(2) =
A Q).
(b) If A¥(=2) = €A()) and F, = FY, Gro = e(-1)""'Gy,, £ = 1,...,d — 1 then
A* (=) = cA(A).
(©) If revA* (1) = A(d) and F = —Fy, Gro = G, € = 1,...,d — 1 then
revA* (1) = £A(Q).
Proof. We note that for P¢(A) in (3.8), P(AT) = P((A*)*, £=1,...,d - 1, and
since the My(A) in (2.2) are block symmetric, Mi(A®) = Mi(A)*, k=0,....d.
(a) Assume that A* (1) = A(), or equivalently, that A;‘ = sAJ., j=0,...,d. Then
Py(A*) = ePy(A) so that
d-1 d-1

*
(TxH* = (1d®FR+Z(1d®GR,5)P[(A*)*) = L®F + ) ePr(A)I4®eGLe) = T; .
(=1 (=1

Since My(A)* = eMi(A),

M (A*) = M(A)* = (TEM(A)TR)* = TF M(A)* Tg = €T Mi(A)Tg = eMi(A),

which implies that A* ) = EX(/D.
(b) Assume that A*(—1) = £A(1), or equivalently, that A;* =(-1YeA;, j=0,...,d.
Then we find that P[(A*) = (-1)*e(D ® I,)P((A)XD ® I,), where

D = diag(1,-1,...,(-1)? ) e R™
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so that

d-1
(Tlgl)* =0I;® FI:( + Z P[(A*)(Id ® Gl:f)
t=1
d-1
=@ F+ ) (=D a(D @ L)PrAD & )14 ® &(~1)'"'GLy)
=1

=D (D®I,).
Also, Af =(-1)eA;, j=0,...,d is equivalent to

(M(A)D & 1,)* = —e(-1Y"*M(A)D ®1,)

(i.e., the pencils M (A)(D ® I,) alternates between being Hermitian (or symmet-
ric) and skew-Hermitian (or skew-symmetric)). Now,

(MDD ® 1,)* = (TLMyATR(D ® 1)
(TLMUAYD & 1,)T)*
—s(= DT MUA)D @ LTS
—e(=D)" TLM(ATR(D ® I,)
—e(-D"*M(AXD ® 1,),

which implies that X;‘ = (-1)eA;, j=0,...,d.

(c) Assume that revA* (1) = gA(Q), or equivalently, that A}" =eA d-j j=0,...,d.
If we denote by
1
1

the d x d standard involutary permutation matrix then
PiA®) = —&(S ® L)Pay(ANS ® 1), (=1,....d-1,

so that
(TH* = =S @ I)T; (S ®1,).

It follows from (2.2)—(2.3) that Af =cA - j=0,...,dis equivalent to

My(AXS ®1,) = ~(My(A)S ®1,))*.
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Then,

Mo(AX(S ® 1) = TLMo(A)Tr(S ® 1)
=T My(A)(S @ 1,)(S ®I,)Tr(S ® I,,)
= T Mo(AX(S ® L) T}
= To(My(A)S ® 1,)* T}
= (TLMy(AXS ® I)T})*
= ~(TLMy(ATR(S ® 1))*
= ~(MyA)S ® 1),

which implies thatA* Ad P j=0,...,d. 0
The next result is a direct consequence of Corollary 4 and Theorem 8.
Corollary 9. Let A(1) = 2%A; + 1A, + Ag € F[A™" and

T/'=L®F+ 4.1

1GA,  GA
-GA; —3GA,

with G, F € F™™ Let & € {+1, —1}.

(a) IfA* = eA;, j=0,1,2 then (T*,T) with G, F such that FG* = —&(FG*)* is
an SPT that transforms A(Q) into A(/l) whose coefficient matrices are such that
A. —sA], j=0,1,2.

(b) IfA* =&e(- l)JAj, j=0,1,2 then ((D®I,1)T*(D®I ), T) with D = diag(1,-1)
and G, F such that FG* = s(FG*)* is an SPT that transforms A(Q) into A(/l)
whose coefficient matrices are such thatA = sA], j=0,1,2

(¢) IfAX = eAg and A¥ = eA, then (- (S ®1 ITX(S ®1,),T) withS = [{ ] and
G, F such that FG* = a(FG*)* is an SPT that transforms A(A) into A(/l) whose
coefficient matrices are such that A* = sAo and A = sAl

Example 10. 7o preserve the symmetry of the quadratic matrix polynomial in Exam-
ple 5, we apply Corollary 9 (a) with x = T and € = 1, and choose

F = [2, G = |:_01 (1)}

so that FGT is skew-symmetric. Then the SPT (T, T) transforms A(Q) into the sym-
metric quadratic

X(a)zﬁ[—% 0] 1[4/9 —4/9]+[—7/27 —16/27]

0o ol =49 —as3|F|-16/27 —52/27|"
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Note that when F = C and x = %, the SPT in (1.9) preserves Hermitian structure
if b = ia € C" since G, = —ab* = iaa* = ba* = G- On the other hand, when
F = R and x = T then the constraint G, # G,€ for all nonzero a,b € R". So the
SPT in (1.9) does not in general preserve symmetry when A(A1) is symmetric. Although
the parametrization in Corollary 9 was not known at the time, the SPT used in [15] to
deflate eigenpairs of symmetric quadratic while preserving the symmetry correspond
to choosing

F:I+afT, G=aaT,

in (4.1) for some nonzero vectors a, f € R” such that
1
alf=-1, (a" Ara)(a" Aga) - Z(aTAoa)2 #0.

We remark that the above constraints on the parameter a and f is much simpler than
that in [15].

5. Concluding remarks

We have constructed a parametrization for the inverse of the left and right trans-
formations that preserve the block structure of pencils in DIL(A), and hence produce
a new matrix polynomial A() that is still of degree d and is unimodularly equivalent
to A(1). We have also identified constraints on the parametrization that lead to SPTs
that preserve existing structures in A(4) such as symmetric, alternating and palindromic
structures.

We have shown that our parametrization allows constructions of SPTs that are low
rank modifications of the identity. The latter are easy to invert and when applied to any
pencil in DIL(A), lead to a new matrix polynomial A(1) whose matrix coefficients A j
are low rank modifications of A;. SPTs of this type can be used to deflate d eigenpairs
with distinct eigenvalues and linearly independent eigenvectors (see [14] and [15] for
d = 2). How to identify among this class of SPTs, transformations that have specific
actions such as that of introducing zeros in specific entries or columns of the matrix
polynomial is the subject of ongoing work.

We concentrated here on matrix polynomials A(1) expressed in the monomial basis
1,4,4%...,2¢. The definition of the vector space of pencils DIL(A) can however be
generalized to other bases such as for example the Legendre basis or the Chebyshev
basis [11]. Then the one-sided factorizations (1.5a)—(1.5b) hold but for a different A.
These factorizations lead to standard basis pencils that differ from those in (2.1). But
as long as we have access to one-sided factorizations of the type (1.5a)—(1.5b) and the
corresponding standard basis for DIL(A), the procedure we followed to construct the
SPTs that preserve the block structure of pencils in DIL(A) still applies.
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