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Abstract

Given a matrix polynomial A(λ) of degree d and the associated vector space of pencils
DL(A) described in Mackey, Mackey, Mehl, and Mehrmann [SIAM J. Matrix Anal.
Appl., 28 (2006), pp. 971-1004], we construct a parametrization for the set of left and
right transformations that preserve the block structure of such pencils, and hence pro-
duce a new matrix polynomial Ã(λ) that is still of degree d and is unimodularly equiv-
alent to A(λ). We refer to such left and right transformations as structure-preserving
transformations (SPTs). Unlike previous work on SPTs, we do not require the lead-
ing matrix coefficient of A(λ) to be nonsingular. We show that additional constraints
on the parametrization lead to SPTs that also preserve extra structures in A(λ) such
as symmetric, alternating, and T -palindromic structures. Our parametrization allows
easy construction of SPTs that are low-rank modifications of the identity matrix. The
latter transform A(λ) into an equivalent matrix polynomial Ã(λ) whose jth matrix co-
efficient Ã j is a low-rank modification of A j. We expect such SPTs to be one of the key
tools for developing algorithms that reduce a matrix polynomial to Hessenberg form or
tridiagonal form in a finite number of steps and without the use of a linearization.
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1. Introduction

Let A(λ) =
∑d

j=0 A jλ
j with A j ∈ Fn×n be a matrix polynomial of degree d, where F

denotes either C or R. We assume throughout that A(λ) is regular, i.e., det(A(λ)) , 0
for some λ ∈ C. The matrix polynomial A(λ) cannot in general be reduced to simpler
forms such as, for example, triangular, Hessenberg, tridiagonal, and diagonal forms
with strict equivalences, that is, transformations of the form PA(λ)Q for some constant
and nonsingular matrices P and Q. Unimodular transformations P(λ)A(λ)Q(λ), where
P(λ) and Q(λ) have nonzero constant determinants can be used to achieve simpler
forms while preserving the degree d [12], [13], [17]. Unfortunately, the λ-dependence
of the unimodular transformations makes them impractical for computation. Structure-
preserving transformations (SPTs) offer a way around this. They allow computation
of the coefficient matrices of the matrix polynomial Ã(λ) = P(λ)A(λ)Q(λ) of degree d
without explicitly forming P(λ) and Q(λ).

When the leading coefficient Ad of A(λ) is nonsingular, an easy way to compute
a monic matrix polynomial of degree d that is equivalent to A(λ) is through standard
pairs

(
X,CA

)
, where

CA :=


−A−1

d Ad−1 · · · −A−1
d A1 −A−1

d A0
I

. . .

I

 (1.1)

is the companion matrix associated with the monic matrix polynomial A−1
d A(λ) and

X ∈ Fn×dn is any matrix such that
XCd−1

A
...

XCA

X

 := T ∈ Fdn×dn (1.2)

is nonsingular. The matrix T in (1.2) defines a structure-preserving similarity trans-
formation for CA in the sense that TCAT−1 is the companion form of the monic matrix
polynomial Ã(λ) = λdI+λd−1Ãd−1+· · ·+Ã0 whose coefficient matrices can be read from
the first block row of TCAT−1 [9, Prop. 5]. This transformation is parametrized by the
n × dn matrix X with the constraint that T in (1.2) is nonsingular. This class of SPTs is
used in [12] and [17] to reduce matrix polynomials with nonsingular leading matrix co-
efficient to simpler forms such as Hessenberg, (quasi-)triangular, and (block-)diagonal
forms. The computation of these simpler forms using the approach in [12] and [17]
remains expensive since the construction of the parameter matrix X defining T in (1.2)
requires the dn× dn transformation matrix reducing the companion form CA to simpler
form.

The SPT defined by T in (1.2) does not preserve additional properties of A(λ), such
as symmetry. To address this issue and still under the assumption that the leading coef-
ficient matrix Ad is nonsingular, Lancaster and Prells [9] use standard triples

(
X,CA,Y

)
with X and CA as in (1.1)–(1.2), and Y ∈ Fdn×n such that

det(XCd−1
A Y) , 0, XCk

AY = 0, k = 0 . . . , d − 2,
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to construct SPTs that preserve the block structure of the pencil

λMd(A) − Md−1(A), (1.3)

with

Md(A) :=



Ad
. . . Ad−1

. . .
...

. . . . . . A2
Ad Ad−1 · · · A2 A1


, Md−1(A) :=



Ad
. . . Ad−1

. . . . . .
...

Ad Ad−1 · · · A2
−A0


.

The pencil in (1.3) is a linearization of A(λ) in the sense that λMd(A) − Md−1(A) is
equivalent to the block diagonal matrix polynomial A(λ)⊕ In(d−1). Lancaster and Prells
show that the block structure of this linearization is preserved by a pair of left and right
transformations (TL,TR) parametrized by X and Y and taking the form

TL =
[
Cd−1

A Y . . . CAY Y
]−1

Md(A)−1, TR = T−1 (1.4)

with T as in (1.2) (see [9, Thm. 7]). Moreover, if the matrix coefficients of A(λ) are
Hermitian, then the matrix Y in a standard triple

(
X,CA,Y

)
for A(λ) has the form Y =

Md(A)−1X∗ [4], [5] leading to TL = T ∗R in (1.4). As a result, the SPT (T ∗R,TR) preserves
the block structure of the linearization (1.3) and the Hermitian property of the blocks.

Our interest is in SPTs that preserve the block structure of any pencil in the vector
space of pencils DL(A) defined in [10] by

DL(A) := {Lv(λ) ∈ F[λ]dn×dn : Lv(λ) is linear in λ, and
Lv(λ)(Λ ⊗ In) = v ⊗ A(λ), (1.5a)

(ΛT ⊗ In)Lv(λ) = vT ⊗ A(λ), (1.5b)

v ∈ Fd \ {0}},

where Λ = [λd−1, λd−2, . . . , 1]T ∈ Cd. Note that the pencil in (1.3) belongs to DL(A)
with vector v = ed. Here and throughout the paper, e j denotes the jth column of the
d × d identity matrix. It is shown in [7] and [10] that DL(A) has dimension d, that
pencils in DL(A) have a block symmetric structure, and that for a given vector v ∈ Fd

there exists a unique Lv(λ) ∈ DL(A). For example, for d = 2, any pencil in DL(A) is a
linear combination of the two pencils

Le1 (λ) := λ

[
A2 0
0 −A0

]
+

[
A1 A0
A0 0

]
=: λM1(A) − M0(A), (1.6)

Le2 (λ) := λ

[
0 A2
A2 A1

]
+

[
−A2 0

0 A0

]
=: λM2(A) − M1(A), (1.7)

which we refer to as the standard basis pencils for DL(A), since they correspond to
v = e1 and v = e2 in (1.5). The special block-symmetric pencils in (1.6) and (1.7) are
frequently used in applications, in particular when the coefficient matrices Ai of A(λ)
are symmetric or Hermitian.
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One of our main contributions is a parametrization of the set of nonsingular matri-
ces TL,TR ∈ Fdn×dn preserving the block structure of any pencils in DL(A) and thereby
constructing a new matrix polynomial Ã(λ) that is still of degree d. Because almost all
pencils in DL(A) preserve the finite and infinite elementary divisors of A(λ) [10], the
matrix polynomials A(λ) and Ã(λ) are isospectral (i.e., they have the same finite and
infinite eigenvalues, including partial multiplicities) and hence they are equivalent.

Unlike Lancaster and Prells’ SPTs in (1.4), our parametrization of SPTs preserving
the block structure of pencils in DL(A) does not rely on standard triples nor on lin-
earizations of A(λ), and most importantly, our parametrization does not require the
leading coefficient Ad of A(λ) to be nonsingular. For the special case d = 2 (the
quadratic case), our parametrization of (TL,TR) takes the form

TL =

[
FL + 1

2 A1GL −A2GL

A0GL FL −
1
2 A1GL

]−1

, TR =

[
FR + 1

2GRA1 GRA0

−GRA2 FR −
1
2GRA1

]−1

(1.8)

for some matrices FL, FR,GL,GR ∈ Fn×n such that TL,TR are nonsingular and GRFL +

FRGL = 0. When A2 is nonsingular, the parametrizations in (1.4) and (1.8) are related
by

X =
[
GRA2 FR + 1

2GRA1

]
, Y =

[
A−1

2 (FL −
1
2 A1GL)

GL

]
.

Our parametrization of the SPTs preserving the structure of DL(A) allows for easy
construction of SPTs that also preserve extra structures in A(λ) such as (skew- )Hermi-
tian, (skew-)symmetric, ∗-even, ∗-odd, and ∗-(anti)palindromic structures. For example
for real symmetric quadratic matrix polynomials A(λ), choosing FL = FT

R ∈ R
n×n and

GL = GT
R ∈ Rn×n in (1.8) together with the parameter constraint GRFL + FRGL = 0

yield SPTs that transform A(λ) into an equivalent real symmetric quadratic Ã(λ).
Finally, our parametrization allows for easy constructions of SPTs that are at most

rank-d modifications of the identity matrix and that lead to an equivalent matrix poly-
nomial Ã(λ) whose jth coefficient matrix Ã j is simply a low rank modification of A j,
for j = 0, . . . , d. For example, when d = 2, choosing FL = FR = In, GR = ab∗ =

−GL in (1.8) for any nonzero vectors a, b ∈ Cn implies that the parameter constraint
GRFL + FRGL = 0 holds. This leads to

T−1
L = I2n +

[
− 1

2 A1ab∗ A2ab∗

−A0ab∗ 1
2 A1ab∗

]
, T−1

R = I2n +

[ 1
2 ab∗A1 ab∗A0

−ab∗A2 − 1
2 ab∗A1

]
(1.9)

whose nonsingularity is ensured by choosing a, b such that

det(T−1
L ) = det(T−1

R ) = 1 −
1
4

(b∗A1a)2 + (b∗A0a)(b∗A2a) , 0. (1.10)

It is not difficult to see that T−1
L and T−1

R are at most rank-2 modifications of I2n, that
their inverses can be written explicitly using the Sherman-Morrison-Woodbury for-
mula, and when applied to (1.6) or (1.7), explicit expressions for Ã j, j = 0, 1, 2 can be
obtained in terms of A j, j = 0, 1, 2 and a, b. We expect SPTs that are low-rank modi-
fication of the identity matrix to be one of the key tools for developing algorithms that

4



reduce a matrix polynomial to Hessenberg form or tridiagonal form in a finite number
of steps without the need of a linear pencil of larger dimension.

The paper is organized as follows. Section 2 contains preliminary material that is
necessary for the parametrization of the SPTs presented in section 3. Special attention
is given to the quadratic case. Section 4 describes how to select the parameters so as to
preserve symmetries in the matrix polynomial. Section 5 contains concluding remarks.
Examples are used throughout the paper to illustrate the results.

2. Preliminaries

We summarize the properties of the vector space DL(A) in (1.5) that we need for
the construction of the parametrization of the transformations that preserve the block
structure of the pencils in DL(A).

The one-sided factorizations (1.5a)–(1.5b) in the definition of DL(A) lead to some
interesting relations between the solutions of linear systems involving A(λ) and Lv(λ) ∈
DL(A) with vector v.

Theorem 1. Let A(λ) ∈ F[λ]n×n be a matrix polynomial of degree d and let Lv(λ) ∈
DL(A) with vector v ∈ Fd. Let ω ∈ F be such that the matrix A(ω) is nonsingular and
define Ω = [ωd−1, ωd−2, . . . , 1]T ∈ Fd.

(a) If x ∈ Fn is the solution of the linear system A(ω)x = b for some given b ∈ Fn

then z = Ω ⊗ x ∈ Fdn is a solution of Lv(ω)z = v ⊗ b.
(b) If y ∈ Fn is the solution of the linear system yT A(ω) = cT for some given c ∈ Fn

then w = Ω ⊗ y ∈ Fdn is a solution of wT Lv(ω) = (v ⊗ b)T .
(c) If z ∈ Fdn solves the linear system Lv(ω)z = c for some given c ∈ Fdn then

x = (vT ⊗ In)z ∈ Fn solves A(ω)x = (ΩT ⊗ In)c.

Proof. Follows from [6, Corollary 4.2].

As already mentioned in the introduction, DL(A) is a vector space of dimension d.
It is shown in [7, Thm. 3.5] that

DL(A) =

{ d∑
k=1

vkLek (λ) : v ∈ Fd, Lek (λ) = λMk(A) − Mk−1(A), 1 ≤ k ≤ d
}
, (2.1)

where

Mk(A) =

[
Lk(A) 0

0 −Ud−k(A)

]
∈ Fdn×dn, 0 ≤ k ≤ d (2.2)

with block Hankel matrices L j(A),U j(A) ∈ F jn× jn given by

L j(A) :=


Ad

. . . Ad−1

. . . . . .
...

Ad Ad−1 . . . Ad− j+1

 , U j(A) :=


A j−1 . . . A1 A0
... . . . . . .

A1 . . .

A0

 . (2.3)
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The pencils Lek (λ), k = 1, . . . , d in (2.1) form the standard basis pencils for DL(A)
and correspond to choosing v = ek, k = 1, . . . , d in (1.5). All the pencils in DL(A)
have a block symmetric structure—see for example, the two standard basis pencils for
DL(A) provided in (1.6)–(1.7) when d = 2. The pencils Lek first appear in [8] for scalar
polynomials. They are used in [3] to define the class of SPTs of interest in this paper.

3. SPTs preserving the block structure of DL(A)

Our main objective is to parametrize the set of nonsingular matrices TL,TR ∈ Fdn×dn

such that the statement

Lv(λ) ∈ DL(A) with vector v if and only if TLLv(λ)TR ∈ DL(Ã) with vector v (3.1)

holds for any v ∈ Fd, where Ã(λ) ∈ F[λ]n×n is a matrix polynomial of degree d. It
follows from (2.1) that asserting that (3.1) holds for all v ∈ Fd is equivalent to asserting
that (3.1) holds for v = ek, k = 1, . . . , d. In other words, we are looking for nonsingular
matrices TL,TR that preserve the block structure of the standard basis pencils of DL(A).

Let B̃L ∈ Fn×n be any nonsingular matrix and consider the linear system

Ã(ω)X̃ = B̃L,

with ω such that the matrix Ã(ω) is nonsingular. Let us define

L̃ek (λ) := TLLek (λ)TR, k = 1, . . . , d.

Then by (3.1), L̃ek (λ) ∈ DL(Ã) with vector ek. With the notation

Ω = [ωd−1, ωd−2, . . . , 1]T ∈ Fd

it follows from Theorem 1(a) that Ω ⊗ X̃ ∈ Fdn×n is a solution of the d linear systems

L̃ek (ω)(Ω ⊗ X̃) = ek ⊗ B̃L, k = 1, . . . d,

or, equivalently, that
Z := TR(Ω ⊗ X̃) ∈ Fdn×n (3.2)

solves
Lek (ω)Z = T−1

L (ek ⊗ B̃L), k = 1, . . . d.

Hence since B̃L is nonsingular,

T−1
L =

[
Le1 (ω)Z Le2 (ω)Z · · · Led (ω)Z

]
(Id ⊗ B̃−1

L ). (3.3)

In a similar way, if we consider the linear system

ỸT Ã(ω) = B̃R

with B̃R ∈ Fn×n nonsingular then it follows from Theorem 1(b) that

(Ω ⊗ Ỹ)T L̃ek (ω) = eT
k ⊗ B̃R, k = 1, . . . , d,
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or equivalently, that
WT = (Ω ⊗ Ỹ)T TL ∈ Fn×dn (3.4)

solves the d linear systems

WT Lek (ω) = (eT
k ⊗ B̃R)T−1

R , k = 1, . . . , d.

Since B̃R is nonsingular,

T−1
R = (Id ⊗ B̃−1

R )


WT Le1 (ω)
WT Le2 (ω)

...
WT Led (ω)

 . (3.5)

We show in what follows that the blocks Lek (ω)Z and WT Lek (ω) in (3.3) and (3.5)
have a special structure.

Lemma 2. Let A(λ) =
∑d

j=0 λ
jA j ∈ F[λ]n×n, Lek (λ) be the kth standard basis pencil of

DL(A), and Z ∈ Fdn×n be partitioned into n×n blocks Z j according to Z j := (eT
j ⊗ In)Z.

Then

Lek (λ)Z = ek ⊗ fA(Z, λ) +

d−1∑
`=1

P`(A)
(
ek ⊗ (Z` − λZ`+1)

)
, (3.6)

where

fA(Z, λ) = A0Zd + λAdZ1 +
1
2

d−1∑
`=1

Ad−`(Z` + λZ`+1), (3.7)

and

(P`(A))i j =



1
2 Ad−` if i = j ≤ `,
− 1

2 Ad−` if i = j > `,
Ad−`−i+ j if i > j, j ≤ `, ` + i − j ≤ d,
−Ad−`−i+ j if i < j, j > `, ` + i − j ≥ 0,
0 otherwise.

(3.8)

Proof. The proof is not difficult but readers may find helpful to go through it with
d = 2 using P1(A) in (3.20) or with d = 3 using P1(A) and P2(A) in (3.29).

Recall from (2.1) that Lek (λ) = λMk(A)−Mk−1(A), where Mk(A) is defined in (2.2)–
(2.3), and let us partitioned Lek (λ)Z into d n × n blocks

(
Lek (λ)Z

)
i. Then

(
Lek (λ)Z

)
i =



k−1∑
`=k−i

−Ad+k−i−`(Z` − λZ`+1) if i < k,

fA(Z, λ) +

d−1∑
`=1

1
2

Ad−`(Z` − λZ`+1) if i = k,

d+k−i∑
`=k

Ad+k−i−`(Z` − λZ`+1) if i > k.
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The expression for Lek (λ)Z in (3.6) follows.

Since the pencils in DL(A) are block symmetric, LT
ek

(λ) is the kth standard basis pencil
of DL(AT ) and it follows from Lemma 2 that for W ∈ Fdn×n,

WT Lek (λ) = eT
k ⊗

(
fAT (W, λ)

)T
+

d−1∑
`=1

(
eT

k ⊗ (W` − λW`+1)T )(
P`(AT )

)T
. (3.9)

We are now ready to state the main result of this section.

Theorem 3. Let A(λ) ∈ F[λ]n×n be a matrix polynomial of degree d. The nonsingular
matrices TL,TR ∈ Fdn×dn that preserve the block structure of any pencil in DL(A) have
the form

TL =

(
Id ⊗ FL +

d−1∑
`=1

P`(A)(Id ⊗GL`)
)−1
, (3.10)

TR =

(
Id ⊗ FR +

d−1∑
`=1

(Id ⊗GR`)P`(AT )T
)−1
, (3.11)

with P`(A) as in (3.8) and parameter matrices FL, FR, GL`, GR` ∈ Fn×n, ` = 1, . . . , d−1
such that

(i) TL and TR are nonsingular, and
(ii) FRGLk + GRkFL = GRHk(A)GL, k = 1, . . . , d − 1, where

GR :=
[
GR1 · · · GR(d−1)

]
, GL :=


GL1
...

GL(d−1)

 ,
and Hk(A) is a block-symmetric (d− 1)× (d− 1) matrix with n× n blocks defined
by

Hk(A)i j =



−Ad−i− j+k if k < j, k < i and i + j − k ≤ d,
Ad−i− j+k if k > j, k > i and i + j − k ≥ 0,
− 1

2 Ad− j if k = i and k < j,
− 1

2 Ad−i if k = j and k < i,
1
2 Ad− j if k = i and k > j,
1
2 Ad−i if k = j and k > i,
0 otherwise.

Proof. Readers may find helpful to check the proof with d = 3 using P1(A) and

P2(A) in (3.29), and H1(A) =

[
0 − 1

2 A1

− 1
2 A1 −A0

]
, H2(A) =

[
A3

1
2 A2

1
2 A2 0

]
.

If we let

FL = fA(Z, ω)B̃−1
L , GL,` =(Z` − ωZ`+1)B̃−1

L , ` = 1, . . . , d − 1, (3.12)

FR = B̃−1
R fAT (W, ω)T , GR,` =B̃−1

R (W` − ωW`+1)T , ` = 1, . . . , d − 1 (3.13)
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then the expression for T−1
L in the theorem follows from (3.3) and (3.6), and that for

T−1
R follows from (3.5) and (3.9).

The matrices FL, FR, GL,`, and GR,`, ` = 1, . . . , d− 1 depend on Z in (3.2) and W in
(3.4), i.e., Z = TR(Ω⊗ X̃) and WT = (Ω⊗ Ỹ)T TL. It is easy to see that these two matrix
equations are equivalent to(

(ek − ωek+1)T ⊗ In
)
T−1

R Z = 0, k = 1, . . . , d − 1, (eT
d ⊗ In)T−1

R Z = X̃, (3.14)

WT T−1
L

(
(ek − ωek+1) ⊗ In

)
= 0, k = 1, . . . , d − 1, WT−1

L (ed ⊗ In) = Ỹ . (3.15)

The matrix equations on the right hand-side of (3.14) and of (3.15) do not impose any
constraint on the parameter matrices FL, FR, GL,`, and GR,` since X̃ and Ỹ are free to
choose. On the other hand, the first d − 1 matrix equations in (3.14) and the first d − 1
matrix equations in (3.15) do impose constraints as we now show.

We start with the d − 1 first equations in (3.14). It follows from (3.12) that

Z` =

d−∑̀
j=1

ω j−1GL(`+ j−1)B̃L + ωd−`Zd, 1 ≤ ` ≤ d.

Then on using the parametrization of TR in (3.11), we find that
(
(ek − ωek+1)T ⊗

In
)
T−1

R Z = 0 is equivalent to

FRGLk B̃L + GRkA(ω)Zd + GRk h(ω, A,GL)B̃L +

d−1∑
i=1

d−1∑
j=1

GRiPi(A) jkGL jB̃L = 0, (3.16)

where

h(ω, A,GL) =

d−1∑
i=1

d− j∑
j=1

ω jAd−i+1GL(i+ j−1).

Since Z solves Ld(ω)Z = C with C = T−1
L (ed ⊗ B̃L), it follows from Theorem 1(c) that

X = (eT
d ⊗ I)Z = Zd solves A(ω)X = (ΩT ⊗ I)C, i.e.,

A(ω)Zd = (ΩT ⊗ I)T−1
L (ed ⊗ B̃L)

= −h(ω, A,GL)B̃L +

d−1∑
j=1

P j(A)ddGL jB̃L + FLB̃L. (3.17)

Replacing A(ω)Zd in(3.16) by (3.17) and using the fact that B̃L is nonsingular yields

FRGLk + GRkFL = −

d−1∑
i=1

d−1∑
j=1

GRiPi(A) jkGL j −

d−1∑
j=1

GRkP j(A)ddGL j

=

d−1∑
i=1

d−1∑
j=1

GRiHk(A)i jGL j

= GRHk(A)GL

9



where

Hk(A)i j =

−Pi(A) jk if i , k,
−Pk(A) jk − P j(A)dd if i = k.

Then, the expression for Hk(A)i j in the theorem follows from (3.8) and it is not difficult
to check that Hk(A) is block-symmetric, i.e., that

(
Hk(A)

)
i j =

(
Hk(A)

)
ji.

Setting GL` = GL` = 0 in (3.10)–(3.11) leads to SPTs (TL,TR) that transform A(λ)
into a strictly equivalent matrix polynomial Ã(λ) = FLA(λ)FR. We refer to such SPTs
as trivial SPTs.

3.1. Quadratic case

When d = 2, the constraint equation in Theorem 3(ii) does not depend on A(λ).

Corollary 4. The pair of matrices TL,TR ∈ F2n×2n that preserve the block structure of
any pencil in DL(A) when A(λ) = λ2A2 + λA1 + A0 ∈ F[λ]n×n have the form

T−1
L = I2 ⊗ FL +

[ 1
2 A1GL −A2GL

A0GL − 1
2 A1GL

]
, T−1

R = I2 ⊗ FR +

[ 1
2GRA1 GRA0

−GRA2 − 1
2GRA1

]
(3.18)

where FL, FR,GL,GR are such that T−1
L and T−1

R are nonsingular and

FRGL + GRFL = 0. (3.19)

Proof. We have from (3.8) that

P1(A) =

[ 1
2 A1 −A2

A0 − 1
2 A1

]
, P1(AT )T =

[ 1
2 A1 A0

−A2 − 1
2 A1

]
. (3.20)

The expressions for T−1
L and T−1

R in (3.18) are then a simple application of Theorem 3
with d = 2. We also have that H1(A) = −(P1(AT )T )11 + 1

2 A1 = 0 so that (3.19) follows
from Theorem 3(ii) by setting GL1 ≡ GL and GR1 ≡ GR.

Example 5. Consider the 2 × 2 quadratic

A(λ) = λ2
[
1 1
1 1

]
+ λ

[
1 2
2 0

]
+

[
0 −1
−1 3

]
and construct the SPT (TL,TR) parametrized by

FL =

[
−1 −1
0 1

]
, GR =

[
0 1
1 −1

]
, FR =

[
1 0
0 1

]
,

and

GL = −F−1
R GRFL =

[
0 −1
1 2

]
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so that the constraint (3.19) holds. Then for Le2 (λ) in (1.7), we find that

TLLe2 (λ)TR = λ


0 0 5 4
0 0 0 0
5 4 16 4
0 0 −8 −4

 −

5 4 0 0
0 0 0 0
0 0 −11 −4
0 0 12 4


= λ

[
0 Ã2

Ã2 Ã1

]
−

[
Ã2 0
0 −Ã0

]
= L̃e2 (λ).

So the SPT (TL,TR) transforms A(λ) into the equivalent quadratic matrix polynomial

Ã(λ) = λ2Ã2 + λÃ1 + Ã0 = λ2
[
5 4
0 0

]
+ λ

[
16 4
−8 −4

]
+

[
11 4
−12 −4

]
.

We remark here that to construct Ã(λ), we used the pencil Le2 (λ), which is not a lin-
earization of A(λ) since A2 in this example is singular.

We expect the next result to be useful when transforming quadratics to simpler
forms.

Proposition 6. Let (TL,TR) be the SPT parameterized by FL,GL, FR,GR as in (3.18)
mapping the quadratic A(λ) to the quadratic Ã(λ). Then (T̃L, T̃R) = (T−1

L ,T−1
R ) is an

SPT mapping Ã(λ) to A(λ) that is parameterized by the four matrices F̃L, G̃L, F̃R, G̃R

with G̃L and G̃R such that
G̃L = GR, G̃R = GL.

Proof. It suffices to show that G̃L = GR. Let us partition any 2n × 2n matrix T into

n × n blocks as T =

[
T11 T12
T21 T22

]
. It follows from (1.8) that

 (T−1
L )21

(T−1
L )11 − (T−1

L )22
−(T−1

L )12

 =

A0
A1
A2

GL, (3.21)

G̃R

[
Ã0 Ã1 Ã2

]
=

[
(T̃−1

R )12 (T̃−1
R )11 − (T̃−1

R )22 −(T̃−1
R )21

]
. (3.22)

Since (TL,TR) preserves the block structure of the standard basis of DL(A), we have
that Mk(A)T̃−1

R = T−1
L Mk(Ã), k = 0, 1, 2. We partition these 2n × 2n matrix equalities

into n× n blocks as above and denote by (k)i j the n× n matrix equality
(
Mk(A)T̃−1

R
)
i j =(

T−1
L Mk(Ã)

)
i j. Then the following linear combination of these matrix equations −(0)22 −(0)21 + (1)22 (1)21
−(0)12 + (1)22 −(0)11 + (1)21 − (2)22 + (1)12 −(2)21 + (1)11

(1)12 −(2)12 + (1)11 −(2)11


leads toA0

A1
A2

 [(T̃−1
R )12 (T̃−1

R )11 − (T̃−1
R )22 −(T̃−1

R )21

]
=

 (T−1
L )21

(T−1
L )11 − (T−1

L )22
−(T−1

L )12

 [Ã0 Ã1 Ã2

]
.

(3.23)
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Since A(λ) is a regular quadratic matrix polynomial, det(λ2A2 +λA1 + A0) , 0 for some
λ ∈ F. As a result,

n = rank(λ2A2 + λA1 + A0) = rank

[λ2I λI I
] A2

A1
A0




≤ min

rank
([
λ2I λI I

])
, rank


A2
A1
A0



 ,

which implies that

A2
A1
A0

 is of full column rank. Similarly,
[
Ã0 Ã1 Ã2

]
is of full row

rank and we have thatA0
A1
A2


+ A0

A1
A2

 = In,
[
Ã0 Ã1 Ã2

] [
Ã0 Ã1 Ã2

]+
= In,

where B+ denotes the pseudoinverse of B. Then it follows from (3.22), (3.23), and
(3.21) that

G̃R =
[
(T̃−1

R )21 (T̃−1
R )11 − (T̃−1

R )22 −(T̃−1
R )12

] [
Ã0 Ã1 Ã2

]+

=

A0
A1
A2


+  (T−1

L )21
(T−1

L )11 − (T−1
L )22

−(T−1
L )12


= GL

3.2. At most rank-d modification of the identity matrix SPTs

Our parametrization in Theorem 3 is for T−1
L and T−1

R . Fortunately, the parametriza-
tion allows easy constructions of nontrivial SPTs that are low rank modification of Idn

so that they can be inverted efficiently or even explicitly when the update is of very low
rank. We illustrated this when d = 2 in the introduction with TL,TR in (1.9). We refer
to [2] for early work on this topic for quadratics with nonsingular leading coefficients
and a more complicated set of constraints on the parameters than (3.19). Such SPT are
used in [15] to deflate eigenpairs from quadratic matrix polynomials.

We show in this section that for arbitrary degree d we can construct SPTs that are at
most rank-d modification of the dn × dn identity matrix. A description of all the SPTs
that are low rank modification of Idn is outside the scope of this work.

For given nonzero vectors a, b ∈ Cn, consider T−1
L in (3.10) and T−1

R in (3.11) with

FL = FR = In, GR` = ab∗, GL` = g`ab∗, ` = 1, . . . , d − 1, (3.24)

12



where the scalars g` are to be determined so that the constraints in Theorem 3(ii) hold.
These constraints simplify to

d−1∑
j=1

g jb∗
d−1∑

i=1

Hk(A)i j

 a − gk = 1, k = 1, . . . , d − 1,

which can be rewritten as the linear system Cg = e with g the vector of scalars g`, e the
vector of all ones, and

Ck j =


∑d−1

i=1 b∗Hk(A)i ja if k , j,∑d−1
i=1 b∗Hk(A)i ja − 1 if k = j.

(3.25)

With the choice (3.24), the inverse of TL and TR can be rewritten as

T−1
L = Idn +

(d−1∑
`=1

g`P`(A)(Id ⊗ a)
)
(Id ⊗ b∗) =: Idn + ULV∗L, (3.26)

T−1
R = Idn + (Id ⊗ a)

(d−1∑
`=1

(Id ⊗ b∗)P`(A∗)∗
)

=: Idn + URV∗R, (3.27)

where VL = Id ⊗ b and UR := Id ⊗ a are dn × d matrices of rank d, and UL :=∑d−1
`=1 g`P`(A)(Id ⊗ a) and VR :=

∑d−1
`=1 P`(A∗)(Id ⊗ b) are dn× d matrices of rank at most

d. It follows from Theorem 3 that as long as the nonzero vectors a and b are chosen
such that det(Id + V∗LUL) , 0 and det(Id + V∗RUR) , 0, and the linear system Cg = e
with C as in (3.25) has a solution, then

TL = Idn − UL(Id + V∗LUL)−1V∗L, TR = Idn − UR(Id + V∗RUR)−1V∗R

defines an SPT for pencils in DL(A) that is made up of two at most rank-d modifications
of the identity matrix.

Example 7. As an illustration, consider the cubic matrix polynomial A(λ) = λ3A3 +

λ2A2 + λA1 + A0. For any nonzero vectors a, b such that

(a) the linear system[
− 1

2 b∗A1a − 1 − 1
2 b∗A1a − b∗A0a

1
2 b∗A2a + b∗A3a 1

2 b∗A2a − 1

] [
g1
g2

]
=

[
1
1

]
(3.28)

has a solution
[ g1

g2

]
, and

(b) det(I3 + V∗LUL) , 0 and det(I3 + V∗RUR) , 0 with

VL = I3 ⊗ b, UL =
(
g1P1(A) + g2P2(A)

)
(I3 ⊗ a),

UR = Id ⊗ a, VR =
(
P1(A∗) + P2(A∗)

)
(I3 ⊗ b),

where the matrices P`(A) are given by (see (3.8))

P1(A) =


1
2 A2 −A3 0
A1 − 1

2 A2 −A3

A0 0 − 1
2 A2

 , P2(A) =


1
2 A1 0 −A3

A0
1
2 A1 −A2

0 A0 − 1
2 A1

 (3.29)

13



then TL = I3n − UL(I3 + V∗LUL)−1V∗L, TR = I3n − UR(I3 + V∗RUR)−1V∗R define an SPT for
any pencil in DL(A).

Now for

A3 =

[
1 0
0 0

]
, A2 =

[
−6 0
0 1

]
, A1 =

[
11 0
0 3

]
, A0 =

[
−6 0
0 2

]
and a =

[ 1
−1

]
, b =

[ 0
1
]
, we find that the linear system (3.28) has solution g =

[−5
1
]

leading to

UL =



20.5 5 −1
1 0 0
−61 −9.5 11
13 −4 1
30 −6 −20.5
10 −2 −1


, VR =



0 0 0
2 0 0
0 0 0
5 1 −1
0 0 0
2 2 −2


.

Then it is easy to check that the two matrices

V∗LUL =

 1 0 0
13 −4 1
10 −2 −1

 . V∗RUR =

−2 −5 −2
0 −1 −2
0 1 2


do not have −1 as an eigenvalue so that TL = I3n − UL(I3 + V∗LUL)−1V∗L and TR =

I3n − UR(I3 + V∗RUR)−1V∗R form an SPT, which when applied to, for example,

λM1(A) + M0(A) = λ

A3 0 0
0 −A1 −A0
0 −A0 0

 +

A2 A1 A0
A1 A0 0
A0 0 0


transforms A(λ) into the equivalent cubic polynomial Ã(λ), where Ã j = A j+rank-1 update.
We find that

Ã3 =

[
1 2
0 0

]
, Ã2 =

[
−6 4.75
0 −0.5

]
, Ã1 =

[
11 −11.75
0 −1.5

]
, Ã0 =

[
−6 −26.5
0 −1

]
.

Note that the SPT (T̃L, T̃R) with T̃L = I3n + ULV∗L and T̃R = I3n + URV∗R diagonalizes
the triangular cubic matrix polynomial Ã(λ) into A(λ).

4. Preserving symmetries in matrix polynomials

The quadratic matrix polynomials that arise in applications often have additional
structures that come from the physics of the problem and that should be preserved
by the SPTs. To be concise with the presentation, we use the ?-adjoint A?(λ) =∑d

j=0 λ
jA?j of the matrix polynomial A(λ) =

∑d
j=0 λ

jA j ∈ F[λ]n×n, where the symbol
? denotes transpose T in the real case F = R, and either the transpose T or conjugate
transpose ∗ in the complex case F = C.

The three most important matrix polynomial structures are
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(a) Hermitian/symmetric when A?(λ) = A(λ) and skew-Hermitian/skew-symmetric
when A?(λ) = −A(λ),

(b) ?-alternating when A?(−λ) = εA(λ) with ε ∈ {1,−1}, also called ?-even when
ε = 1 and ?-odd when ε = −1, and

(c) ?-palindromic when revA?(λ) = εA(λ) with ε ∈ {1,−1}.

Quadratic matrix polynomials with symmetric coefficient matrices arise frequently in
the vibration analysis of structural systems [16]. Gyroscopic systems leads to T -even
quadratics A(λ) = λ2A2 + λA1 + A0 with A0, A2 symmetric and A1 skew-symmetric.
We refer to the NLEVP collection of nonlinear eigenvalue problems [1] and references
therein for concrete examples of matrix polynomials having one of the structures de-
scribed above. To preserve these structures, the parameter matrices defining the SPT
(TL,TR) in (3.10)–(3.11) must satisfy additional constraints as shown in the following
theorem.

Theorem 8. Let A(λ) ∈ F[λ]n×n be a matrix polynomial of degree d and let TL,TR ∈

Fdn×dn be as in (3.10) and (3.11) with parameter matrices FL, FR, GL,`, GR,` ∈ Fn×n,
` = 1, . . . , d − 1 such that (i) and (ii) in Theorem 3 hold. Let Ã(λ) be the matrix
polynomial of degree d that results from applying TL,TR to any pencil in DL(A). Let
ε ∈ {−1, 1}.

(a) If A?(λ) = εA(λ) and FL = F?R , GL,` = εG?R,`, ` = 1, . . . , d − 1 then Ã?(λ) =

εÃ(λ).
(b) If A?(−λ) = εA(λ) and FL = F?R , GL,` = ε(−1)d−`G?R,`, ` = 1, . . . , d − 1 then

Ã?(−λ) = εÃ(λ).
(c) If revA?(λ) = εA(λ) and FL = −F?R , GL,` = εG?R,`, ` = 1, . . . , d − 1 then

revÃ?(λ) = εÃ(λ).

Proof. We note that for P`(A) in (3.8), P`(AT )T = P`(A?)?, ` = 1, . . . , d − 1, and
since the Mk(A) in (2.2) are block symmetric, Mk(A?) = Mk(A)?, k = 0, . . . , d.

(a) Assume that A?(λ) = εA(λ), or equivalently, that A?j = εA j, j = 0, . . . , d. Then
P`(A?) = εP`(A) so that

(T−1
R )? =

(
Id⊗FR+

d−1∑
`=1

(Id⊗GR,`)P`(A?)?
)?

= Id⊗FL+

d−1∑
`=1

εP`(A)(Id⊗εGL,`) = T−1
L .

Since Mk(A)? = εMk(A),

Mk(Ã?) = Mk(Ã)? =
(
T?R Mk(A)TR

)?
= T?R Mk(A)?TR = εT?R Mk(A)TR = εMk(Ã),

which implies that Ã?(λ) = εÃ(λ).
(b) Assume that A?(−λ) = εA(λ), or equivalently, that A?j = (−1) jεA j, j = 0, . . . , d.

Then we find that P`(A?) = (−1)d−`ε(D ⊗ In)P`(A)(D ⊗ In), where

D = diag(1,−1, . . . , (−1)d−1) ∈ Rd×d
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so that

(T−1
R )? = Id ⊗ F?R +

d−1∑
`=1

P`(A?)(Id ⊗G?R,`)

= Id ⊗ FL +

d−1∑
`=1

(−1)d−`ε(D ⊗ In)P`(A)(D ⊗ In)(Id ⊗ ε(−1)d−`GL,`)

= (D ⊗ In)T−1
L (D ⊗ In).

Also, A?j = (−1) jεA j, j = 0, . . . , d is equivalent to

(
Mk(A)(D ⊗ In)

)?
= −ε(−1)d−k Mk(A)(D ⊗ In)

(i.e., the pencils Mk(A)(D ⊗ In) alternates between being Hermitian (or symmet-
ric) and skew-Hermitian (or skew-symmetric)). Now,(

Mk(Ã)(D ⊗ In)
)?

=
(
TLMk(A)TR(D ⊗ In)

)?
=

(
TLMk(A)(D ⊗ In)T?L

)?
= −ε(−1)d−kTLMk(A)(D ⊗ In)T?L
= −ε(−1)d−kTLMk(A)TR(D ⊗ In)

= −ε(−1)d−k Mk(Ã)(D ⊗ In),

which implies that Ã?j = (−1) jεÃ j, j = 0, . . . , d.

(c) Assume that revA?(λ) = εA(λ), or equivalently, that A?j = εAd− j, j = 0, . . . , d.
If we denote by

S =

 1
. . .

1


the d × d standard involutary permutation matrix then

P`(A?) = −ε(S ⊗ In)Pd−`(A)(S ⊗ In), ` = 1, . . . , d − 1,

so that
(T−1

R )? = −(S ⊗ In)T−1
L (S ⊗ In).

It follows from (2.2)–(2.3) that A?j = εAd− j, j = 0, . . . , d is equivalent to

M0(A)(S ⊗ In) = −
(
Md(A)(S ⊗ In)

)?
.
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Then,

M0(Ã)(S ⊗ In) = TLM0(A)TR(S ⊗ In)
= TLM0(A)(S ⊗ In)(S ⊗ In)TR(S ⊗ In)

= −TLM0(A)(S ⊗ In)T?L

= TL
(
Md(A)(S ⊗ In)

)?T?L

=
(
TLMd(A)(S ⊗ In)T?L

)?
= −

(
TLMd(A)TR(S ⊗ In)

)?
= −

(
Md(Ã)(S ⊗ In)

)?
,

which implies that Ã?j = εÃd− j, j = 0, . . . , d.

The next result is a direct consequence of Corollary 4 and Theorem 8.

Corollary 9. Let A(λ) = λ2A2 + λA1 + A0 ∈ F[λ]n×n and

T−1 = I2 ⊗ F +

[ 1
2GA1 GA0

−GA2 − 1
2GA1

]
(4.1)

with G, F ∈ Fn×n. Let ε ∈ {+1,−1}.

(a) If A?j = εA j, j = 0, 1, 2 then (T?,T ) with G, F such that FG? = −ε(FG?)? is

an SPT that transforms A(λ) into Ã(λ) whose coefficient matrices are such that
Ã?j = εÃ j, j = 0, 1, 2.

(b) If A?j = ε(−1) jA j, j = 0, 1, 2 then
(
(D ⊗ In)T?(D ⊗ In),T

)
with D = diag(1,−1)

and G, F such that FG? = ε(FG?)? is an SPT that transforms A(λ) into Ã(λ)
whose coefficient matrices are such that Ã?j = εÃ j, j = 0, 1, 2.

(c) If A?2 = εA0 and A?1 = εA1 then
(
− (S ⊗ In)T?(S ⊗ In),T

)
with S =

[ 0
1

1
0
]

and
G, F such that FG? = ε(FG?)? is an SPT that transforms A(λ) into Ã(λ) whose
coefficient matrices are such that Ã?2 = εÃ0 and Ã?1 = εÃ1.

Example 10. To preserve the symmetry of the quadratic matrix polynomial in Exam-
ple 5, we apply Corollary 9 (a) with ? = T and ε = 1, and choose

F = I2, G =

[
0 1
−1 0

]
so that FGT is skew-symmetric. Then the SPT (T T ,T ) transforms A(λ) into the sym-
metric quadratic

Ã(λ) = λ2
[
− 1

3 0
0 0

]
+ λ

[
4/9 −4/9
−4/9 −4/3

]
+

[
−7/27 −16/27
−16/27 −52/27

]
.
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Note that when F = C and ? = ∗, the SPT in (1.9) preserves Hermitian structure
if b = ia ∈ Cn since GL = −ab∗ = iaa∗ = ba∗ = G∗R. On the other hand, when
F = R and ? = T then the constraint GL , GT

R for all nonzero a, b ∈ Rn. So the
SPT in (1.9) does not in general preserve symmetry when A(λ) is symmetric. Although
the parametrization in Corollary 9 was not known at the time, the SPT used in [15] to
deflate eigenpairs of symmetric quadratic while preserving the symmetry correspond
to choosing

F = I + a f T , G = aaT ,

in (4.1) for some nonzero vectors a, f ∈ Rn such that

aT f = −1, (aT A2a)(aT A0a) −
1
4

(aT A0a)2 , 0.

We remark that the above constraints on the parameter a and f is much simpler than
that in [15].

5. Concluding remarks

We have constructed a parametrization for the inverse of the left and right trans-
formations that preserve the block structure of pencils in DL(A), and hence produce
a new matrix polynomial Ã(λ) that is still of degree d and is unimodularly equivalent
to A(λ). We have also identified constraints on the parametrization that lead to SPTs
that preserve existing structures in A(λ) such as symmetric, alternating and palindromic
structures.

We have shown that our parametrization allows constructions of SPTs that are low
rank modifications of the identity. The latter are easy to invert and when applied to any
pencil in DL(A), lead to a new matrix polynomial Ã(λ) whose matrix coefficients Ã j

are low rank modifications of A j. SPTs of this type can be used to deflate d eigenpairs
with distinct eigenvalues and linearly independent eigenvectors (see [14] and [15] for
d = 2). How to identify among this class of SPTs, transformations that have specific
actions such as that of introducing zeros in specific entries or columns of the matrix
polynomial is the subject of ongoing work.

We concentrated here on matrix polynomials A(λ) expressed in the monomial basis
1, λ, λ2 . . . , λd. The definition of the vector space of pencils DL(A) can however be
generalized to other bases such as for example the Legendre basis or the Chebyshev
basis [11]. Then the one-sided factorizations (1.5a)–(1.5b) hold but for a different Λ.
These factorizations lead to standard basis pencils that differ from those in (2.1). But
as long as we have access to one-sided factorizations of the type (1.5a)–(1.5b) and the
corresponding standard basis for DL(A), the procedure we followed to construct the
SPTs that preserve the block structure of pencils in DL(A) still applies.
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