
Randomized Low Rank Matrix Approximation:
Rounding Error Analysis and a Mixed Precision

Algorithm

Connolly, Michael P. and Higham,
Nicholas J. and Pranesh, Srikara

2022

MIMS EPrint: 2022.10

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

RANDOMIZED LOW RANK MATRIX APPROXIMATION:
ROUNDING ERROR ANALYSIS AND A MIXED PRECISION

ALGORITHM∗

MICHAEL P. CONNOLLY† , NICHOLAS J. HIGHAM† , AND SRIKARA PRANESH†

Abstract. The available error bounds for randomized algorithms for computing a low rank
approximation to a matrix assume exact arithmetic. Rounding errors potentially dominate the
approximation error, though, especially when the algorithms are run in low precision arithmetic.
We give a rounding error analysis of the method that computes a randomized rangefinder and then
computes an approximate singular value decomposition approximation. Our analysis covers the basic
method and the power iteration for the fixed-rank problem, as well as the power iteration for the fixed-
precision problem. We give both worst-case and probabilistic rounding error bounds as functions of
the problem dimensions and the rank. The worst-case bounds are pessimistic, but the probabilistic
bounds are reasonably tight and still reliably bound the error in practice. We also propose a mixed
precision version of the algorithm that offers potential speedups by gradually decreasing the precision
during the execution of the algorithm.

Key words. randomized algorithms, low rank matrix approximation, singular value decompo-
sition, rounding error analysis, probabilistic rounding error analysis, mixed precision algorithm

AMS subject classifications. 65G50, 65F05

1. Introduction. Randomized algorithms for low rank matrix approximation,
a problem with many applications in scientific computing, first began to appear two
decades ago. Early, influential works, including [1], [6], [7], [16], [19], and [23], showed
that for certain problems randomized algorithms can be significantly more computa-
tionally efficient than classical numerical linear algebra algorithms. Comprehensive
surveys of randomized algorithms and low-rank approximation are given in [15] and
[17]. Given a matrix A ∈ Rm×n with m ≥ n and low numerical rank, the goal is
to compute cheaply some useful factorization that approximates A well. The basic
computational procedure can be split into two steps [6], [17, sect. 11].

• Rangefinder: Compute an orthonormal Q such that A ≈ QQTA and Q has
as few columns as possible.

• Factorization: Use Q to help construct an approximate factorization of A.
The two steps are described in more detail in Algorithms 1.1 and 1.2. Here we
focus specifically on computing the singular value decomposition (SVD), but other
factorizations can also be computed using Q from Algorithm 1.1 (see, for example,
[18, sect. 3]). Algorithm 1.1 describes the general case of drawing a matrix Ω with
isotropic columns. A random vector x ∈ Rn is isotropic if E(xxT) = In, where E
denotes expectation. A thin QR factorization means one with a rectangular Q and
an upper triangular R.

∗Version of July 19, 2022.
Funding: This work was supported by by MathWorks, Engineering and Physical Sciences Re-

search Council grant EP/P020720/1, the Royal Society, and the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National
Nuclear Security Administration.

†Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK
(michael.connolly-3@manchester.ac.uk, nick.higham@manchester.ac.uk, psrikara@gmail.com).

1

Algorithm 1.1 Given A ∈ Rm×n with m ≥ n and an integer k < n, compute a
matrix Q ∈ Rm×k with orthonormal columns such that A ≈ QQTA.

1: Draw a matrix Ω ∈ Rn×k with isotropic columns.
2: Y = AΩ
3: Compute an orthonormal basis Q ∈ Rm×k for Y via a thin QR factorization
Y = QR.

Algorithm 1.2 Given A ∈ Rm×n with m ≥ n and Q from Algorithm 1.1, compute
the approximate SVD A ≈ UΣV T , where U ∈ Rm×k, Σ ∈ Rk×k, V ∈ Rn×k.

1: B = QTA
2: Compute the economy size SVD B = ŨΣV T .
3: U = QŨ

Note that line 2 of Algorithm 1.1 requires about a factor n/k more flops than line 3,
so most of the work is in the matrix multiplication of line 2.

We wish to bound the normwise absolute error in the approximate SVD from
Algorithm 1.2. In exact arithmetic,

(1.1) ∥A− UΣV T ∥ = ∥A−QŨΣV T ∥ = ∥A−QB∥ = ∥A−QQTA∥,

so it is only Algorithm 1.1, the rangefinder process, that introduces errors. Previ-
ous error analyses of randomized algorithms that provide bounds on the right-hand
side of (1.1) (see, e.g., [17, sect. 11]) are for exact arithmetic, so to obtain practical
error bounds one has to assume that floating-point arithmetic errors are swamped
by the errors introduced by the randomization process, or account for their effect on
(1.1). This is done in [2] for the Nyström approximation of a positive semidefinite ma-
trix, with the goal of balancing the two sources of error and exploiting low-precision
arithmetic.

Our goal is to perform a rounding error analysis of Algorithms 1.1 and 1.2. The
algorithms as presented refer to the fixed-rank problem, where we have a user-specified
value of k, the rank of Ω. In the other approach, the fixed-precision problem, we
iteratively construct Q until the error (1.1) is less than some specified tolerance.
We analyze both problems, beginning with the fixed-rank problem. Since the fixed-
precision problem is essentially solved as a sequence of fixed-rank problems, our fixed-
rank analysis proves crucial for our fixed-precision analysis.

Our analysis focuses on random matrices whose columns are isotropic, so it in-
cludes as particular cases Gaussian matrices and other commonly used structured
random matrices. By a Gaussian matrix we mean a random matrix whose elements
are independently drawn from the standard normal distribution (mean 0, variance 1).

In section 2 we give a rounding error analysis for Algorithms 1.1 and 1.2, which
treat the fixed-rank problem. We then extend the analysis to a power iteration gen-
eralization of Algorithm 1.1. This analysis is a usual worst-case analysis, but in
section 2.2 we give a probabilistic rounding error analysis. In section 3 we extend
our analysis to an algorithm for the fixed-precision problem, and we propose a mixed
precision version of the algorithm. We give numerical experiments to assess the qual-
ity of the rounding error bounds and to indicate the possible benefits of the mixed
precision algorithm. Concluding remarks are given in section 4.

2

2. Rounding error analysis. If there are no rounding errors then the error in
the computed SVD from Algorithm 1.2 is given by (1.1). We wish to derive an error
bound that accounts for rounding errors. The only simplifying assumption we will
make is that the SVD in line 2 of Algorithm 1.2 is computed exactly. This assumption
has little effect on the final error bounds assuming that the SVD is computed by a
numerically stable algorithm.

We will use the standard model of floating-point arithmetic [8, sect. 2.2]:

(2.1) fl(x op y) = (x op y)(1 + δ), |δ| ≤ u,

with op ∈ {+,−,×, /}. Throughout we use the quantities

(2.2) γn =
nu

1− nu
, γ̃n =

cnu

1− cnu
,

where c is a small integer constant and u is the unit roundoff.
We will use the 2-norm, ∥A∥2 = maxx̸=0 ∥Ax∥2/∥x∥2 and the Frobenius norm,

∥A∥F = (
∑

i,j a
2
ij)

1/2. We will also use the inequality, for A ∈ Cr×m, B ∈ Cm×n,

C ∈ Cn×s [13, 1991, Cor. 3.5.10],

(2.3) ∥ABC∥F ≤ ∥A∥2 ∥B∥F ∥C∥2.

We need the result that for A ∈ Rm×n, B ∈ Rn×p, and C = AB the computed
product Ĉ satisfies [8, sect. 3.5].

(2.4) Ĉ = C +∆C, |∆C| ≤ γn|A||B|.

Let R̂ ∈ Rk×k be the computed upper triangular factor of A ∈ Rm×k obtained by
Householder QR factorization. Then there exists a matrix Q̃ ∈ Rm×k with orthonor-
mal columns such that [8, Thm. 19.4]

(2.5) A+∆A = Q̃R̂, ∥∆aj∥2 ≤ γ̃mk∥aj∥2, j = 1 : k.

We can now obtain an error bound for step 2 of Algorithm 1.1

Lemma 2.1. Let Y = AΩ, where A ∈ Rm×n with m ≥ n and Ω ∈ Rn×k, where
k ≤ n. Householder QR factorization of the computed Ŷ produces a computed upper
triangular R̂ satisfying

(2.6) Y +∆Y = Q̃R̂, ∥∆Y (j)∥2 ≤ (γn + γ̃mk + γnγ̃mk)∥A∥F ∥ωj∥2, j = 1: k,

where Q̃ ∈ Rm×k has orthonormal columns and ωj is the jth column of Ω.

Proof. From (2.4) we have Ŷ = Y +∆Y1, where

∥∆Y (j)
1 ∥2 ≤ γn∥ |A||ωj | ∥2 ≤ γn∥A∥F ∥ωj∥2.(2.7)

By (2.5), Householder QR factorization of Ŷ yields Ŷ + ∆Y2 = Q̃R̂, where Q̃ has
orthonormal columns and

∥∆Y (j)
2 ∥2 ≤ γ̃mk∥ŷj∥2 ≤ γ̃mk

(
∥yj∥2 + γn∥A∥F ∥ωj∥2

)
.

Writing ∆Y = ∆Y1 +∆Y2 and using ∥yj∥2 ≤ ∥A∥F ∥wj∥2 gives (2.6).

3

We could explicitly form the matrix Q after computing the QR factorization in
Algorithm 1.1 and then explicitly form the matrix product B = QTA on step 1 of
Algorithm 1.2. However, it is normal practice to keep Q in factored form and apply
it to A in factored form. We will assume that this is how B is evaluated.

The error analysis of Householder QR factorization shows that the matrix Q̃ in
Lemma 2.1 is a product of exact Householder matrices that are defined in terms of the
computed quantities that appear during the factorization. Moreover, if QT is applied
in factored form to a matrix H ∈ Rm×n to form G = QTH then [8, Lem. 19.3] implies

that the computed Ĝ satisfies

(2.8) Ĝ = Q̃TH +∆H, ∥∆hj∥2 ≤ γ̃mk∥hj∥2, j = 1 : n.

Therefore the matrix B̂ computed on line 1 of Algorithm 1.2 using the factored form
of Q satisfies

(2.9) B̂ = Q̃TA+∆A, ∥∆A∥F ≤ γ̃mk∥A∥F .

The matrix Û from line 3 of Algorithm 1.2 computed using the factored form of Q
satisfies

(2.10) Û = Q̃Ũ +∆U, ∥∆U∥F ≤ γ̃mk∥Ũ∥F = k1/2γ̃mk.

Hence

A− ÛΣV T = A− Q̃ŨΣV T −∆UΣV T

= A− Q̃B̂ −∆UΣV T

= (I − Q̃Q̃T)A− Q̃∆A−∆UΣV T

= (I − Q̃Q̃T)A+ E,(2.11)

where

∥E∥F ≤ γ̃mk∥A∥F + k1/2γ̃mk∥ΣV T ∥F
= γ̃mk∥A∥F + k1/2γ̃mk∥B̂∥F
≤ γ̃mk∥A∥F + k1/2γ̃mk(1 + γ̃mk)∥A∥F
= γ̃mk

(
1 + k1/2(1 + γ̃mk)

)
∥A∥F .(2.12)

Introducing the exact Q, we rewrite this equation as

(2.13) A− ÛΣV T = (I −QQT)A+ (QQT − Q̃Q̃T)A+ E.

In this expression, the first term is bounded by the existing exact arithmetic
analysis and the last term is bounded by (2.12). We now focus on bounding the
middle term, FA, where

F = QQT − Q̃Q̃T .

Our aim is to bound ∥FA∥F , but first we will bound ∥FY ∥F . Note that QQTY =
QQTQR = QR = Y . Hence

FY = QQTY − Q̃Q̃TY = (I − Q̃Q̃T)Y = −(I − Q̃Q̃T)∆Y,

4

by (2.6). Using (2.3), together with ∥I − Q̃Q̃T ∥2 ≤ 1 we then have

(2.14) ∥FY ∥F ≤ ∥∆Y ∥F .

We now state an important result about matrices with isotropic columns. This
is contained in [17, sects. 4.2, 4.8] but is not stated and proved as a self-contained
result. We include a proof, for completeness.

Lemma 2.2. Let Ω ∈ Rn×k be a random matrix with isotropic columns. Then for
B ∈ Rm×n we have

(2.15) E
(
∥BΩ∥2F

)
= k∥B∥2F .

Proof. For any A ∈ Rn×n, define xi = ωT
i Aωi, where ωi is the ith column of Ω.

By cyclicity of the trace and linearity of the expected value we have

E(xi) = E
(
trace(ωiω

T
i A)

)
= trace

(
E(ωiω

T
i A)

)
= trace

(
E(ωiω

T
i)A

)
= trace(A).

Setting A = BTB, we have ∥BΩ∥2F =
∑k

i=1 ω
T
i (B

TB)ωi =
∑k

i=1 xi, hence

E(∥BΩ∥2F) = E

(
k∑

i=1

xi

)
= k trace(BTB) = k∥B∥2F .

Using Lemma 2.2 and (2.14), and since Y = AΩ, we have

∥FA∥2F =
1

k
E
(
∥FAΩ∥2F

)
=

1

k
E
(
∥FY ∥2F

)
≤ 1

k
E
(
∥∆Y ∥2F

)
,

by the monotonicity of the expected value. Hence

(2.16) ∥FA∥F ≤
1√
k
E
(
∥∆Y ∥2F

)1/2
.

We finally need to bound E
(
∥∆Y ∥2F

)1/2
. From (2.6) we obtain

(2.17) ∥∆Y ∥2F ≤ (γn + γ̃mk + γnγ̃mk)
2∥A∥2F ∥Ω∥2F .

Using these bounds in (2.13) gives the following result.

Theorem 2.3. Let A ∈ Rm×n, where m ≥ n, and assume that the SVD on line 2
of Algorithm 1.2 is computed exactly. In floating-point arithmetic, Algorithm 1.2
produces a computed SVD A ≈ ÛΣ̂V̂ T satisfying

∥A− ÛΣ̂V̂ T ∥F ≤ ∥(I −QQT)A∥F +
[
γ̃mk

(
1 + k1/2(1 + γ̃mk)

)
+ k−1/2(γn + γ̃mk + γnγ̃mk)E

(
∥Ω∥2F

)1/2]∥A∥F .(2.18)

The first term in (2.18), ∥(I−QQT)A∥F , is bounded by [6, Thm. 9.1]. The second
and third terms bound the rounding errors; the third is deterministic once a choice
for Ω has been fixed.

Consider now the particular case of a Gaussian Ω. It is easy to see that Ω has
isotropic columns. Using E(∥Ω∥2F) = nk (which follows by direct calculation or by
Lemma 2.2) in (2.18) gives the following result.

5

Corollary 2.4. Let A ∈ Rm×n, where m ≥ n, and assume that a Gaussian Ω is
used in Algorithm 1.1 and that the SVD on line 2 of Algorithm 1.2 is computed exactly.
In floating-point arithmetic, Algorithm 1.2 produces a computed SVD A ≈ ÛΣ̂V̂ T

satisfying

∥A− ÛΣ̂V̂ T ∥F ≤ ∥(I −QQT)A∥F
+
(
(1 + k1/2 + n1/2)γ̃mk + n1/2γn(1 + γ̃mk) + k1/2γ̃2mk

)
∥A∥F .(2.19)

Now we have chosen Ω as Gaussian, a more descripitve bound for ∥(I−QQT)A∥F
is available [6, Thm. 10.7]. Corollary 2.4 shows that the rounding errors contribute an
additional error with leading order term mn1/2ku∥A∥F to the inherent approximation
errors. If we are working in double precision arithmetic this extra error term should be
negligible, but if single precision or half precision is being used it could be significant.

In practice, structured random matrices are often used instead of a Gaussian Ω.
As an example we consider the commonly used subsampled random Fourier transform
(SRFT) [6, sect. 4.6]. Since the complex analogue to (2.1) is of the same form and
Lemma 2.2 holds for complex data, our results for real arithmetic are valid for complex
modulo an appropriate increase in the constants [8, sect. 3.6]. An SRFT matrix has
the form

(2.20) Ω =

√
n

k
DFR,

where
• D = diag(z1, z2, . . . , zn) ∈ Cn×n, with each zi ∈ C an independent random

variable uniformly distributed on the complex unit circle,
• the unitary matrix F ∈ Cn×n is the discrete Fourier matrix with entries

fjk = n−1/2 exp(−2πi(j − 1)(k − 1)/n),

• R is an n× k matrix whose columns are sampled uniformly at random from
the n× n identity matrix without replacement.

Any given column ω of Ω is then just a randomly selected column of
√
n/kDF , and

we will show that the columns of
√
n/kDF are isotropic up to a constant scale factor.

We first show that E(zi) = 0 where zi is a diagonal element of D. We have zi = eiθ

with θ uniformly distributed on the interval [0, 2π). Then E(zi) =
∫ 2π

0
eiθf(θ) dθ,

where f(θ) is the probability density function of zi. As zi is distributed uniformly on

the unit circle, f(θ) must be constant, so E(zi) =
∫ 2π

0
eiθf(θ) dθ = 0.

For i ̸= j, we have E(ziz∗j) = E(zi)E(z∗j) = 0 and so the off-diagonal entries of
E(ωω∗) are zero. We have fjkf

∗
jk = 1/n and E(ziz∗i) = 1, which means that the

diagonal elements of E(ωω∗) are 1/k. Hence Ω is isotropic up to a constant scaling.
This scaling has no effect on Algorithms 1.1 and 1.2, since it is absorbed in R. We
conclude that Corollary 2.4 remains valid when Ω is the SRFT matrix, with the added
caveat that the bound for ∥(I −QQT)A∥F , the exact error contribution, now comes
from [6, Thm 11.2].

2.1. Extension to power iteration. If the singular values of A decay slowly
then the accuracy of Algorithm 1.1 in exact arithmetic degrades. To address this issue
a power scheme that generalizes Algorithm 1.1 was proposed in [6, sect. 4.5], which
we reproduce in Algorithm 2.1.

6

Algorithm 2.1 Given A ∈ Rm×n with m ≥ n, and integers k < n and q, compute a
matrix Q ∈ Rm×k with orthonormal columns such that A ≈ QQTA.

1: Draw a Gaussian matrix Ω ∈ Rn×k.
2: Y = (AAT)qAΩ
3: Compute an orthonormal basis Q ∈ Rm×k for Y via a thin QR factorization
Y = QR.

In floating-point arithmetic, the power scheme given in Algorithm 2.1 fails to
capture singular vectors associated with singular values that are small relative to ∥A∥2,
so a modified variant of this algorithm given in Algorithm 2.2 is usually considered.

Algorithm 2.2 Given A ∈ Rm×n with m ≥ n, and integers k < n and q, compute
a matrix Q ∈ Rm×k with orthonormal columns such that A ≈ QQTA. All the QR
factorizations used are thin QR factorizations.

1: Draw a Gaussian matrix Ω ∈ Rn×k.
2: Compute Y1 = AΩ and factorize Y1 = Q1R1.
3: for i = 1 : q do
4: Compute Y2i = ATQ2i−1 and factorize Y2i = Q2iR2i.
5: Compute Y2i+1 = AQ2i and factorize Y2i+1 = Q2i+1R2i+1.
6: end for
7: Q = Q2q+1

In Algorithm 2.2, q = 1 or q = 2 is usually sufficient for most practical problems
[6, sect. 1.6]. However, here we perform analysis for the general case, and extend the

analysis of section 2 for Algorithm 2.2, to bound ∥A− ÛΣ̂V̂ T ∥F . From (2.13),

(2.21) ∥A− ÛΣ̂V̂ T ∥F ≤ ∥(I −QQT)A∥F + ∥(QQT − Q̃Q̃T)A∥F + ∥E∥F ,

where ∥(I −QQT)A∥F is bounded by the analysis in [6, sect. 9.3], and ∥E∥F , which
is the error term that arises from Algorithm 1.2 once we have computed Q via Algo-
rithm 2.2, is bounded by (2.12). The matrix Q̃ is the exact Q that arises, as defined
in (2.5), from the final QR factorization of Algorithm 2.2.

The key observation is that we can identify the factorization Q2q+1R2q+1 =
Y2q+1 = AQ2q in Algorithm 2.2 with the factorization QR = Y = AΩ in Algo-
rithm 1.1. By a similar proof to that of Lemma 2.1 we have

(2.22) Y2q+1 +∆Y2q+1 = Q̃R̂2q+1, ∥∆Y2q+1∥F ≤ k1/2(γn + γ̃mk + γnγ̃mk)∥A∥F

for a matrix Q̃ ∈ Rm×k with orthonormal columns.
Purely for the purposes of the error analysis, we now assume that all the QR

factorizations in Algorithm 2.2 are full QR factorizations with Qj ∈ Rm×m and Rj =[
R′

j

0

]
with R′

j ∈ Rk×k, and we set Q = Q2q+1Im,k ∈ Rm×k, where Im,k = I(:, 1 : k) =

7

[
Ik
0

]
∈ Rm×k. We have

QQTY2q+1 = Q2q+1Im,kI
T
m,kQ

T
2q+1Q2q+1R2q+1

= Q2q+1Im,kI
T
m,k

[
R′

2q+1

0

]
= Q2q+1

[
R′

2q+1

0

]
= Q2q+1R2q+1 = Y2q+1.(2.23)

Then, with F = QQT − Q̃Q̃T , using (2.22) and (2.23) we have

FY2q+1 = QQTY2q+1 − Q̃Q̃TY2q+1 = (I − Q̃Q̃T)Y2q+1

= −(I − Q̃Q̃T)∆Y2q+1.(2.24)

Combining (2.22) and (2.24) gives

∥(QQT − Q̃Q̃T)A∥F = ∥FA∥F = ∥FAQ2q∥F = ∥FY2q+1∥F
≤ ∥∆Y2q+1∥F ≤ k1/2(γn + γ̃mk + γnγ̃mk)∥A∥F .(2.25)

Using this bound in (2.13) gives the next result.

Theorem 2.5. Let A ∈ Rm×n, where m ≥ n, and assume that the SVD on line 2
of Algorithm 1.2 is computed exactly. Algorithm 2.2, with q ≥ 1, and Algorithm 1.2
produce a computed SVD A ≈ ÛΣ̂V̂ T satisfying

∥A− ÛΣ̂V̂ T ∥F ≤ ∥(I −QQT)A∥F
+
(
(1 + k1/2)γ̃mk + k1/2γn(1 + γ̃mk) + k1/2γ̃2mk

)
∥A∥F .(2.26)

We note that results are given in [6, sect. 10.4] bounding the expected value of the
2-norm approximation error ∥(I − QQT)A∥2, with deviation bounds easy to obtain.
Results for the Frobenius norm can be obtained by using ∥B∥F ≤

√
rank(B)∥B∥2.

Note the leading order rounding error contribution is mk3/2u compared with
mn1/2ku in (2.19). The smaller constant in (2.26) compared with (2.19) is attributable
to the fact that the final QR factorization in Algorithm 2.2 is of AQ2q+1 rather than
of AΩ as in Algorithm 1.1, and we have exploited the orthogonality of Q2q+1.

2.2. Probabilistic rounding error analysis. Recent results in probabilistic
error analysis provide error bounds that are both tighter and more indicative of the
typical error growth than worst-case bounds [3], [4], [10], [11], [14]. Worst-case error
bounds of the form f(n)u translate to probabilistic bounds of the form

√
f(n)u under

the assumption that the rounding errors are mean independent random variables of
mean zero. Results of this form hold for inner products, matrix-vector and matrix-
matrix products, LU factorization, triangular systems, Cholesky factorization, and
QR factorization. Crucially for this work, these results hold for the two central kernels
of Algorithms 1.1 and 1.2.

For matrix multiplication the probabilistic analogue of (2.4) is given by [4, Thm. 5.9],
[10, Thm. 3.4]

(2.27) Ĉ = C +∆C, |∆C| ≤ γn(λ)|A||B|,
8

where

(2.28) γn(λ) := exp

(
λ
√
nu+ nu2

1− u

)
− 1 = λ

√
nu+O(u2).

Here, and below, λ > 0 is a constant that can be freely chosen and controls the
probability of failure of the bound, which is a monotonically decreasing function of λ.
We do not state probabilities of failure, as they are very close to 1 even for modest λ
and they are also pessimistic; see the cited references for the details.

Similar probabilistic analogues apply for Householder QR factorization and the
multiplication of a matrix by a sequence of Householder matrices. The analogue to
(2.5) is given by [3, Thm. 4.4]

(2.29) A+∆A = Q̃R̂, ∥∆aj∥2 ≤ cλ
√
kγm(λ)∥aj∥2 +O(u2), j = 1: n,

where c is a modest integer constant. The same reduction in the error constant applies
to (2.8); see [3, Lem. 4.3].

Using these results, the worst-case analysis extends straightforwardly to the prob-
abilistic case, giving the following analogue of Theorem 2.3. We write “under the
assumptions of probabilistic error analysis” to mean that rounding errors are mean
independent random variables of mean zero and that a technical assumption in [3,
Lem. 4.2], required for QR factorization, holds.

Theorem 2.6. Let A ∈ Rm×n, where m ≥ n, and assume that the SVD on
line 2 of Algorithm 1.2 is computed exactly. In floating-point arithmetic and under
the assumptions of probabilistic error analysis, Algorithm 1.2 produces a computed
SVD A ≈ ÛΣ̂V̂ T satisfying

∥A− ÛΣ̂V̂ T ∥F ≤ ∥(I −QQT)A∥F
+
[
cλk1/2γm(λ)(1 + k1/2)

+ k−1/2
(
γn(λ) + cλk1/2γm(λ)

)
E(∥Ω∥2F)1/2

]
∥A∥F +O(u2).(2.30)

For Gaussian Ω, for which E(∥Ω∥2F) = nk as noted above, the third term in (2.30) is
proportional to (mnk)1/2u, compared with mn1/2ku for the worst case bound (2.18).

We can apply the same procedure to Theorem 2.5 and obtain a probabilistic
analogue.

Theorem 2.7. Let A ∈ Rm×n, where m ≥ n, and assume that the SVD on line 2
of Algorithm 1.2 is computed exactly. In floating-point arithmetic and under the
assumptions of probabilistic error analysis, Algorithm 2.2 and Algorithm 1.2 produce
a computed SVD A ≈ ÛΣ̂V̂ T satisfying

∥A− ÛΣ̂V̂ TA∥F ≤ ∥A−QQTA∥F
+
(
(k + k1/2)γm(λ) + k1/2γn(λ)

)
∥A∥F +O(u2).

In Table 2.1, we compare the leading order error terms of the two methods and
the two types of analysis. The more favorable algorithm in terms of rounding error
bound is the power iteration.

2.3. Numerical experiments. We present some numerical experiments to test
the sharpness of the worst-case error bound in Theorem 2.3 and the probabilistic error

9

Table 2.1
Leading order rounding error terms in the bounds.

Worst case Probabilistic

Algorithms 1.2 and 1.1 (standard, Gaussian Ω) mn1/2ku (mnk)1/2u

Algorithms 1.2 and 2.2 (power iteration) mk3/2u m1/2ku

bound in Theorem 2.6. We first need the result [6, Thm. 10.7] that for Gaussian Ω
the bound

(2.31) ∥A−QQTA∥F ≤ ψ1(k, p, t)

(∑
j>k

σ2
j

)1/2

+ ψ2(k, p, t, s)σk+1,

holds with probability at least 1 − (2t−p + e−s2/2), where k is the target rank, and
the functions ψ1 and ψ2 are given by

(2.32) ψ1(k, p, t) = 1 + t

(
3k

p+ 1

)1/2

, ψ2(k, p, t, s) = st
e
√
k + p

p+ 1
.

For even modest choices of these parameters the probability of failure is negligible.
Choosing for example p = t = s = 5 results in a probability of failure of 6× 10−4. We
simply choose to set p = t = s = 1, as we have observed that the probabilities associ-
ated with these parameters are pessimistic. For a similar reason, we set λ in Theorem
2.6 to 1. Additionally, all constants c contained in the γ̃ terms in Theorem 2.3 are set
to 1.

Note the parameter p above is an oversampling parameter, so in the bounds given
in Theorem 2.3 we should strictly make the substitution k ← k+ p. In Figure 2.1 we
do not include the contribution from the oversampling parameter because the p we
have chosen is small enough to make no material effect to the displayed bounds.

We use two types of test matrix, which were also used in [22]. In this section
we just consider Algorithms 1.1 and 1.2. We do not consider the power iteration of
section 2.1 as an error bound analogous to (2.31) is not available [6, sect. 10.4]. All
matrices used in the tests are square (m = n); we have run tests with m ≫ n and
obtained similar results. The types are as follows.

• Type 1: low rank plus noise. Define D = diag(Ir, 0) ∈ Rn×n. Then

A = D + (ξ/n)GGT ,

with G a Gaussian matrix. We fix ξ = 10−4 and r = 20.
• Type 2: polynomial decay. We generate random orthogonal matrices U, V ∈
Rn×n from the Haar distribution [20] and define

(2.33) A = UDV T , D = diag(ϕIr, 2
−α, 3−α, . . . , (n− r + 1)−α).

Throughout r = 20, α = 3, and ϕ = 106.
The experiments are run in MATLAB R2021a. All steps of the algorithms are

performed in IEEE single precision, with reference quantities computed in IEEE dou-
ble precision. Test matrices are also rounded to single precision. The results are
plotted in Figure 2.1, in which “Worst bound” denotes the worst-case rounding error
bound (2.19) from Corollary 2.4, “Prob bound” denotes the probabilistic bound (2.30)

10

10 2 10 3

n

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Worst bound
Prob bound
Exact bound
Error

(a) Type 1 matrix with k =
√
n.

10 2 10 3

n

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

Worst bound
Prob bound
Exact bound
Error

(b) Type 2 matrix with k =
√
n.

Figure 2.1. Numerical experiments performed in fp32. The dashed line in both figures is
u = 2−24 ≈ 6× 10−8, the unit roundoff for single precision.

from Theorem 2.6, “Exact bound” denotes the bound in (2.31), and “Error” is the

approximation error ∥A− ÛΣ̂V̂ T ∥F /∥A∥F .
We see that for Type 1 matrices the error satisfies all the bounds, with the

probabilistic bound being significantly closer to the exact bound than the worst-case
bound. In the case of Type 2 matrices, however, as the exact bound becomes less
than the unit roundoff, it no longer becomes a reliable indicator for the computed
error. In this case our probabilistic bound again bounds the error and is tighter than
for the Type 1 matrices.

3. Fixed-precision algorithms. Up to now, we have discussed fixed-rank prob-
lems, where we specify a target rank a priori. Perhaps a more common situation com-
putationally is the fixed-precision problem, in which we specify a tolerance to which
we want our computed approximation to be accurate. In Algorithm 3.1 we display the
basic fixed-precision rangefinder algorithm proposed by Martinsson and Voronin [18,
Fig. 4]. Here we essentially solve the fixed-rank problem multiple times with the rank
k chosen to be some block size b and iteratively construct a basis matrix until the
specified tolerance has been met. We consider the specified tolerance ϵ to be a relative
tolerance.

In the algorithms of this section qr(· , 0) returns the orthonormal factor from the
thin QR factorization. We compute the factorization A ≈ QB, with B = QTA. Once
Q and B are available, further factorizations, such as the SVD or low rank QR, are
easily computed [18, Rem. 1]. The main focus of this section is on the iterative
construction of Q and B.

An alternative algorithm is proposed in [24, Alg. 2]. This is the algorithm im-
plemented by the MATLAB svdsketch function1. We know from [24, Prop. 1] that
when executed in exact arithmetic [24, Alg. 2] and Algorithm 3.1 are identical. In
floating-point arithmetic, there are two main differences. The algorithm [24, Alg. 2]
performs the same operations for computing Qi as Algorithm 3.1, but in a different
order. To analyse [24, Alg. 2] we would need to modify the analysis of Section 2 to
account for this changed order. The error ρi is also calculated differently, which allows

1https://uk.mathworks.com/help/matlab/ref/svdsketch.html

11

https://uk.mathworks.com/help/matlab/ref/svdsketch.html

Algorithm 3.1 Given A ∈ Rm×n with m ≥ n and a tolerance ϵ > 0, this algorithm
computes a matrix Q ∈ Rm×b with orthonormal columns and B ∈ Rb×n such that
∥A−QB∥F /∥A∥F ≤ ϵ. The parameter b is a block size and q determines the number
of power iterations in the inner loop.

1: Q = [], B = [], A1 = A, ρ1 = 1
2: for i = 1 : itsmax do
3: Draw a Gaussian matrix Ω ∈ Rn×b.
4: Y = AiΩ
5: Qi = qr(Y, 0)
6: for j = 1 : q do
7: Compute Y = AT

i Qi and Qi = qr(Y, 0).
8: Compute Y = AiQi and Qi = qr(Y, 0).
9: end for

10: Qi = qr(Qi −
∑i−1

j=1QjQ
T
j Qi, 0)

11: Bi = QT
i Ai

12: Ai+1 = Ai −QiBi

13: ρi = ∥Ai+1∥F /∥A∥F
14: If ρi ≤ ϵ then quit.
15: end for
16: Q = [Q1 · · · Qi], B = [BT

1 · · · BT
i]

T

one to avoid retaining and computing the Frobenius norm of ∥Ai+1∥F at each itera-
tion, as is done in Algorithm 3.1. This new method of calculating the error introduces
a limitation on the accuracy of the computation [24, sec. 3.3]. In the remainder of
this work we focus on Algorithm 3.1, with the expectation that our analysis can be
adapted to [24, Alg. 2].

3.1. Error analysis of fixed-precision algorithm. Here we present a frame-
work for analyzing the effect of rounding errors on Algorithm 3.1. In the next section
we use this analysis to motivate mixed precision algorithms for these problems. Our
primary interest is how the influence of rounding errors limits the tolerance that we
can set in these algorithms.

On a given iteration, we compute Q̂i and B̂i = Q̂T
i A and we are interested in the

error ∥A − Q̂iB̂i∥F . From any of Theorems 2.3, 2.5, 2.6, and 2.7 we know that, to
first order in u,

(3.1) ∥A− Q̂iQ̂
T
i A∥F ≤ ∥A−QiBi∥F + uf(m,n, b)∥A∥F ,

where Qi and Bi are the exact matrices and the form of f depends on whether we
incorporate power iterations in the rangefinder algorithm and whether the bound is
worst-case or probabilistic. As the computation proceeds, A is updated and at each
iteration the quantity ρi (Line 13 of Algorithm 3.1) serves as our relative error. Define

P̂i = I − Q̂iQ̂
T
i , Pi = I −QiQ

T
i ,

In exact arithmetic, the error after t iterations of the outer loop in Algorithm 3.1 is
given by

(3.2) ρt =
∥Pt . . . P2P1A∥F

∥A∥F
.

12

In floating-point arithmetic it is given by

(3.3) ρ̂t =
∥P̂t . . . P̂2P̂1A∥F

∥A∥F
.

Bounding the difference between (3.2) and (3.3) will allow us to determine the impact
of rounding errors on the iterative algorithm.

We have P̂iA−PiA = (Q̂iQ̂
T
i −QiQ

T
i)A which we can bound from the analysis of

Section 2. This term amounts to the ∥FA∥F terms we bounded in (2.16), (2.17) and
(2.25). In the case of both Theorems 2.3 and 2.5 (and their probabilistic extensions),
the contribution of the ∥FA∥F term is what gives the leading order rounding error
term. For the sake of simplicity then, we write

(3.4) P̂iA = PiA+∆i, ∥∆i∥F ≤ uf(m,n, b)∥A∥F ,

where, as described in (3.1), the precise form of f depends on the specific analysis
and algorithm deployed. Then

P̂t . . . P̂2P̂1A = P̂t . . . P̂2(P1A+∆1)

= P̂t . . . P̂3(P2(P1A+∆1) +∆2)

= · · · = Pt . . . P1A+

t−1∑
i=1

Pt . . . Pi+1∆i +∆t,

so

ρ̂t ≤ ρt +

∥∥∥∑t−1
i=1 Pt . . . Pi+1∆i +∆t

∥∥∥
F

∥A∥F
≤ ρt +

t∑
i=1

∥∆i∥F /∥A∥F .

Finally, we have

(3.5) ρ̂t ≤ ρt + tuf(m,n, b),

where the general form of (3.5) is the same as that of the bounds of section 2: our
computed error is bounded by the exact error plus a term involving the unit roundoff,
and some function of the problem dimensions. The dependence on ∥A∥F has dis-
appeared as we are now considering the relative error. If the exact error ρt is less
than or equal to tuf(m,n, b) it is possible that the overall error will be dominated by
rounding errors. This could in turn cause the algorithm not to converge as expected.

Note that in exact arithmetic, the approximation error of Algorithm 3.1 is iden-
tical to that of Algorithm 1.1 [18, sect. 4]. Therefore, after t iterations of Algorithm
3.1 with block size b, we can identify ρt with the relative approximation error of
Algorithm 1.1 with Ω ∈ Rn×k where k = bt.

3.2. Mixed precision rangefinder. We saw in the previous section how accu-
racy guarantees of fixed-precision problems can be affected by the choice of precision
and the problem size. Here we motivate the use of low precision in these algorithms.

We use the probabilistic bounds given in section 2.2 to guide how to deploy
low precisions. Algorithm 3.2 describes this approach. We update Ai, beginning
in high precision, and switch to lower precisions once ∥Ai∥F is sufficiently reduced,
corresponding to a smaller relative error ρi.

The primary difficulty in this algorithm is determining when to switch to lower
precision. We use a combination of the rounding error bounds from previous sections

13

Algorithm 3.2 Given A ∈ Rm×n with m ≥ n and a relative tolerance ϵ > 0,
this algorithm computes a matrix Q ∈ Rm×b with orthonormal columns such that
∥A−QQTA∥F ≤ ϵ. The parameter b is a block size and q determines the number of
power iterations in the inner loop. A sequences of precisions u1 < u2 < · · · < up and
tolerances 1 > ϵ1 > · · · > ϵp = ϵ are given.

1: Q = [], B = [], A1 = A, ρ1 = 1
2: for i = 1 : itsmax do
3: Draw a Gaussian matrix Ω ∈ Rn×b.
4: Find the largest j, 1 ≤ j ≤ p such that ρi > ϵj .
5: Y = AiΩ at precision uj .
6: Qi = qr(Y, 0) at precision uj
7: for j = 1 : q do
8: Compute Y = AT

i Qi and Qi = qr(Y, 0) at precision uj .
9: Compute Y = AiQi and Qi = qr(Y, 0) at precision uj .

10: end for
11: Reorthonormalize Qi at precision u1.
12: Bi = QT

i Ai at precision uj .
13: Ai+1 = Ai −QiBi at precision uj .
14: ρi = ∥Ai+1∥F /∥A∥F
15: If ρi ≤ ϵ then quit.
16: end for
17: Q = [Q1 · · · Qi], B = [BT

1 · · · BT
i]

T

and a user-specified parameter to set these tolerances. In the problem setup we have
a global tolerance ϵ, a sequence of available precisions uj , j = 1: p, an m× n matrix
A, and a block size b. For now, assume we do not perform any power iterations.
The basic idea is simple: for t iterations at precision uj , if t

√
mnbujρt, from (3.5)

with f(m,n, b) chosen to be
√
mnb from Table 2.1, is significantly less than ϵ then we

know that the contribution of rounding errors will be negligible compared with the
algorithmic error, and we can safely use precision uj . If we had a priori knowledge of
the number of iterations that would be performed at precision uj , we could compare
these quantities to ϵ and decide whether the use of precision uj is appropriate. As we
do not know t, we must set a user-specified parameter θ, so our quantity of interest
is now θ

√
mnbujρt. The parameter θ helps to account for the role played by the

unknown number of iterations, but also allows the user to incorporate a degree of
optimism or pessimism in the algorithm. We then make the simple choice

(3.6) ϵj =

{
ϵ/(θ
√
mnbuj+1), j = 1 : p− 1,

ϵ, j = p.

This choice means that if ρt < ϵj , when we switch to precision uj+1 we know that

θ
√
mnbuj+1ρt < ϵ. The parameter θ controls by how much we want to ensure that

the leading rounding error contribution is less than ϵ. The larger the value of θ, the
more certain we can be that rounding errors will not swamp the algorithmic error.
The smaller the value of θ, the more optimistic we are about the impact of rounding
errors, and the earlier the switch to lower precisions. If we include power iterations
in the computation, the leading probabilistic rounding error contribution (see Table

14

2.1) is
√
mbu and so we set

(3.7) ϵj =

{
ϵ/(θ
√
mbuj+1), j = 1 : p− 1,

ϵ, j = p.

3.3. Reorthonormalization. The reorthonormalization steps in Line 10 of Al-
gorithm 3.1 and Line 11 of Algorithm 3.2 are performed in order to maintain or-
thonormality among the columns of the computed Q. Preserving orthonormality is
important as any subsequent uses for Q will have the assumption that Q has or-
thonormal columns. Taking for example the computation of the randomized SVD
in Algorithm 1.2, if Q loses orthonormality then in Line 3 the resultant U will also
lack orthonormality. To ensure orthonormality we reorthonormalize each Q at each
iteration in the highest used precision.

In Algorithm 3.2 we have some specified accuracy tolerance ϵ, a sequence of avail-
able precisions u1 < u2 < · · · < up, and we orthonormalize at the highest precision,

u1. The matrix Q̂i that we orthonormalize has been computed at some precision uj
and so ∥Q̂i−Qi∥ will be of order uj . Orthonormalizing at precision u1, to obtain Q̃i,

ensures that ∥Q̃T
i Q̃i − I∥ is of order u1, but ∥Q̂i − Q̃i∥ will still be of order uj . This

means that our accuracy is limited by the lowest precision used, as we always have a
term of order uj in the error bound (3.5). For this reason, we only allow precisions to
be used in Algorithm 3.2 which have a unit roundoff less than the specified relative
tolerance.

From the point of view of the error analysis of section 2, the orthonormalization
step simply changes the constant slightly in (2.10) and subsequent bounds. It does
not change the form of the final bounds, so Theorems 2.3, 2.5, 2.6, and 2.7 all remain
valid with orthonormalization.

3.4. Numerical experiments. We now test the performance of Algorithm 3.2.
For various test matrices we compute the matrices Q and B. We then compute the
approximate SVD A ≈ ÛΣ̂V̂ T as described in Algorithm 1.2. We use the error mea-
sure ∥A− ÛΣ̂V̂ T ∥F /∥A∥F . The test matrices used are described below. Throughout
we set the block size b = 10 and set q = 1 in the power iterations. We use an imple-
mentation of Algorithm 3.2 in which we have three available precisions: fp64 (IEEE
double precision), fp32 (IEEE single precision), and fp16 (IEEE half precision), with
respective unit roundoffs 2−53, 2−24, and 2−11. We compare this to Algorithm 3.1
run entirely in fp64. The subsequent computation of the SVD is done in fp64 in both
implementations.

For double and single precision we use the native MATLAB arithmetic. For half
precision we use the chop function2 of [12]. We use three types of matrices.

• Type 1. A ∈ Rn×n is generated using the default mode in the MATLAB
function gallery('randsvd'), which gives geometrically distributed singular
values. We set n = 500 and κ2(A) = 1010.

• Type 2. Polynomial decay. These are the matrices (2.33) with n = 500, r =
100, p = 2, and ϕ = 1.

• Type 3. Exponential decay[21, Sec. 7.3.1]. We generate random orthogonal
matrices U, V ∈ Rn×n from the Haar distribution, as in (2.33), and define

(3.8) A = UDV T , D = diag(Ir, 10
−p, 10−2p, . . . , 10−(n−r)p).

We take n = 500, r = 100 and p = 0.1.

2https://github.com/higham/chop

15

https://github.com/higham/chop

Table 3.1
Iteration counts for experiments with Type 1 matrices with various relative tolerances ϵ and

choices of θ.

ϵ = 10−1 ϵ = 10−3 ϵ = 10−5 ϵ = 10−7

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 6 5 0 10 5 0 0 0 0 0 0 0
ts 0 1 6 6 11 16 26 25 20 30 25 20
td 0 0 0 0 0 0 0 1 6 6 11 16

Cost 0.27 0.31 0.51 0.38 0.46 0.53 0.55 0.56 0.65 0.64 0.70 0.76

Table 3.2
Iteration counts for experiments with Type 2 matrices with various relative tolerances ϵ and

choices of θ.

ϵ = 10−1 ϵ = 10−2 ϵ = 10−3 ϵ = 10−4

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 10 8 0 9 1 0 2 1 0 0 0 0
ts 0 2 10 2 10 11 10 11 12 18 18 13
td 0 0 0 0 0 0 0 0 0 0 0 5

Cost 0.28 0.33 0.52 0.32 0.50 0.52 0.48 0.50 0.52 0.53 0.53 0.66

In Tables 3.1, 3.2, and 3.3, (th, ts, td) denote the number of iterations in half,
single, and double precision respectively. We use (3.7) for the choice of the ϵj , with
the values for the global tolerance ϵ indicated in each table. For each matrix type we
choose three θ values: 0.1, 1, and 10. In all experiments, the mixed precision and fp64
algorithms satisfy the global tolerance ϵ with a comparable final error. For the same
values of θ, the mixed-precision and fp64 algorithms always require the same number
of iterations.

We have also included the reduction in computational cost for each set of results,
given as a number between 0 and 1, where we are taking the cost of an equivalent
number of fp64 iterations to be 1. To work out this cost we assume a ratio of 1 : 2 : 4
for the costs of fp16, fp32, and fp64 arithmetics. We take the operation count of
computing C = AB with A ∈ Rm×n, B ∈ Rn×r to be 2mnr flops, and the cost of
computing a QR factorization to be 2n2(m − n/3) flops for A ∈ Rm×n[5, Chap. 1],
[9, App. C]. For iteration i of Algorithm 3.2 this gives 10mnb+6b2(m− b/3) flops at
precision uj , and 4(i− 1)mbr+2b2(m− b/3) flops at precision u1. The “Cost” values
in the table are then worked out using the specific iteration counts and assumed cost
ratios .

We see that the mixed precision iterations can lead to computational gains.
Smaller values of θ leads to better performance of Algorithm 3.2, as it performs a
greater proportion of the operations in low precision while still satisfying the final
tolerance. We have found θ = 0.1 to be an appropriate choice in our experiments.

Under the assumed cost ratios for fp16, fp32, and fp64, for certain choices of θ
and ϵ we can expect the mixed-precision algorithm to be at least twice as fast as the
fp64 algorithm.

4. Concluding remarks. We have addressed the question of how rounding er-
rors affect the exact arithmetic error bounds for randomized low rank matrix approx-
imating. Our key findings for the fixed rank problem are summarized by the leading

16

Table 3.3
Iteration counts for experiments with Type 3 matrices with various relative tolerances ϵ and

choices of θ.

ϵ = 10−1 ϵ = 10−3 ϵ = 10−5 ϵ = 10−7

θ 0.1 1 10 0.1 1 10 0.1 1 10 0.1 1 10

th 11 9 0 2 1 0 0 0 0 0 0 0
ts 0 2 11 11 12 13 15 10 4 6 5 4
td 0 0 0 0 0 0 0 5 11 11 12 13

Cost 0.28 0.32 0.52 0.49 0.51 0.52 0.53 0.69 0.87 0.83 0.86 0.89

order rounding error terms in Table 2.1. For the power iteration (Algorithms 1.2 and
2.2), the probabilistic error bound is proportional to m1/2ku, so under the assump-
tions of probabilistic error analysis the effects of rounding errors will be negligible if
m1/2ku is sufficiently smaller than the error ∥(I−QQT)A∥F for exact arithmetic. For
IEEE half precision arithmetic (fp16), for which u ≈ 4.88× 10−4, the rounding error
bound could well dominate unless m is small.

We proposed in Algorithm 3.2 an algorithm that exploits arithmetics of different
precisions. It gradually decreases the precision of the arithmetic as the algorithm
proceeds, exploiting the fact that as the approximation error decreases we need less
precision in the arithmetic. Our experiments showed potential benefits, since the low
precision iterations will have lower arithmetic, energy, and memory costs than higher
precision ones.

Acknowledgments. We thank Theo Mary for helpful discussions on this work.
All data and codes supporting this work are available at https://github.com/michaelc100/
Mixed-Precision-RandNLA.

REFERENCES

[1] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging LAPACK’s
least-squares solver. SIAM J. Sci. Comput., 32(3):1217–1236, 2010.

[2] Erin Carson and Ieva Daužickaitė. Single-pass Nyström approximation in mixed precision.
arXiv e-prints, 2022. arXiv:2205.13355.

[3] Michael P. Connolly and Nicholas J. Higham. Probabilistic rounding error analysis of House-
holder QR factorization. MIMS EPrint 2022.5, Manchester Institute for Mathematical
Sciences, The University of Manchester, UK, February 2022. 16 pp.

[4] Michael P. Connolly, Nicholas J. Higham, and Theo Mary. Stochastic rounding and its proba-
bilistic backward error analysis. SIAM J. Sci. Comput., 43(1):A566–A585, 2021.

[5] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Fourth edition, Johns Hopkins
University Press, Baltimore, MD, USA, 2013. xxi+756 pp. ISBN 978-1-4214-0794-4.

[6] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions. SIAM Rev., 53(2):217–
288, 2011.

[7] Nathan Halko, Per-Gunnar Martinsson, Yoel Shkolnisky, and Mark Tygert. An algorithm
for the principal component analysis of large data sets. SIAM J. Sci. Comput., 33(5):
2580–2594, 2011.

[8] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second edition, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN
0-89871-521-0.

[9] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2008. xx+425 pp. ISBN 978-0-898716-
46-7.

[10] Nicholas J. Higham and Theo Mary. A new approach to probabilistic rounding error analysis.
SIAM J. Sci. Comput., 41(5):A2815–A2835, 2019.

17

https://github.com/michaelc100/Mixed-Precision-RandNLA
https://github.com/michaelc100/Mixed-Precision-RandNLA
https://doi.org/10.1137/090767911
https://doi.org/10.1137/090767911
https://arxiv.org/pdf/2205.13355.pdf
http://eprints.maths.manchester.ac.uk/2848/
http://eprints.maths.manchester.ac.uk/2848/
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/20m1334796
https://doi.org/10.1137/090771806
https://doi.org/10.1137/090771806
https://doi.org/10.1137/100804139
https://doi.org/10.1137/100804139
http://doi.org/10.1137/1.9780898718027
http://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/18M1226312

[11] Nicholas J. Higham and Theo Mary. Sharper probabilistic backward error analysis for basic
linear algebra kernels with random data. SIAM J. Sci. Comput., 42(5):A3427–A3446, 2020.

[12] Nicholas J. Higham and Srikara Pranesh. Simulating low precision floating-point arithmetic.
SIAM J. Sci. Comput., 41(5):C585–C602, 2019.

[13] Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, Cambridge, UK, 1991. viii+607 pp. ISBN 0-521-30587-X.

[14] Ilse C. F. Ipsen and Hua Zhou. Probabilistic error analysis for inner products. SIAM J. Matrix
Anal. Appl., 41(4):1726–1741, 2020.

[15] N. Kishore Kumar and J. Schneider. Literature survey on low rank approximation of matrices.
Linear Multilinear Algebra, 65(11):2212–2244, 2017.

[16] Edo Liberty, Franco Woolfe, Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert.
Randomized algorithms for the low-rank approximation of matrices. Proceedings of the
National Academy of Sciences, 104(51):20167–20172, 2007.

[17] Per-Gunnar Martinsson and Joel Tropp. Randomized numerical linear algebra: Foundations &
algorithms. Acta Numerica, 29:403–572, 2020.

[18] Per-Gunnar Martinsson and Sergey Voronin. A randomized blocked algorithm for efficiently
computing rank-revealing factorizations of matrices. SIAM J. Sci. Comput., 38(5):S485–
S507, 2016.

[19] Vladimir Rokhlin and Mark Tygert. A fast randomized algorithm for overdetermined linear
least-squares regression. Proc. Nat. Acad. Sci., 105(36):13212–13217, 2008.

[20] G. W. Stewart. The efficient generation of random orthogonal matrices with an application to
condition estimators. SIAM J. Numer. Anal., 17(3):403–409, 1980.

[21] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Practical sketching algo-
rithms for low-rank matrix approximation. SIAM Journal on Matrix Analysis and Appli-
cations, 38(4):1454–1485, 2017.

[22] Joel A. Tropp, Alp Yurtsever, Madeleine Udell, and Volkan Cevher. Streaming low-rank matrix
approximation with an application to scientific simulation. SIAM J. Sci. Comput., 41(4):
A2430–A2463, 2019.

[23] Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert. A fast randomized algorithm
for the approximation of matrices. Applied and Computational Harmonic Analysis, 25(3):
335–366, 2008.

[24] Wenjian Yu, Yu Gu, and Yaohang Li. Efficient randomized algorithms for the fixed-precision
low-rank matrix approximation. SIAM J. Matrix Anal. Appl., 39(3):1339–1359, 2018.

18

https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/20M1314355
https://doi.org/10.1137/19M1251308
https://doi.org/10.1137/19m1270434
https://doi.org/10.1080/03081087.2016.1267104
https://doi.org/10.1073/pnas.0709640104
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1017/S0962492920000021
https://doi.org/10.1137/15M1026080
https://doi.org/10.1137/15M1026080
https://doi.org/10.1073/pnas.0804869105
https://doi.org/10.1073/pnas.0804869105
https://doi.org/10.1137/0717034
https://doi.org/10.1137/0717034
https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/17M1111590
https://doi.org/10.1137/18M1201068
https://doi.org/10.1137/18M1201068
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1137/17M1141977
https://doi.org/10.1137/17M1141977

