
Computational graphs for matrix functions

Jarlebring, Elias and Fasi, Massimiliano and Ringh, Emil

2021

MIMS EPrint: 2021.12

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Computational graphs for matrix functions∗

Elias Jarlebring† Massimiliano Fasi‡ Emil Ringh§

Abstract

Many numerical methods for evaluating matrix functions can be naturally viewed as computa-
tional graphs. Rephrasing these methods as directed acyclic graphs (DAGs) is a particularly effec-
tive approach to study existing techniques, improve them, and eventually derive new ones. The
accuracy of these matrix techniques can be characterized by the accuracy of their scalar counter-
parts, thus designing algorithms for matrix functions can be regarded as a scalar-valued optimiza-
tion problem. The derivatives needed during the optimization can be calculated automatically by
exploiting the structure of the DAG, in a fashion analogous to backpropagation. This paper de-
scribes GraphMatFun.jl, a Julia package that offers the means to generate and manipulate com-
putational graphs, optimize their coefficients, and generate Julia, MATLAB, and C code to evaluate
them efficiently at a matrix argument. The software also provides tools to estimate the accuracy
of a graph-based algorithm and thus obtain numerically reliable methods. For the exponential,
for example, using a particular form (degree-optimal) of polynomials produces implementations
that in many cases are cheaper, in terms of computational cost, than the Padé-based techniques
typically used in mathematical software. The optimized graphs and the corresponding generated
code are available online.

Key words. Polynomials of matrices, functions of matrices, computational graphs.

1 Introduction

The scalar function 𝑓 : Ω ⊂ C → C can be extended to square matrices in a customary fashion.
Formally, 𝑓 (𝐴) can be defined in a number of ways. The most commonly used definitions are based
on the Jordan canonical form of 𝐴, the Taylor series expansion of 𝑓 , the Cauchy integral representa-
tion of 𝑓 , or Hermite interpolation [23, Chapter 1]. For a matrix 𝐴 whose spectrum lies in a region
where 𝑓 is analytic, these four definitions are equivalent. Matrix functions play an important role in
numerical linear algebra as well as in matrix theory, and the existing literature covers topics ranging
from theoretical results to computational methods and applications [23].

Numerical algorithms for evaluating a function 𝑓 at an 𝑛 × 𝑛 matrix 𝐴 are based on a variety of
different approaches, but for a large class of methods the approximation is formed by relying on three
basic operations:

O1. linear combination of matrices,
∗Version of June 2, 2022. The work of the second author was supported by the Wenner-Gren Foundations through grant

UPD2019-0067.
†Department of Mathematics, KTH Royal Institute of Technology, SeRC Swedish e-science research center, Lindstedtsvä-

gen 25, Stockholm SE-100 44, Sweden, eliasj@kth.se.
‡Department of Computer Science, Durham University, Stockton Road, Durham DH1 3LE, UK, massimil-

iano.fasi@durham.ac.uk.
§Ericsson research, Stockholm SE-100 44, Sweden, eringh@kth.se.

1

mailto:eliasj@kth.se
mailto:massimiliano.fasi@durham.ac.uk
mailto:massimiliano.fasi@durham.ac.uk
mailto:eringh@kth.se

O2. matrix multiplication, and

O3. left division (formally left multiplication by the inverse of a matrix).

Our work focuses on algorithms constructed by applying O1–O3. This approach does not include
methods based on the Schur decomposition, such as the algorithm of Björck and Hammarling for
the square root [45, 20] or the Schur–Parlett algorithm for analytic matrix functions [29], nor does it
include methods for computing the action of a function on a vector [2] or for computing individual
matrix elements [6]. Restricting oneself to O1–O3 yields matrix functions that are particularly easy to
work with: loosely speaking, if the expression for 𝑓 (𝑧) features only the scalar counterparts of O1–O3
and the function is defined on the spectrum of 𝐴 [23, Definition 1.1], then a formula for 𝑓 (𝐴) can be
obtained by simply replacing all occurrences of 𝑧 in the formula for 𝑓 (𝑧) with 𝐴 [18, Chapter 9].

By interpreting functions constructed in this way as computational graphs where every node is
a matrix, we can derive new methods and improve the accuracy and performance of state-of-the-art
algorithms for the evaluation of matrix functions. The contribution of this work is twofold.

1. We present a new software package, GraphMatFun.jl, designed to work with computational
graphs featuring only O1–O3. The package includes tools to create andmanipulate such graphs,
modify their topology, optimize thematrix functions they represent, and evaluate them element-
wise at a vector argument or in the sense of functions of matrices at a matrix argument. A
framework to generate efficient Julia, MATLAB, and C code that implements these functions
is also provided. The software is written in Julia [7], is released under the terms of the MIT
license, and is freely available on GitHub.1 A detailed documentation is available via the built-
in Julia documentation system and as part of the online user reference manual.2 Pull requests
are welcome, and user contribution is facilitated by the availability of a complete set of unit
tests.

2. We provide a set of graphs that were obtained by using our optimization strategy on algorithms
available in the literature. In many cases of practical interest, the resulting algorithms are more
efficient and accurate than those they originated from, and in fact of any existing alternative.
These specific graphs represent a scientific contribution in their own right and are available on
GitHub in a separate data repository.3

The features of the package are presented by means of examples accompanied by extended code
snippets.

• The facilities for graph generation and basic node handling are illustrated in Examples 2 and 4.

• The data structure that underpins the graph and the numerical evaluation of the function un-
derlying a graph are illustrated in Examples 1 and 2.

• The graph manipulation and automatic optimization techniques are illustrated in Example 3.

• The degree-optimal form for evaluating polynomial with a reduced number of non-scalar mul-
tiplications is described in Section 3 and illustrated in Example 6.

• The features associated with the use of optimization to design graph algorithms are outlined in
Section 4 and illustrated in Examples 7 and 10.

• The generation of code for evaluating the function underlying a graph in an efficient way is
discussed in Section 5.1 and illustrated in Example 13.

1https://github.com/matrixfunctions/GraphMatFun.jl
2https://matrixfunctions.github.io/GraphMatFun.jl/dev
3https://github.com/matrixfunctions/GraphMatFunData

2

https://github.com/matrixfunctions/GraphMatFun.jl
https://matrixfunctions.github.io/GraphMatFun.jl/dev
https://github.com/matrixfunctions/GraphMatFunData

• The routines for saving and loading graph objects in a language-independent format are intro-
duced in Section 5.2 and illustrated in Example 15.

• The backward error analysis of methods for approximating the matrix exponential is given in
Section 6.1 and illustrated in Example 16.

• A simple strategy to compute running error bounds on the round-off error occurring during the
evaluation of a graph are given in Section 6.2 and illustrated in Example 17.

While developing our package, we realized that some of the Julia Base routines for evaluating
scalar polynomials and for computing the exponential of a matrix were not always optimal in terms
of performance. We addressed these issues in pull requests that have now beenmerged into the master
branch of the Julia GitHub repository.4 Code generated by this package has been included in the Julia
package SciML/ExponentialUtilities.jl.5

Section 2 introduces our graph framework and shows how our package can be used to generate
and manipulate graphs that represent matrix algorithms. In Section 3 we discuss the polynomials in
degree-optimal form, which are the most general polynomials of degree 2𝑚 that can be evaluated with
𝑚 multiplications. Degree-optimal polynomials can be represented in a natural way using our graph
framework. Optimizing the coefficients of a graph so that the underlying algorithm approximates a
function that cannot be expressed as a computational graph is the subject of Section 4. Section 5 is
devoted to the description of two important features of the package: the generation of Julia, MATLAB,
and C code for evaluating a computational graph efficiently, and the custom file format for storing
computational graphs. Using a graph to approximate a function numerically is prone to truncation
as well as round-off errors; these are discussed in Section 6, where we obtain a priori bounds on
the former and a posteriori running bounds on the latter. In Section 7 we explain how the features
described in the previous sections can be integrated into a workflow for enhancing state-of-the-art
algorithms for matrix functions, and we present two instances in which such improvement can be
seen in practice. Finally, we summarize our contribution and outline possible directions for future
work in Section 8.

2 Algorithms as graphs

2.1 Graph notation and operations

We regard matrix computations as graphs, in particular as directed acyclic graphs (DAGs), in which
every node corresponds to a matrix. The leaves of the graph coincide with the input nodes, and the
corresponding matrices are assumed to be known in advance. Every non-input node is constructed by
performing an operation on two other matrices which can be identified by following the two incoming
edges. Hence, input nodes have only outgoing edges, whereas every non-input node has exactly two
incoming edges and zero or more outgoing edges. The output nodes represent the output (or outputs)
of the computation.

Although many operations could potentially be considered in such a framework, in this work and
in our software we have restricted our attention to the following:

• +, which denotes the linear combination of two matrices, 𝐶 = 𝛼𝐴 + 𝛽𝐵;

• ∗, which denotes the product of two matrices, 𝐶 = 𝐴𝐵; and

• \, which denotes the solution of a linear systems with multiple right-hand sides, 𝐶 = 𝐴−1𝐵.
4https://github.com/JuliaLang/julia/pulls?q=author:jarlebring
5https://github.com/SciML/ExponentialUtilities.jl/pull/64

3

https://github.com/JuliaLang/julia/pulls?q=author:jarlebring
https://github.com/SciML/ExponentialUtilities.jl/pull/64

I

A

X1

X10

X11

X2
X3

X4

X5

X6

X7

X8 X9

X−1
0

X−1
1

X−1
2

X−1
3

X−1
4

X−1
5

X−1
6

X−1
7

X−1
8 X−1

9

Y1

Y10

Y2
Y3

Y4

Y5

Y6

Y7

Y8 Y9

Y −1
1

Y −1
10

Y −1
2

Y −1
3

Y −1
4

Y −1
5

Y −1
6

Y −1
7

Y −1
8 Y −1

9

(a) Denman–Beavers iteration for the square root [12].

I

A

A2 A4 A6

C

P S1 S2

U

U1

U2

U3

Ũ1
Ũ2 Ub

Uc

V

V1

V2

V3

Ṽ1 Ṽ2

Vb

X

Z

(b) Scaling and squaring for the matrix exponen-
tial [22].

Figure 1: Examples of complex computational graphs. Blue lines represent linear combinations, red
lines represent matrix multiplications, and black dash-dotted lines represent system solves. Nodes
with only one visible parent are the result of either a squaring (𝐴2, 𝐴4, 𝑆1, 𝑆2) or a trivial operation
involving the identity matrix: a matrix inversion, represented as 𝐶 = 𝐴−1𝐼 , or a multiplication by a
scalar, represented as 𝐶 = 𝛼𝐴 + 0𝐼 .

With these three building blocks, one can construct many algorithms of practical interest for evaluat-
ing matrix functions. Moreover, having only three operations all acting on exactly two matrices has
several implementation advantages, as we will discuss later.

Let 𝑉 be the set of nodes. For every node 𝑖 ∈ 𝑉 we define:

• 𝑝𝑖 ∈ {+, ∗, \}, the operation required to evaluate node 𝑖;

• 𝑒
(1)
𝑖

∈ 𝑉 and 𝑒
(2)
𝑖

∈ 𝑉 , the two nodes representing the matrices needed compute node 𝑖; and

• 𝑐
(1)
𝑖

and 𝑐
(2)
𝑖

, the coefficients of the linear combination, defined only when 𝑝𝑖 = +.
In order to evaluate the function underlying the computational graph, we need to explicitly construct
the matrices each node represents. To this end, we also define:

• 𝑍𝑖 , the content (matrix or scalar) of node 𝑖.

We will sometimes use the functional notation 𝑍𝑖 (·) to stress that 𝑍𝑖 depends on the content of the
input nodes.

For notational convenience, here we denote the nodes by integers and write 𝑉 = {0, . . . , 𝑁}. In
the software the set of nodes is implemented as an (unordered) dictionary lookup table for efficiency.
The two input nodes are the identity matrix and the matrix 𝐴, which are labelled 𝑍0 = 𝐼 and 𝑍1 = 𝐴

in the matrix case, and 𝑍0 = 1 and 𝑍1 = 𝑥 in the scalar case.
The values of the other nodes are given by

𝑍𝑖 (𝑥) =

𝑐
(1)
𝑖

𝑍ℓ (𝑥)+𝑐 (2)𝑖 𝑍𝑟 (𝑥), 𝑝𝑖 = +, (1a)

𝑍ℓ (𝑥)𝑍𝑟 (𝑥), 𝑝𝑖 = ∗, (1b)
𝑍ℓ (𝑥)−1𝑍𝑟 (𝑥), 𝑝𝑖 = \, (1c)

4

where ℓ = 𝑒
(1)
𝑖

and 𝑟 = 𝑒
(2)
𝑖

.
The set of (directed) edges of the DAG is{(

𝑒
(1)
2 , 2

)
,
(
𝑒
(2)
2 , 2

)
,
(
𝑒
(1)
3 , 3

)
,
(
𝑒
(2)
3 , 3

)
, . . . ,

(
𝑒
(1)
𝑁

, 𝑁
)
,
(
𝑒
(2)
𝑁

, 𝑁
)}
.

These edges form a parent list. Therefore, if we assume that the graph has no directed cycles, by
traversing it in a depth-first fashion we can find a topological ordering based on the parent-child
relationship. A topological ordering is a linear arrangement of the nodes inwhich every parent follows
both of its children. The topological ordering is not unique, and the maximum number of nodes that
are needed simultaneously at any stage is called the width of the DAG. Computing the width and
the corresponding topological ordering is a difficult problem [10, 9], which arises for example, in
compiler optimization. In our setting, topological sorting will be of paramount importance, since a
good ordering of the nodes reduces the amount of memory required to evaluate the graph at a matrix
argument.

Example 1 (Graph evaluation and topological ordering) The graph corresponding to the first four
steps of the Denman–Beavers iteration [12] can be constructed with the command:� �

j u l i a > us in g G r a p h M a t F u n
j u l i a > (gr ap h , _) = g r a p h _ d e n m a n _ b e a v e r s (4) ; # 4 i t e r a t i o n s� �

and can be evaluated at a matrix argument using eval_graph:� �
j u l i a > A = [0 .5 0 .2 ; 0 .3 0 .5] ;
j u l i a > e v a l _ g r a p h (gr aph , A)
2×2 M a t r i x { F l o a t 6 4 } :
0 .6 8 4 0 6 5 0 .1 461 85
0 .2 1 9 2 7 7 0 .6 840 65

j u l i a > sqrt (A) # C o m p a r e with the Julia ' s m a t r i x s q u a r e root
2×2 M a t r i x { F l o a t 6 4 } :
0 .6 8 4 0 6 5 0 .1 461 85
0 .2 1 9 2 7 7 0 .6 840 65� �

The graph is depicted in Figure 1(a). This evaluation relies on the ordering of the nodes computed by
get_topo_order, which can be examined by calling the latter directly.� �

j u l i a > g e t _ t o p o _ o r d e r (gr aph) [1]
17 - e l e m e n t V e c t o r { S y m b o l } :
: X i n v 0
: Y1
: X1
: Y i n v 1
: X2
. . .
: X i n v 3
: Y4
: Y i n v 4
: X5� �
Figure 1 shows the graphs produced by two algorithms of practical interest: the Denman–Beavers

iteration for the square root [12] and the scaling and squaring algorithm for the matrix exponential
based on a degree-13 Padé approximant [22].

5

struct Compgraph{T}
operations::Dict{Symbol, Symbol}
parents::Dict{Symbol, Tuple{Symbol, Symbol}}
coeffs::Dict{Symbol, Tuple{T, T}}
outputs::Vector{Symbol}

end

Figure 2: The fundamental data structure in the package is the Compgraph, which represents a graph
and its associated operations. The node identifiers are Symbols. As all operations involve two other
nodes, the parent list is a dictionary (hash table) that associates a 2-element Tuple of parents to each
non-input node.

2.2 Basic package features

The package provides a variety of functions for creating and manipulating graphs. The routines to
generate directly graphs corresponding to several well-established algorithms are listed in Table 1.
Table 2 and Table 3 list functions that can be used to generate new graphs and manipulate existing
ones, respectively. Their fundamental features are demonstrated in the following examples.

Example 2 (Graph) From a user’s perspective, the easiest way to generate a graph is by using one of
the graph generators in Table 1. The code corresponding to the graph can then be executed by calling
eval_graph.� �

j u l i a > (g _ m o n o , _) = g r a p h _ m o n o m i a l ([1 .0 , 0 .0 , 3 .0]) ; # C r e a t e gr ap h for 1+3 x ^2
j u l i a > x = 0 .1 ;
j u l i a > e v a l _ g r a p h (g _ m o n o , x)
1 .0 3
j u l i a > 1 + 3 x ˆ 2
1 .0 3
j u l i a > A = [3 .0 4 .0 ; 5 .0 6 .0] ;
j u l i a > P = e v a l _ g r a p h (g _ m o n o , A) # can be used for s c a l a r s or m a t r i c e s
2 x2 M a t r i x { F l o a t 6 4 } :

88 .0 108 .0
135 .0 169 .0� �

The graph is a struct with four fields (the definition of the data structure is given in Figure 2).� �
j u l i a > g _ m o n o . p a r e n t s # Ev ery node has two p a r e n t s
Dict { S y m b o l , T up le { S y m b o l , S y m b o l } } with 3 e n t r i e s :

: P3 = > (: P2 , : A2)
: A2 = > (: A , : A)
: P2 = > (: I , : A)

j u l i a > g _ m o n o . o p e r a t i o n s # E ver y node has an a s s o c i a t e d o p e r a t i o n
Dict { S y m b o l , S y m b o l } with 3 e n t r i e s :

: P3 = > : l i n c o m b
: A2 = > : mult
: P2 = > : l i n c o m b

j u l i a > g _ m o n o . c o e f f s # The l i n e a r c o m b i n a t i o n o p e r a t i o n s have c o e f f i c i e n t s
Dict { S y m b o l , T up le { F l o a t 6 4 , F l o a t 6 4 } } with 2 e n t r i e s :

: P3 = > (1 .0 , 3 .0)
: P2 = > (1 .0 , 0 .0)

j u l i a > g e t _ t o p o _ o r d e r (g _ m o n o) [1] # A c o m p u t a b l e ord er
3 - e l e m e n t V e c t o r { S y m b o l } :
: A2
: P2
: P3� �

6

Table 1: Graph generators. For each routine we report the name, the function being evaluated/approx-
imated, and a reference for the implementation. The degree-optimal form is discussed in Section 3.

Routine name 𝑓 (𝑥) Implemented algorithm

graph_monomial 𝑝(𝑥) Standard monomial evaluation
graph_monomial_degopt 𝑝(𝑥) Above embedded into degree-optimal form
graph_horner 𝑝(𝑥) Horner scheme evaluation
graph_horner_degopt 𝑝(𝑥) Above embedded into degree-optimal form
graph_ps 𝑝(𝑥) Paterson–Stockmeyer [31]
graph_ps_degopt 𝑝(𝑥) Above embedded into degree-optimal form
graph_sastre_poly 𝑝(𝑥) Efficient evaluation of polynomial of degree 8 [35]
graph_sastre_yks_degopt 𝑝(𝑥) Transforms 𝑦𝑘𝑠-form [35] to degree-optimal form
graph_rational 𝑟 (𝑥) Rational with poly eval with any of above
graph_denman_beavers

√
𝑥 Denman–Beavers iteration [12]

graph_newton_schulz 𝑥−1 Newton–Schulz iteration [42]
graph_newton_schulz_degopt 𝑥−1 Above embedded into degree-optimal form
graph_exp_native_jl 𝑒𝑥 Scaling and squaring with Padé approximant [22]
graph_exp_native_jl_degopt 𝑒𝑥 Above embedded into degree-optimal form
graph_bbc_exp 𝑒𝑥 Scaling and squaring with Taylor approximant [4]
graph_bbcs_cheb_exp 𝑒𝑥 Chebyshev approximant for skew-Hermitian matrices [5]
graph_sastre_exp 𝑒𝑥 Efficient evaluation of Taylor approximant [35]
graph_sid_exp 𝑒𝑥 Scaling and squaring with Taylor approximant [35, 38]

Table 2: Fundamental node manipulation functions. The add_sum! function is a convenience function
implemented by multiple calls to add_lincomb!.

Routine name Operation

add_lincomb! Adds a new node 𝑍 𝑗 = 𝑐
(1)
𝑗
𝑍ℓ + 𝑐

(2)
𝑗
𝑍𝑟

add_mult! Adds a new node 𝑍 𝑗 = 𝑍ℓ𝑍𝑟
add_ldiv! Adds a new node 𝑍 𝑗 = 𝑍−1

ℓ
𝑍𝑟

add_sum! Adds a new node 𝑍 𝑗 = 𝛼1𝑍𝑚1 + · · · + 𝛼𝑛𝑍𝑚𝑛
del_node! Removes an existing node
rename_node! Changes the label (Symbol) of an existing node in all graph data structures
add_output! Marks a node as output node
clear_outputs! Clears the list of output nodes

Table 3: Graph manipulation and evaluation functions.

Routine name Operation

Compgraph(T) Creates an empty graph with coefficients of type T
Compgraph(T,orggraph) Converts the graph orggraph so that all its coefficients have type T
eval_graph Evaluates the graph at a given matrix, scalar, or other object
eval_jac Evaluates the Jacobian at a point (element-wise for a vector)
compress_graph! Removes unnecessary operations from the graph
merge_graph Combines two graphs into one and renames the nodes accordingly

7

Example 3 (Compression) Node manipulation may lead to graphs whose topology can be optimized,
for example by removing operations with zero coefficients. In Example 2, for instance, the second coef-
ficients of node :P2 is zero, since the term 𝑥 does not appear in the polynomial 1 + 3𝑥2 represented by
g_mono. We can therefore compress the graph and obtain a more efficient algorithm. We can achieve this
by using compress_graph!, a function that removes 1) dangling nodes, i.e., non-output nodes that are
not parents of any other node in the graph; 2) trivial nodes, i.e., multiplication by the identity matrix or
linear systems whose coefficient is the identity matrix; 3) redundant nodes, i.e., nodes that repeat compu-
tation already present in the graph; and 4) pass-through nodes, i.e., linear combinations whose coefficients
include a zero.� �

j u l i a > us in g B e n c h m a r k T o o l s ;
j u l i a > A = r an dn (100 , 100) ;
j u l i a > @ b t i m e e v a l _ g r a p h ($ g _ m o n o , $ A) ;

172 .1 68 `s (191 a l l o c a t i o n s : 330 .7 5 KiB)
j u l i a > c o m p r e s s _ g r a p h ! (g _ m o n o) ;
j u l i a > g _ m o n o . p a r e n t s # The node : P2 has been r e m o v e d
Dict { S y m b o l , T up le { S y m b o l , S y m b o l } } with 2 e n t r i e s :

: P3 = > (: I , : A2)
: A2 = > (: A , : A)

j u l i a > @ b t i m e e v a l _ g r a p h ($ g _ m o n o , $ A) ; # It runs f a s t e r with f ew er a l l o c a t i o n s
133 .4 30 `s (123 a l l o c a t i o n s : 246 .2 0 KiB)� �

Example 4 (Manipulating graph topology) The following illustrates how a graph can be manipu-
lated by adding nodes with the add_<operation> functions in Table 2.� �

j u l i a > g _ m o n o . o u t p u t s # This is the o u t p u t node
1 - e l e m e n t V e c t o r { S y m b o l } :
: P3
j u l i a > a d d _ m u l t ! (g _ m o n o , : PX , : P3 , : P3) ; # Let ' s s q u a r e the o u t p u t node
j u l i a > c l e a r _ o u t p u t s ! (g _ m o n o) ;
j u l i a > a d d _ o u t p u t ! (g _ m o n o , : PX) ; # And set a new o u t p u t node
j u l i a > e v a l _ g r a p h (g _ m o n o , x) ;
1 .0 609
j u l i a > (1 + 3 x ˆ 2) ˆ 2
1 .0 609� �

3 Degree-optimal polynomials

If 𝑝 is a polynomial, then evaluating 𝑝(𝐴) requires only matrix multiplications and linear combina-
tions, and since the computational cost of the former asymptotically dominates that of the latter, it
is crucial to use polynomial evaluation schemes that require as few matrix multiplications as possi-
ble. The Paterson–Stockmeyer method [31] requires fewer matrix products than the naive scheme in
which the powers of 𝐴 are computed explicitly, and is currently the most efficient method known for
evaluating 𝑝(𝐴) using only the original monomial coefficients of 𝑝 [13]. If the use of new coefficients
derived from those of 𝑝 is allowed, however, then even more economical schemes, such as [31, Al-
gorithm C], are possible. Fuelled by the seminal work of Sastre [35], the topic has received renewed
attention in recent years, and algorithms that combine this schemewith the scaling and squaring tech-
nique have been developed for the exponential [4, 38], the sine and cosine [37, 43], and the hyperbolic
tangent [25].

Polynomials of degree 2𝑚 can be obtained with 𝑚 multiplications by repeated squaring. This is
optimal, in the sense that one cannot obtain polynomials of higher degree for a fixed number of matrix
multiplications. Since matrix multiplications are asymptotically much more expensive than matrix
additions, we can consider a larger class of polynomials obtained by taking linear combinations of

8

previously computed matrices. This will increase the number of degrees of freedom at a negligible
cost. We now present the class of degree-optimal polynomials, which are constructed recursively by
forming, at each step, the product of two linear combinations of all previously computed matrices.
These reach the optimal degree, and parameterize all polynomials that can be evaluated with at most
𝑚 non-scalar multiplications.

Let us define the recursion

𝐵1 = 𝐼, (2a)
𝐵2 = 𝐴, (2b)
𝐵3 = (𝑥𝑎,1,1𝐵1 + 𝑥𝑎,1,2𝐵2) (𝑥𝑏,1,1𝐵1 + 𝑥𝑏,1,2𝐵2), (2c)
𝐵4 = (𝑥𝑎,2,1𝐵1 + 𝑥𝑎,2,2𝐵2 + 𝑥𝑎,2,3𝐵3) (𝑥𝑏,2,1𝐵1 + 𝑥𝑏,2,2𝐵2 + 𝑥𝑏,2,3𝐵3), (2d)
𝐵5 = (𝑥𝑎,3,1𝐵1 + 𝑥𝑎,3,2𝐵2 + 𝑥𝑎,3,3𝐵3 + 𝑥𝑎,3,4𝐵4) (𝑥𝑏,3,1𝐵1 + 𝑥𝑏,3,2𝐵2 + 𝑥𝑏,3,3𝐵3 + 𝑥𝑎,3,4𝐵4), (2e)

...

𝐵𝑚+2 = (𝑥𝑎,𝑚,1𝐵1 + · · · + 𝑥𝑎,𝑚,𝑚+1𝐵𝑚+1) (𝑥𝑏,𝑚,1𝐵1 + · · · + 𝑥𝑏,𝑚,𝑚+1𝐵𝑚+1). (2f)

As a polynomial in 𝐴, the matrix 𝐵𝑖 has degree 0 for 𝑖 = 1 and degree 2𝑖−2 for 𝑖 = 2, . . . , 𝑚 + 2, thus
the linear combination

𝑝(𝐴) = 𝑦1𝐵1 + 𝑦2𝐵2 + · · · + 𝑦𝑚+2𝐵𝑚+2, (2g)

is a polynomial of degree at most 2𝑚. Determining the coefficients in (2) is the most challenging aspect
of this approach: in a sense, they are not enough and yet too many.

• The coefficients 𝑥𝑎,1,1, . . . , 𝑥𝑏,𝑚,𝑚+1 and 𝑦1, . . . , 𝑦𝑚+1 parameterize only a subset of the vector
space of polynomials of degree at most 2𝑚. It is easy to see that (2) has only 𝑚2 + 4𝑚 + 2
parameters, which is strictly less than the 2𝑚 coefficients of the polynomial for 𝑚 ≥ 6.

• There is redundancy in the coefficients: setting 𝑥𝑎,1,1 = 1, for example, does not change the set
of parameterized polynomials, and neither does setting 𝐵3 = 𝐴2, i.e., 𝑥𝑎,1,1 = 𝑥𝑏,1,1 = 0 and
𝑥𝑎,1,2 = 𝑥𝑏,1,2 = 1, as discussed towards the end of Remark 5.

The coefficients in (2) can be represented in a compact form by means of two matrices of dimension
𝑚 × (𝑚 + 1) and one vector of length 𝑚 + 2. We define 𝐻𝑎, 𝐻𝑏, and 𝑦 as

[
𝐻𝑎 𝐻𝑏

]
=

𝑥𝑎,1,1 𝑥𝑎,1,2 𝑥𝑏,1,1 𝑥𝑏,1,2
𝑥𝑎,2,1 𝑥𝑎,2,2 𝑥𝑎,2,3 𝑥𝑏,2,1 𝑥𝑏,2,2 𝑥𝑏,2,3
...

. . .
. . .

...
. . .

. . .

𝑥𝑎,𝑚,1 · · · · · · 𝑥𝑎,𝑚,𝑚 𝑥𝑎,𝑚,𝑚+1 𝑥𝑏,𝑚,1 · · · · · · 𝑥𝑏,𝑚,𝑚 𝑥𝑏,𝑚,𝑚+1

, (3a)

𝑦 =
[
𝑦1 · · · 𝑦𝑚+2

]
. (3b)

Degree-optimal polynomials in the form (2) have already been discussed in the literature. Paterson
and Stockmeyer use the recursion to prove a lower bound on the number of multiplications necessary
to evaluate a polynomial [31]. Degree-optimal polynomials are also mentioned, though not used
extensively, by Bader, Blanes, and Casas [4].

Some evaluation schemes in the literature [31, 4, 35] can be expressed in a degree-optimal form
where certain coefficients are fixed to zero or one. As an illustration, Figure 3 shows how several
schemes for polynomial evaluation can be expressed in the form (3). In these references, the free
coefficients are computed by solving an algebraic system of equations so that the resulting polynomial
matches the coefficients of a Taylor expansion of the function of interest. The algebraic system is
solved symbolically, but the solver may fail to find a solution if the “wrong” coefficients are fixed,

9

0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0

𝑦 =

[
𝑐0 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

]
(a) Monomial evaluation of 𝑐0𝑥0 + · · · + 𝑐6𝑥6.

𝑐5 𝑐6 0 1
𝑐4 0 1 0 1 0
𝑐3 0 0 1 0 1 0 0
𝑐2 0 0 0 1 0 1 0 0 0
𝑐1 0 0 0 0 1 0 1 0 0 0 0

𝑦 =

[
𝑐0 0 0 0 0 0 1

]
(b) Horner evaluation of 𝑐0𝑥0 + · · · + 𝑐6𝑥6.

0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 𝑐8 𝑐9 𝑐10 𝑐11 0
0 0 0 0 1 0 𝑐4 𝑐5 𝑐6 𝑐7 0 1

𝑦 =

[
𝑐0 𝑐1 𝑐2 𝑐3 0 0 1

]
(c) Paterson–Stockmeyer evaluation of 𝑐0𝑥0+· · ·+𝑐11𝑥11.

0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 1 0 0
0 0 0 0 1 0 𝑐4 𝑐3 𝑐2 𝑐1
0 𝑐8 𝑐7 𝑐6 𝑐5 1 0 0 𝑐11 𝑐10 𝑐9 1
0 𝑐16 𝑐15 𝑐14 𝑐13 𝑐12 1 0 𝑐20 𝑐19 𝑐18 𝑐17 1 0

𝑦 =

[
1 1 𝑐23 𝑐22 𝑐21 0 0 1

]
(d) Truncated exponential using [38, Equations (26)-(28)].

Figure 3: Various polynomial evaluation schemes expressed in degree-optimal form using the notation
in (3).

and different choices of fixed parameters can lead to an infinity of solutions, one of which has to be
selected in practice [4]. The authors also point out that approaches that are more economical than
those obtained by their particular choice of free and fixed parameters may exists. As can be seen in
Table 4, both approaches lead to polynomials of degree far lower than the maximum obtainable and
considerably below the number of degrees of freedom in the scheme (2). New approaches to determine
the coefficients using symbolic computation have recently been proposed [36].

Remark 5 (Related notation) Some literature focusing on minimizing the number of matrix multi-
plications [35, 38, 37] uses a slightly different compact form to express multiplication-efficient polynomial
evaluation. The authors prefer the notation 𝑦𝑘𝑠 where 𝑠 is the highest power of the input matrix that
has to be computed and 𝑘 is a level parameter such that the number of matrix multiplications is 𝑘 + 𝑠.
These compact forms can always be converted to a degree-optimal form (2). We exemplify this with the
expressions in [35, Example 3.1]:

𝑦02(𝑥) = 𝑥2(𝑐4𝑥2 + 𝑐3𝑥), (4a)
𝑦12(𝑥) = (𝑦02(𝑥) + 𝑑2𝑥

2 + 𝑑1𝑥) (𝑦02(𝑥) + 𝑒2𝑥
2) + 𝑒0𝑦02(𝑥) + 𝑓2𝑥

2 + 𝑓1𝑥 + 𝑓0. (4b)

For any polynomial of degree 8 with non-zero leading coefficient, there exists coefficients 𝑐4, 𝑐3, 𝑑2, 𝑑1, 𝑒2,
𝑒0, 𝑓2, 𝑓1, and 𝑓0 such that 𝑦12(𝑥) is an evaluation scheme of the polynomial [35]. In the degree-optimal
form, we have one row per multiplication and a final summation of all computedmatrices. The coefficients
of the degree-optimal form for (4) are

𝑥𝑎,1,1 𝑥𝑎,1,2 𝑥𝑏,1,1 𝑥𝑏,1,2
𝑥𝑎,2,1 𝑥𝑎,2,2 𝑥𝑎,2,3 𝑥𝑏,2,1 𝑥𝑏,2,2 𝑥𝑏,2,3
𝑥𝑎,3,1 𝑥𝑎,3,2 𝑥𝑎,3,3 𝑥𝑎,3,4 𝑥𝑏,3,1 𝑥𝑏,3,2 𝑥𝑏,3,3 𝑥𝑏,3,4

 =

0 1 0 1
0 0 1 0 𝑐3 𝑐4
0 𝑑1 𝑑2 1 0 0 𝑒2 1

 (5)

with [
𝑦1 𝑦2 𝑦3 𝑦4 𝑦5

]
=
[
𝑓0 𝑓1 𝑓2 𝑒0 1

]
. (6)

10

Table 4: Highest-degree polynomial that can be evaluated with a given number of multiplications
using different schemes. The asterisk ∗ denotes the degree reported in the referenced paper and signals
that the corresponding coefficients were not disclosed. Sastre’s approach [35] is already optimal for
𝑚 = 0, 1, 2, and 3 since the degree of the polynomial is the same as the degree of (2g). The approach
in [38] is very close to optimal for 𝑚 = 4. The plus sign + marks the highest coefficient in the Taylor
series expansion that is matched by the polynomial, the degree of the approximating polynomial is
higher. Sastre [35] refers to the variants in [35, Section 3.1] and [35, Section 5].

Number of matrix products 𝑚 1 2 3 4 5 6 7 8

Paterson–Stockmeyer degree 2 4 6 9 12 16 20 25
Sastre [35] degree 2 4 8 12∗(15+) 16∗ 20∗ 25∗ 30
BBC [4] degree 2 4 8 12 18 22∗
SID [38] degree 2 4 8 15+ 21+ 24 30

Degree of (2g): 2𝑚 2 4 8 16 32 64 128 256
Number of free variables in (2): (𝑚 + 2)2 − 2 7 14 23 34 47 62 79 98

Similarly, with the notation (3) we can express [35, Equation (34)-(35)] for 𝑠 = 3 as
0 1 0 1
0 0 1 0 1 0
0 0 0 1 0 𝑐4 𝑐5 𝑐6
0 𝑑1 𝑑2 𝑑3 1 0 0 𝑒2 𝑒3 1

 (7)

and [
𝑦1 𝑦2 𝑦3 𝑦4 𝑦5 𝑦6

]
=
[
𝑓0 𝑓1 𝑓2 𝑓3 𝑒0 1

]
.

The referenced work contains an extra addition of previous iterates after each multiplication. In order to
transform this scheme to degree-optimal form, these terms can always be compensated for by merging
into appropriate coefficients in subsequent rows in the degree-optimal form.

The function graph_sastre_yks_degopt automatically converts the coefficients in the scheme [35,
Equations (62)-(65)] for the evaluation of 𝑦𝑘𝑠 to degree-optimal form. We wish to stress that there is a
redundancy in the degree-optimal form, and also in the 𝑦𝑘𝑠-form proposed in [35]. The first row of (5)
and (7), for example, can be set to[

𝑥𝑎,1,1 𝑥𝑎,1,2 𝑥𝑏,1,1 𝑥𝑏,1,2
]
=
[
0 1 0 1

]
, (8)

without loss of generality. Our software is based on the degree-optimal polynomial with arbitrary co-
efficients, and does not explicitly eliminate this and other redundancies that are instead removed in the
𝑦𝑘𝑠-form. This is mostly due to implementation considerations: if 𝐻𝑎 and 𝐻𝑏 have many zeros and a
favorable structure, then more efficient code can be generated by avoiding explicit multiplications by zero.
The structure can also reduce the memory footprint. It is straightforward to impose constraints such as (8)
when optimizing the coefficients of the graph, since we have the freedom to choose the parameters over
which to optimize.

The general scheme (2) can clearly be phrased as a computational graph. We provide graph genera-
tors that use the coefficients tabulated in previous work for certain cases. The choice of the coefficients
in (2) can be interpreted as an optimization problem, as discussed in details in Section 4. As we will
see in the experiments, determining the coefficients by optimization can bring several advantages. In
this setting, procedures such as those in [4] and [35] can be used to warm start the optimizer.

11

Example 6 (degree-optimal form) The degree-optimal polynomials are represented by Degopt ob-
jects, which can be initialized with a constructor that takes as input the matrices in (3). A degree-optimal
polynomial can be evaluated by using the corresponding Compgraph, which can be generated using the
function graph_degopt. Here is the Paterson–Stockmeyer evaluation corresponding to the truncated Tay-
lor series expansion of the exponential.� �

j u l i a > c = 1 . / f a c t o r i a l . (0 : 11) ; # T r u n c a t e d T a y l o r e x p a n s i o n of exp (z) at z =0
j u l i a > HA = [0 .0 1 .0 0 .0 0 .0 0 .0 0 .0

0 .0 0 .0 1 .0 0 .0 0 .0 0 .0
0 .0 0 .0 0 .0 1 .0 0 .0 0 .0
0 .0 0 .0 0 .0 0 .0 1 .0 0 .0
0 .0 0 .0 0 .0 0 .0 1 .0 0 .0] ;

j u l i a > HB = [0 .0 1 .0 0 .0 0 .0 0 .0 0 .0
0 .0 1 .0 0 .0 0 .0 0 .0 0 .0
0 .0 1 .0 0 .0 0 .0 0 .0 0 .0
c [9] c [10] c [11] c [12] 0 .0 0 .0
c [5] c [6] c [7] c [8] 1 .0 0 .0]

j u l i a > y = [c [1 : 4] ; 0 ; 0 ; 1]
j u l i a > (g , _) = g r a p h _ d e g o p t (D e g o p t (HA , HB , y)) ;
j u l i a > A = [1 2 ; 3 4] / 100 ;
j u l i a > e v a l _ g r a p h (g , A)
2 x2 M a t r i x { F l o a t 6 4 } :
1 .0 1036 0 .0 2 0 5 0 9 1
0 .0 3 0 7 6 3 7 1 .0 4112

j u l i a > norm (exp (A) - e v a l _ g r a p h (g , A))
7 .0 4 2 7 5 9 3 4 1 4 7 2 8 0 2 e-1 1� �

Since the degree-optimal form contains many zeros in this case, the graph will contain many nodes
corresponding to scalar multiplications by zero. These can be automatically removed by the function
compress_graph!, which substantially reduces execution time and the number of memory allocations.� �

j u l i a > us in g B e n c h m a r k T o o l s ;
j u l i a > g2 = c o m p r e s s _ g r a p h ! (d e e p c o p y (g)) ;
j u l i a > @ b t i m e e v a l _ g r a p h ($ g , $ A) ;

1 .2 47 ms (6271 a l l o c a t i o n s : 761 .1 6 KiB)
j u l i a > @ b t i m e e v a l _ g r a p h ($ g2 , $ A) ;

99 .1 43 `s (829 a l l o c a t i o n s : 81 .4 9 KiB)� �
4 Algorithm design by optimization

The graph framework illustrated in the previous sections is a tool to model algorithms based on the
operations O1–O3. In the following we show that the package can be used not only to represent
such algorithms, but also design new ones. The main approach to derive new algorithms is based on
fixed topology optimization. In practice, we fix how many nodes the graph will have, what operation
each node will represent, and how these nodes will be connected. By doing this, we are effectively
setting the number of matrix multiplications the algorithms will perform, and therefore its asymptotic
computational cost. The free parameters, which can be used to improve the approximation, are the
coefficients of the linear combinations of the form O1. They will be chosen so that the function 𝑔

approximates a given function 𝑓 in a domain of interest. We mostly use optimization based on the
forward error in exact or high-precision arithmetic. The analysis of the backward and round-off error
are presented in Section 6. Throughout this section we are going to assume that 𝑓 and 𝑔 are analytic
in a simply connected domain Ω ⊂ C. Occasionally, we will use the notation 𝑔(· ; 𝑐) to emphasize
that 𝑔 depends on a coefficient vector 𝑐 ∈ C𝐾 . The forward error is 𝑒(𝐴) = 𝑔(𝐴) − 𝑓 (𝐴), and for any
diagonalizable matrix 𝐴 ∈ C𝑛×𝑛 with spectrum in Ω we have the bound

∥𝑒(𝐴)∥ ≤ ^(𝑉)max
𝑖

|𝑒(_𝑖) | ≤ ^(𝑉)max
𝑧∈Ω

|𝑒(𝑧) |, (9)

12

where 𝑉 ∈ C𝑛×𝑛 is a matrix such that Λ = 𝑉𝐴𝑉−1 is diagonal, and ^(𝑉) = ∥𝑉 ∥∥𝑉−1∥ denotes the
spectral condition number. Hence, we are interested in minimizing the maximum of |𝑒(𝑧) | over Ω.
Since 𝑓 and 𝑔 are assumed to be analytic in Ω, then so is 𝑒, and the objective function can be further
simplified by applying the maximum modulus principle [32, Section 12.1], which dictates that the
maximum of |𝑒 | over Ω is attained on the boundary. Therefore, if we denote the boundary of Ω with
𝜕Ω, the task is to solve

minimize
𝑐∈C𝐾

max
𝑧∈𝜕Ω

��𝑔(𝑧; 𝑐) − 𝑓 (𝑧)
��. (10)

The resulting optimization problem is nevertheless difficult. We introduce a surrogate problem by
replacing the 𝐿∞(𝜕Ω)-norm in the objective function with the 𝐿2(𝜕Ω)-norm and discretizing the
boundary 𝜕Ω at the points 𝑧1, 𝑧2, . . . , 𝑧𝑁 . Thus, the surrogate problem is

minimize
𝑐∈C𝐾

∥𝑟 ∥2, (11)

where 𝑟 is the vector of residuals

𝑟 =

𝑔(𝑧1; 𝑐) − 𝑓 (𝑧1)
𝑔(𝑧2; 𝑐) − 𝑓 (𝑧2)

...

𝑔(𝑧𝑁 ; 𝑐) − 𝑓 (𝑧𝑁)

. (12)

The optimization problem (11) is a nonlinear least squares problemwhich can be tackled withmethods
such as the Gauss–Newton algorithm [8]; see [44] for an extension to the complex case. The method
updates the current guess for 𝑐 with a vector 𝛿 that is the solution to the linear least squares problem

arg min
𝛿∈C𝐾

∥𝐽𝛿 − 𝑟 ∥, (13)

where 𝐽 is the Jacobian of 𝑔 with respect to the coefficient vector 𝑐, which can be written as

𝐽 =

𝜕𝑔(𝑧1; 𝑐)/𝜕𝑐1 𝜕𝑔(𝑧1; 𝑐)/𝜕𝑐2 . . . 𝜕𝑔(𝑧1; 𝑐)/𝜕𝑐𝐾
𝜕𝑔(𝑧2; 𝑐)/𝜕𝑐1 𝜕𝑔(𝑧2; 𝑐)/𝜕𝑐2 . . . 𝜕𝑔(𝑧2; 𝑐)/𝜕𝑐𝐾

...
...

. . .
...

𝜕𝑔(𝑧𝑁 ; 𝑐)/𝜕𝑐1 𝜕𝑔(𝑧𝑁 ; 𝑐)/𝜕𝑐2 . . . 𝜕𝑔(𝑧𝑁 ; 𝑐)/𝜕𝑐𝐾

. (14)

In our setting, the Jacobian can be computed in a manner that resembles backpropagation. This tech-
nique is commonly used to compute derivatives when training neural networks [33, 19], which can
themselves be regarded as computational graphs [19, Section 6.5]. Backpropagation applies the chain
rule to the operations in the computational graph, and by exploiting the structure of the DAG we can
derive explicit rules for the derivatives. The derivative of (1) with respect to the coefficient 𝑐𝑘 is

𝜕𝑍𝑖 (𝑥)
𝜕𝑐𝑘

=

𝑐
(1)
𝑖

𝜕𝑍ℓ (𝑥)
𝜕𝑐𝑘

+ 𝑐
(2)
𝑖

𝜕𝑍𝑟 (𝑥)
𝜕𝑐𝑘

, 𝑝𝑖 = +, (15a)

𝜕𝑍ℓ (𝑥)
𝜕𝑐𝑘

𝑍𝑟 (𝑥) + 𝑍ℓ (𝑥)
𝜕𝑍𝑟 (𝑥)
𝜕𝑐𝑘

, 𝑝𝑖 = ∗, (15b)

−𝑍ℓ (𝑥)−2
𝜕𝑍ℓ (𝑥)
𝜕𝑐𝑘

𝑍𝑟 (𝑥) +

𝑍ℓ (𝑥)−1
𝜕𝑍𝑟 (𝑥)
𝜕𝑐𝑘

,

𝑝𝑖 = \, (15c)

where ℓ = 𝑒
(1)
𝑖

and 𝑟 = 𝑒
(2)
𝑖

as in (1). The rules (15) can be applied recursively until a linear combina-
tion node 𝑠 such that 𝑐𝑘 = 𝑐

(1)
𝑠 or 𝑐𝑘 = 𝑐

(2)
𝑠 is found. In this case, one has

𝜕𝑍𝑠 (𝑥)
𝜕𝑐𝑘

= 𝑍𝑘 (𝑥). (15d)

13

The propagation formulae (15) can also be used to implement the forward evaluation of the partial
derivatives. To evaluate the derivative of 𝑔 with respect to 𝑐𝑘 at a point 𝑥 one can start from node 𝑠,
using (15d), and then from that node follow the parent list of the graph according to the topological
ordering. Visiting the nodes in this order guarantees that whenever one of the formulae (15a)-(15c) is
evaluated, each partial derivative on the right-hand side of has already been computed or is zero. The
computation can also be carried out simultaneously for all the points 𝑧1, 𝑧2, . . . , 𝑧𝑁 .

Example 7 (Jacobian evaluation) The function eval_jac evaluates the Jacobian of a graph using
the method described above. We illustrate the process using as model the graph for the monomial form
of the degree-5 Taylor approximant to the exponential. Evaluating this approximant requires only 4
multiplications.� �

j u l i a > c = 1 . / f a c t o r i a l . (0 : 5) ; # T r u n c a t e d T a y l o r e x p a n s i o n of exp (z) at z =0
j u l i a > (gr ap h , cref) = g r a p h _ m o n o m i a l (c) ; # E x p o n e n t i a l c o e f f s
j u l i a > d is cr = 0 .4 5 * exp . (1 im * r ang e (0 , 2𝜋, l e n g t h = 200)) ; # D i s c r e t i z a t i o n
j u l i a > J = e v a l _ j a c (gr aph , d isc r , cref) ;
j u l i a > size (J)
(200 , 6)
j u l i a > s v d v a l s (J)
6 - e l e m e n t V e c t o r { F l o a t 6 4 } :
14 .1 4 2 1 8 9 9 3 1 7 7 2 6 0 8
6 .3 6 3 8 8 5 3 8 9 2 6 4 3 1 2
2 .8 6 3 7 1 1 3 9 1 3 0 9 8 3 8
1 .2 8 8 6 5 4 0 7 1 4 2 9 9 9 0 3
0 .5 7 9 8 8 6 9 8 7 4 5 0 3 9 8
0 .2 6 0 9 4 5 2 2 3 9 0 1 8 2 2 5� �

The second output of the graph generator, cref, is a vector of tuples (Symbol, Int) that references a
subset of the coefficients in the graph. In this case, cref contains the 6 coefficients of the monomial.� �

j u l i a > [cref g e t _ c o e f f s (g rap h , cref)]
6×2 M a t r i x { Any } :
(: P2 , 1) 1 .0
(: P2 , 2) 1 .0
(: P3 , 2) 0 .5
(: P4 , 2) 0 .1 666 67
(: P5 , 2) 0 .0 4 1 6 6 6 7
(: P6 , 2) 0 .0 0 8 3 3 3 3 3� �

If the same graph is embedded in degree-optimal form, then cref contains all the coefficients listed in (3).� �
j u l i a > (gr ap h , cref) = g r a p h _ m o n o m i a l _ d e g o p t (c) ;
j u l i a > J = e v a l _ j a c (gr aph , d isc r , cref) ;
j u l i a > size (J)
(200 , 34)
j u l i a > s v d v a l s (J) [1 : 10]
10 - e l e m e n t V e c t o r { F l o a t 6 4 } :
14 .1 4 2 2 4 1 1 2 9 4 2 1 5 1 6
7 .8 8 6 6 4 5 2 4 0 8 2 9 6 9 9
3 .6 1 6 6 3 0 3 0 9 6 1 0 3 8 5 6
1 .3 4 7 6 8 6 7 6 5 9 6 9 5 7 8
0 .5 9 0 3 9 4 2 8 6 8 1 7 7 9 5
0 .2 6 1 4 4 3 1 3 3 2 2 7 2 0 4 9 7
0 .0 0 5 1 9 3 7 0 1 5 2 7 3 3 3 4 4 3
0 .0 0 0 4 6 1 4 1 9 0 8 8 6 5 4 7 3 0 5 5
0 .0 0 0 1 9 8 1 4 8 5 6 3 3 7 8 8 0 0 4
8 .3 8 0 6 5 5 7 5 0 0 4 0 2 1 4 e-1 6� �

The flexibility of the degree-optimal form is evidenced by the fact that 4 multiplications are parameterized
by 34 coefficients. The redundancies are also apparent: in this example only 9 singular values of the

14

Algorithm 1: Gauss–Newton algorithm for the graph nonlinear least squares (11).
input: A graph, the coefficients 𝑐0 corresponding to 𝑔(· ; 𝑐0), and the step length 𝛾 > 0.
output: A coefficient vector 𝑐 such that 𝑔(· ; 𝑐) ≈ 𝑓 , if the iterations converge.

1 for 𝑘 = 1, 2, 3, . . . until convergence do
2 Evaluate residual vector 𝑟 from (12).
3 Evaluate the Jacobian 𝐽 from (14) by using the rules in (15).
4 Solve (13) for 𝛿𝑘 using the SVD and the pseudoinverse with a drop tolerance 𝑑𝑘 .
5 Update 𝑐𝑘+1 = 𝑐𝑘 − 𝛾𝛿𝑘 .
6 end

Jacobian are numerically larger than zero. These 9 degrees of freedom are more than the 6 available in
the corresponding classical polynomial evaluation schemes. Note that the number of zero singular values
is a local property, which depends on the graph as well as on the values in c. No global conclusions, for
example about which polynomials can be represented, can be drawn from it.

The general idea of the Gauss–Newton algorithm adapted to the minimization problem (11) is
summarized in Algorithm 1. Currently, our package provides a bespoke implementation of the Gauss–
Newton algorithm which gives good control over the damping parameters, facilitates the use of high-
precision arithmetic via the BigFloat data type, and is suitable for working with real coefficients, see
Remark 8. Optimizers from the Julia ecosystem do not provide the features needed for our purposes,
but may be integrated in the future. That would allow for the use of more advanced routines for non-
linear least squares problems, such as, for example, the Levenberg–Marquardt algorithm or general
trust region methods [8].

Remark 8 (Real-valued coefficients) The nonlinear least squares problem (11) is a complex-valued
problem. However, in many cases it is desirable to require that 𝑐 ∈ R𝐾 . The problem can then be turned
into a real-valued nonlinear least squares problem by reformulating the objective function as

minimize
𝑐∈R𝐾

[Re(𝑟)Im(𝑟)

]2 ,
where 𝑟 is given by (12). The corresponding linear least squares (sub-)problem, cf. (13), becomes

arg min
𝛿∈R𝐾

[Re(𝐽)Im(𝐽)

]
𝛿 −

[
Re(𝑟)
Im(𝑟)

] ,
as described in [44].

Remark 9 (Relative error) The aim of the surrogate problem (11) is to minimize the absolute error of
the approximation over the disk. However, we often want to minimize the relative error ∥𝑒(𝐴)∥/∥ 𝑓 (𝐴)∥.
If 𝑓 has no roots inside the domain Ω, then the derivation is analogous and the result is that the Jaco-
bian 𝐽 and the residual vector 𝑟 in the linear least squares problem (13) are diagonally scaled with 𝐷 =

diag(1/ 𝑓 (𝑧𝑖)), i.e., the linear least squares (sub-)problem in the Gauss–Newton algorithm is argmin𝛿 ∥𝐷𝐽𝛿−
𝐷𝑟 ∥. If 𝑓 has roots in the domain, however, then the maximum modulus principle is not applicable to the
relative error, and in those cases we must resort to the absolute error instead.

Example 10 (Design by optimization) We illustrate how the optimization can be used to find the
coefficients of a degree-optimal polynomial of the form (2) that approximates the exponential using 4
multiplications. This example builds on Example 7, and is a simplified version of the more extensive
cases reported in Section 7. As starting guess for the optimization, we use the coefficients of the degree-5
Taylor approximant embedded in degree-optimal form, which has the same structure as the approximant
in Figure 3(a).

15

� �
j u l i a > (gr ap h , cref) = g r a p h _ m o n o m i a l _ d e g o p t (c) ; # I n i t i a l gu es s
j u l i a > f = exp ;
j u l i a > A = r an dn (100 , 100) / 40 ;
j u l i a > fA = f (A) ;
j u l i a > norm (e v a l _ g r a p h (g rap h , A) - fA) / norm (fA) # Test i n i t i a l gu es s
3 .5 2 1 6 9 7 7 6 4 6 5 9 8 1 8 e-7� �

In the first line of code above, the second output cref, described in Example 7, represents the coefficients we
use in the optimization. The final line illustrates that on the 100×100 randommatrix A, the approximation
gives a relative forward error of about 3.5 · 10−7. In the following, we call opt_gauss_newton!, which
applies the Gauss–Newton algorithm, in this case in high precision, as the coefficients of the graph is
converted to the BigFloat data type on the first line. In this way we can find new coefficients that deliver
a more accurate approximation without increasing the number of matrix multiplications.� �

j u l i a > g r a p h b = big (gr aph) ; # Do o p t i m i z a t i o n in high p r e c i s i o n
j u l i a > d is cr = 0 .4 5 * exp . (1 im * r ang e (0 , 2 big (𝜋) , l e n g t h = 200)) ; # D i s c r e t i z a t i o n
j u l i a > o p t _ g a u s s _ n e w t o n ! (g r a p h b , f , dis cr , # Run o p t i m i z a t i o n

e r r t y p e = : r e l e r r , # R e l a t i v e e rro r
s t o p t o l = 4 e-1 5 ,
cref = cref , # E x p l i c i t l y g i v i n g t a r g e t v a r i a b l e s
l i n l s q r = : r e a l _ s v d , # Fo rce real c o e f f i c i e n t s
d r o p t o l = 1 e-1 5 ,
l o g g e r = 0 # Set to 1 to see i t e r a t i o n s
) ;

j u l i a > g ra ph = C o m p g r a p h (F l o a t 6 4 , g r a p h b) ; # R oun d to F l o a t 6 4
j u l i a > norm (e v a l _ g r a p h (g rap h , A) - fA) / norm (fA) # Test r e s u l t
3 .3 7 9 0 7 2 2 3 5 7 8 5 2 7 7 3 e-1 6� �

In the final line we evaluate the relative forward error. The relative error of the improved graph on the
matrix A is about 3.4 × 10−16, an improvement of just over 9 orders of magnitude over the truncated
Taylor approximant tested above. This illustrates the potential of the optimization approach, but further
analysis is needed in order to establish whether a graph found by optimization will be useful in practice. In
Section 6.1 we provide tools for a detailed error analysis, and study the accuracy of graphb in Example 16.
A more complete design procedure is outlined in Section 7, where we also present improved graphs.

Remark 11 (Jordan form and generalization of diagonal bound (9)) If 𝐴 is defective, then defin-
ing 𝑓 (𝐴) requires the ability to compute some of the derivatives of 𝑓 at some eigenvalues of 𝐴, as can be
seen from the definitions via Jordan canonical form [23, Definition 1.2] or via Hermite interpolation [23,
Definition 1.3]. Therefore, in order to minimize ∥𝑒(𝐴)∥, it might be desirable to ensure that the derivatives
of 𝑔 approximate those of 𝑓 . Since 𝑓 and 𝑔 are analytic in Ω, so is the error 𝑒, and we can thus bound its
derivatives.

To do this we consider Ω being embedded in a slightly larger region Ω𝜌. If 𝐷 (𝑎, 𝜌) denote the disk of
radius 𝜌 centered in 𝑎, then Ω𝜌 is the smallest region such that for every point 𝑎 ∈ Ω one has 𝐷 (𝑎, 𝜌) ⊂
Ω𝜌. We assume that 𝑓 and 𝑔 are analytic in Ω𝜌. For reasons that will become clear later, it is preferable
to set 𝜌 ≥ 1. Since 𝐷 (𝑎, 𝜌) ⊂ Ω𝜌 for all points 𝑎 ∈ Ω, by Cauchy’s estimates [32, Theorem 10.26] we
have that ��𝑔 (𝑘) (𝑎) − 𝑓 (𝑘) (𝑎)

�� ≤ 𝑘!𝑀𝑎,𝜌

𝜌𝑘
,

where 𝑀𝑎,𝜌 is a constant such that
��𝑔(𝑧) − 𝑓 (𝑧)

�� ≤ 𝑀𝑎,𝜌 for all 𝑧 ∈ 𝐷 (𝑎, 𝜌). Naturally for any 𝑎 ∈ Ω

we have 𝑀𝑎,𝜌 ≤ 𝑀𝜌 where 𝑀𝜌 is a constant such that |𝑔(𝑧) − 𝑓 (𝑧) | ≤ 𝑀𝜌 for all 𝑧 ∈ Ω𝜌. Hence, the
derivative bounds can be applied uniformly giving��𝑔 (𝑘) (𝑧) − 𝑓 (𝑘) (𝑧)

�� ≤ 𝑘!𝑀𝜌

𝜌𝑘
,

16

for all 𝑧 ∈ Ω. Thus, if 𝑔 approximates 𝑓 well in the slightly larger domain Ω𝜌, then we can bound how
well the derivatives of 𝑔 approximate those of 𝑓 onΩ. In the context of matrix functions, this implies that
for a 𝑘 × 𝑘 Jordan block 𝐽𝑘 one has that𝑔(𝐽𝑘) − 𝑓 (𝐽𝑘)

 ≤ ��𝑔(𝐽𝑘) − 𝑓 (𝐽𝑘)
�� ≤ 𝑀𝜌∥𝑃𝑘 (𝜌)∥,

where | · | denotes the entry-wise absolute value and 𝑃𝑘 (𝜌) is the matrix

𝑃𝑘 (𝜌) =

1 1
𝜌

1
𝜌2

. . . 1
𝜌𝑘−1

1 1
𝜌

. . .
...

1 . . . 1
𝜌2

. . . 1
𝜌

1

.

We can conclude that
∥𝑒(𝐴)∥ ≤ ^(𝑆)∥𝑃𝑘′ (𝜌)∥ max

𝑧∈Ω𝜌
|𝑒(𝑧) |,

where 𝑘 ′ is the size of the largest Jordan block of 𝐴, and 𝑆 is a transformation matrix such that 𝐽 = 𝑆𝐴𝑆−1

is a Jordan canonical form of 𝐴.

Remark 12 (Crouzeix’s conjecture and generalization of diagonal bound (9)) LetΩ be a smooth,
bounded, and convex domain that contains the field of values

𝑊 (𝐴) = {𝑥∗𝐴𝑥 : 𝑥 ∈ C𝑛, ∥𝑥∥ = 1}.

By [11, Theorem 3.1], if 𝑒 is analytic in Ω and continuous on its boundary, then

∥𝑒(𝐴)∥ ≤
(
1 +

√
2
)
sup
𝑧∈Ω

|𝑒(𝑧) |.

Let Ω = 𝐷 (0, 𝑟) be the disk with radius 𝑟 centered at the origin, and let us assume that 𝑓 and 𝑔 are
analytic in 𝐷 (0, 𝑟), which implies that so is the error 𝑒. Consider the numerical radius 𝑤(𝐴) = sup{|𝑧 | :
𝑧 ∈ 𝑊 (𝐴)}. For any matrix 𝐴 such that ∥𝐴∥ ≤ 𝑟 the numerical radius satisfies 𝑤(𝐴) ≤ 𝑟 [24, Prob-
lem 1.5.24(g)], and thus, the numerical range satisfies𝑊 (𝐴) ⊂ 𝐷 (0, 𝑟). Hence, for all matrices ∥𝐴∥ ≤ 𝑟

we have that
∥𝑒(𝐴)∥ ≤

(
1 +

√
2
)

sup
𝑧∈𝐷 (0,𝑟)

|𝑒(𝑧) |.

5 Efficiency and reproducibility features

The package is written in Julia but provides a wide range of facilities to ensure that users of other
languages can benefit from our findings. Therefore, we have implemented functions for saving and
loading graphs in a language-independent format and for generating multi-language code directly
from a graph object.

5.1 Code generation

The package allows the user to generate fast and memory-efficient code. The code generation feature
is also available for Julia, and is in general preferred over the eval_graph function for efficiency. The
package supports code generation for

• Julia, with in-place addition to reduce the memory footprint,

17

• MATLAB,

• C with support for OpenBLAS, and

• C with support for the Intel Math Kernel Library (MKL).

On current HPC computer architectures, memory access and memory allocation have a large im-
pact on performance. Our software strives to reduce the memory footprint of the generated code by
choosing a topological ordering that (heuristically) attempts to minimize the maximum number of
matrices that the algorithms needs to store at any given time. Finding the topological ordering that
is optimal in the sense of the memory footprint is essentially equivalent to determining the width of
the graph, which is a difficult problem in general. For generality, the choice of topological ordering
can therefore be influenced by parameters passed to gen_code.

Example 13 (MATLAB code generation) The following code generates the computational graph cor-
responding to the Paterson–Stockmeyer evaluation of the Taylor approximant to the cosine. We exploit
the fact that the truncated Taylor series expansion of cos 𝐴 is a polynomial in 𝐴2.� �

j u l i a > # c is the non - zero m o n o m i a l c o e f f i c i e n t s for the c o s i n e f u n c t i o n
j u l i a > c = (kron (ones (5) , [1 , - 1]) . / f a c t o r i a l . (0 : 2 : 19)) ;
j u l i a > (g , _) = g r a p h _ p s (c) ; # Paterson - - S t o c k m e y e r e v a l u a t i o n
j u l i a > r e n a m e _ n o d e ! (g , : A , : A2 tmp) ; # `` change ' ' in pu t to A ^2
j u l i a > a d d _ m u l t ! (g , : A 2t mp , : A , : A) ;
j u l i a > g e n _ c o d e (" m y c o s m . m " , g , f u n n a m e = " m y c o s m " , lang = L a n g M a t l a b ())� �

This generates the file:� �
f u n c t i o n o u t p u t = m y c o s m (A)

n = size (A , 1) ;
I = eye (n , n) ;
% C o m p u t a t i o n o rde r :
% A 2 tm p B _0_ 1 B _1_ 1 B_ 2_ 1 A2 B _0 _2 B _2 _2 B _1 _2 A3 P2 C1 P1 C0 P0
% C o m p u t i n g A 2tm p with o p e r a t i o n : mult
A 2 t m p = A * A ;
% C o m p u t i n g B _0_ 1 with o p e r a t i o n : l i n c o m b
c o e f f 1 = 1 .0 ;
c o e f f 2 = - 0 .5 ;
B _ 0 _ 1 = c o e f f 1 * I + c o e f f 2 * A ;
% C o m p u t i n g B _1_ 1 with o p e r a t i o n : l i n c o m b
c o e f f 1 = - 0 .0 0 1 3 8 8 8 8 8 8 8 8 8 8 8 8 8 9 ;
c o e f f 2 = 2 .4 8 0 1 5 8 7 3 0 1 5 8 7 3 e-5 ;
B _ 1 _ 1 = c o e f f 1 * I + c o e f f 2 * A ;
. . .
P1 = c o e f f 1 * C1 + c o e f f 2 * B_ 1_ 2 ;
% C o m p u t i n g C0 with o p e r a t i o n : mult
C0 = P1 * A3 ;
% C o m p u t i n g P0 with o p e r a t i o n : l i n c o m b
c o e f f 1 = 1 .0 ;
c o e f f 2 = 1 .0 ;
P0 = c o e f f 1 * C0 + c o e f f 2 * B_ 0_ 2 ;
o u t p u t = P0 ;

end� �
The function mycosm can be called directly from MATLAB:� �

> > cosm = @ (S) (expm (1 i * S) + expm (- 1 i * S)) / 2 % Euler ' s f o r m u l a
> > A = r an dn (100 , 100) / 100 ;
> > norm (cosm (A) - m y c o s m (A))
ans =

2 .2 390 e-1 6� �
18

% # Representation of a computation graph
% # Created: 2021-05-25T11:48:01.720 by user jarl

graph_coeff_type="Float64";

A2tmp=A*A;
coeff1=1.0;
coeff2=-0.5;
B_0_1=coeff1*I+coeff2*A2tmp;
coeff1=-0.001388888888888889;
coeff2=2.48015873015873e-5;
B_1_1=coeff1*I+coeff2*A2tmp;
coeff1=2.08767569878681e-9;
coeff2=-1.1470745597729725e-11;
B_2_1=coeff1*I+coeff2*A2tmp;
...

Figure 4: CGR file for the graph in Example 13.

Remark 14 (Dot fusion and in-place addition) In terms of performance, Julia has a competitive ad-
vantage for the matrix operations considered in the package. The reason is twofold: on the one hand the
extended usage of dots and dot fusion [26] reduces the number of passes through the data required to
carry out a computation, while on the other the availability of in-place operations decreases the memory
footprint. Our code generation can take full advantage of these two features, thus gaining considerable
performance improvements. In fact, the dot fusion is the reason why the generated Julia code outperforms
even C implementations in some of the experiments in Section 7. When relying on the BLAS, in particular,
one can only compute the sum of two matrices at a time, whereas by using the dot fusion, Julia can add
an arbitrary number of matrices with only a single pass through the data. The cosine in the previous
example is used as an illustration.� �

j u l i a > us in g B e n c h m a r k T o o l s
j u l i a > # Dot f u s i o n is e n a b l e d by d e f a u l t
j u l i a > g e n _ c o d e (" m y c o s m . jl " , g , f u n n a m e = " m y c o s m " , lang = L a n g J u l i a ())
j u l i a > # It can be d i s a b l e d with a c o n s t r u c t o r a r g u m e n t
j u l i a > u s e _ d o t _ f u s i o n = fa lse ;
j u l i a > g e n _ c o d e (" m y c o s m _ n o _ d o t . jl " , g ,

f u n n a m e = " m y c o s m _ n o _ d o t " ,
lang = L a n g J u l i a (true , true , u s e _ d o t _ f u s i o n))

j u l i a > i n c l u d e (" m y c o s m . jl ") ;
j u l i a > i n c l u d e (" m y c o s m _ n o _ d o t . jl ") ;
j u l i a > A0 = ra ndn (500 , 500) / 500 ;
j u l i a > A = copy (A0) ; @ b t i m e m y c o s m ($ A) ;

20 .5 76 ms (9 a l l o c a t i o n s : 7 .6 3 MiB)
j u l i a > A = copy (A0) ; @ b t i m e m y c o s m _ n o _ d o t ($ A) ;

27 .9 24 ms (11 a l l o c a t i o n s : 9 .5 4 MiB)� �
5.2 Storing a graph in a file

Language-independent reproducibility of our results is ensured by the availability of functions for
saving and loading Compgraph objects. The graphs are stored in a human-readable way that can easily
be interpreted without using Julia.

The functions export_compgraph and import_compgraph read and write a graph, respectively,

19

and can handle optional and generated graph metadata. The output is saved in computational graph
(CGR) format, a storage format specifically designed to store computational graphs for matrix func-
tions.

Example 15 (Saving and loading) We can export the graph generated in Section 5.1 to a file with the
command:� �

j u l i a > e x p o r t _ c o m p g r a p h (g , " c o s m _ g r a p h . cgr ") ;� �
which produces the file in Figure 4. We note that a CGR file is essentially an executable script in both
MATLAB and Julia, but we stress that this is not the recommendedway to generate code in either language.

6 Error analysis

6.1 Bounds on forward and backward error

Let us consider the problem of evaluating the function 𝑓 at a matrix 𝐴 when several graphs 𝑔0, . . . , 𝑔ℓ
approximating 𝑓 are available. Without loss of generality, we can assume that these functions are or-
dered by increasing computational cost, so that evaluating 𝑔𝑖+1(𝐴) is computationally more expensive
than evaluating 𝑔𝑖 (𝐴). In practice, we typically have

𝑔𝑖+1(𝐴) − 𝑓 (𝐴)
 <

𝑔𝑖 (𝐴) − 𝑓 (𝐴)
, but the

analysis in this section does not require this.
In order to approximate 𝑓 efficiently, ideally we would like to have an inexpensive strategy to

choose at runtime the smallest 𝑖 such that 𝑔𝑖 (𝐴) is guaranteed to be an acceptable approximation
to 𝑓 (𝐴). One can gauge the quality of the approximation in several ways.

In Section 4, we described how the forward error is an effective tool to optimize the coefficients
of a computational graph for a fixed graph topology. In principle, the relative forward error could
be used as a means to choose a suitable approximant, as we now explain. Our analysis is based on a
result of Al-Mohy and Higham [1, Theorem 4.2(a)], which we recall here as it will be crucial to our
discussion. If the function ℎ : Ω ⊂ C→ C has the series expansion

ℎ(𝑧) =
∞∑︁
𝑗= 𝑗0

𝛽 𝑗 𝑧
𝑗 , (16)

then for any matrix 𝐴 such that

𝛼𝑝 (𝐴) = max
{𝐴𝑝1/𝑝, 𝐴𝑝+11/(𝑝+1)}, 𝑝(𝑝 − 1) ≤ 𝑗0, (17)

is within the disk of convergence of the series, one has thatℎ(𝐴) ≤ ∞∑︁
𝑗= 𝑗0

|𝛽 𝑗 |𝛼𝑝 (𝐴) 𝑗 . (18)

We note that if the coefficients 𝛽 𝑗 in (16) are one-signed, then the bound (18) reduces toℎ(𝐴) ≤ ��ℎ (𝛼𝑝 (𝐴)) ��,
and also that (17) reduces to

𝛼𝑝 (𝐴) = max{1, ∥𝐴∥} (19)

in the general case 𝑗0 = 0. The function 𝛼𝑝 (𝐴) in (18) could in principle be replaced with alternatives
that are typically more expensive to compute but yield a sharper bound on the norm of ℎ(𝐴). For the
series of interest we typically have that 𝑗0 = 0, thus we prefer the simpler result in [1, Theorem 4.2(a)]

20

to, for example, [39, Theorem 1] or [41, Theorem 1], which require that 𝑗0 be at least 1, or to [28,
Theorem 3.1], which reduces to (19) for 𝑗0 = 0.

One can then define, using the series expansion of the forward error, the series

𝐸𝑖 (𝑧) =
∞∑︁
𝑗= 𝑗0

|𝛾 𝑗 |𝑧 𝑗 , where 𝑒𝑖 (𝑧) = 𝑔𝑖 (𝑧) − 𝑓 (𝑧) =
∞∑︁
𝑗= 𝑗0

𝛾 𝑗 𝑧
𝑗 , 𝑗0 ∈ N,

and then pre-compute the values

\𝐹𝑖 = max
{
\ ∈ R+ : 𝐸𝑖

(
\
)
≤ 𝑢

}
, (20)

where R+ and 𝑢 denote the positive real semi-axis and the unit round-off of the current working
precision, respectively. It is easy to see that choosing a 𝑔𝑖 such that 𝛼𝑝 (𝐴) ≤ \𝐹

𝑖
guarantees that the

absolute forward error ∥𝑒𝑖 (𝐴)∥ will not be larger than 𝑢. This measure of accuracy, however, is not
ideal for two reasons. On the one hand, the use of an absolute forward error disregards the magnitude
of the matrix function one seeks to compute, and turning to relative errors is unfeasible in most cases,
as estimates of ∥ 𝑓 (𝐴)∥ are rarely available. On the other hand, the dependency of the forward error
on the condition number of 𝑓 evaluated at 𝐴 makes this method not completely reliable. For these
two reasons, bounds on the forward error are seldom used in algorithms for matrix functions, one
exception being arbitrary-precision environments, in which the pre-computation of the \𝐹

𝑖
in (20)

would be impractical as the value of 𝑢 is known only at runtime [14, 15, 3].
The dependence on the condition number can be avoided by estimating the backward error instead

of the forward error. For the backward error, we can extend the above steps specifically for the matrix
exponential. In the approach originally proposed by Moler and Van Loan [27] for the scaling and
squaring algorithm, the degree of a diagonal Padé approximant to the exponential was chosen using
bounds on the relative backward error. In essence, this approach considers the matrix 𝐸 such that
𝑔𝑖 (𝐴) = 𝑓 (𝐴 + 𝐸) and then pick an approximant 𝑔𝑖 for which ∥𝐸 ∥ ≤ 𝑢∥𝐴∥. In order to do that, we
can rely on the series expansion

𝐹𝑖 (𝑧) =
∞∑︁
𝑗= 𝑗0

|𝛿 𝑗 |𝑧 𝑗−1, where 𝜑𝑖 (𝑧) =
∞∑︁
𝑗= 𝑗0

𝛿 𝑗 𝑧
𝑗 , (21)

and the absolute backward error 𝜑𝑖 (𝑧) is defined by 𝑔𝑖 (𝑧) = 𝑓 (𝑧 + 𝜑𝑖 (𝑧)). If, when designing the
algorithm, we compute the values

\𝐵𝑖 = max
{
\ ∈ R+ : 𝐹𝑖

(
\
)
≤ 𝑢

}
, (22)

then the approximant 𝑔𝑖 evaluated at a matrix 𝐴 ∈ C𝑛×𝑛 such that 𝛼𝑝 (𝐴) ≤ \𝐵
𝑖
will guarantee that

∥𝜑𝑖 (𝐴)∥
∥𝐴∥ ≤ 𝑢,

which is entirely satisfactory.
In our package we provide the function compute_bwd_theta to compute the values \𝐵

𝑖
in (22) for

the exponential. The function exploits the identity

𝜑𝑖 (𝑧) = log
(
(𝑒−𝑧𝑔𝑖 (𝑧) − 1) + 1

)
, (23)

and uses as 𝐹𝑖 the truncated series expansion of the expression on the right-hand side of (23). Trun-
cated series expansion are manipulated efficiently as polynomials by relying on the functions available
in the Polynomials.jl package. The computation of \𝐵

𝑖
is then performed using the fzero function

in arbitrary precision.

21

0 1 2 3 4 5
10−25

10−21

10−17

10−13

10−9

10−5

10−1

\

𝐹𝑖 (𝑥) in (21)
𝑢

(a) Approximant in Example 16 (𝑚 = 4).

0 1 2 3 4 5 6 7
10−25

10−21

10−17

10−13

10−9

10−5

10−1

\

𝐹𝑖 (𝑥) for sid
𝐹𝑖 (𝑥) for mono_opt
𝐹𝑖 (𝑥) for ps_opt
𝐹𝑖 (𝑥) for sastre_opt
𝑢

(b) Approximants in Table 6 (𝑚 = 7, 𝑟 = 6.4).

Figure 5: Series expansion (21) for graphs with and without optimized coefficients. The dotted orange
line represents the unit round-off of binary64 arithmetic 𝑢 = 2−53 ≈ 1.11 × 10−16. To warm start
the optimization we used for the figure on the left the graph in Example 10, which requires 𝑚 = 4
multiplications, and for the figure on the right several methods from the literature that require 𝑚 = 7
multiplications; see Section 7 for the details.

Example 16 (Backward error function) We illustrate the usage of compute_bwd_theta by contin-
uing Example 10. Because of how Julia handles types and how the Compgraph data structure is imple-
mented, we can perform a symbolic evaluation of a graph to produce a Polynomial.� �

j u l i a > us in g P o l y n o m i a l s ;
j u l i a > x = P o l y n o m i a l (" x ") ;
j u l i a > p = e v a l _ g r a p h (g r a p h b , x)
P o l y n o m i a l (1 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 4 9 6 7 8 3 8 0 0 7 5 5 0 9 6 7 4 0 8 6 4 5 6 3 1 8 5 2 0 9 8 +
1 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 0 5 5 6 5 2 3 3 0 9 6 9 0 0 8 1 9 0 9 4 6 5 1 0 4 8 1 7 8 7 * x +
0 .5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 3 4 9 4 6 0 2 8 3 2 2 3 1 7 1 1 9 6 3 0 5 8 4 7 1 2 5 5 6 0 8 * x ˆ 2 +
0 .1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 9 0 0 0 1 5 9 4 7 0 4 6 6 1 8 2 2 7 2 8 6 5 3 9 0 2 1 3 3 3 3 4 4 7 * x ˆ 3 +
0 .0 4 1 6 6 6 6 6 6 6 6 6 6 6 6 7 1 8 6 7 5 2 3 1 5 2 6 5 4 9 1 9 9 5 8 8 8 1 0 3 5 7 6 2 9 7 2 4 0 3 * x ˆ 4 +
0 .0 0 8 3 3 3 3 3 3 3 3 3 3 3 3 4 4 8 9 5 4 3 9 6 8 2 9 1 3 0 2 6 0 1 6 2 5 4 9 9 2 7 6 8 0 3 6 3 9 9 * x ˆ 5 +
0 .0 0 1 3 8 8 8 8 8 8 8 8 8 8 9 1 4 5 8 2 9 6 2 1 0 0 6 0 8 5 3 2 5 8 2 5 1 2 7 9 2 4 2 4 0 2 0 1 5 1 * x ˆ 6 +
0 .0 0 0 1 9 8 4 1 2 6 9 8 4 1 3 2 6 9 2 1 0 6 5 4 9 4 6 4 0 4 8 1 9 3 4 5 5 8 7 0 9 8 2 3 8 6 5 7 5 5 * x ˆ 7 +
0 .0 0 0 0 2 4 8 0 1 5 8 7 3 0 2 8 4 8 9 5 1 4 8 9 8 8 5 0 5 5 6 2 7 6 2 5 6 0 9 8 4 8 5 3 4 9 4 8 7 6 * x ˆ 8 +
0 .0 0 0 0 0 2 7 5 5 7 3 1 9 2 4 9 9 1 3 7 8 8 4 9 1 1 1 7 8 0 0 1 9 3 8 5 9 1 4 7 0 3 6 5 3 2 2 5 4 3 * x ˆ 9 +
0 .0 0 0 0 0 0 2 7 5 5 7 3 1 9 2 7 4 6 5 5 2 9 0 4 9 3 5 8 7 1 4 4 1 0 3 2 6 7 0 5 7 2 4 9 6 8 2 1 9 6 * x ˆ 10 +
0 .0 0 0 0 0 0 0 2 5 0 5 2 0 1 1 8 4 9 4 3 1 7 7 9 5 2 2 4 5 9 4 5 4 4 3 0 7 7 2 1 1 2 9 3 3 8 5 9 4 8 * x ˆ 11 +
0 .0 0 0 0 0 0 0 0 2 0 8 6 2 8 3 3 3 1 9 4 7 6 3 0 9 8 1 8 4 5 4 0 3 0 5 8 3 2 6 1 1 8 7 7 4 5 0 7 5 5 * x ˆ 12 +
0 .0 0 0 0 0 0 0 0 0 1 5 1 2 7 4 3 6 3 2 6 9 9 8 4 7 6 9 7 4 6 1 0 0 4 0 3 1 6 3 6 9 4 7 1 4 2 5 2 1 4 * x ˆ 13 +
0 .0 0 0 0 0 0 0 0 0 0 0 8 4 5 8 0 1 5 1 2 3 5 4 9 3 8 8 9 2 8 6 9 9 6 9 4 2 8 0 7 9 4 8 7 5 9 6 1 0 6 * x ˆ 14 +
0 .0 0 0 0 0 0 0 0 0 0 0 0 3 0 3 2 4 4 1 8 9 6 1 6 8 9 6 3 9 8 0 8 7 4 9 6 1 2 4 0 2 2 1 1 5 5 2 4 1 1 * x ˆ 15 +
0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 1 5 2 1 2 1 1 2 4 3 6 5 2 3 5 2 4 7 0 6 2 6 4 5 5 0 0 4 3 3 4 9 3 1 9 * x ˆ 16)� �

These coefficients are close to those of the Taylor series expansion but are not identical, neither in arbitrary
(BigFloat) nor in binary64 (Float64) arithmetic.� �

j u l i a > a = p . c o e f f s ;
j u l i a > a _ t a y l o r = 1 . / f a c t o r i a l . (B i g F l o a t . (0 : 16)) ;
j u l i a > norm (abs . (a - a _ t a y l o r))
9 .9 0 0 9 3 8 7 7 9 4 0 9 9 8 8 e-1 2
j u l i a > a _ f l o a t 6 4 = c o n v e r t (A rra y { F l o a t 6 4 } , a) ;
j u l i a > a _ t a y l o r _ f l o a t 6 4 = c o n v e r t (Ar ray { F l o a t 6 4 } , a _ t a y l o r) ;
j u l i a > norm (abs . (a _ f l o a t 6 4 - a _ t a y l o r _ f l o a t 6 4))
9 .9 0 0 9 3 8 7 7 9 4 0 7 3 7 3 e-1 2� �

22

We can approximate the bound \𝐵
𝑖
in (22) by using the function compute_bwd_theta. For illustration

we now show how this can be computed directly by using the first 100 coefficients of the series expansion
in (21) and BigFloat arithmetic with 1000 significant binary digits.� �

j u l i a > s e t p r e c i s i o n (1000) ; # Set n u m b e r of bits in f r a c t i o n of B i g F l o a t .
j u l i a > n t e r m s = 100 ; # O rde r of h i g h e s t term in the t r u n c a t e d s e r i e s e x p a n s i o n s .
ju l i a > p = c o n v e r t (P o l y n o m i a l { F l o a t 6 4 , : x } , p) ; # Use F l o a t 6 4 p o l y n o m i a l .
j u l i a > # E v a l u a t e t r u n c a t e d s e r i e s e x p a n s i o n of right - hand side of (2 1) .
j u l i a > c o e f f s _ e x p = (- 1) . ˆ (0 : 1 : n t e r m s) . /

f a c t o r i a l . (c o l l e c t (big (0 .) : big (1 .) : n t e r m s)) ; # exp (- z)
j u l i a > e x p m i n u s z = P o l y n o m i a l (c o e f f s _ e x p) ;
j u l i a > R = e x p m i n u s z * p - 1 ; # R 𝑖 (z) = exp (- z) p (z) - 1
j u l i a > c o e f f s _ l o g = [0 ; (- 1) . ˆ (0 : 1 : n t e r m s - 1) . / (1 : 1 : n t e r m s)] ; # log (x +1)
j u l i a > l o g z p l u s o n e = P o l y n o m i a l (c o e f f s _ l o g) ;
j u l i a > F = l o g z p l u s o n e (R) ; # log (R 𝑖 +1).
j u l i a > b n d _ b w d _ e r r = P o l y n o m i a l (abs . (F . c o e f f s)) # A b s o l u t e va lu e of c o e f f i c i e n t s
j u l i a > # Find po int wh ere bo und on r e l a t i v e b a c k w a r d er ro r e q u a l s t o l e r a n c e .
j u l i a > us in g Ro ot s
j u l i a > b n d _ r e l _ b w d _ e r r (z) = abs . (b n d _ b w d _ e r r (z)) . / abs . (z)
j u l i a > t h e t a _ b w d = f ze ro (z - > b n d _ r e l _ b w d _ e r r (z) - eps (F l o a t 6 4) / 2 , big " 0.2 ")
0 .3 7 1 8 7 5 9 8 7 5 5 1 5 0 2 7 1 4 2 4 7 8 8 2 0 3 6 1 9 6 0 6 9 6 4 1 9 5 0 6 5 1 0 8 5 9 9 0 8 4� �

The function bnd_rel_bwd_err represents a bound on the relative backward error of the function under-
lying graphb seen as an approximant to the exponential. The plot of the function bnd_rel_bwd_err is
given in Figure 5(a), where we also specify the corresponding \𝐵

𝑖
. For this graph, the backward error will

be smaller than machine precision for any complex scalar of modulus at most \𝐵
𝑖
≈ 0.37.

6.2 Round-off error

The optimization process in Section 4 and the backward error analysis are based on exact arithmetic
and rely on high-precision arithmetic for practical purposes. The algorithms, however, are designed
to be used in floating-point arithmetic, where rounding errors may become the most prominent cause
for loss of accuracy. The generality of the data structures in our package allows us to obtain more
realistic estimates and bounds on the round-off errors that may occur during the evaluation of 𝑔(𝑧).
The computational approach discussed here is based on an a posteriori error analysis of the scalar
evaluation and, as such, it cannot capture issues that pertain only tomatrix evaluation. It can, however,
help us identify problematic situations in which evaluating the graph at a matrix argument may be
unduly affected by round-off errors.

In particular, we will rely on a running error analysis, in which the rounding errors are bounded
automatically by the algorithm as 𝑔(𝑧) is evaluated. Our goal will be to assign to each node 𝑖 ∈ 𝑉 a
value 𝛿𝑖 that represents the round-off error occurred in the evaluation of the subgraph rooted at node
𝑖. In the remainder of this section a hat denotes computed quantities, thus we will employ the notation
𝑍𝑖 = 𝑍𝑖 (1 + 𝛿𝑖), where 𝛿𝑖 represents the relative round-off error [21, Theorem 2.2]. For conciseness,
we will also denote the indices of the two parents of node 𝑍𝑖 by ℓ = 𝑒

(1)
𝑖

and 𝑟 = 𝑒
(2)
𝑖

, as done in (1).
Note that the only two ingredients the running error analysis on the graph requires are the value

of 𝛿𝑖 for the leaf nodes—the input nodes of the graph—and a rule to compute 𝛿𝑖 from 𝑍ℓ , 𝑍𝑟 , 𝛿ℓ , and
𝛿𝑟 . If 𝑖 is an input node, then we can set 𝛿𝑖 = 0, which is equivalent to saying that the input values 1
and 𝑧 are represented exactly. If 𝑖 is not an input node, we need to consider three cases.

• If 𝑝𝑖 = +, we have that

𝑍𝑖 =
𝛼𝑍ℓ + 𝛽𝑍𝑟

1 + [
, |[| ≤ 𝑢.

We solve this equation for 𝑍𝑖 and obtain

𝑍𝑖 = 𝑍𝑖
𝛼𝑍ℓ (1 + 𝛿ℓ) + 𝛽𝑍𝑟 (1 + 𝛿𝑟)

(1 + [)𝑍𝑖
,

23

from which we find the relative error

𝛿𝑖 =
𝛼𝑍ℓ𝛿ℓ + 𝛽𝑍𝑟𝛿𝑟 − [𝑍𝑖

(1 + [)𝑍𝑖
≈ 𝛼𝑍ℓ𝛿ℓ + 𝛽𝑍𝑟𝛿𝑟

𝑍𝑖
− [. (24)

• If 𝑝𝑖 = ∗, then using the standard model of floating-point arithmetic [21, Equation (2.5)] we
have that

𝑍𝑖 (1 + [) = 𝑍ℓ𝑍𝑟 , |[| ≤ 𝑢,

and by using the fact that 𝑍𝑖 = 𝑍ℓ𝑍𝑟 , we can solve for 𝑍𝑖 and obtain

𝑍𝑖 = 𝑍𝑖
(1 + 𝛿ℓ) (1 + 𝛿𝑟)

1 + [
(25)

and therefore

𝛿𝑖 =
(1 + 𝛿ℓ) (1 + 𝛿𝑟)

1 + [
− 1 =

𝛿ℓ + 𝛿𝑟 + 𝛿𝑟𝛿𝑟 − [

1 + [
≈ 𝛿ℓ + 𝛿𝑟 − [.

• Similarly, if 𝑝𝑖 = \, then we have that 𝑍𝑖 = 𝑍−1
ℓ

𝑍𝑟 and

𝑍𝑖 = 𝑍𝑖
1 + 𝛿𝑟

(1 + 𝛿ℓ) (1 + [) , |[| ≤ 𝑢,

which implies that

𝛿𝑖 =
𝛿𝑟 − 𝛿ℓ − [− 𝛿ℓ[

(1 + 𝛿ℓ) (1 + 𝛿𝑟)
≈ 𝛿𝑟 − 𝛿ℓ − [. (26)

The formulae for the relative error in (24), (25), and (26) are exact, but they are also impractical:

1. The quantity [is not necessarily representable in the current working precision, is not readily
available, and is unduly expensive to estimate.

2. The expressions for linear combinations feature exact quantities, which are not available during
a genuine run of the algorithm.

In our setting, the second point can be handled, in practice, by considering estimates computed in
high-precision arithmetic.

One way to make these formulae practical is to turn them into running error bounds. In the
approximations on the right-hand side of (25), (26), and (24) we have linearized the expressions by
neglecting terms of the form 𝛿𝑖𝑟𝛿

𝑗

ℓ
[𝑘 for 𝑖 + 𝑗 + 𝑘 ≥ 2. Exact quantities can be replaced by their

computed counterparts. This substitution will not have a major effect, since the magnitude of 𝛿𝑖
should be negligible compared with that of 𝑍𝑖 . Then we can easily obtain running bounds on the
relative error by replacing the “exact” errors 𝛿𝑖 in the formulae above with the approximate bounds

𝛥𝑖 =

|𝛼 | |𝑍ℓ |𝛥ℓ + |𝛽 | |𝑍𝑟 |𝛥𝑟

|𝑍𝑖 |
+ 𝑢, 𝑝𝑖 = +,

Δℓ + Δ𝑟 + 𝑢, 𝑝𝑖 ∈ {∗, \},
(27)

for which |𝛿𝑖 | ≲ Δ𝑖 . It is important to stress that by linearizing we obtain only a first-order approxi-
mation to the bound on the running error.

In practice, the formula (27) can be used to compute the running error (estimates) of all nodes by
traversing the graph following the topological ordering, analogously to the evaluation of the graph
in (1) and the computation of the Jacobian in (15). This is implemented in the function eval_runerr.

24

The first-order running error bound (27) is tighter than the worst-case error bounds produced by
an a priori first-order error analysis, but can still be rather pessimistic for large graphs. An alternative
is to use the linearized versions of (25), (26), and (24), to estimate the value of 𝛿𝑖 . A stochastic estimate
can be obtained, for instance, by interpreting [as a random variable uniformly distributed over the
interval [−𝑢, 𝑢].

Example 17 (Numerical cancellation) We illustrate the benefits of running error bounds on a clas-
sical example by Goldberg [17]: the evaluation of 𝑦2 − 𝑧2 for 𝑦 ≈ 𝑧, which is prone to cancellation if the
two squares are not exactly representable in floating-point arithmetic. The following graph evaluates the
scalar function (1 + 𝑥)2 − (1 + 2−1𝑥)2 at 𝑥 = 2−27.� �

j u l i a > x = 2 . . ˆ - 27
C o n s t r u c t gr ap h for (1+ x)^2 - (1+ x / 2) ^ 2 .
j u l i a > g ra ph = C o m p g r a p h (F l o a t 6 4) ;
j u l i a > a d d _ l i n c o m b ! (gr aph , : y , 1 , : I , 1 , : x)
j u l i a > a d d _ l i n c o m b ! (gr aph , : z , 1 , : I , 1 / 2 , : x)
j u l i a > a d d _ m u l t ! (g ra ph , : y2 , : y , : y)
j u l i a > a d d _ m u l t ! (g ra ph , : z2 , : z , : z)
j u l i a > a d d _ l i n c o m b ! (gr aph , : out , 1 , : y2 , - 1 , : z2)
j u l i a > a d d _ o u t p u t ! (g ra ph , : out)� �

The relative forward error and the corresponding running error bound are of order 10−9 and 10−7, respec-
tively. A more accurate probabilistic running bound can also be computed.� �
C o m p a r e f o r w a r d er ro r and r u n n i n g er ro r bo und .
j u l i a > e xa ct = 2 . ˆ (- 2 . * (27 + 1)) * (2 . ˆ (27 + 2) + 3)
7 .4 5 0 5 8 0 6 3 8 5 5 7 1 9 2 e-9
j u l i a > c o m p u t e d = e v a l _ g r a p h (g rap h , x , i npu t = : x)
7 .4 5 0 5 8 0 5 9 6 9 2 3 8 2 8 e-9
j u l i a > e rr or = abs (e xa ct - c o m p u t e d) / abs (e xac t)
5 .5 8 7 9 3 5 4 1 6 4 6 7 8 4 8 5 e-9
j u l i a > r u n n i n g _ e r r o r _ b o u n d = e v a l _ r u n e r r (g rap h , x , in pu t = : x)
2 .9 8 0 2 3 2 2 7 6 5 1 7 1 1 4 0 9 5 5 2 7 1 2 8 4 6 9 1 1 8 8 7 4 4 6 8 4 0 0 5 7 3 6 6 6 6 5 0 6 4 e-0 7
A s h a r p e r s t o c h a s t i c b ou nd can be fo un d with the r a n d o m mode .
j u l i a > r u n n i n g _ e r r o r _ b o u n d = e v a l _ r u n e r r (g rap h , x , in pu t = : x , mode = : rand)
8 .5 8 3 7 8 0 3 4 2 6 7 4 1 3 2 9 7 5 3 1 1 8 9 5 3 3 6 8 2 6 4 6 0 1 8 6 5 0 4 5 7 9 9 2 7 0 5 8 1 3 e-0 9� �

As mentioned, this type of analysis can provide insight into the evaluation of matrix functions. For in-
stance, it can identify a problematic situation in the following example, in which the graph above is
evaluated at a 2 × 2 matrix argument.� �

j u l i a > A = x * [1 1 ; 1 1] ;
j u l i a > F = e v a l _ g r a p h (big (gr aph) , big . (A) , i npu t = : x) ; # Use B i g F l o a t for r e f e r e n c e
norm (e v a l _ g r a p h (gr aph , A , in put = : x) - F) / norm (F)
7 .9 0 2 5 3 4 0 0 7 4 7 4 9 3 1 1 4 6 1 2 1 5 4 5 3 1 4 6 0 2 2 2 2 9 4 1 9 9 4 0 6 7 2 3 3 3 6 5 8 5 - 09� �

7 Applications to state-of-the-art algorithms

We now show how the graph representation and the optimization described in previous sections can
be used to improve the accuracy and performance of state-of-the-art algorithms. As an illustration,
we consider the computation of exponential and square root.

Matrix exponential The exponential is particularly well suited to our framework, as we can build
on recent developments in polynomial methods [38, 40, 35, 4]. In this context, the optimization can
be seen as the second step in a three-stage algorithm design procedure:

25

Table 5: Relative errors achieved after optimization within different disks with radius 𝑟 for 𝑚 multi-
plications. Optimization is carried out for the disk of radius 𝑟 . The names of the graphs correspond
to the graph files in the data repository. Underlined numbers correspond to optimizations initiated
with squaring of the graph with one fewer multiplication. The dagger † indicates that the graph in
the corresponding column was obtained using as starting graph for the optimization the graph in the
previous column.

𝑚 = 4 𝑚 = 5 𝑚 = 6 𝑚 = 7 𝑚 = 8

Graph 𝑟 = 0.69 𝑟 = 1.68 𝑟 = 1.9† 𝑟 = 2.22 𝑟 = 2.7† 𝑟 = 3.59 𝑟 = 6.4† 𝑟 = 13.5

Graphs found by optimization

mono_opt 1.2·10−15 4.6·10−13 1.5·10−12 1.8·10−16 1.8·10−17 4.2·10−18 7.2·10−17 3.7·10−17
ps_opt 1.2·10−15 1.8·10−13 2.0·10−12 5.6·10−14 3.3·10−15 2.5·10−20 3.3·10−13 5.0·10−14
sastre_opt 1.4·10−15 1.8·10−15 3.7·10−17 1.5·10−16 6.0·10−17 1.3·10−21 2.6·10−16 1.9·10−16
bbc_opt 2.3·10−14 4.8·10−14 1.3·10−13 × × × × ×
sid_opt 1.1·10−16 1.8·10−16 1.1·10−15 5.3·10−18 1.6·10−18 2.7·10−16 × ×

Polynomial methods from the literature

sastre 1.5·10−11 5.8·10−14 4.0·10−13 1.8·10−8 7.8·10−7 6.4·10−10 × ×
bbc 2.5·10−12 7.8·10−13 9.9·10−12 × × × × ×
sid 2.6·10−16 1.3·10−15 5.1·10−15 3.4·10−15 6.0·10−14 5.2·10−14 5.4·10−8 ×

S1. Construct a graph using Paterson–Stockmeyer, monomials, or a method from [38, 40, 35, 4].

S2. Optimize the coefficients in the graph with the technique in Section 4 run in high precision.

S3. Compute guaranteed backward error bounds with the method discussed in Section 6.1.

For the function at hand, this approach brings an improvement over state-of-the-art polynomial meth-
ods, which in several cases already outperform the Padé-based methods typically implemented in
mathematical software packages.

Implementations are named after the evaluation method used (mono for linear combination of
monomials and ps for the Paterson–Stockmeyer scheme) or after the authors of the paper where the
algorithm is first presented: sastre [35], sid [38], and bbc [4]. More details on these implementations
can be found in the online documentation of graph_sastre_exp and graph_sid_exp. The suffix _opt
denotes improved graphs obtained by using our optimization strategy. The same naming convention
is used in the data repository, where the optimized graphs are available in CGR format together with
the corresponding generated code for Julia, MATLAB, and C.

Table 5 and Figure 6 present the results of Stage S2. For various graphs, the table reports the scalar
relative error

max
𝑧∈𝐷 (0,𝑟)

|𝑝(𝑧) − exp(𝑧) |
| exp(𝑧) | = max

𝑧∈𝜕𝐷 (0,𝑟)

|𝑝(𝑧) − exp(𝑧) |
| exp(𝑧) | , (28)

where 𝐷 (0, 𝑟) is the disk with radius 𝑟 centered at the origin, and in practice we replace the boundary
𝜕𝐷 (0, 𝑟) with a sufficiently fine uniform discretization. For comparison we have included the results
for the optimized algorithms as well as for some polynomial algorithms from the literature. For the
graphs found by optimization, the symbol × denotes combinations for which the optimization rou-
tine gave unreasonably bad results; for the graphs from the literature it denotes cases for which the
coefficients of the polynomial methods were not tabulated or directly computable. An example of the
improvement achieved by the optimization for two specific cases is also visible in Figure 6.

26

0 0.2 0.4 0.6 0.8
10−20

10−19

10−18

10−17

10−16

10−15

𝑥

sid (denoted by 15+ in [38])
sid_opt

Target disk radius 𝑟 = 0.69

(a) 𝑚 = 4 multiplications.

0 0.5 1 1.5 2 2.5
10−20

10−19

10−18

10−17

10−16

10−15

𝑥

sid (denoted by 21+ in [38])
sid_opt

Target disk radius 𝑟 = 1.9

(b) 𝑚 = 5 multiplications.

Figure 6: Relative error (28) over the positive real axis for the twomethods sid and sid_opt in Table 5.
The maximum error in [0, 𝑟] is marked with dotted lines. Clearly, the optimization is successful in the
sense that it yields a smaller error in the domain [0, 𝑟]. As expected, for sid_opt the error is more
evenly distributed in contrast to sid which is very accurate near the origin. Since the coefficients of
sid in [38] were only given to binary64 precision, the coefficients in sid_opt were rounded to the
same format for this figure.

In terms of relative error, the algorithm in [38] can only be slightly improved for 𝑚 = 4. This is
not surprising: the method is almost optimal, in the sense that it matches 15 Taylor coefficients out
of the optimal 16 (cf. Table 4). For 𝑚 > 4 multiplications, however, our approach brings a substantial
improvement; not surprising considering that a Taylor expansion makes the error close to the origin
small, whereas we minimize the maximum error in the given domain, cf. (10), but with relative error
(28). Figure 6 shows that the methods that approximate the Taylor coefficients are the more accurate
the closer 𝑥 is to the origin, whereas our approximation has a more balanced error on a disk.

All the graphs were represented in degree-optimal form (Section 3) and all free coefficients in that
formwere used as free variables in the optimization. For example, the rowsmarked mono_opt, ps_opt,
and sid_opt correspond to the degree-optimal forms in Figures 3(a), 3(c), and 3(d), respectively.

Remark 18 (Technical details for optimization) Even though for𝑚 ≤ 5 optimizing using binary64
arithmetic led to reasonably good results, in most cases we had to resort to higher precision. This was done
using the Julia BigFloat data type, which in turn relies on the GNU MPFR library [16]. Even when using
higher precision, the complicated singular structure of the (rectangular) linear systems occurring during
the optimization led to either stagnation or divergence, regardless of whether the backslash operator (based
on the QR factorization) or the normal equations were used. We opted for a pseudoinverse (with adapted
drop tolerance) computed using the high precision SVD routine in the Julia GenericLinearAlgebra.jl
package. The optimization routine requires a damping that has to be adapted throughout the iteration.
We were unable to find a heuristic damping strategy suitable for all cases, thus we used scripting to decide
and control damping, drop tolerances, and other parameters. In order to break the symmetry in the graph,
we also sometimes added a random perturbation. The sequence of parameters that led to the results below
are given in the package containing the data files and scripts for the graphs (GraphMatFunData).

These problems stem from the singularity of the Jacobian, a consequence of the redundancy of the
coefficients in the degree-optimal form. Removing obvious redundancies, for instance by fixing the first
row of 𝐻𝑎 and 𝐻𝑏, did not improve the result, and completely characterizing all redundancies in the
degree-optimal form is a non-trivial issue beyond the scope of our package.

Table 6 reports the results of step S3, that is, the application of the technique in Section 6.1 to

27

Table 6: Values of \𝐵 in (20) for the guaranteed backward error bound computed with the method
described in Section 6.1 for 𝑚 multiplications (or 𝑚 − 1 multiplications and one multiplication by
the inverse). The values marked with ∗ are those tabulated in the corresponding papers [38] and [4,
Table 2]. A large value of \𝐵 indicates that the method is applicable in a wider domain. Boldface
marks the best method for a given number of multiplications.

𝑚 = 4 𝑚 = 5 𝑚 = 6 𝑚 = 7 𝑚 = 8

Graph 𝑟 = 0.69 𝑟 = 1.68 𝑟 = 1.9 𝑟 = 2.22 𝑟 = 2.7 𝑟 = 3.59 𝑟 = 6.4 13.5

Graphs found from optimization

mono_opt 0.570 1.043 1.100 2.259 3.033 4.209 6.865 14.707
ps_opt 0.569 1.142 1.134 1.713 2.431 5.064 5.210 10.768
sastre_opt 0.565 1.478 2.054 2.247 2.868 5.832 6.572 13.884
bbc_opt 0.450 1.256 1.377 × × × × ×
sid_opt 0.674 1.683 1.766 2.581 3.313 3.633 × ×

Polynomial methods from the literature

sid∗ 0.695 1.683 1.683 2.219 2.219 3.53 3.53 ×
bbc∗ 0.299 1.09 1.09 2.22 2.22 × × ×
exp_native∗ 0.25 0.95 0.95 2.10 2.10 5.4 5.4 10.8

the graphs in Table 5. More precisely, the values correspond to the radii of the disks that produced
a backward error smaller than the unit round-off 𝑢. The algorithm underlying the graph is suitable
for any matrix with norm smaller than the value in the corresponding cell of the table. Note that we
optimize over one disk, and obtain a backward error guarantee for another disk which may be smaller
or larger. Once again the optimization brings substantial improvements over the algorithms used as
initial guesses. The best method is mostly consistent with the best method in Table 5, with the only
exception of the case 𝑚 = 5. The values in this table are found as in Figure 5(b).

The table also reports the values of \𝐵 in (22) for the Julia implementation of the Padé-based
scaling-and-squaring algorithm (exp_native), which is based on the algorithm by Higham [22]. This
method always requires one multiplication by the inverse of a matrix. In the table we assume that
matrix multiplication and multiplication by the inverse have same computational cost, to the disad-
vantage of the methods we propose.

The actual performance is illustrated by the CPU timings in Table 7. The label Our approach
refers to the corresponding graphs in Table 6: for ∥𝐴∥ = 2.5 we use sid_opt, and for ∥𝐴∥ = 6.0
and ∥𝐴∥ = 13.5 we use mono_opt. The matrices used for this experiment can be found in the data
repository. For reference we also report the CPU timing of the built-in functions for computing the
matrix exponential in Julia (exp) and MATLAB (expm), and of the reference implementation of sid6
run without norm estimation. Among these out-of-the-box methods, the polynomial method sid is
the fastest. The column 𝐶 reports the asymptotic computational cost normalized so that one 𝑛 × 𝑛

matrix multiplication has cost 𝐶 = 1 and the solution of a linear system with 𝑛 right-hand sides has
cost 4/3.

In order to gauge the benefit of code generation, we also included exp_native_jl, the code gen-
erated from a graph implementation of the built-in Julia exp function. By comparing the third row
in Table 7 with the last four, we see that the code generation is competitive, being even faster than
the (equivalent) native Julia implementation. We also note that the choice of which graph to use (es-

6http://personales.upv.es/~jorsasma/software/expmpol.m

28

http://personales.upv.es/~jorsasma/software/expmpol.m

Table 7: CPU timings and normalized computational cost𝐶 for matrices of size 𝑛 = 3000. Method that
are conclusively faster are in boldface.

Out-of-the-box

∥𝐴∥ = 2.5 ∥𝐴∥ = 6.0 ∥𝐴∥ = 13.5

Implementation Language CPU time 𝐶 CPU time 𝐶 CPU time C

expm MATLAB/MKL 4.82 7 13 5.43 8 13 6.03 9 13
exp Julia/OpeBLAS 5.62 7 13 6.35 8 13 6.94 9 13
exp Julia/MKL 4.81 7 13 5.44 8 13 6.04 9 13
expmpol [38] MATLAB/MKL 4.30 7 4.94 8 5.52 9

Generated code

∥𝐴∥ = 2.5 ∥𝐴∥ = 6.0 ∥𝐴∥ = 13.5

Graph Language CPU time 𝐶 CPU time 𝐶 CPU time 𝐶

Our approach MATLAB/MKL 4.41 6 5.24 7 6.13 8
Our approach Julia/OpenBLAS 4.71 6 5.63 7 6.48 8
Our approach Julia/MKL 3.80 6 4.51 7 5.24 8
Our approach C/MKL 4.03 6 4.84 7 5.66 8

exp_native_jl MATLAB/MKL 4.69 7 13 5.28 8 13 5.86 9 13
exp_native_jl Julia/OpenBLAS 5.28 7 13 5.84 8 13 6.40 9 13
exp_native_jl Julia/MKL 4.30 7 13 4.85 8 13 5.37 9 13
exp_native_jl C/MKL 4.50 7 13 5.04 8 13 5.60 9 13

sentially which radius) can be done in a number of ways. In our approach, one can for example use
the 1-norm, or any other approximation of the spectral radius. This choice requires substantial the-
oretical work and analysis in a practical implementation and has therefore not been included in the
simulations.

Remark 19 (Technical details for comparisons of CPU timings) The timings were obtained fol-
lowing the best practices for benchmarking dense matrix computations. The processor boost was disabled
in order to improve reproducibility. The reported values are median values of several runs. The experi-
ments were performed on a machine equipped with an 8-core Intel(R) Core(TM) i7-8550U CPU running
at 1.80GHz. We used the development version 1.7.0 of Julia, as improvements made by the authors to
the built-in Julia exp function are only available in the development branch at the time of writing. The
simulations in C and Julia used the MKL implementation (version 2020.0.166) of the BLAS.

We used the largest matrices that would not cause the machine to run out of memory. The approach
based on the degree-optimal form requires more memory than the other methods, as the number of in-
termediate matrices that have to be stored grows linearly with the number of multiplications. We also
remark that our graph-based methods become more and more competitive as the matrices grow larger, in
view of their lower computational cost 𝐶. In some languages we could make the matrices larger. In Julia
with MKL, for instance, we could run the experiment for 𝑛 = 4000: for a matrix 𝐴 with ∥𝐴∥ = 13.5 we
obtained a timing of 11.8s for our approach, compared with 13.6s of exp, 13.1s of exp_native_jl, and
12.4s of the MATLAB function expmpol.

The results in this section are of empirical nature. The optimization problem has many local
minima, and a slight perturbation of the initial parameters can lead the optimization to converge to

29

a different point of minimum. There are several somewhat unexpected consequences of this. In the
third row for 𝑚 = 5 in Table 5, optimizing over a larger disk yields a smaller relative error. We were
lucky. In Table 6, for 𝑚 = 5 we observe that sastre_opt has a larger \-value than sid_opt, although
the warmstart for the latter corresponds to a more accurate approximation of the exponential. These
experimental results are of scientific value since both the graphs and coefficients are publicly available.

Square root The approach, both in terms of optimization and graph representation, can be applied
to any analytic matrix function. We illustrate this with the function 𝑓 (𝑧) =

√
𝑧 + 1 in the domain

𝐷 (0, 1/2), i.e., the disk centered at 0 with radius 1/2. As this function is equivalent to the square root√
𝑧 in 𝐷 (1, 1/2), i.e., the disk centered at 1 with radius 1/2, we can use the Denman–Beavers iteration

[12] to warm start the optimization.� �
j u l i a > f = s - > sqrt (s + 1)
j u l i a > (gr ap h , cref) = g r a p h _ d e n m a n _ b e a v e r s (2) ; # Use two i t e r a t i o n s
j u l i a > r e n a m e _ n o d e ! (gr aph , : A , : A _ s h i f t , cref) ; # I n t r o d u c e a sh if t
j u l i a > a d d _ l i n c o m b ! (gr aph , : A _ s h i f t , 1 .0 , : A , 1 .0 , : I) ;
j u l i a > abs (e v a l _ g r a p h (gr aph , 0 .4 im) - f (0 .4 im))
2 .6 9 4 4 2 7 6 8 0 9 7 1 5 0 0 6 e-8� �

Directly optimizing the Denman–Beavers coefficients did not bring any improvement. However, the
Denman–Beavers iteration can be written in a form analogous to the degree-optimal form (2), where
the outer multiplication is replaced by a left division:

𝐵1 = 𝐼, (29a)
𝐵2 = 𝐴, (29b)
𝐵3 = (𝑥𝑎,1,1𝐵1 + 𝑥𝑎,1,2𝐵2)−1(𝑥𝑏,1,1𝐵1 + 𝑥𝑏,1,2𝐵2), (29c)
𝐵4 = (𝑥𝑎,2,1𝐵1 + 𝑥𝑎,2,2𝐵2 + 𝑥𝑎,2,3𝐵3)−1(𝑥𝑏,2,1𝐵1 + 𝑥𝑏,2,2𝐵2 + 𝑥𝑏,2,3𝐵3), (29d)
𝐵5 = (𝑥𝑎,3,1𝐵1 + 𝑥𝑎,3,2𝐵2 + · · · + 𝑥𝑎,3,4𝐵4)−1(𝑥𝑏,3,1𝐵1 + 𝑥𝑏,3,2𝐵2 + · · · + 𝑥𝑏,3,4𝐵4), (29e)
𝐵6 = (𝑥𝑎,4,1𝐵1 + 𝑥𝑎,4,2𝐵2 + · · · + 𝑥𝑎,4,5𝐵5)−1(𝑥𝑏,4,1𝐵1 + 𝑥𝑏,4,2𝐵2 + · · · + 𝑥𝑏,4,5𝐵5), (29f)

𝑟 (𝐴) = 𝑦1𝐵1 + 𝑦2𝐵2 + 𝑦3𝐵3 + · · · + 𝑦6𝐵6. (29g)

In the notation of the Denman–Beavers example in Figure 1(a) we have, if the shift is included, 𝐵3 =

𝑋−1
0 = (𝐴+𝐼)−1, 𝐵4 = 𝑌−1

1 =
(1
2 𝐼+

1
2𝐵3

)−1, 𝐵5 = 𝑋−1
1 = (𝐼+ 1

2 𝐴)
−1, and 𝐵6 = 𝑌−1

2 =
(1
2
(1
2 (𝐼+𝐵3)+𝐵5

))−1,
and we can express the coefficients in the modified degree-optimal form in Figure 7(a). This formu-
lation provides more degrees of freedom, which can be used to fit the function more accurately. We
can use our optimization scheme, which is designed to work on arbitrary graphs, on these coefficients
in order to obtain a better approximation. This produces the improved approximation in Figure 7(b),
where the largest coefficients are normalized so that all elements in 𝐻𝑎 and 𝐻𝑏 have absolute value
below 1.

The error of the approximation is shown in Figure 8. We note that the optimized coefficients lead
to an approximation error of the order of the unit round-off 𝑢 in the target domain. For compari-
son we also report the approximation error of the Paterson–Stockmeyer evaluation of the degree-5
Taylor approximant, as well as the degree-optimal polynomial with coefficients optimized using the
Paterson–Stockmeyer method to warm start the optimization. The scheme (29) clearly provides a
much more accurate approximation. For fairness, the number of multiplications and multiplications
by an inverse are chosen so that the methods have the same asymptotic computational cost 𝐶: the
rational approximations in Figure 8 requires 4 multiplications by an inverse, whereas the polynomial
approximations require 5 matrix multiplications.

30

[
𝐻𝑎 𝐻𝑏

]
=

1 1 1 0
1
2 0 1

2 1 0 0
1 1

2 0 0 1 0 0 0
1
4 0 1

4 0 1
2 1 0 0 0 0

𝑦 =

[1
4

1
8 0 1

4 0 1
2
]

(a) Coefficients for Denman–Beavers with shift.

𝐻𝑎 =

1.0 0.7610413081657074 0.0 0.0 0.0
1.0 −0.07127247848266706 0.9541397430184381 0.0 0.0
1.0 0.5152503668289159 −0.10150239642416546 0.016950835467818528 0.0
0.49421282325538585 0.05943417585870563 0.5017024742690791 0.5276435956563207 1.0

𝐻𝑏 =

1.0 −0.011141376535527443 0.0 0.0 0.0
1.0 −0.02575361014723645 −0.004282806676350282 0.0 0.0
1.0 0.03845623901890617 0.026744368550352622 −0.029043605652931636 0.0
1.0 0.12762852235945304 −0.0015101375211018255 −0.14486471812413823 0.01583234295751802

𝑦𝑇 =

0.28457285753903816
0.11495283295141033

−0.0344930890633602
0.34606871085737384

−0.006442438999085179
1.4670072325444539

(b) Optimized coefficients.

Figure 7: Coefficients for the scheme (29) as approximation of 𝑓 (𝑥) =
√
𝑥 + 1.

8 Conclusions and outlook

We developed a Julia package to design algorithms for matrix functions by working with computa-
tional graphs. The software offers tools to generate and manipulate such graphs, to optimize their
coefficients, and to produce code to evaluate them efficiently in several programming languages. Our
numerical experiments confirm that the algorithm design technique we propose can improve state-of-
the-art algorithms for evaluating the exponential and the square root of a matrix in many situations.

Our approach can be extended in several directions. The fixed-topology optimization is a gen-
eral technique that can be applied to any function, and can potentially be used to design methods to
compute functions for which efficient algorithms are currently not available. Moreover, the 3-step
technique discussed in Section 7 can be extended to all those functions that can be evaluated in a
scaling-and-squaring fashion. Although here we focused on a Gauss–Newton approach, many other
optimization algorithms are potentially of interest. Moreover, our approach shares features with deep
learning, where optimization problems are typically solved with methods based on stochastic gradient
descent. We were not able to produce more competitive results using the deep learning library Py-
Torch [30], partially because we need support for arbitrary precision floating-point arithmetic, which
is not available in all environments.

The degree-optimal polynomial form leads to a complete—though not minimal—parameterization
of the space of polynomials that can be evaluated with a fixed number of non-scalar multiplications.
A minimal complete parameterization would be of interest as it would likely address the issues we
experienced in the numerical simulations with singular Jacobians. In general, establishing sufficient
and practical conditions for a polynomial of degree at most 2𝑚 to belong to the set of optimal-degree
polynomial that can be evaluated with 𝑚 matrix multiplications remains an open problem.

31

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5
10−17

10−11

10−5

Re(𝑧)
Im(𝑧)

|𝑝
(𝑧
)−

√
𝑧
+
1|

(a) Denman–Beavers (4 steps).

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5
10−17

10−11

10−5

Re(𝑧)
Im(𝑧)

|𝑝
(𝑧
)−

√
𝑧
+
1|

(b) Scheme (29) with optimized coefficients.

−0.4 −0.2 0 0.2 0.4

−0.5

0

0.5
10−17

10−11

10−5

Re(𝑧)
Im(𝑧)

|𝑝
(𝑧
)−

√
𝑧
+
1|

(c) Taylor approximant (degree 13).

−0.4 −0.2
0 0.2

0.4

−0.5

0

0.5
10−17

10−11

10−5

Re(𝑧)
Im(𝑧)

|𝑝
(𝑧
)−

√
𝑧
+
1|

(d) Scheme (2) with optimized coefficients.

Figure 8: Error (forward) of four schemes for approximating the function 𝑓 (𝑥) =
√
𝑥 + 1. The plots on

the left correspond to 4 steps of the Denman–Beavers iteration (top) and to the Paterson–Stockmeyer
evaluation of the truncated Taylor polynomial using 𝑚 = 5multiplications (bottom). The plots on the
right correspond to graphs with optimized coefficients; the computational graphs on the left in the
same row were used as warm start for the optimization. The circles have radius 1/2 and 𝑧-value equal
to the maximum relative error within the disk, which is 1.5 · 10−6, 1.4 · 10−15, 1.9 · 10−6 and 3.1 · 10−9
for (a), (b), (c), and (d), respectively.

In Section 7 we introduced a modified degree-optimal form (29), suitable for representing ratio-
nal matrix functions, using which we obtained a rational approximant to the square root much more
efficient than a polynomial approximant of equal computational cost. See [34] for other approaches
to evaluate rational approximants with few multiplications and left-divisions. It may be worth in-
vestigating other variations of this already general form, such as, for example, sparse degree-optimal
polynomials, where some coefficients are set to zero and not considered in the optimization. These
variants bring about a reduction of the memory footprint of the generated code.

By construction, algorithms obtained by using only O1–O3 evaluate rational functions. Our set-
ting, however, is rather different from that of rational approximation theory, where the coefficients
of a rational function of fixed degree are optimized. The rational functions we consider have an ad-
ditional constraint: a fixed topology, or equivalently, a fixed number of multiplications and divisions,
depending on the point of view. Combining the effective methods for rational approximation with
(say) the modified degree-optimal form in (29) could potentially lead to an improved workflow.

Although some tools for round-off error analysis are provided, further research would be required
to understand which methods for the matrix exponential can guarantee a small round-off error. The
design and evaluation of graphs in Section 7 is based on high-precision arithmetic, but algorithms are

32

typically run in binary32 or binary64 arithmetic. Therefore, despite being very rare in the literature,
round-off error analysis of algorithms for matrix functions is of importance in practice.

Acknowledgments

We thank Jorge Sastre (Universitat Politècnica de València) for interesting discussions and helpful sug-
gestions and Olof Troeng (Lund universitet) for feedback on an early draft of the manuscript. We also
thank the three anonymous referees for their comments, which helped us improve the presentation
of our work.

References

[1] A. H. Al-Mohy and N. J. Higham. A new scaling and squaring algorithm for the matrix expo-
nential. SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009.

[2] A. H. Al-Mohy and N. J. Higham. Computing the action of the matrix exponential, with an
application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511, 2011.

[3] A. H. Al-Mohy, N. J. Higham, and X. Liu. Arbitrary precision algorithms for computing the
matrix cosine and its Fréchet derivative. SIAM J. Matrix Anal. Appl., 43(1):233–256, 2022.

[4] P. Bader, S. Blanes, and F. Casas. Computing the matrix exponential with an optimized Taylor
polynomial approximation. Mathematics, 7(12):1174, 2019.

[5] P. Bader, S. Blanes, F. Casas, andM. Seydaoğlu. An efficient algorithm to compute the exponential
of skew-hermitian matrices for the time integration of the schrödinger equation. Math. Comput.
Simul., 194:383–400, 2022.

[6] L. Barash, S. Güttel, and I. Hen. Calculating elements of matrix functions using divided differ-
ences. Comput. Phys. Comm., 271:108219, 2022.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. Julia: A fresh approach to numerical
computing. SIAM Rev., 59(1):65–98, 2017.

[8] Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, January 1996. xvii+407 pp. ISBN 9781611971484.

[9] H. Bodlaender, J. Gustedt, and J. A. Telle. Linear-time register allocation for a fixed number of
registers. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, ACM
Press, January 1998, page 574–583.

[10] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11:1–23, 1993.

[11] M. Crouzeix and C. Palencia. The numerical range is a (1+
√
2)-spectral set. SIAM J. Matrix Anal.

Appl., 38(2):649–655, 2017.

[12] E. D. Denman and A. N. Beavers Jr. The matrix sign function and computations in systems. Appl.
Math. Comput., 2(1):63–94, 1976.

[13] M. Fasi. Optimality of the Paterson–Stockmeyer method for evaluating matrix polynomials and
rational matrix functions. Linear Algebra Appl., 574:182–200, 2019.

[14] M. Fasi and N. J. Higham. Multiprecision algorithms for computing the matrix logarithm. SIAM
J. Matrix Anal. Appl., 39(1):472–491, 2018.

33

http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/09074721X
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1137/21m1441043
http://dx.doi.org/10.1137/21m1441043
http://dx.doi.org/10.3390/math7121174
http://dx.doi.org/10.3390/math7121174
http://dx.doi.org/10.1016/j.matcom.2021.12.002
http://dx.doi.org/10.1016/j.matcom.2021.12.002
http://dx.doi.org/10.1016/j.cpc.2021.108219
http://dx.doi.org/10.1016/j.cpc.2021.108219
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/141000671
http://dx.doi.org/10.1137/1.9781611971484
https://dl.acm.org/doi/10.5555/314613.314994
https://dl.acm.org/doi/10.5555/314613.314994
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/download/3417/3402
http://dx.doi.org/10.1137/17m1116672
http://dx.doi.org/10.1016/0096-3003(76)90020-5
http://dx.doi.org/10.1016/j.laa.2019.04.001
http://dx.doi.org/10.1016/j.laa.2019.04.001
http://dx.doi.org/10.1137/17m1129866

[15] M. Fasi and N. J. Higham. An arbitrary precision scaling and squaring algorithm for the matrix
exponential. SIAM J. Matrix Anal. Appl., 40(4):1233–1256, 2019.

[16] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision
binary floating-point library with correct rounding. ACMTrans. Math. Software, 33(2):13:1–13:15,
2007.

[17] D. Goldberg. What every computer scientist should know about floating-point arithmetic. ACM
Comp. Surv., 23(1):5–48, 1991.

[18] G. H. Golub and C. F. Van Loan. Matrix Computations. 4th edition, Johns Hopkins University
Press, Baltimore, MD, USA, 2013. ISBN 1-4214-0794-9.

[19] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. The MIT Press, Cambridge, MA, USA,
2016.

[20] N. J. Higham. Computing real square roots of a real matrix. Linear Algebra Appl., 88/89:405–430,
1987.

[21] N. J. Higham. Accuracy and Stability of Numerical Algorithms. 2nd edition, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2002. xxx+680 pp. ISBN 0-89871-521-0.

[22] N. J. Higham. The scaling and squaring method for the matrix exponential revisited. SIAM J.
Matrix Anal. Appl., 26(4):1179–1193, 2005.

[23] N. J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2008. xx+425 pp. ISBN 978-0-898716-46-7.

[24] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University Press, Cambridge,
UK, 1991.

[25] J. Ibáñez, J. M. Alonso, J. Sastre, E. Defez, and P. Alonso-Jordá. Advances in the approximation
of the matrix hyperbolic tangent. Mathematics, 9(11):1219, 2021.

[26] S. G. Johnson. More dots: Syntactic loop fusion in Julia, February 2017.

[27] C. B. Moler and C. F. Van Loan. Nineteen dubious ways to compute the exponential of a matrix.
SIAM Rev., 20(4):801–836, 1978.

[28] P. Nadukandi and N. J. Higham. Computing the wave-kernel matrix functions. SIAM J. Sci.
Comput., 40(6):A4060–A4082, 2018.

[29] B. N. Parlett. A recurrence among the elements of functions of triangularmatrices. Linear Algebra
Appl., 14(2):117–121, 1976.

[30] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep
learning library. InAdvances in Neural Information Processing Systems, H.Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, volume 33, New York, NY, USA,
2019, pages 8024–8035. Curran Associates.

[31] M. S. Paterson and L. J. Stockmeyer. On the number of nonscalar multiplications necessary to
evaluate polynomials. SIAM J. Comput., 2(1):60–66, 1973.

[32] W. Rudin. Real and Complex Analysis. 3rd edition, McGraw-Hill, Singapore, 1987.

34

http://dx.doi.org/10.1137/18m1228876
http://dx.doi.org/10.1137/18m1228876
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
https://doi.org/10.1145/103162.103163
http://www.deeplearningbook.org
http://dx.doi.org/10.1016/0024-3795(87)90118-2
http://dx.doi.org/10.1137/1.9780898718027
http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1137/1.9780898717778
http://dx.doi.org/10.1017/CBO9780511840371
http://dx.doi.org/10.3390/math9111219
http://dx.doi.org/10.3390/math9111219
https://julialang.org/blog/2017/01/moredots/
http://dx.doi.org/10.1137/1020098
http://dx.doi.org/10.1137/18M1170352
http://dx.doi.org/10.1016/0024-3795(76)90018-5
https://papers.nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://papers.nips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
http://dx.doi.org/10.1137/0202007
http://dx.doi.org/10.1137/0202007

[33] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

[34] J. Sastre. Efficient mixed rational and polynomial approximation of matrix functions. Appl. Math.
Comput., 218(24):11938–11946, 2012.

[35] J. Sastre. Efficient evaluation of matrix polynomials. Linear Algebra Appl., 539:229–250, 2018.

[36] J. Sastre and J. Ibáñez. Efficient evaluation of matrix polynomials beyond the Paterson–
Stockmeyer method. Mathematics, 9(14):1600, 2021.

[37] J. Sastre, J. Ibáñez, P. Alonso-Jordá, J. Peinado, and E. Defez. Fast Taylor polynomial evaluation
for the computation of the matrix cosine. J. Comput. Appl. Math., 354:641–650, 2019.

[38] J. Sastre, J. Ibáñez, and E. Defez. Boosting the computation of the matrix exponential. Appl. Math.
Comput., 340:206–220, 2019.

[39] J. Sastre, J. Ibáñez, E. Defez, and P. Ruiz. Accurate matrix exponential computation to solve
coupled differential models in engineering. Math. Comput. Model., 54(7-8):1835–1840, 2011.

[40] J. Sastre, J. Ibáñez, E. Defez, and P. Ruiz. New scaling-squaring Taylor algorithms for computing
the matrix exponential. SIAM J. Matrix Anal. Appl., 37(1):A439–A455, 2015.

[41] J. Sastre, J. Ibáñez, P. Ruiz, and E. Defez. Efficient computation of the matrix cosine. Appl. Math.
Comput., 219(14):7575–7585, 2013.

[42] G. Schulz. Iterative Berechung der reziproken Matrix. Z. Angew. Math. Mech., 13(1):57–59, 1933.

[43] M. Seydaoğlu, P. Bader, S. Blanes, and F. Casas. Computing the matrix sine and cosine simulta-
neously with a reduced number of products. Appl. Numer. Math., 163:96–107, 2021.

[44] L. Sorber, M. V. Barel, and L. D. Lathauwer. Unconstrained optimization of real functions in
complex variables. SIAM J. Optim., 22(3):879–898, 2012.

[45] Åke Björck and S. Hammarling. A Schur method for the square root of a matrix. Linear Algebra
Appl., 52/53:127–140, 1983.

35

http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.amc.2012.05.064
http://dx.doi.org/10.1016/j.laa.2017.11.010
http://dx.doi.org/10.3390/math9141600
http://dx.doi.org/10.3390/math9141600
http://dx.doi.org/10.1016/j.cam.2018.12.041
http://dx.doi.org/10.1016/j.cam.2018.12.041
http://dx.doi.org/10.1016/j.amc.2018.08.017
http://dx.doi.org/10.1016/j.mcm.2010.12.049
http://dx.doi.org/10.1016/j.mcm.2010.12.049
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1137/090763202
http://dx.doi.org/10.1016/j.amc.2013.01.043
http://dx.doi.org/10.1002/zamm.19330130111
http://dx.doi.org/10.1016/j.apnum.2021.01.009
http://dx.doi.org/10.1016/j.apnum.2021.01.009
http://dx.doi.org/10.1137/110832124
http://dx.doi.org/10.1137/110832124
http://dx.doi.org/10.1016/0024-3795(83)80010-X

