
Mixed Precision Algorithms in Numerical Linear
Algebra

Higham, Nicholas J. and Mary, Theo

2021

MIMS EPrint: 2021.20

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Mixed Precision Algorithms in
Numerical Linear Algebra

Nicholas J. Higham
Department of Mathematics, University of Manchester,

Manchester, M13 9PL, UK
nick.higham@manchester.ac.uk

Theo Mary
Sorbonne Université, CNRS, LIP6,

Paris, F-75005, France
theo.mary@lip6.fr

February 18, 2022

Abstract

Today’s floating-point arithmetic landscape is broader than ever. While scientific
computing has traditionally used single precision and double precision floating-point
arithmetics, half precision is increasingly available in hardware and quadruple precision
is supported in software. Lower precision arithmetic brings increased speed and
reduced communication and energy costs, but it produces results of correspondingly
low accuracy. Higher precisions are more expensive but can potentially provide great
benefits, even if used sparingly. A variety of mixed precision algorithms have been
developed that combine the superior performance of lower precisions with the better
accuracy of higher precisions. Some of these algorithms aim to provide results of the
same quality as algorithms running in a fixed precision but at a much lower cost; others
use a little higher precision to improve the accuracy of an algorithm. This survey treats
a broad range of mixed precision algorithms in numerical linear algebra, both direct
and iterative, for problems including matrix multiplication, matrix factorization, linear
systems, least squares, eigenvalue decomposition, and singular value decomposition.
We identify key algorithmic ideas, such as iterative refinement, adapting the precision
to the data, and exploiting mixed precision block fused multiply–add operations. We
also describe the possible performance benefits and explain what is known about the
numerical stability of the algorithms. This survey should be useful to a wide community
of researchers and practitioners who wish to develop or benefit from mixed precision
numerical linear algebra algorithms.

1

Contents
1 Introduction 3

1.1 Mixed precision versus multiprecision 4
1.2 Applications . 4

1.2.1 Simulations . 4
1.2.2 Climate modelling and weather forecasting 5
1.2.3 Machine learning . 5
1.2.4 HPL-AI Mixed Precision Benchmark 7

2 Floating-point arithmetics 7
2.1 IEEE arithmetics . 7
2.2 Other arithmetics . 9
2.3 Availability in hardware and software 9
2.4 Block fused multiply-adds . 10
2.5 Multiprecision arithmetic . 11
2.6 Simulating different precisions . 13

3 Rounding error analysis model 14

4 Matrix multiplication 15
4.1 Using block FMAs . 15
4.2 Blocked summation . 16
4.3 Probabilistic analyses . 17
4.4 Multiword matrix multiplication with block FMAs 17
4.5 Data-driven matrix–vector product . 17

5 Nonlinear equations 18
5.1 Newton’s method . 18

6 Iterative refinement for 𝐴𝑥 = 𝑏 22
6.1 Historical development . 23

6.1.1 Traditional iterative refinement 23
6.1.2 Fixed precision iterative refinement 23
6.1.3 Iterative refinement with lower precision solves 23

6.2 Specialized applications . 24

7 Direct methods for 𝐴𝑥 = 𝑏 24
7.1 LU factorization-based iterative refinement 24
7.2 GMRES-based iterative refinement . 26

7.2.1 High accuracy solution of ill-conditioned systems 27
7.2.2 Exploiting low precision LU factors of an ill-conditioned matrix . 27

7.3 Harnessing tensor cores . 28
7.4 Scaling strategies . 29
7.5 Exploiting symmetry and positive definiteness 30
7.6 Sparse matrix considerations . 31
7.7 Exploiting data sparsity . 32

2

8 Iterative methods for 𝐴𝑥 = 𝑏 33
8.1 GMRES-IR without an LU factorization 33
8.2 Iterative methods with low or mixed precision preconditioner 34
8.3 Mixed precision GMRES . 35
8.4 Communication-avoiding iterative methods 35
8.5 Multigrid iterative refinement . 36
8.6 Other iterative solvers . 36
8.7 Decoupling formats for data storage and processing 36

9 Mixed precision orthogonalization and QR factorization 37

10 Least squares problems 39

11 Eigenvalue decomposition 40

12 Singular value decomposition 42
12.1 Iterative refinement . 43
12.2 SVD with rapidly decaying singular values 43

13 Multiword arithmetic 44

14 Adaptive precision algorithms 46
14.1 At the matrix level . 47
14.2 At the column level (or, equivalently, at the row level) 47
14.3 At the block level . 47
14.4 At the element level . 48

15 Miscellany 48
15.1 Tuning precisions . 48
15.2 Multiprecision algorithms . 50

1 Introduction
Traditionally, scientific computing has been carried out in double precision arithmetic,
which nowadays corresponds to a 64-bit floating-point number format. It has long been
recognized that single precision computations have advantages over double precision ones,
not just because single precision arithmetic is typically twice as fast as double precision
arithmetic but also because single precision data requires half as much storage as double
precision data and has half the memory transfer costs. Of course, single precision com-
putations will generally provide only single precision accuracy. Whether this is sufficient
for a given application depends on the application and the answer can be different even for
different computations within the same field—see Section 1.2.2.

Modern hardware increasingly supports half precision arithmetic, which is attractive
compared with single and double precisions because of its speed, its lower energy usage,
and its reduced storage and data movement costs.

As we now have three precisions of floating-point arithmetic in hardware, as well
as quadruple precision arithmetic in software, we are in an intrinsically mixed precision

3

world, where precisions can be judiciously chosen in order to make the best use of our
computational resources.

In this work we survey mixed precision algorithms in numerical linear algebra. Relevant
work goes back to the beginning of the digital computer area, but most contributions in
this area have been made in the last couple of decades. An earlier survey of the same areas
is Abdelfattah et al. (2021a).

1.1 Mixed precision versus multiprecision
We use the following terminology.

• A mixed precision algorithm uses two or more precisions chosen from a small
number of available precisions, which are typically half, single, and double precision,
provided in hardware, and quadruple precision, provided in software.

• A multiprecision algorithm uses one or more arbitrary precisions, which may be
problem-dependent and are provided in software. The precision at which results
are returned may be fixed (for example, double precision) or may be a parameter.
See Section 2.5 for details of some available multiprecision arithmetics. The term
variable precision is sometimes used in place of multiprecision.

This survey is concerned with mixed precision algorithms, but we will briefly discuss
some multiprecision algorithms in Section 15.2.

1.2 Applications
Mixed precision algorithms are being used, or considered for use in a wide variety of
applications, some of which involve computations at very large scale. We mention some
examples here in order to illustrate the different motivations for using mixed precision
arithmetic and the possible benefits in real-life applications.

1.2.1 Simulations

Idomura et al. (2020) carry out plasma turbulence simulations for the next generation
experimental fusion reactor ITER on the Fugaku and Summit supercomputers. Their
code for integrating the gyrokinetic partial differential equation (PDE) in double precision
involves the solution of linear systems by a Krylov method. The authors show that using a
communication-avoiding version of the Krylov method with a half precision (fp16) version
of the preconditioner results in speedups over the original solver by a factor approximately
2–3.

Yang et al. (2019) implement in TensorFlow a Monte-Carlo simulation of the Ising
model on a two-dimensional lattice and run it on Google Tensor Processing Units (TPUs).
They find that single precision can be replaced by half precision (bfloat16) without any
loss of accuracy, enabling larger lattices to be simulated because of the lower memory
requirement of half precision.

4

1.2.2 Climate modelling and weather forecasting

In climate modelling and weather forecasting, codes have traditionally used double pre-
cision variables, but in recent years the use of lower precisions has been extensively
investigated (Palmer 2014). The lesser data movement and faster execution of lower pre-
cision arithmetic offers the possibility of using refined spatial grids represented in lower
precision, allowing higher resolution simulations with no increase in run time, potentially
improving the output of a model. The observations on which a model is built have low pre-
cision, so it can be argued that variables do not need to be represented in double precision
(Tintó Prims et al. 2019), and this argument is also supported by the notion that the grid
parametrizations should be stochastic (Palmer 2020). Moreover, many model components
have uncertainties that can be much larger than the level of double precision (Dawson,
Düben, MacLeod and Palmer 2018). Codes in this area can consist of millions of lines of
Fortran (Bauer et al. 2021), so changing the precisions of variables and assessing the effect
of the changes is not an easy task.

Váňa et al. (2017) show that almost all double precision variables in the Integrated
Forecast System of the European Centre for Medium-Range Weather Forecasts can be
converted to single precision with no noticeable loss in accuracy and a gain in speed of
about 40 percent. A benefit of running the code in lower precision was found to be that it
revealed places where the code could be made more robust. Harvey and Verseghy (2015)
had a different experience with their code for a land surface model, where running in single
precision instead of double did not provide sufficient accuracy for some of the land depths
and timescales of interest.

A weather and climate simulation code called the Unified Model (UM) is used by
the Met Office for both operational numerical weather prediction and climate modelling.
The code carries out time integration of a system of PDEs, which involves at each time
step the solution of a linear system with a banded, time-varying nonsymmetric matrix of
size 3.5 × 108. The system is solved by the preconditioned BiCGstab algorithm, with a
convergence test requiring a residual of norm 10−4 relative to the right-hand side. The
UM is coded in double precision and is memory bound (that is, its execution time is
determined by the speed at which data is transferred from main memory to the arithmetic
units rather than by the speed of the floating-point arithmetic). Maynard and Walters
(2019) implemented the linear system solution almost entirely in single precision, with
the same convergence tolerance, obtaining close to a factor 2 speedup of the solver, which
they attribute to the reduction in data movement costs. To alleviate some stability issues
they use a mixed precision summation algorithm that is essentially the FABsum algorithm
of Blanchard, Higham and Mary (2020a), which is discussed in Section 4.2. The mixed
precision solver is now used in operational forecasts.

1.2.3 Machine learning

Low precision arithmetic has become widely used in machine learning in the last few years
because it has been found experimentally that algorithms can run faster with certain parts
executed in low precision, with little or no deterioration in the quality of the results. Dean
(2020) gives three characteristics of deep learning models that make specialized hardware
suitable for running them.

“First, they are very tolerant of reduced-precision computations. Second, the

5

computations performed by most models are simply different compositions
of a relatively small handful of operations like matrix multiplies, vector op-
erations, application of convolutional kernels, and other dense linear algebra
calculations . . . Third, many of the mechanisms developed over the past 40
years to enable general-purpose programs to run with high performance on
modern CPUs . . . are unnecessary for machine learning computations. So,
the opportunity exists to build computational hardware that is specialized for
dense, low-precision linear algebra, and not much else, but is still program-
mable at the level of specifying programs as different compositions of mostly
linear algebra-style operations.”

The special-purpose hardware being referred to here can be classified as either field
programmable gate arrays (FPGAs) or application-specific integrated circuits (ASICs) and
it may use fixed-point arithmetic, floating-point arithmetic, or an intermediate between the
two called block floating-point arithmetic (which was in use in the 1960s (Wilkinson 1963,
Wang et al. 2019)).

Variables of different precisions arise in machine learning algorithms from quantization,
the process of reducing the number of bits per operand. The limiting case is binarization,
in which a number has just two possible values, 0 and 1. Quantization is applied in various
ways, including during training or on a trained model.

One of the first papers to popularize the use of low precision arithmetic in deep learning
is by Courbariaux, Bengio and David (2015), who find that “very low precision is sufficient
not just for running trained networks but also for training them.”

Several reasons have been suggested by numerical analysts for the success of low
precision floating-point arithmetic in machine learning. Scheinberg (2016) argues that in
machine learning we are solving the wrong problem, namely a surrogate for the original
optimization problem, so we do not need an accurate solution. It can also be argued that low
precision arithmetic provides regularization and that this is beneficial to machine learning,
perhaps by leading to flat minima rather than narrow minima.

In machine learning one often updates a parameter 𝜙 by a sequence of small quantities
ℎ𝑖 through a recurrence 𝜙(𝑖+1) ← 𝜙(𝑖) + ℎ𝑖 , 𝑖 = 1: 𝑛. If ℎ𝑖 is of absolute value less than half
the spacing of the floating-point numbers around 𝜙(𝑖), which is more likely in low precision
arithmetic, then 𝜙(𝑖) + ℎ𝑖 rounds to 𝜙(𝑖) with round to nearest, so the information in ℎ𝑖 is
lost, and if this happens for many 𝑖 then the error in 𝜙(𝑛+1) can be large. This phenomenon
is called stagnation. It can be avoided by using stochastic rounding in place of round
to nearest (Connolly, Higham and Mary 2021, Croci et al. 2021). Stochastic rounding
is a randomized form of rounding that rounds to the next larger or next smaller floating-
point number with probability proportional to 1 minus the distance to those floating-point
numbers. An early use in deep learning was by Gupta, Agrawal, Gopalakrishnan and
Narayanan (2015), who find that “deep networks can be trained using only 16-bit wide
fixed-point number representation when using stochastic rounding, and incur little to no
degradation in the classification accuracy.”

6

1.2.4 HPL-AI Mixed Precision Benchmark

The HPL-AI Mixed Precision Benchmark1 is intended to measure supercomputer perform-
ance on AI-type workloads. It solves a double precision nonsingular linear system 𝐴𝑥 = 𝑏

of order 𝑛 using an LU factorization without pivoting computed in half precision and it
refines the solution using preconditioned GMRES in double precision. As of November
2021, the world record execution rate for the benchmark is 2.0 ExaFlop/s (2×1018 floating-
point operations per second), where most of the operations are half precision ones, for a
matrix of size 16, 957, 440, which was achieved by the Fugaku supercomputer in Japan
(Kudo, Nitadori, Ina and Imamura 2020a,b). The choice of matrix 𝐴 for the benchmark
is critical, as it must be cheap to compute, have a controlled condition number, and have
a numerically stable LU factorization without pivoting; a class of matrices having these
properties is derived by Fasi and Higham (2021).

2 Floating-point arithmetics
Support for more than one precision of floating-point arithmetic, provided in hardware or
software, has existed throughout the history of digital computing. A landmark was the
Fortran 66 standard (ANSI 1966), which included the real and double precision data types
and so made it possible to write portable programs that used two precisions.

Some early machines that supported 𝑑-digit but not 2𝑑-digit arithmetic offered the
ability to accumulate an inner product of 𝑑-digit vectors in a 2𝑑-digit accumulator, only
rounding back to 𝑑 digits after the final addition. This mode of computation was discussed
by von Neumann and Goldstine (1947, Section 2.3) and was exploited by Wilkinson (1948,
1961) on the ACE computer and by Moler (1967) on the IBM 7094. Even earlier, desk
calculating machines such as the Brunsviga offered accumulators with more digits than the
input or the registers (Croarken 1985, Section 1.2.1).

Up to the mid 1980s, most computers used for scientific computing offered both
single precision and double precision floating-point arithmetic, but the formats of the
precisions varied greatly between machines. For example, a double precision number
had a 96-bit significand on the Cray-1, a 53-bit significand on the DEC VAX (G format),
and a 14-hexadecimal digit significand on the IBM 3090. This lack of uniformity, and
more importantly the differing properties of the arithmetics, hindered the development of
software intended to perform consistently across different machines.

2.1 IEEE arithmetics
A major breakthrough for scientific computing was the publication of the ANSI/IEEE
Standard 754-1985 for Binary Floating-Point Arithmetic (IEEE 1985), which provided
binary floating-point formats and precise rules for carrying out arithmetic on them. The
standard had been carefully designed over several years by a committee of experts from
academia and industry, and it brought much-needed order to computer arithmetic (Kahan
1981). Within a few years virtually all computer manufacturers had adopted it.

The 1985 standard prescribed two floating-point number formats: 32-bit single preci-
sion and 64-bit double precision. A 2008 revision (IEEE 2008) added a 128-bit quadruple

1https://icl.bitbucket.io/hpl-ai/

7

https://icl.bitbucket.io/hpl-ai/

Table 2.1: Parameters for five floating-point arithmetics: number of bits in significand
(including implicit most significant bit) and exponent (sig, exp); unit roundoff 𝑢; smallest
positive (subnormal) number 𝑥𝑠min; smallest positive normalized number 𝑥min; and largest
finite number 𝑥max. The last four columns are given to three significant figures. In Intel’s
bfloat16 specification subnormal numbers are not supported (Intel Corporation 2018).

(sig, exp) 𝑢 𝑥𝑠min 𝑥min 𝑥max

bfloat16 (8, 8) 3.91 × 10−3 9.18 × 10−41 1.18 × 10−38 3.39 × 1038

fp16 (11, 5) 4.88 × 10−4 5.96 × 10−8 6.10 × 10−5 6.55 × 104

fp32 (24, 8) 5.96 × 10−8 1.40 × 10−45 1.18 × 10−38 3.40 × 1038

fp64 (53, 11) 1.11 × 10−16 4.94 × 10−324 2.22 × 10−308 1.80 × 10308

fp128 (113, 15) 9.63 × 10−35 6.48 × 10−4966 3.36 × 10−4932 1.19 × 104932

precision format and a 16-bit half precision format, the latter defined as a storage format
only rather than for computation. The half precision format was motivated by the emer-
gence of support for 16-bit formats on graphical processing units (GPUs), where these
formats were used for graphics and gaming.

To define the IEEE formats we recall that a floating-point number system is a finite
subset 𝐹 = 𝐹(𝛽, 𝑡, 𝑒min, 𝑒max) of R whose elements have the form

𝑥 = ±𝑚 × 𝛽𝑒−𝑡+1. (2.1)

Here, 𝛽 is the base, which is 2 on virtually all current computers. The integer 𝑡 is the
precision and the integer 𝑒 is the exponent, which lies in the range 𝑒min ≤ 𝑒 ≤ 𝑒max, and
the IEEE standard requires that 𝑒min = 1 − 𝑒max. The significand 𝑚 is an integer satisfying
0 ≤ 𝑚 ≤ 𝛽𝑡 − 1. To ensure a unique representation for each nonzero 𝑥 ∈ 𝐹 it is assumed
that 𝑚 ≥ 𝛽𝑡−1 if 𝑥 ≠ 0, so that the system is normalized.

The largest and smallest positive numbers in the system are 𝑥max = 𝛽𝑒max (𝛽 − 𝛽1−𝑡)
and 𝑥min = 𝛽𝑒min , respectively. Two other important quantities are 𝑢 = 1

2 𝛽
1−𝑡 , the unit

roundoff, and 𝜖 = 𝛽1−𝑡 , the machine epsilon, which is the distance from 1 to the next larger
floating-point number.

Numbers with 𝑒 = 𝑒min and 0 < 𝑚 < 𝛽𝑡−1 are called subnormal numbers. They have
the minimal exponent but fewer than 𝑡 digits of precision. They form an equally spaced
grid between 0 and the smallest normalized number.

The parameters for the IEEE formats are given in Table 2.1. We refer to these formats
as “fpxy”, where the integer “xy” specifies the number of bits in a floating-point number
(the IEEE standard uses the terminology “binaryxy”).

What is perhaps most striking is the great difference in ranges [𝑥𝑠min, 𝑥max] between the
formats, and especially the narrow range [𝑥min, 𝑥max] ≈ [6 × 10−5, 6 × 104] for fp16. This
means that a large proportion of fp32 and fp64 numbers are not representable as finite,
nonzero fp16 numbers; as we will see, this means that careful scaling is needed in mixed
precision algorithms that use fp16.

8

Sign Exponent Significand
5 bits 10 (+1) bits

fp16

Sign Exponent Significand
8 bits 7 (+1) bits

bfloat16

Figure 2.1: Comparison of the 16-bit bfloat16 and fp16 floating-point number formats.
The “+1” refers to the implicit leading bit of the significand, which is not stored.

2.2 Other arithmetics
A floating-point number format called bfloat16 was proposed by researchers in the Google
Brain artificial intelligence research group. Like fp16, it is a 16-bit format, but it allocates
bits between the significand and exponent differently: as illustrated in Figure 2.1, bfloat16
allocates 8 bits for the significand and 8 bits for the exponent versus 11 bits for the
significand 5 bits for the exponent for fp16. As shown in Table 2.1, the range of bfloat16 is
very similar to that of fp32 (but not identical, because of its narrower significand), which
means that overflow in converting to bfloat16 from higher precisions is much less likely
than for fp16. The drawback of bfloat16 is its low precision: about three decimal digits
of precision versus four for fp16. Bfloat16 has been taken up by Intel (Intel Corporation
2018), Arm, and NVIDIA (beginning with the Ampere architecture).

There is no generally accepted 8-bit quarter precision format, though suggestions have
been made by Moler (2017) (and implemented in MATLAB by Moler2), Tagliavini et al.
(2018), and Wang et al. (2018).

Double-double arithmetic is a form of quadruple precision arithmetic in which a quad-
ruple precision number is represented as the unevaluated sum of two double precision
numbers, one representing the higher-order bits of the significand and the other the lower-
order bits (Muller et al. 2018, Section 14.1). Double-double arithmetic has a long history
going back to the 1960s (Li et al. 2002). It is a “poor man’s quadruple precision” in
that it is slightly less accurate than quadruple precision, has roughly the same range as
double precision, and does not inherit all the desirable properties of the underlying double
precision arithmetic (Joldes, Muller and Popescu 2017).

Other floating-point formats have been proposed for specific applications. For example,
a 9-bit format with a 4-bit significand and a 5-bit exponent is proposed by O’uchi et al.
(2018) for use in deep learning.

2.3 Availability in hardware and software
IEEE single and double precision arithmetic began to be widely supported in hardware in the
late 1980s and early 1990s. In fact, the Intel 8087 coprocessor, produced before the standard

2http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

9

http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

was published, partly supported it. In principle, single precision arithmetic operations
should run twice as fast as their double precision counterparts, and single precision variables
have the benefit of requiring half the storage of double precision ones, resulting in less
data movement, but on Intel chips single precision had no speed advantage over double
precision until the late 1990s, when Streaming SIMD Extensions (SSE) instructions were
introduced (Langou et al. 2006).

IEEE fp16 arithmetic began to be supported on NVIDIA GPUs in the Maxwell archi-
tectures (Jetson TX1, 2014) and was included in the subsequent Pascal (P100, 2016), Volta
(V100, 2017), Turing (T4, 2018), and Ampere (A100, 2020) architectures. Fp16 is also
supported on AMD GPUs in the GCN and CDNA architectures.

Bfloat16 is supported on Google’s TPUs (Norrie et al. 2021), the NVIDIA A100 GPU
(Choquette et al. 2021, NVIDIA Corporation 2020), the ARM NEON architecture (ARM
2018) and Armv8-A architecture (ARM 2019), the Fujitsu A64FX ARM processor (Don-
garra 2020, Sato et al. 2020), and the Intel Xeon Cooper Lake processors. It is not only
high-end devices that support half precision: the Raspberry Pi, which uses the Armv8-A
architecture, supports Bfloat16 (Groote, Morel, Schmaltz and Watkins 2021, Sec. 7.2.1).

The future Chinese Sunway exascale computer is scheduled to have double precision
arithmetic running at 1 ExaFlop/s and half precision arithmetic running at 4 ExaFlop/s
(Gao et al. 2021, Sec. 4).

Quadruple precision arithmetic is available almost exclusively in software. It is suppor-
ted by some compilers, such as the GNU Compiler Collection (GCC)3, and in MATLAB
through the Symbolic Math Toolbox4 and the Multiprecision Computing Toolbox.5 Quad-
ruple precision arithmetic is supported in hardware on the IBM Power9 processor (Trader
2016) and the IBM z13 processor (Lichtenau, Carlough and Mueller 2016).

A set of extended and mixed precision Basic Linear Algebra Subprograms (BLAS)
known as the XBLAS6 provides extended and mixed precision counterparts of selected
level 1, 2, and 3 BLAS (Li et al. 2002). They use extended precision internally, defined
to mean a precision at least 1.5 times as accurate as double precision and wider than 80
bits. The input and output arguments remain single or double precision variables, but
some arguments can be of mixed type (real or complex) as well as mixed precision (single
or double), and the main visible difference is an extra input argument that specifies the
precision at which internal computations are to be performed. A reference implementation
is provided that employs the double-double format described in the previous subsection.

2.4 Block fused multiply-adds
Since the 1990s some processors have provided a fused multiply–add (FMA) operation that
computes 𝑥 + 𝑦𝑧 with just one rounding error instead of two: 𝑥 + 𝑦𝑧 is essentially computed
exactly and then rounded. The motivation for an FMA is speed, as it can be implemented
in a pipelined fashion so that it takes about the same time as a single multiplication or
addition (Muller et al. 2018, sec. 3.4.2).

In recent years, mixed precision block FMAs (also known as mixed-precision matrix
multiply–accumulate accelerators) have become available in hardware. In general, such a

3https://gcc.gnu.org/
4http://www.mathworks.co.uk/products/symbolic/
5http://www.advanpix.com
6https://netlib.org/xblas/

10

https://gcc.gnu.org/
http://www.mathworks.co.uk/products/symbolic/
http://www.advanpix.com
https://netlib.org/xblas/

device takes as input matrices 𝐴 ∈ R𝑏1×𝑏, 𝐵 ∈ R𝑏×𝑏2 , and 𝐶 ∈ R𝑏1×𝑏2 , where 𝐴 and 𝐵 are
provided in a given precision 𝑢low and 𝐶 is either in precision 𝑢low or in a higher precision
𝑢high, and computes

𝐷︸︷︷︸
𝑢low or 𝑢high

= 𝐶︸︷︷︸
𝑢low or 𝑢high

+ 𝐴︸︷︷︸
𝑢low

𝐵︸︷︷︸
𝑢low

, (2.2)

returning 𝐷 in precision 𝑢low or 𝑢high.
The tensor cores in the NVIDIA Volta and Turing architectures have 𝑏1 = 𝑏 = 𝑏2 = 4.

They require the matrices 𝐴 and 𝐵 to be in the fp16 format, 𝐶 and the result 𝐷 can be in
fp16 or fp32, and internal computations are done in fp32 (Appleyard and Yokim 2017).
Pictorially, we have

𝐷 = 𝐶 + 𝐴 𝐵
× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16 or fp32

=


× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16 or fp32

+


× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16


× × × ×
× × × ×
× × × ×
× × × ×

︸ ︷︷ ︸
fp16

The Ampere architecture offers a wider choice of input data types for the tensor cores,
including bfloat16 and fp32 (NVIDIA Corporation 2020).

Other instances of block FMAs are the matrix units (MXUs) available on Google TPUs
(Jouppi et al. 2020, 2021, Wang and Kanwar 2019). They use bfloat16 rather than fp16 as
the low precision format and operate on square matrices of dimension 128. Google TPUs
are not commercially available.

Table 2.2 summarizes the properties of block FMAs available in some current hardware.
We note that the details of the computations, such as rounding modes, normalization of
intermediate results, and whether subnormal numbers are supported, are generally not
available and so must be inferred from experimentation. Fasi, Higham, Mikaitis and
Pranesh (2021b) investigate NVIDIA tensor cores; among their findings is that the inner
products within the matrix multiplications use round towards zero for the additions and
can be non-monotonic.

2.5 Multiprecision arithmetic
Multiprecison floating-point arithmetic is a built-in feature of Maple7 and Mathematica8
as well as the open-source PARI/GP9 and Sage10 computer algebra systems. It is available
in MATLAB through the Symbolic Math Toolbox and the Multiprecision Computing
Toolbox. The programming language Julia11 (Bezanson, Edelman, Karpinski and Shah
2017) supports multiprecison floating-point numbers by means of the built-in data type
BigFloat. For other languages third-party libraries are available:

7http://www.maplesoft.com
8http://www.wolfram.com
9http://pari.math.u-bordeaux.fr
10http://www.sagemath.org
11http://julialang.org

11

http://www.maplesoft.com
http://www.wolfram.com
http://pari.math.u-bordeaux.fr
http://www.sagemath.org
http://julialang.org

Table 2.2: Processing units or architectures equipped with mixed precision block fused
multiply–add accelerators. Matrix dimensions are expressed as 𝑏1 × 𝑏 × 𝑏2, where the
matrix product is of a 𝑏1 × 𝑏 matrix with a 𝑏 × 𝑏2 matrix. The input and output precisions
𝑢low and 𝑢high are defined in (2.2). Sources ARM (2020), Choquette et al. (2021), Jouppi
et al. (2020, 2021), Norrie et al. (2021).

Year of Matrix
release Device dimensions 𝑢low 𝑢high

2016 Google TPU v2 128 × 128 × 128 bfloat16 fp32
2017 Google TPU v3 128 × 128 × 128 bfloat16 fp32
2020 Google TPU v4i 128 × 128 × 128 bfloat16 fp32
2017 NVIDIA V100 4 × 4 × 4 fp16 fp32
2018 NVIDIA T4 4 × 4 × 4 fp16 fp32
2019 ARMv8.6-A 2 × 4 × 2 bfloat16 fp32

2020 NVIDIA A100

8 × 8 × 4 bfloat16 fp32
8 × 8 × 4 fp16 fp32
8 × 4 × 4 TensorFloat-32 fp32
2 × 4 × 2 fp64 fp64

Python: mpmath12 (Johansson et al. 2013) and SymPy13 (Meurer et al. 2017).

C: the GNU Multiple Precision Arithmetic Library14 and the GNU MPFR Library15

(Fousse et al. 2007).

C++: the BOOST libraries.16

C++ and Fortran: the ARPREC library (Bailey, Hida, Li and Thompson 2002).

C++: the MPFUN2020 library (Bailey 2021).17

The GNU MPFR Library is used in some of the software mentioned above, and
interfaces to it are available for several programming languages. It was originally intended
for high precisions, though recent work has improved its efficiency for fp64 and fp128
(Lefèvre and Zimmermann 2017). As the documentation notes,18 the default exponent
range is wide and “subnormal numbers are not implemented (but can be emulated)”.

Nakata (2021) has produced a multiprecision version of the LAPACK library called
MPLAPACK by translating the LAPACK source code from Fortran to C++. MPLAPACK
has several options for the underlying arithmetic, including quadruple precision provided
by GCC, double-double arithmetic, quad-double arithmetic (which represents a number as
the unevaluated sum of four double precision numbers, so has about twice the precision of

12http://mpmath.org
13http://www.sympy.org
14http://gmplib.org/
15http://www.mpfr.org
16http://www.boost.org
17https://www.davidhbailey.com/dhbsoftware/
18https://www.mpfr.org/mpfr-current/mpfr.html

12

http://mpmath.org
http://www.sympy.org
http://gmplib.org/
http://www.mpfr.org
http://www.boost.org
https://www.davidhbailey.com/dhbsoftware/
https://www.mpfr.org/mpfr-current/mpfr.html

quadruple precision), the GNU Multiple Precision Arithmetic Library, and the GNU MPFR
Library. The test results reported in Nakata (2021) indicate a roughly 1:5:10 ratio of the
time for double precision arithmetic, double-double arithmetic, and quadruple precision
arithmetic for matrix multiplication on an AMD Ryzen multicore CPU.

2.6 Simulating different precisions
When developing mixed precision algorithms one may not have access in hardware to all
the precisions of interest. Or one may wish to experiment with floating-point formats
not yet supported in hardware. It is therefore useful to be able to simulate arithmetics
of different precisions using arithmetic of a given higher precision available in hardware.
This capability has proved particularly useful for half precision arithmetic, since initially
fp16 was available only on GPUs and bfloat16 on Google TPUs. In addition to half
precision, support for other binary formats specified by the user via the number of bits
in the significand and the exponent is desirable, as well as support for different rounding
modes. These features differentiate the simulations from the multiprecision arithmetics
described in the previous section, some of which are parametrized by the number of base
10 digits.

The MATLAB function chop19 of Higham and Pranesh (2019) rounds the elements of
a matrix stored in single precision or double precision to a lower precision using one of
several forms of rounding, with the result stored in the original precision. The target format
for the rounding is specified by the number of bits in the significand and the maximum value
of the exponent. The bfloat16, fp16, and fp32 formats are built-in. Subnormal numbers
can be included or not. Six rounding modes are supported: round to nearest using round
to even last bit to break ties (the default), round towards plus infinity, round towards minus
infinity, round towards zero, and two forms of stochastic rounding. The chop function
makes it easy to adapt existing codes to mixed precision by wrapping statements in calls
to chop, and since the chop function is vectorized few calls to it are typically needed for
linear algebra codes.

The library CPFloat20 by Fasi and Mikaitis (2020) offers similar functionality to chop
for C. It comes with a MEX interface to MATLAB, and calling CPFloat can be faster than
calling chop for large matrices. Fasi and Mikaitis (2020) offer a comparison with some
other available packages for simulating low precision floating-point arithmetics.

Another approach to simulation is to provide a new storage class and overload operators
to do arithmetic on the class. The fp16 half precision MATLAB class of Moler (2017)21
introduces a new data type fp16 that implements the fp16 storage format and overloads
some basic functions for fp16 arguments. Arithmetic in this class is slow because of both
the overhead of object orientation in MATLAB and the cost of converting to and from the
fp16 storage format. Moler has also written a class vfp16 that allows the partitioning of a
16-bit word between significand and exponent to be varied, in particular allowing bfloat16
to be simulated (Moler 2019). This class also allows subnormals to be included or not and
FMAs to be done within the inner products inside a matrix multiplication.

Half precision simulations are available in some other languages.

19https://github.com/higham/chop
20https://github.com/mfasi/cpfloat
21http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

13

https://github.com/higham/chop
https://github.com/mfasi/cpfloat
http://mathworks.com/matlabcentral/fileexchange/59085-cleve-laboratory

Julia The built-in float16 (fp16) datatype and the bfloat16 package22 provide simulations
of these half precision arithmetics.

C++ A header file for fp16 is available.23

Python NumPy provides a float16 data type.24

The rpe (reduced floating-point precision) library of Dawson and Düben (2017) provides
a derived type and overloaded operators for Fortran and was developed for use in weather
and climate modeling. It emulates the specified precision but in general uses the exponent
range of double precision.

With all these simulations it is important to realize that one might obtain more accurate
results than for a true low precision computation because certain operations may be done
in higher precision. For example, a language that supports matrix operations and provides
a half precision data type may implement half precision matrix operations by doing them at
higher precision and rounding to half precision. For a detailed discussion of the resulting
differences in accuracy see Higham and Pranesh (2019, Section 3).

3 Rounding error analysis model
We denote by fl the operator that rounds a real number into the floating-point number
system 𝐹 whose elements are given by (2.1). We recall that if 𝑥 is in the range of 𝐹,

fl(𝑥) = 𝑥(1 + 𝛿), |𝛿 | ≤ 𝑢,

where 𝑢 is the unit roundoff (Higham 2002, Thm. 2.2). Unless otherwise stated, when
the argument of fl is an expression expr, fl(expr) denotes the result of evaluating that
expression in floating-point arithmetic.

We will use the standard model of floating-point arithmetic (Higham 2002, Sec 2.2),
which states that

fl(𝑥 op 𝑦) = (𝑥 op 𝑦)(1 + 𝛿), |𝛿 | ≤ 𝑢, op = +,−, ∗, /. (3.1)

This model is certainly satisfied by IEEE arithmetic (in the absence of underflow or
overflow), which defines fl(𝑥 op 𝑦) to be the rounded exact value.

A constant that appears in rounding error analyses is

𝛾𝑛 =
𝑛𝑢

1 − 𝑛𝑢 (𝑛𝑢 < 1).

We will use the notation 𝑢16, 𝑢32, 𝑢64, and 𝑢128 to denote the unit roundoffs corres-
ponding to IEEE arithmetics with the indicated word sizes. These values are given in the
third column of Table 2.1.

The rounding error bounds we state in this paper are mostly worst-case bounds and
can be very pessimistic. For blocked algorithms, worst-case bounds that are smaller by a
factor equal to the block size can be obtained for many algorithms, as explained by Higham

22https://github.com/JuliaMath/BFloat16s.jl
23http://half.sourceforge.net/
24https://numpy.org/

14

https://github.com/JuliaMath/BFloat16s.jl
http://half.sourceforge.net/
https://numpy.org/

(2021). Moreover, under suitable assumptions on the rounding errors, probabilistic bounds
with constants that are the square roots of the constants in the worst-case bounds can be
obtained; see Section 4.3. These observations are important because for low precisions a
constant 𝑛𝑢 (say) in a worst-case rounding error bound can exceed 1 even for very modest
𝑛.

4 Matrix multiplication
In this section we consider the computation of 𝐶 = 𝐴𝐵, where 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑝
are two general matrices. If all operations are carried out in a uniform precision 𝑢, the
computed 𝐶 satisfies the standard bound (Higham 2002, Sec. 3.5)

|𝐶 − 𝐶 | ≤ 𝛾𝑛 |𝐴| |𝐵 |, (4.1)

where |𝐴| denotes the matrix of absolute values, (|𝑎𝑖 𝑗 |).
The presence of the dimension 𝑛 in bound (4.1), which reflects the fact that rounding

errors accumulate along the inner dimension, may prevent the computation from achieving
sufficient accuracy when 𝑛 is large or 𝑢 is large. Various approaches have therefore been
proposed to reduce the effect of error accumulation, and mixed precision arithmetic is at
the heart of several of them.

4.1 Using block FMAs
A matrix product can be computed with the aid of a block FMA (2.2). We will assume that
the internal computations are done at precision 𝑢high.

Block FMAs can be chained together by taking the output 𝐷 at precision 𝑢high and
using it as the input 𝐶 to a subsequent FMA. Block FMAs thereby provide a natural way
to mitigate error accumulation, as accumulation occurs at the level of 𝑢high, not 𝑢low. The
required conversion of 𝐴 and 𝐵 to 𝑢low is the only source of error of order 𝑢low, and it does
not depend on the matrix dimensions.

Algorithm 4.1 shows how to use a block FMA to compute a general matrix product.
Three precisions are in play: the working precision 𝑢 and the precisions 𝑢low and 𝑢high,
where 𝑢high ≤ 𝑢low.

Algorithm 4.1 Let 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑡 , given in precision 𝑢, be partitioned into
𝑏1 × 𝑏 blocks 𝐴𝑖 𝑗 and 𝑏 × 𝑏2 blocks 𝐵𝑖 𝑗 , respectively, where 𝑝 = 𝑚/𝑏1, 𝑞 = 𝑛/𝑏, and
𝑟 = 𝑡/𝑏2 are assumed to be integers. This algorithm performs the matrix multiplication
𝐶 = 𝐴𝐵 using a block FMA.

1 𝐴← fllow(𝐴), 𝐵← fllow(𝐵)
2 for 𝑖 = 1: 𝑝
3 for 𝑗 = 1: 𝑟
4 𝐶𝑖 𝑗 = 0
5 for ℓ = 1: 𝑞
6 Compute 𝐶𝑖 𝑗 = 𝐶𝑖 𝑗 + 𝐴𝑖ℓ𝐵ℓ 𝑗 using a block FMA with output

at precision 𝑢high.
7 end

15

8 Convert 𝐶𝑖 𝑗 to precision 𝑢.
9 end

10 end

The following error bound, a special case of Blanchard et al. (2020b, Thm. 3.2),
describes the result of Algorithm 4.1.

Theorem 4.2 Let the product 𝐶 = 𝐴𝐵 of 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑡 , given in precision 𝑢,
be evaluated by Algorithm 4.1, where 𝑞 = 𝑛/𝑏. The computed 𝐶 satisfies

|𝐶 − 𝐶 | ≤
(
2𝑢low + 𝑢2

low + 𝑛𝑢high +𝑂(𝑢high𝑢low)
)
|𝐴| |𝐵 |. (4.2)

Theorem 4.2 is applicable to NVIDIA Volta and Turing tensor cores with 𝑏 = 4,
𝑢low = 𝑢16, and 𝑢high = 𝑢32. The theorem is also applicable to the latest Ampere generation
of NVIDIA GPUs, where 𝐴 and 𝐵 can also be stored in bfloat16 or tfloat32 arithmetics.25

We note that a more general error analysis is given in Blanchard et al. (2020b, Thm. 3.2)
that allows for a different precision in the internal block FMA evaluation.

Optimized low precision BLAS are available in vendor libraries, such as in NVIDIA’s
cuBLAS library. Open source implementations are also available, such as that of San Juan,
Rodríguez-Sánchez, Igual, Alonso-Jordá and Quintana-Ortí (2021) who target the ARM
v8.2 architecture, and Abdelfattah, Tomov and Dongarra (2019a), who provide batched
multiplication routines for NVIDIA GPUs. A batched operation is one in which many
independent operations on small matrices are grouped together and carried out by a single
routine, and the batched BLAS standard described by Abdelfattah et al. (2021b) includes
half precision and quadruple precision data types.

4.2 Blocked summation
In the absence of block FMA hardware with internal computations in higher precision,
reduced error bounds can still be achieved by changing the summation algorithm used
to compute each element 𝑐𝑖 𝑗 =

∑𝑛
𝑘=1 𝑎𝑖𝑘𝑏𝑘 𝑗 . In particular, blocked algorithms, which

are widely used in numerical linear algebra, compute the sum 𝑠 =
∑𝑛

𝑘=1 𝑥𝑘 by grouping
summands 𝑥𝑘 into blocks of size 𝑏. Partial sums of 𝑏 summands are first computed
independently, before being combined into the final result. By doing so, the term 𝛾𝑛 in
the error bound (4.1) is reduced to 𝛾

𝑏+𝑛/𝑏−1, because rounding errors incurred in different
blocks do not accumulate. Indeed in forming 𝑐𝑖 𝑗 , precisely (𝑛/𝑏)(𝑏 − 1) = 𝑛 − 𝑛/𝑏 of the
additions are carried out in computing the partial sums, and these account for the term 𝑏𝑢

in the bound. Only the last 𝑛/𝑏 − 1 additions account for the error term (𝑛/𝑏 − 1)𝑢. This
observation creates an opportunity for mixed precision arithmetic: by computing these last
𝑛/𝑏 − 1 additions in higher precision (say, in precision 𝑢2), we can obtain an error bound
independent of 𝑛 to first order. The next result is a special case of Blanchard et al. (2020a,
Thm. 4.2).

Theorem 4.3 Let the product 𝐶 = 𝐴𝐵 of 𝐴 ∈ R𝑚×𝑛 and 𝐵 ∈ R𝑛×𝑝 be evaluated by
computing the inner products 𝑐𝑖 𝑗 =

∑𝑛
𝑘=1 𝑎𝑖𝑘𝑏𝑘 𝑗 by blocks of size 𝑏, where partial sums

25Tfloat32 is a format introduced by NVIDIA for use in tensor cores that has the range of fp32 and the precision
of fp16.

16

of each block are computed in precision 𝑢 before being combined in precision 𝑢2. The
computed 𝐶 satisfies

|𝐶 − 𝐶 | ≤
(
(𝑏 + 1)𝑢 + (𝑛/𝑏 + 𝑏2 − 1)𝑢2 +𝑂(𝑢3)

)
|𝐴| |𝐵 |. (4.3)

This mixed precision summation algorithm is an instance of the FABsum algorithm (Blan-
chard et al. 2020a), which computes the partial sums with a fast summation and combines
them with an accurate summation. The reduction of the error bound is achieved at a modest
extra cost, because most of the additions are still carried out in precision 𝑢.

Fasi et al. (2021a) implement FABsum on NVIDIA GPUs using the CUTLASS26

library to improve the accuracy of multiword matrix multiplication (see section 13).
Their implementation achieves an improved performance–accuracy tradeoff compared with
cuBLAS: depending on the choice of block size and precisions, FABsum can be either as
fast as cuBLAS with fp16 tensor cores, but more accurate, or as accurate as cuBLAS with
fp32 arithmetic, but faster.

4.3 Probabilistic analyses
The bounds (4.1)–(4.3) are worst-case bounds and they do not reflect the fact that rounding
errors of opposite signs can partially cancel each other. Under some assumptions on the
rounding errors, probabilistic error analyses (Connolly et al. 2021, Connolly and Higham
2022, Higham and Mary 2019a, 2020a, Ipsen and Zhou 2020) show that the dimension-
dependent constants in the bounds can be replaced by their square roots. The underlying
assumptions of these analyses are not always satisfied; one way to enforce them is to use
stochastic rounding (Connolly et al. 2021).

In the case where the matrices 𝐴 and 𝐵 are generated by sampling their entries from
a random distribution, the sharper analysis of Higham and Mary (2020a) shows that the
means of the entries play an important role. Specifically, for zero-mean data, the error
bound is independent of 𝑛. Therefore, given a general matrix, a natural idea is to shift its
entries so that they have zero mean. Computing the product𝐶 = 𝐴𝐵 of the shifted matrices
and shifting back the result can provide a much more accurate result (Higham and Mary
2020a, Thm. 4.2). Shifting back the result has negligible cost for large dimensions, but it
must be carried out in higher precision.

4.4 Multiword matrix multiplication with block FMAs
The emergence of block FMA hardware that allows for accumulation in higher precision
(see Section 2.4) has provided new opportunities to efficiently implement matrix multi-
plication using multiword arithmetic, such as double–fp16 arithmetic, which approximates
fp32 arithmetic by representing numbers as the unevaluated sum of two fp16 numbers.
These approaches are described in Section 13.

4.5 Data-driven matrix–vector product
Recently, various inner product and matrix–vector product algorithms have been proposed
based on the idea of storing each element in a precision adapted to its magnitude. These
approaches are described in Section 14.4.

26https://github.com/nvidia/cutlass

17

https://github.com/nvidia/cutlass

5 Nonlinear equations
Consider a system of nonlinear algebraic equations

𝐹(𝑥) = 0, 𝐹 : R𝑛 → R𝑛. (5.1)

Many problems of interest can be formulated in this form, so we consider the use of mixed
precision arithmetic in this general context before specializing to particular problems.

Suppose we have an iteration 𝑥𝑘+1 = 𝑔(𝑥𝑘) that generates a sequence of vectors
𝑥0, 𝑥1, . . . converging to a solution 𝑥∗. An obvious idea is to use on each iteration arith-
metic of the lowest available precision that equals or exceeds the accuracy of the iterates.
Therefore we use low precision arithmetic for the early iterations and increase the precision
as the iteration proceeds, until the last few iterations are done at the working precision.
The justification is that the rounding errors committed on the early iterations should be
dominated by the inherent iteration errors. If the iteration is globally convergent this ap-
proach should produce a solution of quality as good as if the working precision were used
throughout, because such an iteration damps out errors, and each iterate 𝑥𝑘 can be regarded
as restarting the iteration with a new starting value.

The possible gain in speed from using mixed precision arithmetic in this way depends
on the number of iterations required, which in turn depends on the rate of convergence
and on the cost per iteration. Consider a quadratically convergent iteration and a working
precision of double. If at the end of the first iteration the error is 10−1, the subsequent errors
will ideally be 10−2, 10−4, 10−8, 10−16. We might carry out the first three iterations at half
precision, the fourth at single precision, and the fifth at double precision. Assuming each
iteration requires the same number of operations and a ratio of 1:2:4 for the costs of half,
single and double precision arithmetic, the overall cost will be a fraction (3/4+1/2+1)/5 =

9/20 of the cost of carrying out all the iterations in double precision. A greater speedup
will be obtained if a greater proportion of the iterations are carried out at lower precisions,
as will be the case if the initial non-asymptotic convergence phase is long, but in this
case alternative iterations or methods might be more efficient. The assumption that each
iteration requires the same number of operations may not hold, as we will see in Section 6,
and this is why greater speedups are possible.

Varying the precisions in the way just described does not always work. In particular,
it fails for iterations for matrix functions that are not self-correcting, such as the Newton
iteration for the unitary polar factor (a solution to 𝑋∗𝑋 = 𝐼): 𝑋𝑘+1 = (𝑋𝑘 + 𝑋−∗

𝑘
)/2,

𝑋0 = 𝐴 ∈ C𝑛×𝑛 (Higham 1986), (Higham 2008, Chap. 8). The iteration formula is
independent of 𝐴, so if we perturb 𝑋𝑘 → 𝑋𝑘 + 𝐸𝑘 with a general 𝐸𝑘 with ∥𝐸𝑘 ∥ ≫ 𝑢

(as opposed to the specially structured errors that appear in the exact arithmetic iteration),
then important information about 𝐴 has been lost and convergence to a matrix with error
of order 𝑢 cannot be obtained.

5.1 Newton’s method
Newton’s method is an excellent method for solving (5.1) and it includes various particular
methods of interest as special cases. Therefore we will carry out an analysis of Newton’s
method in mixed precision arithmetic. Because the analysis is general, it may be suboptimal
for particular problems, but it will reveal features common to all.

18

We suppose that 𝐹 is continuously differentiable and denote by 𝐽 its Jacobian matrix
(𝜕𝐹𝑖/𝜕𝑥 𝑗). Given a starting vector 𝑥0, Newton’s method for (5.1) generates a sequence
{𝑥𝑖} defined by

𝐽(𝑥𝑖)(𝑥𝑖+1 − 𝑥𝑖) = −𝐹(𝑥𝑖), 𝑖 ≥ 0. (5.2)

As is well known, under appropriate conditions 𝑥𝑖 converges to a solution 𝑥∗ from any
starting vector 𝑥0 sufficiently close to 𝑥∗, and the rate of convergence is quadratic if 𝐽(𝑥∗) is
nonsingular (Dennis and Schnabel 1983, Theorem. 5.2.1). We consider the mixed precision
implementation of Newton’s method given in Algorithm 5.1. Here, we evaluate 𝑓 in a
possibly higher precision 𝑢𝑟 and solve for the update 𝑑𝑖 at a possibly lower precision 𝑢ℓ
(hoping that the resulting errors are damped out). In this and the later algorithms, 𝑖max is a
limit on the number of iterations and “or until converged” means that the iteration will be
terminated if an unspecified convergence test based on the residual or an estimate of the
forward error is satisfied.

Algorithm 5.1 Newton’s method for 𝐹(𝑥) = 0 with starting vector 𝑥1, in precisions 𝑢ℓ , 𝑢,
and 𝑢𝑟 (𝑢𝑟 ≤ 𝑢 ≤ 𝑢ℓ).

1 for 𝑖 = 1: 𝑖max or until converged
2 Compute 𝑓𝑖 = 𝐹(𝑥𝑖) in precision 𝑢𝑟 .
3 Solve 𝐽(𝑥𝑖)𝑑𝑖 = − 𝑓𝑖 in precision 𝑢ℓ .
4 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 at precision 𝑢.
5 end

Accounting for rounding and approximation errors, we can write the computed iterates
𝑥̂𝑖 as

𝑥̂𝑖+1 = 𝑥̂𝑖 −
(
𝐽(𝑥̂𝑖) + 𝐸𝑖

)−1 (
𝐹(𝑥̂𝑖) + 𝑒𝑖

)
+ 𝜖𝑖 . (5.3)

The error terms are explained as follows.

• 𝑒𝑖 is the error made in computing 𝐹(𝑥̂𝑖), and we assume that there is a function 𝜓

depending on 𝐹, 𝑥̂𝑖 , 𝑢, and 𝑢𝑟 such that

∥𝑒𝑖 ∥ ≤ 𝑢∥𝐹(𝑥̂𝑖)∥ + 𝜓(𝐹, 𝑥̂𝑖 , 𝑢, 𝑢𝑟). (5.4)

• 𝐸𝑖 combines the error incurred in forming 𝐽(𝑥̂𝑖) with the backward error for solving
the linear system for 𝑑𝑖 . We assume that

∥𝐸𝑖 ∥ ≤ 𝜙(𝐹, 𝑥̂𝑖 , 𝑛, 𝑢ℓ , 𝑢), (5.5)

for some function 𝜙 that reflects both the (in)stability of the linear system solver and
the error made when approximating or forming 𝐽(𝑥̂𝑖). In practice, we certainly have
𝜙(𝐹, 𝑥̂𝑖 , 𝑛, 𝑢ℓ , 𝑢) ≥ 𝑢∥𝐽(𝑥̂𝑖)∥.

• 𝜖𝑖 is the rounding error made when adding the correction 𝑑𝑖 to 𝑥̂𝑖 , so

∥𝜖𝑖 ∥ ≤ 𝑢(∥𝑥̂𝑖 ∥ + ∥𝑑𝑖 ∥).

19

The norm is any absolute vector norm (one for which ∥ |𝑣 | ∥ = ∥𝑣∥ for all 𝑣) and the
corresponding subordinate matrix norm.

Note that (5.3) is a very general model, and with a suitable choice of 𝐸𝑖 it yields
modified Newton methods, in which the Jacobian is held constant for several iterations in
order to reduce the cost of the method.

We wish to know how the precisions affect (a) sufficient conditions for convergence and
(b) the limiting accuracy and limiting residual, that is, how small ∥𝑥∗ − 𝑥̂𝑖 ∥ and ∥𝐹(𝑥̂𝑖)∥ are
guaranteed to become as 𝑖 increases, where 𝑥∗ is the solution to which the iteration would
converge in the absence of errors.

We will assume that 𝐽 is Lipschitz continuous with constant 𝜃𝐿 , that is,

∥𝐽(𝑣) − 𝐽(𝑤)∥ ≤ 𝜃𝐿 ∥𝑣 − 𝑤∥ for all 𝑣, 𝑤 ∈ R𝑛.

Analyses of the effects of different sources of error on Newton’s method are available
in the literature, for example in Kelley (1995, Section 5.4) and Kelley (2022). Most useful
for our purposes are results of Tisseur (2001). The results were originally stated for the
situation where just two precisions are in use (𝑢ℓ = 𝑢), but they are general enough to
support a third precision 𝑢ℓ as well. The first result bounds the limiting accuracy. Here we
use the condition number 𝜅(𝐴) = ∥𝐴∥∥𝐴−1∥.

Theorem 5.2 (Tisseur) Assume that there is an 𝑥∗ such that 𝐹(𝑥∗) = 0 and 𝐽∗ = 𝐽(𝑥∗) is
nonsingular with

𝜅(𝐽∗)𝑢 ≤
1
8
. (5.6)

Assume also that for 𝜙 in (5.5),

∥𝐽(𝑥̂𝑖)−1∥ 𝜙(𝐹, 𝑥̂𝑖 , 𝑛, 𝑢ℓ , 𝑢) ≤ 1
8

for all 𝑖. (5.7)

Then, for all 𝑥0 such that

𝜃𝐿 ∥𝐽−1
∗ ∥ ∥𝑥0 − 𝑥∗∥ ≤

1
8
, (5.8)

Newton’s method in floating-point arithmetic generates a sequence {𝑥̂𝑖} satisfying

∥𝑥̂𝑖+1 − 𝑥∗∥ ≤ 𝛼𝑖 ∥𝑥̂𝑖 − 𝑥∗∥ + 𝛽𝑖 , (5.9)

where

𝛼𝑖 ≈ ∥𝐽(𝑥̂𝑖)−1𝐸𝑖 ∥ + ∥𝐽−1
∗ ∥∥𝑥̂𝑖 − 𝑥∗∥ + 𝜅(𝐽∗)𝑢,

𝛽𝑖 ≈ ∥𝐽−1
∗ ∥∥𝜓(𝐹, 𝑥̂𝑖 , 𝑢, 𝑢𝑟)∥ + 𝑢∥𝑥∗∥,

and the normwise relative error decreases until the first 𝑖 for which

∥𝑥̂𝑖+1 − 𝑥∗∥
∥𝑥∗∥

≈ ∥𝐽
−1
∗ ∥
∥𝑥∗∥

𝜓(𝐹, 𝑥∗, 𝑢, 𝑢𝑟) + 𝑢. (5.10)

As a check, we note that in the absence of errors, the terms 𝑢, 𝜓(𝐹, 𝑣, 𝑢, 𝑢𝑟), and
𝜙(𝐹, 𝑣, 𝑛, 𝑢ℓ , 𝑢) are all zero and thus Theorem 5.2 implies local quadratic convergence of
Newton’s method.

20

In words, Theorem 5.2 says that if 𝐽(𝑥∗) is not too ill conditioned, the Jacobian
evaluation and the solver are not too inaccurate, the Lipschitz constant 𝜃𝐿 is not too large,
and the initial guess 𝑥0 is not too far from 𝑥∗, then the limiting accuracy is proportional to
the condition of the Jacobian at the solution and the accuracy with which the residual is
evaluated. Note that the function 𝜙 does not appear in (5.10), which shows that errors in
forming 𝐽 and solving the linear system do not affect the limiting accuracy, provided they
are not too large. The 𝛼𝑖 term in (5.9) shows that these errors do, however, affect the rate
of convergence, and that this rate is essentially independent of 𝑢𝑟 .

The next result bounds the limiting residual.

Theorem 5.3 (Tisseur) Under the assumptions of Theorem 5.2, if

𝜃𝐿 ∥𝐽−1
∗ ∥

(
∥𝐽−1
∗ ∥𝜓(𝐹, 𝑥∗, 𝑢, 𝑢𝑟) + 𝑢∥𝑥∗∥

)
≤ 1

8
,

then, for all 𝑥0 such that (5.8) holds, the sequence {∥𝐹(𝑥̂𝑖)∥} of residual norms generated
by Newton’s method in floating-point arithmetic decreases until

∥𝐹(𝑥̂𝑖+1)∥ ≈ 𝜓(𝐹, 𝑥̂𝑖 , 𝑢, 𝑢𝑟) + 𝑢∥𝐽(𝑥̂𝑖)∥ ∥𝑥̂𝑖 ∥. (5.11)

Theorem 5.3 shows that, under very similar conditions to those in Theorem 5.2, the
limiting residual is at the level of the error made in computing the residual plus the term
𝑢∥𝐽(𝑥̂𝑖)∥ ∥𝑥̂𝑖 ∥. This latter term is inevitable: from the Taylor series

𝐹(𝑥∗ + 𝛥𝑥∗) = 𝐹(𝑥∗) + 𝐽(𝑥∗)𝛥𝑥∗ +𝑂(∥𝛥𝑥∗∥2),

we see that merely rounding the exact solution to 𝑥̃∗ = 𝑥∗ + 𝛥𝑥∗, so that ∥𝛥𝑥∗∥ ≤ 𝑢∥𝑥∗∥,
gives

∥𝐹(𝑥̃∗)∥ ≲ ∥𝐽(𝑥∗)∥ ∥𝛥𝑥∗∥ ≤ 𝑢∥𝐽(𝑥∗)∥ ∥𝑥∗∥.
Just as for the limiting accuracy, the limiting residual does not depend on the errors in
evaluating 𝐽 or in solving the linear systems.

Since the limiting accuracy and limiting residual both depend on 𝜓, Theorems 5.2 and
5.3 confirm the folklore that Newton’s method must be provided with good function values
if it is to work well in practice.

As an application, we consider a linear system 𝐹(𝑥) = 𝑏 − 𝐴𝑥 = 0, where 𝐴 ∈ R𝑛×𝑛 is
nonsingular. In principle, Newton’s method converges in one step, but in the presence of
errors it becomes an iterative method, namely iterative refinement. Here, we have 𝜃𝐿 = 0.
Computing 𝐹 at precision 𝑢𝑟 and rounding to precision 𝑢 gives

𝜓(𝐹, 𝑥̂𝑖 , 𝑢, 𝑢𝑟) ≈ 𝛾𝑟𝑛+1(∥𝑏∥ + ∥𝐴∥∥𝑥̂𝑖 ∥),

where 𝛾𝑟
𝑛+1 = (𝑛 + 1)𝑢𝑟/(1 − (𝑛 + 1)𝑢𝑟). Hence Theorem 5.2 shows a limiting accuracy

∥𝑥̂𝑖+1 − 𝑥∗∥
∥𝑥∗∥

≈ ∥𝐴
−1∥
∥𝑥∗∥ 𝛾𝑟𝑛+1(∥𝑏∥ + ∥𝐴∥∥𝑥̂𝑖 ∥) + 𝑢

≲ 2𝜅(𝐴)𝛾𝑟𝑛+1 + 𝑢,

since ∥𝑥̂𝑖 ∥ ≈ ∥𝑥∗∥ and ∥𝑏∥ ≤ ∥𝐴∥∥𝑥∗∥. Hence if 𝑢𝑟 = 𝑢2, the limiting accuracy is of order
𝑢 for 𝜅(𝐴) < 𝑢−1. Theorem 5.3 gives a limiting residual

∥𝑏 − 𝐴𝑥̂𝑖+1∥ ≈ 𝛾𝑟𝑛+1(∥𝑏∥ + ∥𝐴∥∥𝑥̂𝑖 ∥) + 𝑢∥𝐴∥∥𝑥̂𝑖 ∥

21

≲ (𝑛𝑢𝑟 + 𝑢)(∥𝑏∥ + ∥𝐴∥∥𝑥̂𝑖 ∥),

which means a backward error of order 𝑛𝑢𝑟 + 𝑢. Both theorems require (5.7) to hold, and
since we expect 𝜙 to be proportional to 𝑢ℓ for a solver in precision 𝑢ℓ , this condition is
essentially of the form 𝑐𝑛𝜅(𝐴)𝑢ℓ < 1 for some constant 𝑐𝑛.

This very general analysis of Newton’s method for 𝐴𝑥 = 𝑏 provides significant insight
into mixed precision iterative refinement, even though we have not specified the details of
the solver. We will derive more specific and detailed results in the next section.

6 Iterative refinement for 𝐴𝑥 = 𝑏

We consider the general iterative refinement algorithm given in Algorithm 6.1 for solving
a nonsingular linear system 𝐴𝑥 = 𝑏, based on the use of precisions 𝑢𝑟 ≤ 𝑢 and 𝑢ℓ ≥ 𝑢 in
addition to the working precision 𝑢. The method used to solve for the update vector 𝑑𝑖 on
line 3 is arbitrary; we will specialize to particular solvers in the following sections.

For a discussion of stopping tests see (Higham 2002, Sec. 12.3).

Algorithm 6.1 Given a nonsingular matrix 𝐴 ∈ R𝑛×𝑛, 𝑏 ∈ R𝑛, and an initial approxima-
tion 𝑥1, this algorithm uses iterative refinement to solve 𝐴𝑥 = 𝑏. The algorithm uses three
precisions satisfying 𝑢𝑟 ≤ 𝑢 ≤ 𝑢ℓ .

1 for 𝑖 = 1: 𝑖max or until converged
2 Compute 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 in precision 𝑢𝑟 .
3 Solve 𝐴𝑑𝑖 = 𝑟𝑖 at precision 𝑢ℓ .
4 Update 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 in precision 𝑢.
5 end

We denote the relative error in the solution computed on line 3 by

𝜉𝑖 =
∥𝑑𝑖 − 𝑑𝑖 ∥∞
∥𝑑𝑖 ∥∞

. (6.1)

Let

𝜇𝑖 =
∥𝐴(𝑥𝑖 − 𝑥̂𝑖)∥∞
∥𝐴∥∞∥𝑥1 − 𝑥̂𝑖 ∥∞

≤ 1, (6.2)

𝜙𝑖 = 2 min
(
cond(𝐴), 𝜅∞(𝐴)𝜇𝑖

)
𝑢ℓ + 𝜉𝑖 , (6.3)

where the condition number cond(𝐴) = ∥ |𝐴−1 | |𝐴| ∥∞. We also need the condition number

cond(𝐴, 𝑥) =
∥ |𝐴−1 | |𝐴| |𝑥 | ∥∞

∥𝑥∥∞
.

Note that cond(𝐴, 𝑥) ≤ cond(𝐴) ≤ 𝜅∞(𝐴). The next result is by Carson and Higham (2018,
Cor. 3.3).

22

Theorem 6.2 Let Algorithm 6.1 be applied with any 𝑥1 to a linear system 𝐴𝑥 = 𝑏, where
𝐴 ∈ R𝑛×𝑛 is nonsingular. As long as 𝜙𝑖 in (6.3) is sufficiently less than 1, the forward error
is reduced on the 𝑖th iteration by a factor approximately 𝜙𝑖 until an iterate 𝑥̂ is produced
for which

∥𝑥̂ − 𝑥∥∞
∥𝑥∥∞

≲ 𝑢 + 4𝑝 cond(𝐴, 𝑥)𝑢𝑟 , (6.4)

where 𝑝 is the maximum number of nonzeros in any row of [𝐴 𝑏].

Theorem 6.2 shows that the limiting accuracy (6.4) depends on the precisions 𝑢 and 𝑢𝑟
but does not depend on the precision 𝑢ℓ , on 𝑥1, or on how the system 𝐴𝑑𝑖 = 𝑟𝑖 at line 3 is
solved, provided that it is solved with some relative accuracy 𝜉𝑖 ≪ 1.

The limiting accuracy (6.4) motivates the use of extended precision in the computation
of the residual. Indeed, if we set 𝑢𝑟 = 𝑢2, we obtain a limiting accuracy of order 𝑢,
independent of the conditioning of the problem as long as cond(𝐴, 𝑥)𝑢 ≤ 1.

6.1 Historical development
6.1.1 Traditional iterative refinement

Iterative refinement was programmed on a digital computer by Wilkinson in 1948 (Wilkin-
son 1948, p. 111 ff.), using LU factorization with partial pivoting as the solver. Wilkinson,
and subsequent authors, took advantage in computing the residual of the ability of many
machines of the time to accumulate inner products at twice the working precision at little
or no extra cost (as discussed at the start of Section 2). The method was also used by
Wilkinson and colleagues on desk calculating machines, making use of their extra length
accumulators in computing residuals (Fox, Huskey and Wilkinson 1948a,b).

Iterative refinement with extra precision residuals fell out of favor in the 1970s because
machines began to lack the ability to accumulate inner products in extra precision. Indeed
the LINPACK library did not include it because it could not be implemented in a portable
way in Fortran (Dongarra, Bunch, Moler and Stewart 1979).

6.1.2 Fixed precision iterative refinement

As the traditional form of iterative refinement declined in popularity, another usage came
to the fore: fixed precision refinement, in which only one precision is used. Jankowski and
Woźniakowski (1977) proved that an arbitrary linear equation solver is made normwise
backward stable by the use of fixed precision iterative refinement, as long as the solver
is not too unstable to begin with and 𝐴 is not too ill conditioned. Skeel (1980) analysed
fixed precision iterative refinement for LU factorization with partial pivoting and showed
that one step of refinement yields a small componentwise backward error under suitable
conditions. Higham (1991) extended the componentwise backward error analysis of fixed
precision iterative refinement to a general solver, and Higham (1997) gave an analysis that
covers the traditional and fixed precision forms and a general solver.

6.1.3 Iterative refinement with lower precision solves

In the 2000s, hardware emerged in which fp32 arithmetic was much faster than fp64 arith-
metic, such as Intel chips with SSE instructions (a factor about 2) and the Sony/Toshiba/IBM

23

(STI) Cell processor (a factor up to 14) (Kurzak and Dongarra 2007). Motivated by this
speed difference, Langou et al. (2006) proposed a new usage of iterative refinement in
which LU factors computed at a precision lower than the working precision (specifically,
single versus double precision) are used to solve on line 3 in Algorithm 6.1.

Carson and Higham (2017) showed how preconditioned GMRES can be exploited on
line 3 in Algorithm 6.1, giving an algorithm called GMRES-based iterative refinement
(GMRES-IR). Carson and Higham (2018) proposed a three-precision version of iterative
refinement, essentially Algorithm 6.1, and gave detailed convergence analysis for the
backward error (normwise and componentwise) and the forward error.

Amestoy et al. (2021c) extended the analysis of Carson and Higham (2018) to a five-
precision form of GMRES-IR.

More details of these works are given in Sections 7 and 8.

6.2 Specialized applications
Much work has been done on specializing iterative refinement to particular contexts. We
mention just a few examples.

Govaerts and Pryce (1990) develop and analyze an iterative refinement-based algorithm
for solving bordered linear systems 𝐴𝑥 = 𝑏 of order 𝑛 in which a black box solver is assumed
to be available for systems involving the submatrix 𝐴(1 : 𝑛 − 1, 1 : 𝑛 − 1). An application
is to numerical continuation problems.

In some structured problems the elements of 𝐴 are never formed and so residuals cannot
be computed in the usual way via matrix–vector multiplication. An example is when 𝐴 is
a Vandermonde matrix and a fast 𝑂(𝑛2) flops algorithm tailored to the structure is being
used. Higham (1988) develops algorithms for solving Vandermonde-like systems where
𝑎𝑖 𝑗 = 𝑝𝑖−1(𝛼 𝑗), with {𝑝𝑖(𝑥)}𝑛−1

𝑖=0 a set of polynomials satisfying a three-term recurrence
relation, such as orthogonal polynomials. The algorithms are numerically unstable for the
Chebyshev polynomials, but one step of iterative refinement at the working precision is
found to give stability. The residual is evaluated by a nested multiplication algorithm for
orthogonal polynomials.

By steadily increasing the precision during the iterative refinement process it is possible
to compute solutions to arbitrarily high accuracy, assuming that arithmetic of suitable
precisions is available. This idea, first suggested in an exercise by Stewart (1973, pp. 206–
207) has been investigated by Kiełbasiński (1981) and Smoktunowicz and Sokolnicka
(1984).

7 Direct methods for 𝐴𝑥 = 𝑏

In this section we discuss the solution of linear systems by direct methods based on a
factorization of the matrix.

7.1 LU factorization-based iterative refinement
Algorithm 7.1 is a version of Algorithm 6.1 based on an LU factorization of 𝐴, hereinafter
referred to as LU-IR. The LU factorization is computed in precision 𝑢ℓ and is used to
compute the initial solution 𝑥1 and solve the update equation on line 5.

24

The only line of the algorithm that costs 𝑂(𝑛3) flops is the first line, as the substitutions
cost only 𝑂(𝑛2) flops. The factorization is carried out at precision 𝑢ℓ , so if 𝑢ℓ ≫ 𝑢 then if
the iteration converges quickly the algorithm is potentially significantly faster than solving
𝐴𝑥 = 𝑏 by LU factorization at precision 𝑢.

Algorithm 7.1 (LU-IR) Given a nonsingular matrix 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 this algorithm
uses LU factorization-based iterative refinement with three precisions satisfying 𝑢𝑟 ≤ 𝑢 ≤
𝑢ℓ , to solve 𝐴𝑥 = 𝑏.

1 Compute the factorization 𝐴 = 𝐿𝑈 in precision 𝑢ℓ .
2 Solve 𝐿𝑈𝑥1 = 𝑏 by substitution in precision 𝑢ℓ .
3 for 𝑖 = 1: 𝑖max or until converged
4 Compute 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 in precision 𝑢𝑟 .
5 Solve 𝐿𝑈𝑑𝑖 = 𝑟𝑖 by substitution in precision 𝑢ℓ .
6 Update 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 in precision 𝑢.
7 end

Standard error analysis (Higham 2002, Thm. 9.4) shows that solving a linear system by
substitution in precision 𝑢ℓ with LU factors computed in precision 𝑢ℓ achieves a relative
error bounded approximately by 3𝑛∥|𝐴−1 | | 𝐿̂ | |𝑈 |∥𝑢ℓ . Theorem 6.2 therefore yields the
following result.

Theorem 7.2 Let LU-IR (Algorithm 7.1) be applied to a linear system 𝐴𝑥 = 𝑏, where
𝐴 ∈ R𝑛×𝑛 is nonsingular. If ∥|𝐴−1 | | 𝐿̂ | |𝑈 |∥𝑢ℓ is sufficiently less than 1 then the algorithm
produces an iterate 𝑥̂ satisfying (6.4).

As mentioned in section 6, the traditional and fixed precision forms of iterative re-
finement use an LU factorization computed by LU factorization with partial pivoting with
𝑢ℓ = 𝑢. With such a stable LU factorization, the convergence condition in Theorem 7.2
reduces to 𝜅(𝐴)𝑢 ≪ 1. However, as already mentioned, unstable solvers can still lead
to convergence. In the context of LU-IR, two main approaches have been proposed that
introduce potential instability in an attempt to increase speed.

The first approach is to use a potentially unstable LU factorization in precision 𝑢,
where the instability can come from different sources. For example, using a weaker form of
pivoting to accelerate the factorization and preserve the sparsity of the matrix, such as static
pivoting (Li and Demmel 1998, Arioli, Duff, Gratton and Pralet 2007) can still lead to the
convergence of LU-IR. Several sparse direct solvers incorporate static pivoting strategies
as an option, such as MUMPS (Amestoy et al. 2001, Amestoy, Buttari, L’Excellent and
Mary 2019), which implements the approach proposed by Duff and Pralet (2007), or as the
default, such as SuperLU_DIST (Li and Demmel 2003) and PARDISO (Schenk, Gärtner,
Fichtner and Stricker 2001). Other potentially unstable, but faster, factorizations have
been combined with iterative refinement to remedy their instability, such as incomplete
LU factorization (Zlatev 1982) or Cholesky factorization for quasidefinite systems (Gill,
Saunders and Shinnerl 1996).

The second approach is to use an LU factorization in lower precision 𝑢ℓ > 𝑢. If the
LU factorization algorithm is numerically stable, convergence is guaranteed provided that
𝜅(𝐴)𝑢ℓ ≪ 1, as noted above. This approach is attractive because most of the work (𝑂(𝑛3)

25

flops for dense systems) is done in the factorization phase; the iterative phase (𝑂(𝑛2) flops)
has negligible cost for large 𝑛, as long as the number of iterations remains reasonable.
Thus, asymptotically, we may expect the speed of the entire solution to be determined by
the speed of the lower precision arithmetic. Using the Cell processor, Langou et al. (2006)
solve double precision linear systems (𝑢 = 𝑢64) with speedups of up to a factor eight over
a double precision LU factorization by using LU-IR (Algorithm 7.1) with 𝑢ℓ = 𝑢32 and
𝑢𝑟 = 𝑢. Further experimental results are reported by Buttari et al. (2007) for dense linear
systems and by Buttari et al. (2008) for sparse ones. See Baboulin et al. (2009) for an
overview of the methods developed in this period.

Iterative refinement with LU factorization in lower precision has also been exploited
on FPGAs (Sun, Peterson and Storaasli 2008).

The popularity of LU-IR with a lower precision factorization grew again with the emer-
gence of half precision arithmetic (fp16 and bfloat16). Indeed, half precision arithmetic
is at least four times faster than double precision arithmetic, and possibly much more than
that on some hardware, notably on NVIDIA tensor cores (see section 7.3). Haidar, Wu,
Tomov and Dongarra (2017) provide the first evaluation of the potential of half precision
for iterative refinement, obtaining speedups of up to 2.7 on an NVIDIA P100 GPU using
LU-IR with 𝑢 = 𝑢𝑟 = 𝑢64 and 𝑢ℓ = 𝑢16. Kudo et al. (2020a,b) implement LU-IR on the
Fugaku supercomputer, which is equipped with ARM-based Fujitsu A64FX processors
that support fp16 arithmetic, for use in the HPL-AI Mixed Precision Benchmark (see
Section 1.2.4).

LU-IR with a half precision factorization can only guarantee convergence for well-
conditioned problems: the condition 𝜅(𝐴)𝑢ℓ ≪ 1 translates to 𝜅(𝐴) ≪ 2000 in fp16
and 𝜅(𝐴) ≪ 300 in bfloat16. Two main approaches have been proposed to extend the
applicability of half precision iterative refinement to a wider range of problems: the first
uses a more accurate solver on line 5 of Algorithm 7.1 (see section 7.2) and the second
uses more accurate hardware such as tensor cores (see section 7.3).

7.2 GMRES-based iterative refinement
GMRES-IR (Carson and Higham 2017), mentioned in Section 6.1.3, is described in Al-
gorithm 7.3.

Algorithm 7.3 (GMRES-IR) Given a nonsingular matrix 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛 this
algorithm solves 𝐴𝑥 = 𝑏 using by GMRES-IR in five precisions: 𝑢𝑟 , 𝑢𝑔, 𝑢𝑝 , 𝑢, and 𝑢ℓ .

1 Compute the factorization 𝐴 = 𝐿𝑈 in precision 𝑢ℓ .
2 Solve 𝐿𝑈𝑥1 = 𝑏 by substitution in precision 𝑢ℓ .
3 for 𝑖 = 1: 𝑖max or until converged
4 Compute 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 in precision 𝑢𝑟 .
5 Solve 𝑈−1𝐿−1𝐴𝑑𝑖 = 𝑈−1𝐿−1𝑟𝑖 by GMRES in precision 𝑢𝑔, performing

the products with 𝑈−1𝐿−1𝐴 in precision 𝑢𝑝 .
6 Compute 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 in precision 𝑢.
7 end

Note that the application of the preconditioner on line 5 involves a multiplication by
𝐴 and substitutions with the LU factors. The results quoted below assume the use of a

26

backward stable implementation of GMRES, such as MGS-GMRES (Paige, Rozložník and
Strakoš 2006).

7.2.1 High accuracy solution of ill-conditioned systems

Carson and Higham (2017) proposed GMRES-IR with two precisions, 𝑢 = 𝑢ℓ and 𝑢𝑟 =

𝑢𝑔 = 𝑢𝑝 = 𝑢2, and were interested in solving ill-conditioned systems to high accuracy.
They showed that the quantity 𝜇𝑖 defined in (6.2) tends to be small in the early iterations
and gradually grows to order 1 as the iteration proceeds. This means that in 𝜙𝑖 in (6.3) the
min term is negligible in the early iterations and so 𝜙𝑖 ≈ 𝜉𝑖 . Carson and Higham (2017)
also show that 𝜉𝑖 ≈ 𝑢 as long as 𝜅(𝐴) is not much larger than 𝑢−1. Hence Theorem 6.2
guarantees that a limiting accuracy of order 𝑢 will be achieved. In other words, by using a
small amount of computation at twice the working precision it is possible to solve 𝐴𝑥 = 𝑏

to full accuracy even if 𝐴 is numerically singular!
It is important to emphasize that standard methods, such as even the singular value

decomposition (SVD), will not in general yield an accurate solution to an ill-conditioned
system. GMRES-IR computes an accurate solution to the update equation, which is
relatively well conditioned thanks to the preconditioning and which has an accurate right-
hand side. The behavior of 𝜇𝑖 is also crucial, and it had not been previously been proved
or exploited, though Wilkinson (1977) did make an observation that is equivalent to saying
that the 𝜇𝑖 increase with 𝑖.

7.2.2 Exploiting low precision LU factors of an ill-conditioned matrix

As mentioned in Section 7.1, one of the main limitations of LU-IR (Algorithm 7.1) is that
its success is guaranteed only when 𝜅(𝐴)𝑢ℓ ≪ 1. If the LU factorization is computed
in low precision, LU-IR is therefore limited to well-conditioned matrices. In this setting,
GMRES-IR becomes particularly useful. Indeed, even though GMRES-IR was originally
intended to solve linear systems nearly singular to the working precision 𝑢, as described
in the previous subsection, Carson and Higham (2018) subsequently proposed using it to
exploit LU factors computed in a precision 𝑢ℓ (potentially much) lower than the working
precision 𝑢. They assume that the preconditioner is applied in precision 𝑢𝑔 = 𝑢𝑝 = 𝑢2.
Amestoy et al. (2021c) relax this requirement by allowing the products with 𝑈−1𝐿−1𝐴 to
be carried out in a precision 𝑢𝑝 possibly lower than 𝑢2, and additionally allow the rest of
the GMRES computations to be performed in a precision 𝑢𝑔 possibly lower than 𝑢. This
results in the five-precision algorithm described in Algorithm 7.3. To obtain convergence
guarantees for this algorithm, Amestoy et al. (2021c) generalize the analysis of Paige
et al. (2006) on the backward stability of GMRES to a two-precision GMRES with LU
preconditioning, and they prove the following theorem.

Theorem 7.4 Let GMRES-IR (Algorithm 7.3) be applied to a linear system 𝐴𝑥 = 𝑏, where
𝐴 ∈ R𝑛×𝑛 is nonsingular. If 𝜅(𝐴)2𝑢2

ℓ

(
𝑢𝑔 + 𝜅(𝐴)𝑢𝑝

)
is sufficiently less than 1 then the

algorithm produces an iterate 𝑥̂ satisfying (6.4).

Amestoy et al. (2021c) consider the thousands of possible combinations of the five
precisions in Algorithm 7.3 and narrow down the choice to a few combinations of practical
interest, from among which one can balance accuracy, robustness, and performance. The

27

bounds on 𝜅(𝐴) for convergence guarantees are not always sharp, so it can be difficult
to decide which variant should be preferred for a particular problem. To address this
issue, Oktay and Carson (2021) propose a multistage iterative refinement that switches to
increasingly robust but also more expensive variants by monitoring key quantities during
the iterative process.

Haidar, Tomov, Dongarra and Higham (2018b) and Haidar et al. (2020) implement
GMRES-IR with just two precisions: the factorization is in half precision (𝑢ℓ) and the rest
of the operations are in double precision (𝑢𝑔 = 𝑢𝑝 = 𝑢𝑟 = 𝑢). They show that for several
matrices where LU-IR takes a large number of iterations to converge, GMRES-IR can still
converge in a small number of iterations and thus retains an attractive performance boost
compared with LU-IR with a single precision factorization.

Higham and Mary (2019b) propose a new preconditioner that builds upon the low
precision LU factors and exploits a low-rank approximation to speed up GMRES-IR.

7.3 Harnessing tensor cores
NVIDIA tensor cores present two benefits for iterative refinement compared with standard
half precision arithmetic on NVIDIA GPUs. The first is that they are significantly faster and
so computing the LU factorization with tensor cores provides more room to amortize the
cost of the iterations in the iterative phase. The second benefit is their improved accuracy
since, as discussed in section 2.4, tensor cores accumulate intermediate operations in fp32
arithmetic.

Tensor cores can carry out arbitrarily sized matrix products using Algorithm 4.1 and
so can be naturally exploited by standard blocked LU factorization algorithms, which
mostly consist of matrix–matrix products. Haidar et al. (2018b) propose an algorithm that
harnesses tensor cores to accelerate the updates of the trailing submatrix, which account for
the 𝑂(𝑛3) flops of the factorization; the remaining 𝑂(𝑛2) flops are carried out by standard
floating-point units in fp32 arithmetic. Blanchard et al. (2020b, Thm. 4.4) analyze this
algorithm and prove that it possesses a reduced backward error bound of order 𝑢16 + 𝑛𝑢32
instead of the standard bound 𝑛𝑢16 of an LU factorization entirely in fp16 arithmetic.

Using their mixed precision LU factorization algorithm within LU-IR or GMRES-IR,
Haidar et al. (2018b) are able to solve linear systems with fp64 accuracy at a speed of up
to 24 TFLOPS on an NVIDIA V100 GPU, which represents a speedup of 4 over a double
precision solver. Moreover, for some of the more difficult matrices in their test set, the
solution entirely in fp16 arithmetic requires many iterations or does not converge at all,
whereas the algorithm using tensor cores maintains a fast convergence. This shows that the
accuracy boost of tensor cores can strongly improve the convergence of iterative refinement.
The use of half precision and/or tensor cores also improves the energy efficiency of the
solution, reducing power consumption by up to a factor 5 (Haidar et al. 2018a). See Haidar
et al. (2020) for a more complete discussion of iterative refinement with tensor cores
and Abdelfattah, Tomov and Dongarra (2019b) for an extension of these approaches to
complex matrices. These ideas are implemented in the MAGMA library27, in the NVIDIA
cuSOLVER library28, and also in the SLATE library29 (Charara et al. 2020), which targets
machines with large numbers of cores and multiple hardware accelerators per node.

27https://icl.utk.edu/magma/
28https://developer.nvidia.com/cusolver
29https://icl.utk.edu/slate/

28

https://icl.utk.edu/magma/
https://developer.nvidia.com/cusolver
https://icl.utk.edu/slate/

In addition to its speed and energy benefits, fp16 arithmetic can also be used to reduce
memory consumption and data movement. However, special care has to be taken not to lose
the accuracy boost of tensor cores. Indeed, tensor cores carry out computations internally
in fp32 arithmetic, and so to benefit from their improved accuracy the input matrix 𝐶

in (2.2) needs to be stored in fp32. Lopez and Mary (2020) propose a modification of
the above approaches of Haidar et al., based on a left-looking Crout factorization that
allows them to store the matrix in fp16 while accumulating computations in fp32 buffers
of controlled size. As a result, memory consumption is halved and data movement costs
are greatly reduced, making the factorization faster by up to a factor two on NVIDIA V100
GPUs.

7.4 Scaling strategies
A limitation of iterative refinement with fp16 as the low precision arithmetic is the narrow
range of the arithmetic: as seen in Table 2.1, numbers of magnitude outside the interval
[𝑥𝑠min, 𝑥max] = [5.96×10−8, 6.55×104] are not representable and will underflow or overflow
when converted to fp16. Moreover, numbers of magnitude smaller than 𝑥min = 6.10×10−5

are often flushed to zero in practice, to avoid the possibly heavy performance penalty of
handling subnormal numbers.

In the LU factorization of a matrix 𝐴 in fp16 arithmetic, overflow and underflow may
occur during the initial conversion of 𝐴 to fp16 and also during the LU factorization itself.
In particular, note that even LU factorization algorithms using tensor cores that keep the
original matrix in fp32 are not immune to overflow and underflow, since the LU factors
must be converted to fp16.

One way to deal with overflow in rounding 𝐴 to fp16 is to replace any element 𝑎𝑖 𝑗 that
overflows by sign(𝑎𝑖 𝑗)𝜃𝑥max, where 𝜃 ∈ (0, 1] is a parameter. We will refer to this as the
overflow mapping strategy. This approach is used in Haidar et al. (2017, 2018a,b).

Higham, Pranesh and Zounon (2019) suggest Algorithm 7.5, which uses a two-sided
diagonal scaling at the working precision and only rounds to fp16 once all the matrix
elements do not exceed 𝑥max. The algorithm applies row and column equilibration, which
produces a matrix 𝐴 in which every row and column has maximum element in modulus
equal to 1. Then it scales 𝐴 so that the maximum element in modulus of the scaled matrix
is 𝜃𝑥max and rounds to fp16. Here, 𝜃 is intended to be reasonably close to 1, in order to
maximize the use of the limited fp16 range and keep the numbers away from the subnormal
zone. If 𝐴 is symmetric, a symmetry-preserving two-sided scaling of Knight, Ruiz and
Uçar (2014) can be used instead of row and column equilibration.

Algorithm 7.5 This algorithm rounds 𝐴 ∈ R𝑛×𝑛 to the fp16 matrix 𝐴(ℎ), scaling all
elements to avoid overflow. 𝜃 ∈ (0, 1] is a parameter.

1 𝑅 = diag
(
∥𝐴(𝑖, :)∥−1

∞
)

2 𝐴 = 𝑅𝐴 % 𝐴 is row equilibrated.
3 𝑆 = diag

(
∥𝐴(: , 𝑗)∥−1

∞
)

4 𝐴 = 𝐴𝑆 % 𝐴 is now row and column equilibrated.
5 Let 𝛽 be the maximum magnitude of any entry of 𝐴.
6 𝜇 = 𝜃𝑥max/𝛽
7 𝐴(ℎ) = flh(𝜇𝐴)

29

How should 𝜃 be chosen? The main requirement is that there is no overflow in the
LU factorization, which means that we need 𝜃 ≤ 𝜌−1

𝑛 , where 𝜌𝑛 is the growth factor for
LU factorization on 𝐴. With partial pivoting, 𝜌𝑛 is typically not large, so one might take
𝜃 = 0.1, as used in Higham et al. (2019). However, large growth factors can occur, notably
for “randsvd matrices” having one small singular value (Higham, Higham and Pranesh
2021), and this led to poor performance with 𝜃 = 0.1 in one of the experiments in Haidar
et al. (2020, Section 14(b)).

Higham et al. (2019) show experimentally that compared with the overflow mapping
strategy, Algorithm 7.5 leads to faster and more reliable convergence of GMRES-IR on
badly scaled matrices.

Unless the LU factors are converted to fp32 precision at the end of the factorization (or
are already available in fp32, such as when using tensor cores), the substitution operations
must also be performed in fp16 arithmetic, and are therefore vulnerable to overflow and
underflow, especially as the elements of the residual vector 𝑟𝑖 on line 4 of Algorithm 7.1
must eventually become of order 𝑢(∥𝐴∥∥𝑥∥ + ∥𝑏∥), and so are likely to underflow in fp16.
Techniques for avoiding overflow in solving triangular systems can be found in Anderson
(1991) and Demmel and Li (1994) (these are used in the LAPACK subroutine xLATRS)
and they can be combined with the simple scaling suggested by Carson and Higham (2018,
Sec. 6) and Luszczek, Yamazaki and Dongarra (2019).

7.5 Exploiting symmetry and positive definiteness
Suppose, now, that 𝐴 ∈ R𝑛×𝑛 is symmetric positive definite. In principle, LU-IR can be
adapted in a straightforward way by replacing LU factorization with Cholesky factoriza-
tion. However, there is a problem to overcome: a matrix that has elements stored in a
given precision and is symmetric positive definite may lose definiteness when rounded
to a lower precision, and in Algorithm 7.1 we round 𝐴 to precision 𝑢ℓ on the first step.
We can guarantee to preserve definiteness in the rounding only if 𝜅2(𝐴)𝑢ℓ < 1, which is
a severe restriction if we are using half precision. Higham and Pranesh (2021) suggest
Algorithm 7.6, which scales and shifts in order to ensure a successful Cholesky factor-
ization. The two-sided scaling 𝐻 = 𝐷−1𝐴𝐷−1, where 𝐷 = diag(𝑎1/2

𝑖𝑖
), produces a unit

diagonal matrix with off-diagonal elements bounded in magnitude by 1. This matrix is
then shifted by an amount intended to lift the smallest eigenvalue sufficiently above zero,
and a multiplicative factor 𝜃 is applied that plays the same role as that in Algorithm 7.5.
As explained by Higham and Pranesh (2021), shifting 𝐻 by a multiple of 𝐼 is better than
shifting 𝐴 by a multiple of 𝐼, as it is equivalent to shifting 𝐴 by a multiple of diag(𝑎𝑖𝑖) and
so it makes the same relative perturbation to each diagonal element of 𝐴.

Algorithm 7.6 Given a symmetric positive definite 𝐴 ∈ R𝑛×𝑛 in precision 𝑢 this algorithm
computes an approximate Cholesky factorization 𝑅𝑇𝑅 ≈ 𝜇𝐷−1𝐴𝐷−1 at precision 𝑢ℓ > 𝑢,
where 𝐷 = diag(𝑎1/2

𝑖𝑖
). The scalar 𝜃 ∈ (0, 1] and the positive integer 𝑐 are parameters.

1 𝐷 = diag(𝑎1/2
𝑖𝑖

), 𝐻 = 𝐷−1𝐴𝐷−1 % Set ℎ𝑖𝑖 ≡ 1 instead of computing it.
2 𝐺 = 𝐻 + 𝑐𝑢ℓ 𝐼
3 𝛽 = 1 + 𝑐𝑢ℓ

30

4 𝜇 = 𝜃𝑥max/𝛽
5 𝐴ℓ = flℓ(𝜇𝐺)
6 Attempt Cholesky factorization 𝐴ℓ = 𝑅𝑇𝑅 in precision 𝑢ℓ .
7 if Cholesky factorization failed
8 𝑐 ← 2𝑐, goto line 2
9 end

Higham and Pranesh (2021) give perturbation analysis and error analysis that suggests
taking 𝑐 ≈ 𝑛2 in Algorithm 7.6, but they find this is too pessimistic in practice. They
recommend taking 𝑐 as a small constant and found 𝑐 = 2 to work well in practice, with no
need for the doubling on line 8. They use this idea with an appropriate modification of
GMRES-IR in which GMRES is applied to the preconditioned update equation 𝑀𝐴𝑑𝑖 =

𝑀𝑟𝑖 , where 𝑀 = 𝜇𝐷−1𝑅−1𝑅−𝑇𝐷−1.
Note that since 𝐴 is symmetric positive definite it is more natural to use the conjugate

gradient (CG) method instead of GMRES, but the supporting rounding error analysis works
only for GMRES, because it relies on the backward stability of GMRES and preconditioned
CG is not guaranteed to be backward stable (Greenbaum 1997, eq. (34)). However, Higham
and Pranesh (2021) find that in their experiments CG works as well as GMRES.

Algorithm 7.6 has been implemented on an NVIDIA V100 GPU by Abdelfattah,
Tomov and Dongarra (2020), effectively taking 𝑢ℓ = 𝑢16, 𝑢 = 𝑢𝑟 = 𝑢64, with Cholesky
factorization computed in mixed fp16 and fp32 precisions. With matrices of dimensions
up to 42,000, they obtained speedups of up to 4.7 over a double precision solver.

7.6 Sparse matrix considerations
Sparsity presents both opportunities and obstacles to the use of iterative refinement.

On the one hand, while LU factorization of dense matrices tends to run twice as fast in
single precision as in double precision, this speedup may not be attained for sparse matrices,
for two reasons explained by Zounon, Higham, Lucas and Tisseur (2022). The first reason
is that real-life sparse double precision matrices, such as many of those in the SuiteSparse
Matrix Collection30 (Davis and Hu 2011), can have elements of widely varying magnitudes.
While the matrix elements usually fit into the range of single precision numbers, LU
factorization can generate cascading fill-ins in which small multipliers combine to produce
subnormal numbers. This can cause a significant performance loss because floating-point
operations on subnormal numbers can be very slow. A cure is to set a compiler flag to
flush subnormal numbers to zero. The second reason why LU factorization of a sparse
matrix in single precision may not give the expected speedup over double precision is
that the reordering and analysis phase of the algorithm does not involve floating-point
arithmetic (Duff, Erisman and Reid 2017) and so does not benefit from reducing the
precision. Moreover, if the reordering and analysis is sequential rather than parallelized
then increasing the number of cores increases the proportion of time spent on non-floating-
point arithmetic computations.

On the other hand, some of the features of iterative refinement are especially attractive
when the matrix is sparse. First, as explained by Amestoy et al. (2021b), iterative refinement
with a lower precision LU factorization can lead to significant memory savings due to the

30https://sparse.tamu.edu/. Previously known as the University of Florida Sparse Matrix Collection.

31

https://sparse.tamu.edu/

fact that the LU factors of a sparse matrix are typically much denser, and unlike for dense
matrices, the overhead of keeping a high precision copy of the original matrix is negligible.
Second, to best preserve the sparsity of the matrix, sparse direct solvers often employ
relaxed pivoting strategies, such as threshold partial pivoting (Duff et al. 2017, Chap. 7) or
the more aggressive static pivoting (Li and Demmel 1998), which can lead to large growth
factors; iterative refinement can overcome any resulting numerical instability.

Amestoy et al. (2021b) develop implementations of LU-IR and GMRES-IR based on
a single precision sparse LU factorization computed with the multifrontal solver MUMPS
and use them to solve with double precision accuracy a range of large and ill-conditioned
sparse systems coming from a variety of applications. They obtain reductions of up to
a factor 2 in both execution time and memory consumption over the double precision
MUMPS solver, with LU-IR being usually faster than GMRES-IR, although the latter is
more robust and successfully converged for all test problems.

7.7 Exploiting data sparsity
In many applications, the matrix possesses a so-called data sparse structure: many of its
off-diagonal blocks have low numerical rank. In the last two decades, several approaches
have been devised to leverage this property to accelerate the solution of linear solvers, such
as hierarchical (H) or block low-rank (BLR) methods.

The low-rank approximations are computed with a truncation threshold parameter 𝜀,
which controls the accuracy of these data sparse solvers, as proved by Higham and Mary
(2020b) in the case of BLR solvers. Thus, data sparse solvers can be used either as
direct solvers (setting 𝜀 to the target accuracy) or as preconditioners to iterative methods.
In particular, they can be used in conjunction with iterative refinement. Amestoy et al.
(2021b) use the BLR sparse solver MUMPS (Amestoy et al. 2019) at low accuracy with
LU-IR and GMRES-IR, and obtain large performance gains with respect to the double
precision solver, reducing execution time by up to 5.5× and memory consumption by up
to 3.5×. Moreover, GMRES-IR can converge for larger values of the parameter 𝜀 than
LU-IR, which leads to increased performance in some cases.

In addition to their use in lower precision, data sparse solvers can also benefit from
mixed precision. Indeed, data sparse matrices exhibit blocks of highly unequal importance:
those that correspond to weak interactions (and that are usually far away from the diagonal)
contain less significant information and are more resilient to the use of reduced precision.
As a result, Abdulah et al. (2019) propose to store blocks that are sufficiently far way from
the diagonal in single precision instead of double precision. They apply this strategy to
the Cholesky factorization of data sparse covariance matrices arising in geostatistical mod-
eling, obtaining an average 1.6× speedup. The approach is extended to also include half
precision in Abdulah et al. (2022), leading to an improved 2.6× speedup. Doucet, Ltaief,
Gratadour and Keyes (2019) use the same approach in a different application in compu-
tational astronomy (tomographic reconstructors) using only single and half precisions on
NVIDIA V100 GPUs.

To go even further, in addition to storing different blocks in different precisions, each
block can also use a mixed precision representation. Since most of the blocks of data
sparse matrices exhibit rapidly decaying singular values, they are amenable to the mixed
precision low-rank representation proposed by Amestoy et al. (2021a) and described in
section 12.2. Amestoy et al. (2021a) apply this approach to the LU factorization of BLR

32

matrices and obtain storage and flops reductions of up to a factor 3 using fp64, fp32, and
bfloat16 arithmetics.

8 Iterative methods for 𝐴𝑥 = 𝑏

We outline three classes of approaches to exploit mixed precision arithmetic in iterative
methods. The first approach is to use an inner–outer scheme such as GMRES-IR, where
the low precision is used by the inner scheme (section 8.1). The second approach is to use
low precision arithmetic to compute and/or apply the preconditioner in a higher precision
iterative method (section 8.2). The third approach is to intrinsically use mixed precision
within the iterative method, such as for inexact Krylov methods (section 8.3). Finally, we
also comment on specific methods such as communication-avoiding or multigrid methods.

8.1 GMRES-IR without an LU factorization
Computing an LU factorization can be expensive, especially for large, sparse matrices.
GMRES-IR can also be effective with a cheaper preconditioner 𝑀−1, or with no precon-
ditioner at all. In this latter case, Algorithm 7.3 reduces to Algorithm 8.1, which has the
form of an inner–outer scheme: the outer loop for iterative refinement (in precision 𝑢, with
the residual computed at a possibly higher precision 𝑢𝑟), and the inner loop for solving
the correction equations with GMRES (assumed backward stable) in lower precision 𝑢ℓ .
By Theorem 6.2 (or indeed Theorem 5.3), convergence to an iterate satisfying (6.4) is
guaranteed as long as 𝜅(𝐴)𝑢ℓ ≪ 1. Note that inner solvers other than GMRES can be used,
and, as long as they are backward stable, the convergence condition 𝜅(𝐴)𝑢ℓ ≪ 1 still holds.

Algorithm 8.1 GMRES-based iterative refinement in three precisions for the solution of
𝐴𝑥 = 𝑏 with no preconditioner.

1 Choose an initial 𝑥1.
2 for 𝑖 = 1: 𝑖max or until converged
3 Compute 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 in precision 𝑢𝑟 .
4 Solve 𝐴𝑑𝑖 = 𝑟𝑖 by GMRES in precision 𝑢ℓ .
5 Compute 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 in precision 𝑢.
6 end

Algorithm 8.1 is one form of mixed precision restarted GMRES, although to guarantee
convergence the GMRES call on line 4 must not terminate after a fixed number of iterations,
but rather when a sufficiently small residual has been achieved.

Algorithm 8.1 was first described by Turner and Walker (1992), who perform the inner
loop in single precision (𝑢ℓ) and the outer loop in double precision (𝑢 and 𝑢𝑟), and use a
fixed number of inner GMRES iterations. Buttari et al. (2008) implement several inner–
outer iterative algorithms similar to GMRES-IR employing single and double precisions
for the solution of sparse linear systems. In particular, one version uses GMRES for the
inner loop and FGMRES for the outer loop; this version is also studied by Baboulin et al.
(2009).

More recent implementations of these methods, still using only single and double
precisions, are described by Lindquist, Luszczek and Dongarra (2020, 2022) for CPUs and

33

by Loe et al. (2021a,b) for GPUs. Iwashita, Suzuki and Fukaya (2020) propose a restarted
GMRES where the inner loop uses integer arithmetic and the outer loop uses floating-point
arithmetic.

To find a compromise between computing an LU factorization and using no precon-
ditioner at all, cheaper preconditioners can be considered. Algorithm 8.2 is obtained by
replacing 𝑈−1𝐿−1 in Algorithm 7.3 with a general preconditioner 𝑀−1.

Algorithm 8.2 GMRES-based iterative refinement in five precisions for the solution of
𝐴𝑥 = 𝑏 with a general preconditioner 𝑀−1 ≈ 𝐴−1 stored in precision 𝑢ℓ .

1 Compute 𝑥1 = 𝑀−1𝑏 in precision 𝑢ℓ .
2 for 𝑖 = 1: 𝑖max or until converged
3 Compute 𝑟𝑖 = 𝑏 − 𝐴𝑥𝑖 in precision 𝑢𝑟 .
4 Solve 𝑀−1𝐴𝑑𝑖 = 𝑀−1𝑟𝑖 by GMRES in precision 𝑢𝑔, performing the

products with 𝑀−1𝐴 in precision 𝑢𝑝 .
5 Compute 𝑥𝑖+1 = 𝑥𝑖 + 𝑑𝑖 in precision 𝑢.
6 end

There is a tradeoff involved, since a better quality preconditioner will lead to faster
convergence but will be more expensive to compute. More subtly, the closer 𝑀−1 is to
𝐴−1, the more significant the rounding errors incurred in the matrix–vector products with
𝑀−1𝐴 become. Indeed, with 𝑀−1 = 𝑈−1𝐿−1 (LU factorization-based preconditioner), we
have explained in section 7.2.2 that the products with 𝑈−1𝐿−1𝐴 introduce an extra 𝜅(𝐴)
term in the convergence condition, which can be attenuated by performing them in higher
precision 𝑢𝑝 . This error analysis has not been extended to a general preconditioner 𝑀−1 in
the literature, but we can expect 𝜅(𝐴) in the error bound to be replaced by a more general
term depending on both 𝐴 and 𝑀−1.

Examples of implementations that use a preconditioner other than a low precision LU
factorization are found in Lindquist et al. (2020, 2022), who use GMRES-IR preconditioned
by an incomplete LU factorization, or in Loe et al. (2021a,b), where block Jacobi and
polynomial preconditioners are used.

8.2 Iterative methods with low or mixed precision preconditioner
Another approach to exploiting mixed precision arithmetic in iterative methods is to use
low precision to compute and/or apply the preconditioner. If the iterative method is iterative
refinement, and the preconditioner is a low precision LU factorization, this corresponds to
LU-IR (Algorithm 7.1). The idea can be extended to other iterative methods or precondi-
tioners.

For example, Arioli and Duff (2009) show that FGMRES implemented in double
precision and preconditioned with an LU factorization computed in single precision can give
backward stability at double precision, even for ill-conditioned systems. Building on this
work, Hogg and Scott (2010) implement an algorithm for symmetric indefinite systems that
computes a solution using a direct solver in single precision, performs iterative refinement
using the factorization of 𝐴, and then uses mixed precision FGMRES preconditioned by
the direct solver to solve the original system.

34

Giraud, Haidar and Watson (2008) propose an fp32 domain decomposition precondi-
tioner applied to an fp64 CG solver. Similarly, Emans and van der Meer (2012) propose
the use of an fp32 algebraic multigrid method as preconditioner for an fp64 CG.

Anzt et al. (2019a) and Flegar, Anzt, Cojean and Quintana-Ortí (2021) implement
a block Jacobi preconditioner within the preconditioned conjugate gradient method and
store the explicitly inverted diagonal blocks of the preconditioner in half, single, or double
precision arithmetic according to a criterion based on the condition number of each block.
In experiments that use the preconditioner within a conjugate gradient solver, Flegar
et al. (2021) report reductions in run time of 10%–30% compared with a full precision
implementation. Göbel, Grützmacher, Ribizel and Anzt (2021) apply the same idea to
sparse approximate inverse preconditioning with a BiCGSTAB solver. It is worth noting
that in these papers the preconditioner does not simply use low precision throughout but is
itself in mixed precision.

8.3 Mixed precision GMRES
The previously described approaches introduce mixed precision in GMRES either in the
preconditioner or via an inner–outer iteration scheme. However, there are opportunities to
exploit multiple precisions even within a nonrestarted, unpreconditioned GMRES.

A first approach is to use lower precision in the matrix–vector products with 𝐴, based
on the theory of inexact Krylov methods (Giraud, Gratton and Langou 2007, Simoncini
and Szyld 2003, van den Eshof and Sleĳpen 2004), which proves that an increasing level
of inexactness as the iteration proceeds can be tolerated in the matrix–vector products
without degrading the achievable accuracy. This was first experimentally observed by
Bouras, Frayssé, and Giraud (Bouras, Frayssé and Giraud 2000, Bouras and Frayssé 2005).
The effect of inexactness on the convergence rate of the method is, however, not well
understood.

In addition, Gratton, Simon, Titley-Peloquin and Toint (2019) prove that the orthonor-
malization of the Krylov basis can also be performed inexactly. This observation is
leveraged by Aliaga et al. (2020), who propose to store the Krylov basis in lower precision.

8.4 Communication-avoiding iterative methods
On modern computers, communication has become a significant performance bottleneck.
Communication-avoiding (CA) methods seek to reduce the communication costs, some-
times at the expense of additional flops, in order to achieve higher performance, especially
when scaling to large numbers of processors. In particular, CA iterative methods often
compute blocks of 𝑠 iterations at a time to reduce synchronization costs. However, these
𝑠-step approaches are known to be sometimes unstable. Mixed precision arithmetic has
been used to overcome this potential instability.

Yamazaki, Tomov, Dong and Dongarra (2014) and Yamazaki, Tomov and Dongarra
(2015a) propose a mixed precision Cholesky–QR orthonormalization (described in sec-
tion 9) that they use to stabilize CA-GMRES. They show that the use of this stabilized
orthonormalization avoids the need to orthogonalize twice and speeds up the convergence
of GMRES.

Carson, Gergelits and Yamazaki (2021) propose mixed precision 𝑠-step Lanczos and
conjugate gradient methods that compute the Gram matrix in higher precision. This allows

35

for reducing the loss of orthogonality by a factor relating to the condition number of the
𝑠-step Krylov bases, speeding up the convergence of the method at the expense of an
increase of the per-iteration cost that is expected to be small in latency-bound applications.

8.5 Multigrid iterative refinement
In addition to Krylov methods, mixed precision has also been investigated for multigrid
methods. The most popular approach has been to use a multigrid method as the inner
solver for iterative refinement, that is, to use Algorithm 6.1 with a multigrid solver on line
3, usually run in lower precision. Single precision multigrid methods have, for example,
been used within double precision iterative refinement algorithms by Göddeke, Strzodka
and Turek (2007), Goddeke and Strzodka (2011), Sumiyoshi, Fujii, Nukada and Tanaka
(2014), and Kronbichler and Ljungkvist (2019). More recently, Oo and Vogel (2020) also
used fp16 arithmetic on V100 GPUs. The first error analysis of multigrid methods in this
context was performed by McCormick, Benzaken and Tamstorf (2021), who observed that
different levels in the grid hierarchy should use different precisions: coarser grids are more
resilient to lower precisions. This “progressive-precision” approach was applied to the
solution of elliptic PDEs by Tamstorf, Benzaken and McCormick (2021).

For more details of mixed precision multigrid algorithms see Abdelfattah et al. (2021a).

8.6 Other iterative solvers
Clark et al. (2010) gave an early investigation into mixed precision implementation of
conjugate gradients (CG) and BiCGstab solvers on GPUs, for a lattice quantum chro-
modynamics application. They used half precision for storage only, since half precision
computation was not available to them.

Anzt, Dongarra and Quintana-Ortí (2015) carried out the Jacobi iterative method with
different solution components represented in different precisions, using an inexpensive test
to decide when to increase precisions during the iteration.

8.7 Decoupling formats for data storage and processing
One specific feature of exploiting reduced precision in GMRES and iterative methods more
generally is that performance is often limited by the memory bandwidth. This leads to
the idea of storing the data in compressed form and uncompressing it before performing
arithmetic operations on the processor. The aim is that the compression reduces the data
movement costs enough to outweigh the costs of compressing and uncompressing. Anzt,
Flegar, Grützmacher and Quintana-Ortí (2019b) propose this approach of decoupling the
data storage format from the processing format, and they focus on storing the data at a
lower precision than that at which the computations are performed. This approach has
been used in the papers mentioned at the end of Section 8.2 and for level 1 and level 2
BLAS by Grützmacher, Anzt and Quintana-Ortí (2021). Agullo et al. (2020) propose a
similar approach for flexible GMRES by using as compression either reduced precision or
the lossy floating-point SZ compressor (Di and Cappello 2016).

36

9 Mixed precision orthogonalization and QR factoriza-
tion

There exist many algorithms to orthogonalize a set of vectors and to carry out the related
task of computing the QR factorization of a matrix 𝐴 ∈ R𝑚×𝑛, where we assume 𝑚 ≥ 𝑛.
Householder QR factorization is the most widely used and is unconditionally stable: it
achieves a backward error and a loss of orthogonality of the computed 𝑄 (if it is explicitly
formed) both of order the unit roundoff 𝑢 (Higham 2002, Sec. 19.3). However, Householder
QR factorization offers relatively little parallelism and requires expensive synchronizations.
Alternative algorithms that are more suitable for parallel computers are unfortunately also
less stable: for example, the classical and modified Gram–Schmidt algorithms (CGS and
MGS) lead to a loss of orthogonality of order 𝜅(𝐴)2𝑢 (Giraud, Langou, Rozložník and
van den Eshof 2005) and 𝜅(𝐴)𝑢, respectively. Developing orthogonalization algorithms
that are both parallel and stable is an active field of research. In this section, we discuss
how mixed precision arithmetic can be used to stabilize or accelerate these algorithms. We
refer to the recent survey by Carson, Lund, Rozložník and Thomas (2022) for a description
of what is known about the stability of block Gram–Schmidt algorithms.

Yang, Fox and Sanders (2021) perform rounding error analysis of Householder QR fac-
torization under a model of mixed precision computation that assumes that inner products
are computed in high precision 𝑢high and then rounded to lower precision 𝑢low. This model
is thus applicable to the use of block FMAs. They show that the bound for the backward er-
ror, which is of order 𝑚𝑛𝑢 in uniform precision 𝑢 (Higham 2002, p. 361), becomes of order
𝑛𝑢low + 𝑚𝑛𝑢high under this mixed precision model. Unlike the error bound 2𝑢low + 𝑛𝑢high
of Blanchard et al. (2020b) for LU factorization with block FMAs (see section 7.3), their
bound for QR factorization still grows with 𝑛 at the 𝑢low level. This is because the model
assumes the result of the inner products to be rounded to precision 𝑢low at each step of
the factorization. Yang et al. (2021) also analyze a blocked version of Householder QR
assuming that the rounding to precision 𝑢low takes place only once per block-column. They
show that the term 𝑛𝑢low can then be replaced by 𝑁𝑢low, where 𝑁 is the number of block-
columns. Taking advantage of the capability of some block FMAs (such as NVIDIA tensor
cores) of keeping the result in high precision, one can also imagine a Householder QR
factorization which starts with the original matrix 𝐴 in high precision and rounds its QR
factors to low precision on the fly, similarly to the LU factorization algorithm proposed by
Haidar et al. (2018b) and analyzed by Blanchard et al. (2020b). We expect this algorithm to
further reduce the constant in the error bound at the 𝑢low level by dropping the dependence
on 𝑁 , although this is not covered by the analysis of Yang et al. (2021).

Zhang, Baharlouei and Wu (2020) implement Householder QR factorization using
NVIDIA tensor cores to accelerate the matrix–matrix products, but obtain only modest
speedups due to the panel factorization being the performance bottleneck. For this reason,
they propose to switch to a recursive QR factorization employing MGS for the orthogonal-
ization, which requires more flops and is potentially less stable but makes a more intensive
use of matrix–matrix operations. They also propose to use communication-avoiding QR
(CAQR) for the panel factorizations. These two modifications allow them to efficiently
leverage the tensor core performance, significantly accelerating the factorization. They
demonstrate experimentally that their algorithm can solve least squares problems with
double precision accuracy by using the computed QR factors to precondition the CGLS

37

iterative method.
The Cholesky–QR algorithm computes the QR factorization of 𝐴 ∈ R𝑚×𝑛 by a three-

step process:

1. Compute the matrix product 𝐵 = 𝐴𝑇𝐴.

2. Compute the Cholesky factorization 𝑅𝑇𝑅 = 𝐵.

3. Compute 𝑄 = 𝐴𝑅−1 by a multiple right-hand side triangular solve.

For tall, thin matrices (𝑚 ≫ 𝑛), most of the flops take place at steps 1 and 3, which are
very parallel and make intensive use of BLAS-3 operations. However, Cholesky–QR in
uniform precision 𝑢 leads to a loss of orthogonality of order 𝜅(𝐴)2𝑢 (Stathopoulos and Wu
2002), and can fail if the Cholesky factorization at step 2 breaks down. Cholesky–QR can
be partially stabilized by using mixed precision arithmetic: Yamazaki et al. (2015a) show
that, if the first two steps above are carried out at precision 𝑢high and the third step is carried
out at precision 𝑢, the loss of orthogonality can be bounded by (Yamazaki et al. 2015a,
Thm. 3.2)

∥𝐼 −𝑄𝑇𝑄∥ = 𝑂
(
𝜅(𝐴)2(𝑢high + 𝑢2) + 𝜅(𝐴)𝑢

)
. (9.1)

Thus, by using doubled precision (that is, 𝑢high = 𝑢2) for the first two steps, the loss of
orthogonality is 𝑂(𝜅(𝐴)2𝑢2 + 𝜅(𝐴)𝑢) and is therefore of order 𝑂(𝜅(𝐴)𝑢) as long as 𝜅(𝐴) <
𝑢−1. In this context, mixed precision arithmetic can therefore be used not to accelerate the
algorithm but to (partially) stabilize it, by reducing the loss of orthogonality by a factor
𝜅(𝐴). Yamazaki et al. (2015a) implement this mixed precision Cholesky–QR algorithm
with fp64 as the working precision 𝑢, and employ double-double arithmetic for the first two
steps. Despite requiring 8.5× more flops due to the use of software-emulated arithmetic,
they show that the mixed precision Cholesky–QR algorithm can be only moderately slower
than in uniform precision (about 1.4× slower in the best case) when the number of columns
𝑛 to orthogonalize is small, because in this case the performance of Cholesky–QR is
memory bound. They apply this mixed precision Cholesky–QR algorithm to the solution
of linear systems with a communication-avoiding GMRES method, and show that the use
of this more stable Cholesky–QR algorithm avoids the need for reorthogonalization and
allows GMRES to converge faster, leading to significant speedups. See also Yamazaki et al.
(2014) for early results on this approach. When the number of columns to orthogonalize
is larger, the performance of Cholesky–QR tends to become compute bound and the
overhead associated with the use of double-double arithmetic becomes more significant.
To overcome this issue, Yamazaki, Tomov, Kurzak, Dongarra and Barlow (2015b) propose
a block MGS method that partitions the matrix into block-columns of smaller size and uses
the mixed precision Cholesky–QR to orthogonalize each block. This method can be up
to seven times faster than applying mixed precision Cholesky–QR to the entire matrix and
numerical experiments show that it can also be as stable, despite the lack of error analysis
bounding the loss of orthogonality.

A drawback of Cholesky–QR-based methods is that they can fail if the Cholesky
factorization breaks down (because it encounters a nonpositive pivot). Breakdown can be
avoided by shifting the matrix to ensure the success of the Cholesky factorization (Fukaya
et al. 2020).

Another solution is the singular value QR (SVQR) factorization (Stathopoulos and Wu
2002), which takes the following steps.

38

1. Compute the matrix product 𝐵 = 𝐴𝑇𝐴.

2. Compute the singular value decomposition 𝑈𝛴𝑈𝑇 = 𝐵.

3. Compute the QR factorization 𝑄̄𝑅 = 𝛴1/2𝑈𝑇 .

4. Compute 𝑄 = 𝐴𝑅−1 by multiple right-hand side triangular solve.

Steps 2 and 3 require more flops than simply computing the Cholesky factorization of 𝐵,
but if 𝑚 ≫ 𝑛 the overhead is negligible compared with the flops required by steps 1 and
4. The advantage of SVQR is that when 𝐵 is singular to the working precision, step 2 will
directly identify the entire subspace of the nearly dependent columns and one can replace
all the associated singular values with an appropriately large value. Stathopoulos and Wu
(2002) suggest replacing singular values smaller than 𝑢𝜎1 with 𝑢𝜎1, where 𝜎1 is the largest
singular value of 𝐵. In uniform precision 𝑢, SVQR also suffers from a loss of orthogonality
proportional to 𝜅(𝐴)2𝑢. Yamazaki, Tomov and Dongarra (2016) propose a mixed precision
version of SVQR analogous to their mixed precision Cholesky–QR (Yamazaki et al. 2015a),
where step 4 is carried out in halved precision 𝑢1/2 compared with the first two steps. The
loss of orthogonality can then be bounded by (Yamazaki et al. 2016, Thm. 5.1)

∥𝐼 −𝑄𝑇𝑄∥ = 𝑂
(
𝜅(𝐴)2𝑢 + 𝜅(𝐴)𝑢1/2). (9.2)

When 𝜅(𝐴) is larger than 𝑢−1/2, the use of halved precision in step 4 therefore does not
significantly impact the loss of orthogonality. For smaller values of 𝜅(𝐴), the loss of
orthogonality is increased but remains a factor 𝜅(𝐴) smaller than if SVQR were carried out
entirely in halved precision.

10 Least squares problems
Consider the linear least squares (LS) problem min𝑥 ∥𝐴𝑥 − 𝑏∥2, where 𝐴 ∈ R𝑚×𝑛 with
𝑚 ≥ 𝑛 has full rank. Recall that the unique LS solution is the solution of the normal
equations

𝐴𝑇𝐴𝑥 = 𝐴𝑇𝑏 (10.1)

and that the normal equations can be rewritten as the (𝑚 + 𝑛) × (𝑚 + 𝑛) augmented system[
𝐼 𝐴

𝐴𝑇 0

] [
𝑟

𝑥

]
=

[
𝑏

0

]
. (10.2)

Björck (1967) proposed refining an approximate LS solution by applying iterative re-
finement to the augmented system, with residuals calculated at twice the working precision,
and he showed how to efficiently solve the augmented system given a QR factorization of
𝐴. He also gave rounding error analysis for the method. Björck’s method and analysis was
extended to constrained and weighted LS problems by Gulliksson (1994).

Demmel, Hida, Riedy and Li (2009) discuss practical implementation details such as
convergence tests and how to compute error bounds, and they exploit the XBLAS.

For more on traditional and fixed precision forms of iterative refinement for the LS
problem, see Björck (1996) and Higham (2002, Chap. 20).

39

Recently, mixed precision algorithms for solving the LS problem have been developed
by building on GMRES-IR for square linear systems.

Higham and Pranesh (2021) assume that 𝐴 is well conditioned and make use of the
normal equations (10.1). Their idea is a modification of the algorithm of Section 7.5
that uses GMRES-IR with Cholesky preconditioning. It chooses a diagonal matrix 𝑆 so
that 𝐵 = 𝐴𝑆 has columns of unit 2-norm, forms 𝐶 = 𝐵𝑇𝐵 at precision 𝑢ℓ , computes the
Cholesky factorization of a shifted𝐶 at precision 𝑢ℓ , then applies GMRES-IR to the normal
equations, computing the residual in precision 𝑢𝑟 as 𝑟𝑖 = 𝐴𝑇 (𝑏−𝐴𝑥𝑖) and applying GMRES
to the preconditioned update equation 𝑀𝐴𝑇𝐴𝑑𝑖 = 𝑀𝑟𝑖 , where 𝑀 = 𝑆𝑅−1𝑅−𝑇𝑆. Solving
the normal equations is usually avoided by numerical analysts because it gives a backward
error bound of order 𝜅2(𝐴)𝑢 (Higham 2002, sect. 20.4) and the Cholesky factorization can
break down for 𝜅2(𝐴) > 𝑢−1/2. Its use here is justified by the facts that 𝐴 is assumed to be
well conditioned, the Cholesky factorization of the cross-product matrix is being used as a
preconditioner rather than to compute the solution directly, and if a block FMA is available
it can be exploited in forming 𝐶, boosting the speed and accuracy.

Carson, Higham and Pranesh (2020) make use of the augmented system (10.2). Their
method computes a QR factorization at precision 𝑢ℓ then applies GMRES-IR to the aug-
mented system with a left preconditioner constructed in one of two possible ways from
the QR factors. Backward error analysis given in Carson et al. (2020), combined with the
analysis of Carson and Higham (2017, 2018) and Amestoy et al. (2021c), shows that the
method yields a forward error, and a backward error for the augmented system, of order the
working precision under reasonable assumptions. Numerical experiments in Carson et al.
(2020) with various combinations of the three precisions show that the method behaves as
predicted by the theory.

11 Eigenvalue decomposition
A natural way to refine approximate solutions to the eigenvalue problem is by Newton’s
method, and it presents opportunities for exploiting different arithmetic precisions. Early
references developing Newton’s method for mixed precision iterative refinement for the
standard eigenvalue problem are Dongarra (1980, 1982) and Dongarra, Moler and Wilkin-
son (1983).

We consider the generalized eigenvalue problem 𝐴𝑥 = 𝜆𝐵𝑥, where 𝐴, 𝐵 ∈ R𝑛×𝑛.
Setting 𝐵 = 𝐼 gives the standard eigenvalue problem. We suppose that we have an
approximate eigenpair that we wish to improve. We will use Newton’s method, so we need
to put the problem in the form of a nonlinear system.

Since an eigenvector remains an eigenvector when multiplied by a nonzero scalar, we
need to normalize 𝑥, which we will do by requiring that 𝑒𝑇𝑠 𝑥 = 1 for some chosen 𝑠, where
𝑒𝑠 is the unit vector with a 1 in position 𝑠. Define

𝐹(𝑣) =
[

(𝐴 − 𝜆𝐵)𝑥
𝑒𝑇𝑠 𝑥 − 1

]
: C𝑛+1 → C𝑛+1, 𝑣 =

[
𝑥

𝜆

]
.

The Jacobian is
𝐽(𝑣) =

(
𝜕𝐹𝑖

𝜕𝑣 𝑗

)
=

[
𝐴 − 𝜆𝐵 −𝐵𝑥
𝑒𝑇𝑠 0

]
.

40

It is easy to see that ∥𝐽(𝑤) − 𝐽(𝑣)∥∞ ≤ 2∥𝐵∥∞∥𝑤 − 𝑣∥∞, so 𝐽 is Lipschitz continuous
with constant 2∥𝐵∥∞. Moreover, it can be shown that 𝐽 is nonsingular when 𝜆 is a simple
(non-multiple) eigenvalue (Tisseur 2001, Lem. 3.3).

By applying Theorems 5.2 and 5.3, Tisseur (2001, Section 3.2) shows that if (𝑥0, 𝜆0)
is a sufficiently good approximation to an eigenpair (𝑥∗, 𝜆∗), 𝜆∗ is simple, 𝐽 is not too
ill conditioned at (𝑥∗, 𝜆∗), and the linear system solver is not too unstable, then Newton’s
method is well defined and the limiting forward error is bounded by

∥(𝑥̂𝑇 , 𝜆)𝑇 − (𝑥𝑇∗ , 𝜆∗)𝑇 ∥∞
∥(𝑥𝑇∗ , 𝜆∗)𝑇 ∥∞

≲ 𝑐𝑛𝑢𝑟 ∥𝐽(𝑣∗)−1∥∞max(∥𝐴∥∞, ∥𝐵∥∞) + 𝑢,

where 𝑐 is a small integer constant and 𝑢𝑟 is the precision in which the residual 𝐹(𝑣) is
evaluated. If 𝑢𝑟 = 𝑢2 this bound can be shown to reduce to 𝑐𝑛𝑢. Moreover the limiting
backward error is bounded by

𝜂∞(𝑥̂, 𝜆) ≲ 𝑐𝑛𝑢𝑟 + 𝑢(3 + |𝜆 |) max
(
∥𝐴∥∞
∥𝐵∥∞

,
∥𝐵∥∞
∥𝐴∥∞

)
. (11.1)

Note that as for linear systems, instability in the linear system solver does not affect the
bounds for the limiting forward error and backward error.

Each Newton iteration involves the solution of a linear system with the Jacobian matrix
evaluated at the current iterate. If this is done using LU factorization of 𝐽(𝑣) it costs 𝑂(𝑛3)
flops per step, which is expensive. If an approximate eigendecomposition is available
then this cost can be reduced to 𝑂(𝑛2) flops per iteration. We specialize to the symmetric
definite generalized eigenvalue problem in which 𝐴 is symmetric and 𝐵 is symmetric
positive definite. The following algorithm is given by Tisseur (2001, Alg. 4.2) and is
used by Davies, Higham and Tisseur (2001) to refine solutions from the Cholesky–Jacobi
method, which uses a Cholesky decomposition of 𝐵 to reduce the problem to a standard
symmetric eigenvalue problem and then applies the Jacobi method.

Algorithm 11.1 Given a symmetric 𝐴 ∈ R𝑛×𝑛, a symmetric positive definite 𝐵 ∈ R𝑛×𝑛,
𝑋 ∈ R𝑛×𝑛 and a diagonal 𝛬 ∈ R𝑛×𝑛 such that 𝑋𝑇𝐴𝑋 ≈ 𝛬 and 𝑋𝑇𝐵𝑋 ≈ 𝐼, and an
approximate eigenpair (𝑥, 𝜆) with ∥𝑥∥∞ = 𝑥𝑠 = 1, this algorithm applies iterative refinement
to 𝜆 and 𝑥 at a cost of 𝑂(𝑛2) flops per iteration. Computations are at precision 𝑢 unless
otherwise stated.

1 repeat until converged
2 Compute 𝑟 = 𝜆𝐵𝑥 − 𝐴𝑥 in precision 𝑢𝑟 .
3 𝐷𝜆 = 𝛬 − 𝜆𝐼
4 𝑑 = −𝐵𝑥 − 𝑐𝑠 , where 𝑐𝑠 is the 𝑠th column of 𝐴 − 𝜆𝐵.
5 𝑣 = 𝑋𝑇𝑑, 𝑓 = 𝑋𝑇𝑒𝑠
6 Compute Givens rotations 𝐽𝑘 in the (𝑘, 𝑘 + 1) plane, such that

𝑄𝑇
1 𝑣 := 𝐽𝑇1 . . . 𝐽𝑇

𝑛−1𝑣 = ∥𝑣∥2𝑒1.
7 Compute orthogonal 𝑄2 such that

𝑇 = 𝑄𝑇
2 𝑄

𝑇
1 (𝐷𝜆 + 𝑣 𝑓 𝑇) is upper triangular.

8 𝑧 = 𝑄𝑇
2 𝑄

𝑇
1 𝑋

𝑇𝑟

9 Solve 𝑇𝑤 = 𝑧 for 𝑤.
10 𝛿 = 𝑋𝑤

41

11 𝜆 = 𝜆 + 𝛿𝑠 , 𝛿𝑠 = 0
12 𝑥 = 𝑥 + 𝛿
13 end

Newton’s method is well suited to refining a small number of eigenpairs but not a
complete eigensystem, as in the latter case it is expensive and may not converge for all
eigenpairs.

Tsai, Luszczek and Dongarra (2021) revisit the Newton method for the standard sym-
metric eigenvalue problem and develop a mixed precision algorithm that transforms the
matrix to tridiagonal form in single precision, computes the eigensystem by divide and
conquer in double precision, then refines the eigenpairs in double precision.

Ogita and Aishima (2018) develop an iteration for refining the whole eigensystem of
a symmetric matrix. It requires four matrix multiplications per iteration, all executed
in a higher precision than the working precision. Quadratic convergence is proved for
sufficiently good initial approximations. The algorithm does not work well when there are
nearly multiple eigenvalues. The latter limitation is addressed in Ogita and Aishima (2019)
by using further steps that work with clusters of eigenvalues.

Petschow, Quintana-Ortí and Bientinesi (2014) use extra precision to improve the ac-
curacy of the multiple relatively robust representations (MRRR) method for the symmetric
tridiagonal eigenvalue problem without sacrificing performance.

Ralha (2018) considers carrying out the bisection method for symmetric tridiagonal
matrices with early iterations in single precision before switching to the working precision
of double, and develops criteria for deciding when to make the switch.

Stor, Slapničar and Barlow (2015) give an algorithm for the eigendecomposition of
symmetric arrowhead matrices that employs bisection and a shift and invert technique, and
in the latter it uses arithmetic at twice the working precision for one element of the inverse
in order to ensure forward stability.

Tsuchida and Choe (2012) consider a trace minimization method for computing the
complete eigensystem of a symmetric matrix and explore running different parts of the
method at half the working precision. Gains of over 30 percent in execution time are
reported with little loss of accuracy.

Alvermann et al. (2019) report on two projects that are developing eigensolvers based
on the (block) Jacobi–Davidson method, subspace iteration, and other methods, and are
using lower precision in early iterations for speed and higher precision within the ortho-
gonalizations for robustness.

12 Singular value decomposition
We now consider the singular value decomposition (SVD) of 𝐴 ∈ R𝑚×𝑛 with 𝑚 ≥ 𝑛:
𝐴 = 𝑈𝛴𝑉𝑇 with 𝑈 ∈ R𝑚×𝑚 and 𝑉 ∈ R𝑛×𝑛 orthogonal and 𝛴 = diag(𝜎𝑖) ∈ R𝑚×𝑛.

42

12.1 Iterative refinement
The Newton approach to refining eigenpairs can be extended to singular value triples of
𝐴 ∈ R𝑚×𝑛 by using the function

𝐹(𝑥) =


𝐴𝑣 − 𝜇1𝑢
𝐴𝑇𝑢 − 𝜇2𝑣
𝑢𝑇𝑢 − 1
𝑣𝑇𝑣 − 1

 , 𝑥 =


𝑢

𝑣

𝜇1
𝜇2

 .
The Jacobian of 𝑓 is

𝐽(𝑥) =


−𝜇1𝐼 𝐴 −𝑢 0
𝐴𝑇 −𝜇2𝐼 0 −𝑣
2𝑢𝑇 0 0 0

0 2𝑣𝑇 0 0

 .
The approximate singular value is updated by (𝜇1 + 𝜇2)/2. Dongarra (1983), extending
the work in Dongarra et al. (1983), shows how to solve systems with 𝐽(𝑥) in 𝑂(𝑚𝑛) flops,
given an SVD or bidiagonal factorization of 𝐴. Again, the Newton theory of Section 5
applies.

Ogita and Aishima (2020) extend their algorithm for the symmetric eigenvalue problem,
mentioned in the previous section, to the SVD in order to refine the complete SVD; the
algorithm uses higher precision and is dominated by matrix multiplication.

12.2 SVD with rapidly decaying singular values
Another opportunity for mixed precision arithmetic arises in the case of matrices with
rapidly decaying singular values. Given a target accuracy 𝜀, it is well known that singular
values smaller than 𝜀 and the corresponding singular vectors can be dropped to provide
a low-rank approximation to the matrix with an error bound of order 𝜀. Amestoy et al.
(2021a) explain that among the singular values that remain, those that are small enough
can be represented, along with their associated singular vectors, in lower precision. For
example, singular vectors associated with singular values less than 𝜀/𝑢𝑠 , where 𝑢𝑠 = 2−24 is
the unit roundoff for single precision, can be stored in single precision, even when 𝜀 ≪ 𝑢𝑠 .
They introduce a mixed precision SVD representation that uses 𝑝 precisions,

𝐴 = 𝑈𝛴𝑉𝑇 =
[
𝑈1 𝑈2 . . . 𝑈𝑝

]
𝛴
[
𝑉1 𝑉2 . . . 𝑉𝑝

]𝑇
, (12.1)

where 𝑈𝑖 and 𝑉𝑖 are stored in precision 𝑢𝑖 , with 𝑢1 < 𝑢2 < · · · < 𝑢𝑝 . They give an
explicit rule on how to partition𝑈 and 𝑉 in order to guarantee an overall accuracy of order
𝜀 (Amestoy et al. 2021a, Thm. 2.2). Note that this approach is applicable not only to the
SVD but also to other types of rank-revealing decompositions, such as QR factorization
with column pivoting.

Ooi et al. (2020) propose three different methods to introduce mixed precision arith-
metic in the product of a low-rank matrix with a vector. Their method 3 is similar to the
representation (12.1), which they use with fp64 and fp32 arithmetics. They apply this
approach to the solution of linear systems exploiting products of a hierarchical (H) matrix
with a vector, using the iterative BiCGstab solver.

43

13 Multiword arithmetic
Multiword arithmetic is a well-known approach to enhance the accuracy of computations
while employing fast arithmetic supported in hardware. It consists of representing high
precision numbers by the unevaluated sum of lower precision numbers. An example
is double–double arithmetic which, as mentioned in Section 2.2, approximates an fp128
number as the sum of two fp64 numbers and replaces fp128 operations with fp64 operations.

The emergence of specialized hardware supporting low precision matrix multiplication
with high precision accumulators, such as the NVIDIA GPU tensor cores, provides new
opportunities for multiword arithmetic. Indeed, these units are much faster than standard
fp32 arithmetic (up to 8 and 16 times faster on the Volta and Ampere GPUs, for example).
Therefore an approach to accelerate the computation of an fp32 matrix product 𝐶 = 𝐴𝐵 is
to approximate 𝐴 ≈ 𝐴1 + 𝐴2 as the sum of two fp16 matrices, and similarly 𝐵 ≈ 𝐵1 + 𝐵2.
Then𝐶 can be computed as𝐶 ≈ 𝐴1𝐵1+𝐴1𝐵2+𝐴2𝐵1+𝐴2𝐵2 using block FMAs to compute
each of the 𝐴𝑖𝐵 𝑗 terms using internal tensor core arithmetic at fp32 accuracy. Since there
are only four terms (and in fact, we can reduce that number to three, as explained below),
this approach can potentially be much faster than standard fp32 arithmetic.

This approach was first used with NVIDIA tensor cores by Markidis et al. (2018)
to accelerate matrix products, and by Sorna et al. (2018) to accelerate the fast Fourier
transform (FFT). Pisha and Ligowski (2021) similarly use the TensorFloat32 format in
computing the FFT on the NVIDIA A100 GPUs. Henry, Tang and Heinecke (2019)
describe an approach based on block FMA hardware using the bfloat16 format instead of
the fp16 one, where 𝐴 and 𝐵 are split into three bfloat16 matrices, which requires nine
products to compute 𝐶 = 𝐴𝐵. Finally, Mukunoki, Ozaki, Ogita and Imamura (2020)
explain how to achieve not only fp32 accuracy but also fp64 accuracy with this approach,
by using the Ozaki scheme. Their approach, however, requires splitting both 𝐴 and 𝐵 a
large number of times, which leads to several dozens if not hundreds of products. Their
algorithm is therefore only beneficial on GPUs on which fp64 arithmetic is very slow, such
as some of the Turing models.

Fasi et al. (2021a) generalize these approaches by considering any low precision 𝑢low
and any number of splits 𝑝. They give the next algorithm.

Algorithm 13.1 (Multiword matrix multiplication) This algorithm computes the matrix–
matrix product 𝐶 = 𝐴𝐵 using 𝑝-word arithmetic with a mixed precision block FMA with
precisions 𝑢low and 𝑢high.

1 for 𝑖 = 1: 𝑝
2 𝐴𝑖 = fllow(𝐴 −∑𝑖−1

𝑘=1 𝐴𝑘)
3 𝐵𝑖 = fllow(𝐵 −∑𝑖−1

𝑘=1 𝐵𝑘)
4 end
5 for 𝑖 = 1: 𝑝
6 for 𝑗 = 1: 𝑝
7 Compute 𝐶𝑖 𝑗 = 𝐴𝑖𝐵 𝑗 with Algorithm 4.1.
8 𝐶 ← 𝐶 + 𝐶𝑖 𝑗

9 end
10 end

44

The algorithm recursively computes 𝐴𝑖 (and similarly 𝐵 𝑗) as the residual from the
(𝑖 − 1)-way split 𝐴 ≈ 𝐴1 + · · · + 𝐴𝑖−1 and rounds it to precision 𝑢low, that is,

𝐴𝑖 = fllow

(
𝐴 −

𝑖−1∑︁
𝑘=1

𝐴𝑘

)

𝐵𝑖 = fllow

(
𝐵 −

𝑖−1∑︁
𝑘=1

𝐵𝑘

)


𝑖 = 1 : 𝑝. (13.1)

This gives the approximations

𝐴 =

𝑝∑︁
𝑖=1

𝐴𝑖 + 𝛥𝐴, |𝛥𝐴| ≤ 𝑢
𝑝

low |𝐴|, (13.2)

𝐵 =

𝑝∑︁
𝑖=1

𝐵𝑖 + 𝛥𝐵, |𝛥𝐵 | ≤ 𝑢
𝑝

low |𝐵 |. (13.3)

Then, if 𝐶 is approximated by the sum of the 𝑝2 products 𝐴𝑖𝐵 𝑗 , which are computed by
chaining calls to a block FMA with internal precision 𝑢high, by Theorem 4.2 we obtain a
computed 𝐶 satisfying (Fasi et al. 2021a)

𝐶 = 𝐴𝐵 + 𝐸, |𝐸 | ≲
(
2𝑢𝑝

low + 𝑢
2𝑝
low + (𝑛 + 𝑝2 − 1)𝑢high

)
|𝐴| |𝐵 |. (13.4)

Clearly, for practical choices of 𝑢low and 𝑢high a small value of 𝑝 is sufficient. For example
for fp16 (𝑢low = 2−11) and fp32 (𝑢high = 2−24), 𝑝 = 2 is enough since in this case
𝑢2

low = 4𝑢high. Taking larger values of 𝑝 will not significantly improve the bound (13.4)
since the term (𝑛 + 𝑝2)𝑢high will then dominate. For bfloat16 (𝑢low = 2−8) and fp32, the
case 𝑝 = 3 is also of interest because the significand of one fp32 number fits exactly into
the significands of three bfloat16 numbers.

Importantly, in practice not all 𝑝2 products 𝐴𝑖𝐵 𝑗 need be computed. As a result of the
construction (13.1), the magnitude of the elements of 𝐴𝑖 and 𝐵 𝑗 rapidly decreases as we
increase 𝑖 and 𝑗 . More precisely, we have

|𝐴𝑖 | ≤ 𝑢𝑖−1
low (1 + 𝑢low)|𝐴|, |𝐵𝑖 | ≤ 𝑢𝑖−1

low (1 + 𝑢low)|𝐵 |, 𝑖 = 1: 𝑝,

and thus
|𝐴𝑖 | |𝐵 𝑗 | ≤ 𝑢

𝑖+ 𝑗−2
low (1 + 𝑢low)2 |𝐴| |𝐵 |. (13.5)

Therefore ignoring any product 𝐴𝑖𝐵 𝑗 such that 𝑖 + 𝑗 > 𝑝 + 1 only introduces an error of
order 𝑢𝑝

low or higher, which does not significantly impact the bound (13.4). Indeed, by only
computing the products 𝐴𝑖𝐵 𝑗 such that 𝑖 + 𝑗 ≤ 𝑝 + 1, we obtain the modified bound

𝐶 = 𝐴𝐵 + 𝐸,

|𝐸 | ≲
(

2𝑢𝑝

low + 𝑢
2𝑝
low + (𝑛 + 𝑝2)𝑢high +

𝑝−1∑︁
𝑖=1

(𝑝 − 𝑖)𝑢𝑝+𝑖−1
low (1 + 𝑢low)2

)
|𝐴| |𝐵 |.

The constant in this bound is (𝑝 + 1)𝑢𝑝

low plus higher order terms, so to order 𝑢𝑝

low we have
only increased the constant 2 from (13.4) to 𝑝 + 1, and we have reduced the number of

45

products from 𝑝2 to 𝑝(𝑝+1)/2. Concretely, with fp32 and fp16 (𝑝 = 2), we only need three
products, which is less than the four used by Markidis et al. (2018), and with bfloat16 and
fp32 (𝑝 = 3), we can reduce the number of products from nine to six, as already suggested
by Henry et al. (2019).

Note that further reducing the number of products (such as using two products for
𝑝 = 2, as attempted by Markidis et al. (2018)) is possible, but the analysis tells us it should
not be beneficial. Indeed, ignoring any product 𝐴𝑖𝐵 𝑗 such that 𝑖+ 𝑗 ≤ 𝑝+1 would introduce
an error of order at least 𝑢𝑝−1

low , and so could not be significantly more accurate than simply
using 𝑝 − 1 splits rather than 𝑝.

The above analysis encompasses previously proposed algorithms, and also includes
new cases. For example, we may use a 2-way split (𝑝 = 2) with bfloat16 and fp32, which
requires three products rather than six (when 𝑝 = 3) and delivers an accuracy of order 2−16

rather than 2−24.
Note that this analysis deals with worst-case error bounds and so does not guarantee

that multiword arithmetic with low precision block FMAs will be as accurate as higher
precision standard arithmetic in the case where the latter does not attain its worst-case
error. In fact, in their experiments with NVIDIA tensor cores, Fasi et al. (2021a) find that
double–fp16 arithmetic can be much less accurate than fp32 arithmetic due to the rounding
mode of these devices, which can make the worst-case bounds for double–fp16 sharp. To
overcome this issue, Fasi et al. (2021a) propose the use of FABsum (see Section 4.2) to
reduce the worst-case error bound.

14 Adaptive precision algorithms
Several mixed precision algorithms described in the previous sections share the same
foundation: adapt the precision to the data by using lower precisions to represent the less
important or significant parts of the data. As an example, consider the computation of the
sum 𝑎 + 𝑏, where |𝑏 | ≪ |𝑎 |. Because of the widely different magnitudes of 𝑎 and 𝑏, the
least significant bits of 𝑏 do not play a significant role in the computed value of the result.
Indeed if we round 𝑏 to 𝑏̃ = fllow(𝑏) = 𝑏(1 + 𝛿low), where |𝛿low | ≤ 𝑢low, then

fl(𝑎 + 𝑏̃) = (𝑎 + 𝑏̃)(1 + 𝛿) (|𝛿 | ≤ 𝑢)
= (𝑎 + 𝑏(1 + 𝛿low))(1 + 𝛿)

= (𝑎 + 𝑏)(1 + 𝛿)
(

1 + 𝑏

𝑎 + 𝑏 𝛿low

)
,

and so we have an extra term 1 + 𝑏𝛿low/(𝑎 + 𝑏), which is insignificant as long as |𝑏 |𝑢low ≪
|𝑎 + 𝑏 |𝑢. Therefore, 𝑏 can be stored in lower precision without significantly impacting
the accuracy of the computation. Moreover, if 𝑏 is the result of a previous computation,
that computation can also be carried out in lower precision. This example illustrates that
computations performed on data of small magnitude need not use very high precision.
This is a simple but fundamental observation that has given birth to several adaptive
precision algorithms. The object of this section is to show that these algorithms share
strong connections.

Adaptive precision algorithms seek to exploit this observation by adapting the precision
to be inversely proportional to the weight of the data, where the weight is defined by some

46

metric such as the maximum magnitude or the norm of the data. In numerical linear algebra
algorithms, this can be done at different levels of the computation: at the element, block,
column/row, or matrix levels.

14.1 At the matrix level
In computations involving several matrices, we may choose to compute and store some of
them in lower precision. For example, in computing 𝐶 = 𝐴1𝐵1 + 𝐴2𝐵2 where |𝐴1 | ≥ |𝐴2 |
and |𝐵1 | ≥ |𝐵2 |, if |𝐴2 | |𝐵2 | ≪ |𝐴1 | |𝐵1 | then the matrix product 𝐴2𝐵2 can be computed in
lower precision than 𝐴1𝐵1. An example where this situation arises is the use of multiword
arithmetic, as illustrated by (13.5). In fact, we have already explained that the products
𝐴𝑖𝐵 𝑗 of highest order can be ignored; data-driven analysis also shows that most of the
products that cannot be ignored can however be computed in lower precision. For example,
with 𝑢low as fp16 and 𝑝 = 2, the products 𝐴1𝐵2 and 𝐴2𝐵1 can be computed in fp16
arithmetic, because the magnitude of their entries is proportional to 𝑢low. Only the first
term 𝐴1𝐵1 actually needs to be computed in fp32 arithmetic. This observation is especially
important when implementing multiword arithmetic on GPU tensor cores, which lead to
heavy rounding error accumulation in the products 𝐴𝑖𝐵 𝑗 because of their rounding mode:
Fasi et al. (2021a) explain that it is only necessary to take care of reducing the effect of
error accumulation on the 𝐴1𝐵1 term.

14.2 At the column level (or, equivalently, at the row level)
Given a matrix, we may think of storing each of its columns (or rows) in a different
precision. This approach makes the most sense when dealing with matrices that can be
decomposed as low-rank components of rapidly decreasing norm. This can be the case, for
example, of SVDs or rank-revealing factorizations. In fact, the mixed precision truncated
SVD approaches described in Section 12.2 (Amestoy et al. 2021a, Ooi et al. 2020) are
precisely based on this property: rounding errors introduced by converting singular vectors
to lower precision are demagnified by the associated singular value, and so the precision
of each vector should be selected based on its associated singular value.

Note that, given the SVD𝑈𝛴𝑉𝑇 of a matrix 𝐴, we can express the matrix as 𝐴 =
∑

𝑖 𝐴𝑖

with 𝐴𝑖 = 𝑢𝑖𝜎𝑖𝑣
𝑇
𝑖
, where ∥𝐴𝑖+1∥𝐹 ≤ ∥𝐴𝑖 ∥𝐹 . Thus, even though the matrices 𝐴𝑖 are never

formed or manipulated explicitly, the link with the matrix-level case is clear.

14.3 At the block level
In some applications, it pays to partition a matrix into several blocks and adapt the precision
to each block. for example, in Section 7.7 we described approaches where the precision
of each block is based on its distance to the diagonal (Abdulah et al. 2019, 2022, Doucet
et al. 2019). The success of these approaches is explained by the fact that, for many
data-sparse matrices, blocks distant from the diagonal tend to have smaller norm. Indeed,
storing each block in a precision inversely proportional to its norm can allow for significant
gains with potentially little accuracy loss. As an example, consider a matrix 𝐴 ∈ R𝑝𝑏×𝑝𝑏

partitioned into 𝑝2 blocks 𝐴𝑖 𝑗 ∈ R𝑏×𝑏 and assume we have two precisions 𝑢high and 𝑢low

at our disposal. Then, the matrix 𝐴 obtained by storing blocks 𝐴𝑖 𝑗 of Frobenius norm

47

less than 𝑢high∥𝐴∥𝐹/(𝑝𝑢low) in precision 𝑢low satisfies ∥𝐴 − 𝐴∥𝐹 ≤ 𝑢high∥𝐴∥𝐹 . Thus we
can store selected blocks of 𝐴 in precision 𝑢low and still recover a global approximation at
accuracy 𝑢high. This example trivially extends to more than two precisions.

Another example of an adaptive precision algorithm at the block level is the adaptive
precision block Jacobi preconditioner discussed in Section 8.2 (Anzt et al. 2019a, Flegar
et al. 2021). In this case the precisions of the blocks are selected based on their condition
number rather than their norm, because this is the relevant metric when applying the inverse
of the blocks as part of the preconditioner.

14.4 At the element level
The adaptive precision algorithms described above seek to exploit the underlying structure
of the data. However, the question arises as to whether it can be beneficial to adapt the
precision at the element level: that is, to allow each variable in the computation to have its
own precision, without any special structure (by blocks or by columns, for instance). This
is similar in goal to transprecision computing and precision auto-tuning tools, which we
briefly discuss in Section 15.1.

While this approach maximizes the use of reduced precision, it also destroys the
granularity of the computation and should therefore only be used for memory-bound
applications, such as for sparse matrix–vector products (SpMV) 𝑦 = 𝐴𝑥. In particular,
Ahmad, Sundar and Hall (2019) propose to split 𝐴 as 𝐴𝑑 + 𝐴𝑠 , where 𝐴𝑠 contains the
small nonzero elements of 𝐴 and is stored in single precision, whereas 𝐴𝑑 is kept in double
precision.

More generally, given 𝑝 precisions, one could split the elements of 𝐴 into 𝑝 different
matrices and compute 𝑝 independent products in the corresponding precision. This idea is
then similar to bucket summation (Demmel and Hida 2004, Zhu and Hayes 2009), in which
summands are split into buckets based on their exponent. The novelty comes from summing
each bucket in a different precision. Diffenderfer, Osei-Kuffuor and Menon (2021) propose
such a bucket algorithm for the inner product that uses the four IEEE arithmetics as well
as “perforation”, that is, the option to ignore some of the smallest summands. Graillat,
Jézéquel, Mary and Molina (2022) propose an adaptive precision sparse matrix–vector
product algorithm of similar spirit that, given 𝑝 precisions 𝑢1 < · · · < 𝑢𝑝 , splits 𝐴 into 𝑝

buckets based on the magnitude of the elements: bucket number 𝑖 contains all the elements
whose absolute value lies in the interval [𝜀/𝑢𝑖 , 𝜀/𝑢𝑖+1], for a given target accuracy 𝜀.
They obtain speedups of up to an order of magnitude compared with a standard product in
uniform precision.

15 Miscellany
15.1 Tuning precisions
A very different approach to mixed precision computing is to focus on the code rather
than the algorithm. Given a code to solve a particular problem and a set of arithmetics of
different precisions one can ask what is the best selection of precision in which to store
each variable. Here, “best” means a choice that minimizes some suitable performance
metric subject to achieving a computed result of acceptable quality. The motivation is the

48

assumption that reducing precisions means faster execution and lower storage and energy
requirements, though conversion between different precisions is required and adds overhead
costs.

This problem is clearly combinatorial in nature, as if there are 𝑛 variables and 𝑝

precisions there are 𝑝𝑛 possible implementations. Ensuring results of acceptable quality
requires, in principle, a parametrized rounding error analysis that encapsulates all the
possible input data.

Much research has been done on algorithms that attempt to solve this problem. Usually,
optimization of code is done for a “representative” data set, with the assumption that the
code will be used on related data for which the quality of the results will be similar. At
best a local minimum of the objective function can be expected. No guarantee is provided
that the code with the chosen precisions will satisfy error requirements across all possible
input data.

Tools can be categorized as using static analysis (carried out before the code is run) or
dynamic analysis. Dynamic analysis tools typically instrument the compiled code in order
to try different combinations of precisions, and a popular way to do so is via the LLVM
compiler infrastructure31.

Any attempt to reduce precisions of variables must ensure that sufficient range is
maintained to avoid overflow and harmful underflow, which is particularly important if
fp16 is one of the formats, given its narrow range.

An example of such work is the tool Precimonious, by Rubio-González et al. (2013),
which uses execution time as the performance metric. It takes a C program as input and
outputs a description of the precisions to be assigned to the variables. The experiments
in Rubio-González et al. (2013) demonstrate a speedup of up to a factor 1.4 by replacing
certain double precision variables with single precision ones in the benchmark codes tested.

A more recent example, focused on GPUs, is GRAM, which chooses the precisions at
run time (Ho, De Silva and Wong 2021). Each block of threads is kept at the same precision
and a proportion 𝛼 of the blocks is assigned a lower precision, with a binary search used
to select 𝛼. Speedups on an NVIDIA GPU of up to 1.8 over single precision are reported,
by exploiting half precision arithmetic. GRAM does not support the use of tensor cores.

Brun et al. (2021) develop a tool that uses a heuristic search strategy to select the
precisions at which elementary functions are evaluated in a code, aiming to minimize
the precisions subject to achieving output of a given accuracy. They use the Intel Vector
Mathematics functions (VM) in the Intel oneAPI Math Kernel Library, which have an input
argument that allows the user to select “high accuracy”, “low accuracy”, or “enhanced per-
formance accuracy” modes for the functions. They are able to obtain up to an approximate
halving of the execution time on a Monte Carlo code that spends 70 percent of its time in
mathematical library functions.

Precision tuning has also been used in climate and weather models. Tintó Prims et al.
(2019) use the rpe Fortran library that emulates reduced precision, which we mentioned
in Section 2.6. For two widely used ocean model codes they use a divide and conquer
approach to find assignments of precisions to variables, finding that half precision or single
precision can be used for large portions of the codes. Similar findings were made by
Düben, Subramanian, Dawson and Palmer (2017) for a cloud-resolving model within a
general circulation model.

31https://llvm.org/

49

https://llvm.org/

It needs to be kept in mind that simply lowering the precisions of variables in a code may
not be all that can be done. In some problems the choice of algorithm, or the algorithm
itself, is precision-dependent. For example, an algorithm for computing an elementary
function may be built upon a rational approximation that depends on the target accuracy,
so that different approximations can be used for half, single, and double precision.

15.2 Multiprecision algorithms
Multiprecision algorithms for the matrix logarithm and the matrix exponential are de-
veloped by Fasi and Higham (2018, 2019). These algorithms take as input the unit roundoff
𝑢 of the arithmetic and then determine a suitable level of (inverse) scaling and squaring
transformations and degree of Taylor or Padé approximants such that the functions are
approximated to precision 𝑢. The key algorithmic parameters are determined at run time,
which contrasts with the state-of-the-art algorithms for double precision arithmetic, where
some of the parameters have been determined in advance. A similar strategy is followed
by Al-Mohy, Higham and Liu (2022) in a multiprecision algorithm for computing for the
matrix cosine and its Fréchet derivative.

Higham and Liu (2021) develop a multiprecision version of the Schur–Parlett algorithm
for computing general analytic functions at a matrix argument. It avoids the need for
derivatives by computing the function of the diagonal blocks of the reordered and blocked
Schur form by diagonalizing, at a suitable precision, a small random perturbation of each
block.

Acknowledgements
The work of the first author was supported by Engineering and Physical Sciences Research
Council grant EP/P020720/1, the Royal Society, and the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science
and the National Nuclear Security Administration. The work of the second author was
supported by the InterFLOP project (ANR-20-CE46-0009) of the French National Agency
for Research.

We thank Massimiliano Fasi, Sven Hammarling, Claude-Pierre Jeannerod, Mantas
Mikaitis, and Françoise Tisseur for their comments on a draft manuscript.

References
A. Abdelfattah, H. Anzt, E. G. Boman, E. Carson, T. Cojean, J. Dongarra, A. Fox, M. Gates, N. J.

Higham, X. S. Li, J. Loe, P. Luszczek, S. Pranesh, S. Rajamanickam, T. Ribizel, B. F. Smith,
K. Swirydowicz, S. Thomas, S. Tomov, Y. M. Tsai and U. M. Yang (2021a), A survey of numerical
linear algebra methods utilizing mixed-precision arithmetic, Int. J. High Perform. Comput. Appl.
35(4), 344–369. (Cited on pp. 4, 36.)

A. Abdelfattah, T. Costa, J. Dongarra, M. Gates, A. Haidar, S. Hammarling, N. J. Higham, J. Kur-
zak, P. Luszczek, S. Tomov and M. Zounon (2021b), A set of Batched Basic Linear Algebra
Subprograms and LAPACK routines, ACM Trans. Math. Software 47(3), 21:1–21:23. (Cited on
p. 16.)

50

A. Abdelfattah, S. Tomov and J. Dongarra (2019a), Fast batched matrix multiplication for small sizes
using half-precision arithmetic on GPUs, in 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 111–122. (Cited on p. 16.)

A. Abdelfattah, S. Tomov and J. Dongarra (2019b), Towards half-precision computation for complex
matrices: A case study for mixed-precision solvers on GPUs, in 2019 IEEE/ACM 10th Workshop
on Latest Advances in Scalable Algorithms for Large-Scale Systems (ScalA), IEEE, pp. 17–24.
(Cited on p. 28.)

A. Abdelfattah, S. Tomov and J. Dongarra (2020), Investigating the benefit of FP16-enabled mixed-
precision solvers for symmetric positive definite matrices using GPUs, in Computational Science—
ICCS 2020 (V. V. Krzhizhanovskaya, G. Závodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot
and S. B. J. Teixeira, eds), number 12138 in ‘Lecture Notes in Computer Science’, Springer
International Publishing, pp. 237–250. (Cited on p. 31.)

S. Abdulah, Q. Cao, Y. Pei, G. Bosilca, J. Dongarra, M. G. Genton, D. E. Keyes, H. Ltaief and Y. Sun
(2022), Accelerating geostatistical modeling and prediction with mixed-precision computations:
A high-productivity approach with PaRSEC, IEEE Trans. Parallel Distrib. Syst. 33(4), 964–976.
(Cited on pp. 32, 47.)

S. Abdulah, H. Ltaief, Y. Sun, M. G. Genton and D. E. Keyes (2019), Geostatistical modeling and
prediction using mixed precision tile Cholesky factorization, in 2019 IEEE 26th International
Conference on High Performance Computing, Data, and Analytics (HiPC), IEEE. (Cited on
pp. 32, 47.)

E. Agullo, F. Cappello, S. Di, L. Giraud, X. Liang and N. Schenkels (2020), Exploring variable accur-
acy storage through lossy compression techniques in numerical linear algebra: a first application
to flexible GMRES, Research Report RR-9342, Inria Bordeaux Sud-Ouest. (Cited on p. 36.)

K. Ahmad, H. Sundar and M. Hall (2019), Data-driven mixed precision sparse matrix vector multi-
plication for GPUs, ACM Trans. Archit. Code Optim. 16(4), 51:1–51:24. (Cited on p. 48.)

A. H. Al-Mohy, N. J. Higham and X. Liu (2022), Arbitrary precision algorithms for computing the
matrix cosine and its Fréchet derivative, SIAM J. Matrix Anal. Appl. 43(1), 233–256. (Cited on
p. 50.)

J. I. Aliaga, H. Anzt, T. Grützmacher, E. S. Quintana-Ortí and A. E. Tomás (2020), Compressed basis
GMRES on high performance GPUs, arXiv preprint arXiv:2009.12101. (Cited on p. 35.)

A. Alvermann, A. Basermann, H.-J. Bungartz, C. Carbogno, D. Ernst, H. Fehske, Y. Futamura,
M. Galgon, G. Hager, S. Huber, T. Huckle, A. Ida, A. Imakura, M. Kawai, S. Köcher, M. Kreutzer,
P. Kus, B. Lang, H. Lederer, V. Manin, A. Marek, K. Nakajima, L. Nemec, K. Reuter, M. Rippl,
M. Röhrig-Zöllner, T. Sakurai, M. Scheffler, C. Scheurer, F. Shahzad, D. Simoes Brambila, J. Thies
and G. Wellein (2019), Benefits from using mixed precision computations in the ELPA-AEO and
ESSEX-II eigensolver projects, Japan J. Indust. Appl. Math. 36(2), 699–717. (Cited on p. 42.)

P. Amestoy, O. Boiteau, A. Buttari, M. Gerest, F. Jézéquel, J.-Y. L’Excellent and T. Mary (2021a),
‘Mixed precision low rank approximations and their application to block low rank LU factorization’.
HAL EPrint hal-03251738, June 2021. (Cited on pp. 32, 43, 47.)

P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary and B. Vieublé (2021b), Combining
sparse approximate factorizations with mixed precision iterative refinement, Technical report. in
preparation. (Cited on pp. 31, 32.)

51

P. Amestoy, A. Buttari, N. J. Higham, J.-Y. L’Excellent, T. Mary and B. Vieublé (2021c), Five-
precision GMRES-based iterative refinement, MIMS EPrint 2021.5, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK. (Cited on pp. 24, 27, 40.)

P. R. Amestoy, A. Buttari, J.-Y. L’Excellent and T. Mary (2019), Performance and scalability of the
block low-rank multifrontal factorization on multicore architectures, ACM Trans. Math. Software
45(1), 2:1–2:26. (Cited on pp. 25, 32.)

P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent and J. Koster (2001), A fully asynchronous multifrontal
solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl. 23(1), 15–41. (Cited on
p. 25.)

E. Anderson (1991), Robust triangular solves for use in condition estimation, Technical Report
CS-91-142, Department of Computer Science, University of Tennessee, Knoxville, TN, USA.
LAPACK Working Note 36. (Cited on p. 30.)

ANSI (1966), American National Standard FORTRAN, American National Standards Institute, New
York, NY, USA. (Cited on p. 7.)

H. Anzt, J. Dongarra and E. S. Quintana-Ortí (2015), Adaptive precision solvers for sparse linear
systems, in Proceedings of the 3rd International Workshop on Energy Efficient Supercomputing,
E2SC ’15, ACM, New York, NY, USA, pp. 2:1–2:10. (Cited on p. 36.)

H. Anzt, J. Dongarra, G. Flegar, N. J. Higham and E. S. Quintana-Ortí (2019a), Adaptive precision
in block-Jacobi preconditioning for iterative sparse linear system solvers, Concurrency Computat.
Pract. Exper. 31(6), e4460. (Cited on pp. 35, 48.)

H. Anzt, G. Flegar, T. Grützmacher and E. S. Quintana-Ortí (2019b), Toward a modular precision eco-
system for high-performance computing, Int. J. High Perform. Comput. Appl. 33(6), 1069–1078.
(Cited on p. 36.)

J. Appleyard and S. Yokim (2017), ‘Programming tensor cores in CUDA 9’, https://devblogs.
nvidia.com/programming-tensor-cores-cuda-9/. Accessed March 25, 2019. (Cited on
p. 11.)

M. Arioli and I. S. Duff (2009), Using FGMRES to obtain backward stability in mixed precision,
Electron. Trans. Numer. Anal. 33, 31–44. (Cited on p. 34.)

M. Arioli, I. S. Duff, S. Gratton and S. Pralet (2007), A note on GMRES preconditioned by a
perturbed 𝐿𝐷𝐿𝑇 decomposition with static pivoting, SIAM J. Sci. Comput. 29(5), 2024–2044.
(Cited on p. 25.)

ARM (2018), ARM Architecture Reference Manual. ARMv8, for ARMv8-A Architecture Profile, ARM
Limited, Cambridge, UK. Version dated 31 October 2018. Original release dated 30 April 2013.
(Cited on p. 10.)

ARM (2019), Arm A64 Instruction Set Architecture Armv8, for Armv8-A Architecture Profile, ARM
Limited, Cambridge, UK. (Cited on p. 10.)

ARM (2020), Arm Architecture Reference Manual. Armv8, for Armv8-A Architecture Profile, number
ARM DDI 0487F.b (ID040120), ARM Limited, Cambridge, UK. (Cited on p. 12.)

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek and S. Tomov
(2009), Accelerating scientific computations with mixed precision algorithms, Comput. Phys.
Comm. 180(12), 2526–2533. (Cited on pp. 26, 33.)

52

https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

D. H. Bailey (2021), ‘MPFUN2020: A new thread-safe arbitrary precision package (full document-
ation)’, https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf. (Cited on p. 12.)

D. H. Bailey, Y. Hida, X. S. Li and B. Thompson (2002), ARPREC: An arbitrary precision computa-
tion package, Technical Report LBNL-53651, Lawrence Berkeley National Laboratory, Berkeley,
California. (Cited on p. 12.)

P. Bauer, P. D. Dueben, T. Hoefler, T. Quintino, T. C. Schulthess and N. P. Wedi (2021), The digital
revolution of earth-system science, Nature Computational Science 1(2), 104–113. (Cited on p. 5.)

J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah (2017), Julia: A fresh approach to numerical
computing, SIAM Rev. 59(1), 65–98. (Cited on p. 11.)

Å. Björck (1967), Iterative refinement of linear least squares solutions I, BIT 7, 257–278. (Cited on
p. 39.)

Å. Björck (1996), Numerical Methods for Least Squares Problems, Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA. (Cited on p. 39.)

P. Blanchard, N. J. Higham and T. Mary (2020a), A class of fast and accurate summation algorithms,
SIAM J. Sci. Comput. 42(3), A1541–A1557. (Cited on pp. 5, 16, 17.)

P. Blanchard, N. J. Higham, F. Lopez, T. Mary and S. Pranesh (2020b), Mixed precision block fused
multiply-add: Error analysis and application to GPU tensor cores, SIAM J. Sci. Comput. 42(3),
C124–C141. (Cited on pp. 16, 28, 37.)

A. Bouras and V. Frayssé (2005), Inexact matrix-vector products in Krylov methods for solving linear
systems: A relaxation strategy, SIAM J. Matrix Anal. Appl. 26(3), 660–678. (Cited on p. 35.)

A. Bouras, V. Frayssé and L. Giraud (2000), A relaxation strategy for inner-outer linear solvers in
domain decomposition methods. Technical report TR/PA/00/17, CERFACS, Toulouse, France.
(Cited on p. 35.)

E. Brun, D. Defour, P. De Oliveira Castro, M. Iştoan, D. Mancusi, E. Petit and A. Vaquet (2021), A
study of the effects and benefits of custom-precision mathematical libraries for HPC codes, IEEE
Transactions on Emerging Topics in Computing 9(3), 1467–1478. (Cited on p. 49.)

A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek and S. Tomov (2008), Using mixed precision for
sparse matrix computations to enhance the performance while achieving 64-bit accuracy, ACM
Trans. Math. Software 34(4), 17:1–17:22. (Cited on pp. 26, 33.)

A. Buttari, J. Dongarra, J. Langou, J. Langou, P. Luszczek and J. Kurzak (2007), Mixed precision
iterative refinement techniques for the solution of dense linear systems, Int. J. High Perform.
Comput. Appl. 21(4), 457–466. (Cited on p. 26.)

E. Carson and N. J. Higham (2017), A new analysis of iterative refinement and its application to
accurate solution of ill-conditioned sparse linear systems, SIAM J. Sci. Comput. 39(6), A2834–
A2856. (Cited on pp. 24, 26, 27, 40.)

E. Carson and N. J. Higham (2018), Accelerating the solution of linear systems by iterative refinement
in three precisions, SIAM J. Sci. Comput. 40(2), A817–A847. (Cited on pp. 22, 24, 27, 30, 40.)

E. Carson, T. Gergelits and I. Yamazaki (2021), Mixed precision 𝑠-step Lanczos and conjugate
gradient algorithms, Numer. Linear Algebra Appl. (Cited on p. 35.)

53

https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf

E. Carson, N. J. Higham and S. Pranesh (2020), Three-precision GMRES-based iterative refinement
for least squares problems, SIAM J. Sci. Comput. 42(6), A4063–A4083. (Cited on p. 40.)

E. Carson, K. Lund, M. Rozložník and S. Thomas (2022), Block Gram-Schmidt algorithms and their
stability properties, Linear Algebra Appl. 638, 150–195. (Cited on p. 37.)

A. Charara, M. Gates, J. Kurzak, A. YarKhan and J. Dongarra (2020), SLATE developers’ guide,
SLATE Working Notes 11, Innovative Computing Laboratory, The University of Tennessee,
Knoxville, TN, USA. (Cited on p. 28.)

J. Choquette, W. Gandhi, O. Giroux, N. Stam and R. Krashinsky (2021), NVIDIA A100 tensor core
GPU: Performance and innovation, IEEE Micro 41(2), 29–35. (Cited on pp. 10, 12.)

M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi (2010), Solving lattice QCD systems
of equations using mixed precision solvers on GPUs, Comput. Phys. Comm. 181(9), 1517–1528.
(Cited on p. 36.)

M. P. Connolly and N. J. Higham (2022), Probabilistic rounding error analysis of Householder
QR factorization, MIMS EPrint 2022.5, Manchester Institute for Mathematical Sciences, The
University of Manchester, UK. (Cited on p. 17.)

M. P. Connolly, N. J. Higham and T. Mary (2021), Stochastic rounding and its probabilistic backward
error analysis, SIAM J. Sci. Comput. 43(1), A566–A585. (Cited on pp. 6, 17.)

M. Courbariaux, Y. Bengio and J.-P. David (2015), Training deep neural networks with low precision
multiplications, ArXiv:1412.7024v5. (Cited on p. 6.)

M. G. Croarken (1985), The Centralization of Scientific Computation in Britain 1925–1955, PhD
thesis, University of Warwick, Coventry, UK. (Cited on p. 7.)

M. Croci, M. Fasi, N. J. Higham, T. Mary and M. Mikaitis (2021), Stochastic rounding: Im-
plementation, error analysis, and applications, MIMS EPrint 2021.17, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK. Revised January 2022. To appear in
Roy. Soc. Open Sci. (Cited on p. 6.)

P. I. Davies, N. J. Higham and F. Tisseur (2001), Analysis of the Cholesky method with iterative
refinement for solving the symmetric definite generalized eigenproblem, SIAM J. Matrix Anal.
Appl. 23(2), 472–493. (Cited on p. 41.)

T. A. Davis and Y. Hu (2011), The University of Florida Sparse Matrix Collection, ACM Trans. Math.
Software 38(1), 1:1–1:25. (Cited on p. 31.)

A. Dawson and P. D. Düben (2017), rpe v5: An emulator for reduced floating-point precision in large
numerical simulations, Geoscientific Model Development 10(6), 2221–2230. (Cited on p. 14.)

A. Dawson, P. D. Düben, D. A. MacLeod and T. N. Palmer (2018), Reliable low precision simulations
in land surface models, Climate Dynamics 51(7), 2657–2666. (Cited on p. 5.)

J. Dean (2020), The deep learning revolution and its implications for computer architecture and chip
design, in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), IEEE. (Cited on
p. 5.)

J. Demmel and Y. Hida (2004), Accurate and efficient floating point summation, SIAM J. Sci. Comput.
25(4), 1214–1248. (Cited on p. 48.)

54

J. Demmel, Y. Hida, E. J. Riedy and X. S. Li (2009), Extra-precise iterative refinement for over-
determined least squares problems, ACM Trans. Math. Software 35(4), 28:1–28:32. (Cited on
p. 39.)

J. W. Demmel and X. Li (1994), Faster numerical algorithms via exception handling, IEEE Trans.
Comput. 43(8), 983–992. (Cited on p. 30.)

J. E. Dennis, Jr. and R. B. Schnabel (1983), Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, USA. Reprinted by Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996. (Cited on p. 19.)

S. Di and F. Cappello (2016), Fast error-bounded lossy HPC data compression with SZ, in 2016
IEEE international parallel and distributed processing symposium (ipdps), IEEE, pp. 730–739.
(Cited on p. 36.)

J. Diffenderfer, D. Osei-Kuffuor and H. Menon (2021), QDOT: Quantized dot product kernel for
approximate high-performance computing, ArXiv:2105.00115. (Cited on p. 48.)

J. J. Dongarra (1980), Improving the accuracy of computed matrix eigenvalues, Preprint ANL-80-84,
Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL, USA.
(Cited on p. 40.)

J. J. Dongarra (1982), Algorithm 589 SICEDR: A FORTRAN subroutine for improving the accuracy
of computed matrix eigenvalues, ACM Trans. Math. Software 8(4), 371–375. (Cited on p. 40.)

J. J. Dongarra (1983), Improving the accuracy of computed singular values, SIAM J. Sci. Statist.
Comput. 4, 712–719. (Cited on p. 43.)

J. J. Dongarra (2020), Report on the Fujitsu Fugaku system, Technical Report ICL-UT-20-06,
Innovative Computing Laboratory, University of Tennessee. (Cited on p. 10.)

J. J. Dongarra, J. R. Bunch, C. B. Moler and G. W. Stewart (1979), LINPACK Users’ Guide, Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 23.)

J. J. Dongarra, C. B. Moler and J. H. Wilkinson (1983), Improving the accuracy of computed
eigenvalues and eigenvectors, SIAM J. Numer. Anal. 20(1), 23–45. (Cited on pp. 40, 43.)

N. Doucet, H. Ltaief, D. Gratadour and D. Keyes (2019), Mixed-precision tomographic recon-
structor computations on hardware accelerators, in 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), IEEE, pp. 31–38. (Cited on pp. 32, 47.)

P. D. Düben, A. Subramanian, A. Dawson and T. N. Palmer (2017), A study of reduced numerical
precision to make superparameterization more competitive using a hardware emulator in the
OpenIFS model, Journal of Advances in Modeling Earth Systems 9(1), 566–584. (Cited on p. 49.)

I. S. Duff and S. Pralet (2007), Towards stable mixed pivoting strategies for the sequential and parallel
solution of sparse symmetric indefinite systems, SIAM J. Matrix Anal. Appl. 29(3), 1007–1024.
(Cited on p. 25.)

I. S. Duff, A. M. Erisman and J. K. Reid (2017), Direct Methods for Sparse Matrices, second edition,
Oxford University Press. (Cited on pp. 31, 32.)

M. Emans and A. van der Meer (2012), Mixed-precision AMG as linear equation solver for definite
systems, Procedia Computer Science 1(1), 175–183. (Cited on p. 35.)

55

M. Fasi and N. J. Higham (2018), Multiprecision algorithms for computing the matrix logarithm,
SIAM J. Matrix Anal. Appl. 39(1), 472–491. (Cited on p. 50.)

M. Fasi and N. J. Higham (2019), An arbitrary precision scaling and squaring algorithm for the
matrix exponential, SIAM J. Matrix Anal. Appl. 40(4), 1233–1256. (Cited on p. 50.)

M. Fasi and N. J. Higham (2021), Matrices with tunable infinity-norm condition number and no need
for pivoting in LU factorization, SIAM J. Matrix Anal. Appl. 42(1), 417–435. (Cited on p. 7.)

M. Fasi and M. Mikaitis (2020), CPFloat: A C library for emulating low-precision arithmetic, MIMS
EPrint 2020.22, Manchester Institute for Mathematical Sciences, The University of Manchester,
UK. (Cited on p. 13.)

M. Fasi, N. J. Higham, F. Lopez, T. Mary and M. Mikaitis (2021a), Matrix multiplication in multiword
arithmetic: error analysis and application to GPU tensor cores, Technical report. in preparation.
(Cited on pp. 17, 44, 45, 46, 47.)

M. Fasi, N. J. Higham, M. Mikaitis and S. Pranesh (2021b), Numerical behavior of NVIDIA tensor
cores, PeerJ Comput. Sci. 7, e330(1–19). (Cited on p. 11.)

G. Flegar, H. Anzt, T. Cojean and E. S. Quintana-Ortí (2021), Adaptive precision block-Jacobi
for high performance preconditioning in the Ginkgo linear algebra software, ACM Trans. Math.
Software 47(2), 1–28. (Cited on pp. 35, 48.)

L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann (2007), MPFR: A multiple-
precision binary floating-point library with correct rounding, ACM Trans. Math. Software 33(2),
13:1–13:15. (Cited on p. 12.)

L. Fox, H. D. Huskey and J. H. Wilkinson (1948a), Notes on the solution of algebraic linear
simultaneous equations, Quart. J. Mech. Appl. Math. 1, 149–173. (Cited on p. 23.)

L. Fox, H. D. Huskey and J. H. Wilkinson (1948b), The solution of algebraic linear simultaneous
equations by punched card methods, Report, Mathematics Division, Department of Scientific and
Industrial Research, National Physical Laboratory, Teddington, UK. (Cited on p. 23.)

T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto and Y. Yanagisawa (2020), Shifted Cholesky
QR for computing the QR factorization of ill-conditioned matrices, SIAM J. Sci. Comput. 42(1),
A477–A503. (Cited on p. 38.)

J. Gao, F. Zheng, F. Qi, Y. Ding, H. Li, H. Lu, W. He, H. Wei, L. Jin, X. Liu, D. Gong, F. Wang,
Y. Zheng, H. Sun, Z. Zhou, Y. Liu and H. You (2021), Sunway supercomputer architecture
towards exascale computing: Analysis and practice, Science China Information Sciences 64(4),
141101:1–141101:21. (Cited on p. 10.)

P. E. Gill, M. A. Saunders and J. R. Shinnerl (1996), On the stability of Cholesky factorization for
symmetric quasidefinite systems, SIAM J. Matrix Anal. Appl. 17(1), 35–46. (Cited on p. 25.)

L. Giraud, S. Gratton and J. Langou (2007), Convergence in backward error of relaxed GMRES,
SIAM J. Sci. Comput. 29(2), 710–728. (Cited on p. 35.)

L. Giraud, A. Haidar and L. T. Watson (2008), Mixed-precision preconditioners in parallel domain
decomposition solvers, in Domain Decomposition Methods in Science and Engineering XVII
(U. Langer, M. Discacciati, D. E. Keyes, O. B. Widlund and W. Zulehner, eds), Lecture Notes in
Computational Science and Engineering, Springer-Verlag, Berlin, Germany, pp. 357–364. (Cited
on p. 34.)

56

L. Giraud, J. Langou, M. Rozložník and J. van den Eshof (2005), Rounding error analysis of the
classical Gram–Schmidt orthogonalization process, Numer. Math. 101(1), 87–100. (Cited on
p. 37.)

F. Göbel, T. Grützmacher, T. Ribizel and H. Anzt (2021), Mixed precision incomplete and factorized
sparse approximate inverse preconditioning on GPUs, in Euro-Par 2021: Parallel Processing,
Lecture Notes in Computer Science, Springer-Verlag, Cham, Switzerland, pp. 550–564. (Cited on
p. 35.)

D. Goddeke and R. Strzodka (2011), Cyclic reduction tridiagonal solvers on GPUs applied to mixed-
precision multigrid, IEEE Trans. Parallel Distrib. Syst. 22(1), 22–32. (Cited on p. 36.)

D. Göddeke, R. Strzodka and S. Turek (2007), Performance and accuracy of hardware-oriented
native-, emulated- and mixed-precision solvers in FEM simulations, International Journal of
Parallel, Emergent and Distributed Systems 22(4), 221–256. (Cited on p. 36.)

W. Govaerts and J. D. Pryce (1990), Block elimination with one iterative refinement solves bordered
linear systems accurately, BIT 30, 490–507. (Cited on p. 24.)

S. Graillat, F. Jézéquel, T. Mary and R. Molina (2022), ‘Adaptive precision matrix–vector product’.
HAL EPrint hal-03561193, February 2022. (Cited on p. 48.)

S. Gratton, E. Simon, D. Titley-Peloquin and P. Toint (2019), Exploiting variable precision in
GMRES, ArXiv:1907.10550. Revised February 2020. (Cited on p. 35.)

A. Greenbaum (1997), Estimating the attainable accuracy of recursively computed residual methods,
SIAM J. Matrix Anal. Appl. 18(3), 535–551. (Cited on p. 31.)

J. F. Groote, R. Morel, J. Schmaltz and A. Watkins (2021), Logic Gates, Circuits, Processors,
Compilers and Computers, Springer-Verlag, Cham, Switzerland. (Cited on p. 10.)

T. Grützmacher, H. Anzt and E. S. Quintana-Ortí (2021), Using Ginkgo’s memory accessor for im-
proving the accuracy of memory-bound low precision BLAS, Software—Practice and Experience.
(Cited on p. 36.)

M. Gulliksson (1994), Iterative refinement for constrained and weighted linear least squares, BIT 34,
239–253. (Cited on p. 39.)

S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan (2015), Deep learning with limited
numerical precision, in Proceedings of the 32nd International Conference on Machine Learning
(F. Bach and D. Blei, eds), Vol. 37 of JMLR: Workshop and Conference Proceedings, pp. 1737–
1746. (Cited on p. 6.)

A. Haidar, A. Abdelfattah, M. Zounon, P. Wu, S. Pranesh, S. Tomov and J. Dongarra (2018a), The
design of fast and energy-efficient linear solvers: On the potential of half-precision arithmetic and
iterative refinement techniques, in Computational Science—ICCS 2018 (Y. Shi, H. Fu, Y. Tian,
V. V. Krzhizhanovskaya, M. H. Lees, J. Dongarra and P. M. A. Sloot, eds), Springer, Cham,
Switzerland, pp. 586–600. (Cited on pp. 28, 29.)

A. Haidar, H. Bayraktar, S. Tomov, J. Dongarra and N. J. Higham (2020), Mixed-precision iterative
refinement using tensor cores on GPUs to accelerate solution of linear systems, Proc. Roy. Soc.
London A 476(2243), 20200110. (Cited on pp. 28, 30.)

57

A. Haidar, S. Tomov, J. Dongarra and N. J. Higham (2018b), Harnessing GPU tensor cores for fast
FP16 arithmetic to speed up mixed-precision iterative refinement solvers, in Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and Analysis,
SC18 (Dallas, TX), IEEE, Piscataway, NJ, USA, pp. 47:1–47:11. (Cited on pp. 28, 29, 37.)

A. Haidar, P. Wu, S. Tomov and J. Dongarra (2017), Investigating half precision arithmetic to
accelerate dense linear system solvers, in Proceedings of the 8th Workshop on Latest Advances in
Scalable Algorithms for Large-Scale Systems, ScalA ’17 (Denver, CO), ACM Press, New York,
pp. 10:1–10:8. (Cited on pp. 26, 29.)

R. Harvey and D. L. Verseghy (2015), The reliability of single precision computations in the simu-
lation of deep soil heat diffusion in a land surface model, Climate Dynamics 16(11), 3865–3882.
(Cited on p. 5.)

G. Henry, P. T. P. Tang and A. Heinecke (2019), Leveraging the bfloat16 artificial intelligence data-
type for higher-precision computations, in 2019 IEEE 26th Symposium on Computer Arithmetic
(ARITH), IEEE, pp. 69–76. (Cited on pp. 44, 46.)

D. J. Higham, N. J. Higham and S. Pranesh (2021), Random matrices generating large growth in LU
factorization with pivoting, SIAM J. Matrix Anal. Appl. 42(1), 185–201. (Cited on p. 30.)

N. J. Higham (1986), Computing the polar decomposition—with applications, SIAM J. Sci. Statist.
Comput. 7(4), 1160–1174. (Cited on p. 18.)

N. J. Higham (1988), Fast solution of Vandermonde-like systems involving orthogonal polynomials,
IMA J. Numer. Anal. 8, 473–486. (Cited on p. 24.)

N. J. Higham (1991), Iterative refinement enhances the stability of 𝑄𝑅 factorization methods for
solving linear equations, BIT 31, 447–468. (Cited on p. 23.)

N. J. Higham (1997), Iterative refinement for linear systems and LAPACK, IMA J. Numer. Anal.
17(4), 495–509. (Cited on p. 23.)

N. J. Higham (2002), Accuracy and Stability of Numerical Algorithms, second edition, Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA. (Cited on pp. 14, 15, 22, 25, 37, 39,
40.)

N. J. Higham (2008), Functions of Matrices: Theory and Computation, Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 18.)

N. J. Higham (2021), Numerical stability of algorithms at extreme scale and low precisions, MIMS
EPrint 2021.14, Manchester Institute for Mathematical Sciences, The University of Manchester,
UK. To appear in Proc. Int. Cong. Math. (Cited on p. 14.)

N. J. Higham and X. Liu (2021), A multiprecision derivative-free Schur–Parlett algorithm for com-
puting matrix functions, SIAM J. Matrix Anal. Appl. 42(3), 1401–1422. (Cited on p. 50.)

N. J. Higham and T. Mary (2019a), A new approach to probabilistic rounding error analysis, SIAM
J. Sci. Comput. 41(5), A2815–A2835. (Cited on p. 17.)

N. J. Higham and T. Mary (2019b), A new preconditioner that exploits low-rank approximations to
factorization error, SIAM J. Sci. Comput. 41(1), A59–A82. (Cited on p. 28.)

N. J. Higham and T. Mary (2020a), Sharper probabilistic backward error analysis for basic linear
algebra kernels with random data, SIAM J. Sci. Comput. 42(5), A3427–A3446. (Cited on p. 17.)

58

N. J. Higham and T. Mary (2020b), Solving block low-rank linear systems by LU factorization is
numerically stable, IMA J. Numer. Anal. pp. 1–30. (Cited on p. 32.)

N. J. Higham and S. Pranesh (2019), Simulating low precision floating-point arithmetic, SIAM J. Sci.
Comput. 41(5), C585–C602. (Cited on pp. 13, 14.)

N. J. Higham and S. Pranesh (2021), Exploiting lower precision arithmetic in solving symmetric
positive definite linear systems and least squares problems, SIAM J. Sci. Comput. 43(1), A258–
A277. (Cited on pp. 30, 31, 40.)

N. J. Higham, S. Pranesh and M. Zounon (2019), Squeezing a matrix into half precision, with an
application to solving linear systems, SIAM J. Sci. Comput. 41(4), A2536–A2551. (Cited on
pp. 29, 30.)

N.-M. Ho, H. De Silva and W.-F. Wong (2021), GRAM: A framework for dynamically mixing
precisions in GPU applications, ACM Trans. Archit. Code Optim. 18(2), 1–24. (Cited on p. 49.)

J. D. Hogg and J. A. Scott (2010), A fast and robust mixed-precision solver for the solution of sparse
symmetric linear systems, ACM Trans. Math. Software 37(2), 17:1–17:24. (Cited on p. 34.)

Y. Idomura, T. Ina, Y. Ali and T. Imamura (2020), Acceleration of fusion plasma turbulence simula-
tions using the mixed-precision communication-avoiding Krylov method, in SC20: International
Conference for High Performance Computing, Networking, Storage and Analysis, IEEE, Piscat-
away, NJ, USA, pp. 1–13. (Cited on p. 4.)

IEEE (1985), IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, New York. (Cited on p. 7.)

IEEE (2008), IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008 (Revision of IEEE
754-1985), IEEE Computer Society, New York. (Cited on p. 7.)

Intel Corporation (2018), ‘BFLOAT16—Hardware Numerics Definition’. White paper. Document
number 338302-001US. (Cited on pp. 8, 9.)

I. C. F. Ipsen and H. Zhou (2020), Probabilistic error analysis for inner products, SIAM J. Matrix
Anal. Appl. 41(4), 1726–1741. (Cited on p. 17.)

T. Iwashita, K. Suzuki and T. Fukaya (2020), An integer arithmetic-based sparse linear solver using a
GMRES method and iterative refinement, in 2020 IEEE/ACM 11th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems (ScalA), IEEE, pp. 1–8. (Cited on p. 34.)

M. Jankowski and H. Woźniakowski (1977), Iterative refinement implies numerical stability, BIT 17,
303–311. (Cited on p. 23.)

F. Johansson et al. (2013), ‘Mpmath: A Python library for arbitrary-precision floating-point arith-
metic’. http://mpmath.org. (Cited on p. 12.)

M. Joldes, J.-M. Muller and V. Popescu (2017), Tight and rigorous error bounds for basic building
blocks of double-word arithmetic, ACM Trans. Math. Software 44(2), 15res1–15res:27. (Cited on
p. 9.)

N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin, G. Kurian, J. Laudon, S. Li, P. Ma,
X. Ma, T. Norrie, N. Patil, S. Prasad, C. Young, Z. Zhou and D. Patterson (2021), Ten lessons from
three generations shaped Google’s TPUv4i: Industrial product, in 2021 ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), IEEE, pp. 1–14. (Cited on pp. 11,
12.)

59

http://mpmath.org

N. P. Jouppi, D. H. Yoon, G. Kurian, S. Li, N. Patil, J. Laudon, C. Young and D. Patterson (2020),
A domain-specific supercomputer for training deep neural networks, Comm. ACM 63(7), 67–78.
(Cited on pp. 11, 12.)

W. Kahan (1981), Why do we need a floating-point arithmetic standard?, Technical report, University
of California, Berkeley, CA, USA. (Cited on p. 7.)

C. T. Kelley (1995), Iterative Methods for Linear and Nonlinear Equations, Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA. (Cited on p. 20.)

C. T. Kelley (2022), Newton’s method in mixed precision, SIAM Rev. 64(1), 191–211. (Cited on
p. 20.)

A. Kiełbasiński (1981), Iterative refinement for linear systems in variable-precision arithmetic, BIT
21(1), 97–103. (Cited on p. 24.)

P. A. Knight, D. Ruiz and B. Uçar (2014), A symmetry preserving algorithm for matrix scaling,
SIAM J. Matrix Anal. Appl. 35(3), 931–955. (Cited on p. 29.)

M. Kronbichler and K. Ljungkvist (2019), Multigrid for matrix-free high-order finite element com-
putations on graphics processors, ACM Trans. Parallel Comput. 6(1), 2:2–3:32. (Cited on p. 36.)

S. Kudo, K. Nitadori, T. Ina and T. Imamura (2020a), Implementation and numerical techniques for
one EFlop/s HPL-AI benchmark on Fugaku, in Proceedings of the 11th IEEE/ACM Workshop
on Latest Advances in Scalable Algorithms for Large-Scale, Vol. 1, IEEE Computer Society, Los
Alamitos, CA, USA, pp. 69–76. (Cited on pp. 7, 26.)

S. Kudo, K. Nitadori, T. Ina and T. Imamura (2020b), Prompt report on exa-scale HPL-AI benchmark,
in 2020 IEEE International Conference on Cluster Computing (CLUSTER), IEEE, pp. 418–419.
(Cited on pp. 7, 26.)

J. Kurzak and J. Dongarra (2007), Implementation of mixed precision in solving systems of linear
equations on the Cell processor, Concurrency Computat. Pract. Exper. 19(10), 1371–1385. (Cited
on p. 24.)

J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari and J. Dongarra (2006), Exploiting the
performance of 32 bit floating point arithmetic in obtaining 64 bit accuracy (revisiting iterative
refinement for linear systems), in Proceedings of the 2006 ACM/IEEE Conference on Supercom-
puting, IEEE. (Cited on pp. 10, 24, 26.)

V. Lefèvre and P. Zimmermann (2017), Optimized binary64 and binary128 arithmetic with GNU
MPFR, in 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH), IEEE, pp. 18–26. (Cited
on p. 12.)

X. S. Li and J. W. Demmel (1998), Making sparse Gaussian elimination scalable by static pivoting,
in Proceedings of the 1998 ACM/IEEE Conference on Supercomputing, IEEE Computer Society,
Washington, DC, USA, pp. 1–17. (Cited on pp. 25, 32.)

X. S. Li and J. W. Demmel (2003), Superlu_dist: A scalable distributed-memory sparse direct solver
for unsymmetric linear systems, ACM Trans. Math. Software 29(2), 110–140. (Cited on p. 25.)

X. S. Li, J. W. Demmel, D. H. Bailey, G. Henry, Y. Hida, J. Iskandar, W. Kahan, S. Y. Kang, A. Kapur,
M. C. Martin, B. J. Thompson, T. Tung and D. J. Yoo (2002), Design, implementation and testing
of extended and mixed precision BLAS, ACM Trans. Math. Software 28(2), 152–205. (Cited on
pp. 9, 10.)

60

C. Lichtenau, S. Carlough and S. M. Mueller (2016), Quad precision floating point on the IBM z13,
in 2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), IEEE, pp. 87–94. (Cited on
p. 10.)

N. Lindquist, P. Luszczek and J. Dongarra (2020), Improving the performance of the GMRES
method using mixed-precision techniques, in Communications in Computer and Information
Science (J. Nichols, B. Verastegui, A. B. Maccabe, O. Hernandez, S. Parete-Koon and T. Ahearn,
eds), Springer, Cham, Switzerland, pp. 51–66. (Cited on pp. 33, 34.)

N. Lindquist, P. Luszczek and J. Dongarra (2022), Accelerating restarted GMRES with mixed
precision arithmetic, IEEE Trans. Parallel Distrib. Syst. 33(4), 1027–1037. (Cited on pp. 33, 34.)

J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman and S. Rajamanickam (2021a), Experimental
evaluation of multiprecision strategies for GMRES on GPUs, ArXiv:2105.07544. (Cited on
p. 34.)

J. A. Loe, C. A. Glusa, I. Yamazaki, E. G. Boman and S. Rajamanickam (2021b), A study of mixed
precision strategies for GMRES on GPUs, ArXiv:2109.01232. (Cited on p. 34.)

F. Lopez and T. Mary (2020), Mixed precision LU factorization on GPU tensor cores: Reducing data
movement and memory footprint, MIMS EPrint 2020.20, Manchester Institute for Mathematical
Sciences, The University of Manchester. (Cited on p. 29.)

P. Luszczek, I. Yamazaki and J. Dongarra (2019), Increasing accuracy of iterative refinement in
limited floating-point arithmetic on half-precision accelerators, in 2019 IEEE High Performance
Extreme Computing Conference (HPEC), IEEE, pp. 1–6. (Cited on p. 30.)

S. Markidis, S. Wei Der Chien, E. Laure, I. B. Peng and J. S. Vetter (2018), NVIDIA tensor core
programmability, performance & precision, in 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), IEEE, pp. 522–531. (Cited on pp. 44, 46.)

C. M. Maynard and D. N. Walters (2019), Mixed-precision arithmetic in the ENDGame dynamical
core of the unified model, a numerical weather prediction and climate model code, Comput. Phys.
Comm. 244, 69–75. (Cited on p. 5.)

S. F. McCormick, J. Benzaken and R. Tamstorf (2021), Algebraic error analysis for mixed-precision
multigrid solvers, SIAM J. Sci. Comput. 43(5), S392–S419. (Cited on p. 36.)

A. Meurer, C. P. Smith, M. Paprocki, O. C̆ertik, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov,
J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta,
S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, Š. Roučka, A. Saboo, I. Fernando,
S. Kulal, R. Cimrman and A. Scopatz (2017), SymPy: Symbolic computing in Python, PeerJ
Comput. Sci. 3, e103. (Cited on p. 12.)

C. B. Moler (1967), Iterative refinement in floating point, J. ACM 14(2), 316–321. (Cited on p. 7.)

C. B. Moler (2017), “‘Half precision” 16-bit floating point arithmetic’, http://blogs.mathworks.
com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/.
(Cited on pp. 9, 13.)

C. B. Moler (2019), ‘Variable format half precision floating point arithmetic’, https:
//blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-
floating-point-arithmetic/. (Cited on p. 13.)

61

http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
http://blogs.mathworks.com/cleve/2017/05/08/half-precision-16-bit-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/
https://blogs.mathworks.com/cleve/2019/01/16/variable-format-half-precision-floating-point-arithmetic/

D. Mukunoki, K. Ozaki, T. Ogita and T. Imamura (2020), DGEMM using tensor cores, and its accurate
and reproducible versions, in High Performance Computing (P. Sadayappan, B. L. Chamberlain,
G. Juckeland and H. Ltaief, eds), Springer, Cham, Switzerland, pp. 230–248. (Cited on p. 44.)

J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond,
N. Revol and S. Torres (2018), Handbook of Floating-Point Arithmetic, second edition, Birkhäuser,
Boston, MA, USA. (Cited on pp. 9, 10.)

M. Nakata (2021), MPLAPACK version 1.0.0 user manual, ArXiv:2109.13406. (Cited on pp. 12,
13.)

T. Norrie, N. Patil, D. H. Yoon, G. Kurian, S. Li, J. Laudon, C. Young, N. Jouppi and D. Patterson
(2021), The design process for Google’s training chips: TPUv2 and TPUv3, IEEE Micro 41(2),
56–63. (Cited on pp. 10, 12.)

NVIDIA Corporation (2020), ‘NVIDIA A100 Tensor Core GPU Architecture’. v1.0. (Cited on
pp. 10, 11.)

T. Ogita and K. Aishima (2018), Iterative refinement for symmetric eigenvalue decomposition, Japan
J. Indust. Appl. Math. 35, 1007–1035. (Cited on p. 42.)

T. Ogita and K. Aishima (2019), Iterative refinement for symmetric eigenvalue decomposition II:
Clustered eigenvalues, Japan J. Indust. Appl. Math. 36(2), 435–459. (Cited on p. 42.)

T. Ogita and K. Aishima (2020), Iterative refinement for singular value decomposition based on
matrix multiplication, J. Comput. Appl. Math. 369, 112512. (Cited on p. 43.)

E. Oktay and E. Carson (2021), Multistage mixed precision iterative refinement, ArXiv:2107.06200.
(Cited on p. 28.)

K. L. Oo and A. Vogel (2020), Accelerating geometric multigrid preconditioning with half-precision
arithmetic on GPUs, ArXiv:2007.07539. (Cited on p. 36.)

R. Ooi, T. Iwashita, T. Fukaya, A. Ida and R. Yokota (2020), Effect of mixed precision computing on
H-matrix vector multiplication in BEM analysis, in Proceedings of the International Conference
on High Performance Computing in Asia-Pacific Region, ACM Press, New York. (Cited on pp. 43,
47.)

S.-i. O’uchi, H. Fuketa, T. Ikegami, W. Nogami, T. Matsukawa, T. Kudoh and R. Takano (2018),
Image-classifier deep convolutional neural network training by 9-bit dedicated hardware to realize
validation accuracy and energy efficiency superior to the half precision floating point format, in
2018 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp. 1–5. (Cited on
p. 9.)

C. C. Paige, M. Rozložník and Z. Strakoš (2006), Modified Gram-Schmidt (MGS), least squares,
and backward stability of MGS-GMRES, SIAM J. Matrix Anal. Appl. 28(1), 264–284. (Cited on
p. 27.)

T. N. Palmer (2014), More reliable forecasts with less precise computations: A fast-track route to
cloud-resolved weather and climate simulators?, Phil. Trans. R. Soc. A 372(2018), 1–14. (Cited
on p. 5.)

T. N. Palmer (2020), The physics of numerical analysis: A climate modelling case study, Phil. Trans.
R. Soc. A 378(2166), 1–6. (Cited on p. 5.)

62

M. Petschow, E. Quintana-Ortí and P. Bientinesi (2014), Improved accuracy and parallelism for
MRRR-based eigensolvers—A mixed precision approach, SIAM J. Sci. Comput. 36(2), C240–
C263. (Cited on p. 42.)

L. Pisha and L. Ligowski (2021), Accelerating non-power-of-2 size Fourier transforms with GPU
tensor cores, in 2021 IEEE International Parallel and Distributed Processing Symposium (IPDPS),
Portland, OR, USA, pp. 507–516. (Cited on p. 44.)

R. Ralha (2018), Mixed precision bisection, Mathematics in Computer Science 12(2), 173–181.
(Cited on p. 42.)

C. Rubio-González, C. Nguyen, H. D. Nguyen, J. Demmel, W. Kahan, K. Sen, D. H. Bailey,
C. Iancu and D. Hough (2013), Precimonious: Tuning assistant for floating-point precision,
in Proceedings of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’13, ACM Press, New York, pp. 27:1–27:12. (Cited on p. 49.)

P. San Juan, R. Rodríguez-Sánchez, F. D. Igual, P. Alonso-Jordá and E. S. Quintana-Ortí (2021),
Low precision matrix multiplication for efficient deep learning in NVIDIA carmel processors, J.
Supercomputing 77(10), 11257–11269. (Cited on p. 16.)

M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji, H. Yashiro, M. Aoki, N. Shida,
I. Miyoshi, K. Hirai, A. Furuya, A. Asato, K. Morita and T. Shimizu (2020), Co-design for
A64FX manycore processor and “Fugaku”, in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’20, IEEE Press. (Cited on
p. 10.)

K. Scheinberg (2016), Evolution of randomness in optimization methods for supervised machine
learning, SIAG/OPT Views and News 24(1), 1–8. (Cited on p. 6.)

O. Schenk, K. Gärtner, W. Fichtner and A. Stricker (2001), PARDISO: A high-performance serial
and parallel sparse linear solver in semiconductor device simulation, Future Generation Computer
Systems 18(1), 69–78. (Cited on p. 25.)

V. Simoncini and D. B. Szyld (2003), Theory of inexact Krylov subspace methods and applications
to scientific computing, SIAM J. Sci. Comput. 25(2), 454–477. (Cited on p. 35.)

R. D. Skeel (1980), Iterative refinement implies numerical stability for Gaussian elimination, Math.
Comp. 35(151), 817–832. (Cited on p. 23.)

A. Smoktunowicz and J. Sokolnicka (1984), Binary cascades iterative refinement in doubled-mantissa
arithmetics, BIT 24(1), 123–127. (Cited on p. 24.)

A. Sorna, X. Cheng, E. D’Azevedo, K. Won and S. Tomov (2018), Optimizing the fast Fourier
transform using mixed precision on tensor core hardware, in 2018 IEEE 25th International
Conference on High Performance Computing Workshops (HiPCW), IEEE, pp. 3–7. (Cited on
p. 44.)

A. Stathopoulos and K. Wu (2002), A block orthogonalization procedure with constant synchroniz-
ation requirements, SIAM J. Sci. Comput. 23(6), 2165–2182. (Cited on pp. 38, 39.)

G. W. Stewart (1973), Introduction to Matrix Computations, Academic Press, New York. (Cited on
p. 24.)

N. J. Stor, I. Slapničar and J. L. Barlow (2015), Accurate eigenvalue decomposition of real symmetric
arrowhead matrices and applications, Linear Algebra Appl. 464, 62–89. (Cited on p. 42.)

63

Y. Sumiyoshi, A. Fujii, A. Nukada and T. Tanaka (2014), Mixed-precision AMG method for many core
accelerators, in Proceedings of the 21st European MPI Users’ Group Meeting, EuroMPI/ASIA
’14, ACM Press, New York, p. 127–132. (Cited on p. 36.)

J. Sun, G. D. Peterson and O. O. Storaasli (2008), High-performance mixed-precision linear solver
for FPGAs, IEEE Trans. Comput. 57(12), 1614–1623. (Cited on p. 26.)

G. Tagliavini, S. Mach, D. Rossi, A. Marongiu and L. Benin (2018), A transprecision floating-
point platform for ultra-low power computing, in 2018 Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 1051–1056. (Cited on p. 9.)

R. Tamstorf, J. Benzaken and S. F. McCormick (2021), Discretization-error-accurate mixed-precision
multigrid solvers, SIAM J. Sci. Comput. 43(5), S420–S447. (Cited on p. 36.)

O. Tintó Prims, M. C. Acosta, A. M. Moore, M. Castrillo, K. Serradell, A. Cortés and F. J. Doblas-
Reyes (2019), How to use mixed precision in ocean models: Exploring a potential reduction
of numerical precision in NEMO 4.0 and ROMS 3.6, Geoscientific Model Development 12(7),
3135–3148. (Cited on pp. 5, 49.)

F. Tisseur (2001), Newton’s method in floating point arithmetic and iterative refinement of generalized
eigenvalue problems, SIAM J. Matrix Anal. Appl. 22(4), 1038–1057. (Cited on pp. 20, 41.)

T. Trader (2016), ‘IBM advances against x86 with Power9’, https://www.hpcwire.com/2016/
08/30/ibm-unveils-power9-details/. Accessed May 21, 2021. (Cited on p. 10.)

Y. M. Tsai, P. Luszczek and J. Dongarra (2021), Mixed-precision algorithm for finding selected
eigenvalues and eigenvectors of symmetric and Hermitian matrices, Technical Report ICL-UT-
21-05, Innovative Computing Laboratory, The University of Tennessee, Knoxville, TN, USA.
(Cited on p. 42.)

E. Tsuchida and Y.-K. Choe (2012), Iterative diagonalization of symmetric matrices in mixed pre-
cision and its application to electronic structure calculations, Comput. Phys. Comm. 183(4),
980–985. (Cited on p. 42.)

K. Turner and H. F. Walker (1992), Efficient high accuracy solutions with GMRES(𝑚), SIAM J. Sci.
Statist. Comput. 12(3), 815–825. (Cited on p. 33.)

J. van den Eshof and G. L. G. Sleĳpen (2004), Inexact Krylov subspace methods for linear systems,
SIAM J. Matrix Anal. Appl. 26(1), 125–153. (Cited on p. 35.)

F. Váňa, P. Düben, S. Lang, T. Palmer, M. Leutbecher, D. Salmond and G. Carver (2017), Single
precision in weather forecasting models: An evaluation with the IFS, Mon. Weather Rev. 145(2),
495–502. (Cited on p. 5.)

J. von Neumann and H. H. Goldstine (1947), Numerical inverting of matrices of high order, Bull.
Amer. Math. Soc. 53, 1021–1099. (Cited on p. 7.)

E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K. Cheung and G. A. Constantinides
(2019), Deep neural network approximation for custom hardware, ACM Comput. Surv. 52(2),
1–39. (Cited on p. 6.)

N. Wang, J. Choi, D. Brand, C.-Y. Chen and K. Gopalakrishnan (2018), Training deep neural networks
with 8-bit floating point numbers, in Advances in Neural Information Processing Systems 31
(S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and R. Garnett, eds), Curran
Associates, pp. 7686–7695. (Cited on p. 9.)

64

https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/
https://www.hpcwire.com/2016/08/30/ibm-unveils-power9-details/

S. Wang and P. Kanwar (2019), ‘BFloat16: the secret to high performance
on cloud TPUs’, https://cloud.google.com/blog/products/ai-machine-learning/
bfloat16-the-secret-to-high-performance-on-cloud-tpus. Accessed September 14,
2019. (Cited on p. 11.)

J. H. Wilkinson (1948), Progress report on the Automatic Computing Engine, Report MA/17/1024,
Mathematics Division, Department of Scientific and Industrial Research, National Physical Labor-
atory, Teddington, UK. (Cited on pp. 7, 23.)

J. H. Wilkinson (1961), Error analysis of direct methods of matrix inversion, J. ACM 8, 281–330.
(Cited on p. 7.)

J. H. Wilkinson (1963), Rounding Errors in Algebraic Processes, Notes on Applied Science No. 32,
Her Majesty’s Stationery Office, London. Also published by Prentice-Hall, Englewood Cliffs, NJ,
USA. Reprinted by Dover, New York, 1994. (Cited on p. 6.)

J. H. Wilkinson (1977), The use of the single-precision residual in the solution of linear systems,
Unpublished manuscript. (Cited on p. 27.)

I. Yamazaki, S. Tomov and J. Dongarra (2015a), Mixed-precision Cholesky QR factorization and
its case studies on multicore CPU with multiple GPUs, SIAM J. Sci. Comput. 37(1), C307–C330.
(Cited on pp. 35, 38, 39.)

I. Yamazaki, S. Tomov and J. Dongarra (2016), Stability and performance of various singular value
QR implementations on multicore CPU with a GPU, ACM Trans. Math. Software 43(2), 10:1–
10:18. (Cited on p. 39.)

I. Yamazaki, S. Tomov, T. Dong and J. Dongarra (2014), Mixed-precision orthogonalization scheme
and adaptive step size for improving the stability and performance of CA-GMRES on GPUs, in
International Conference on High Performance Computing for Computational Science (J. Nichols,
B. Verastegui, A. B. Maccabe, O. Hernandez, S. Parete-Koon and T. Ahearn, eds), Springer, Cham,
Switzerland, pp. 17–30. (Cited on pp. 35, 38.)

I. Yamazaki, S. Tomov, J. Kurzak, J. Dongarra and J. Barlow (2015b), Mixed-precision block Gram
Schmidt orthogonalization, in Proceedings of the 6th Workshop on Latest Advances in Scalable
Algorithms for Large-Scale Systems, ScalA ’15, ACM Press, New York. (Cited on p. 38.)

K. Yang, Y.-F. Chen, G. Roumpos, C. Colby and J. Anderson (2019), High performance Monte
Carlo simulation of Ising model on TPU clusters, in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis (SC ’19), ACM Press, New
York. (Cited on p. 4.)

L. M. Yang, A. Fox and G. Sanders (2021), Rounding error analysis of mixed precision block
Householder QR algorithms, SIAM J. Sci. Comput. 43(3), A1723–A1753. (Cited on p. 37.)

S. Zhang, E. Baharlouei and P. Wu (2020), High accuracy matrix computations on neural engines: A
study of QR factorization and its applications, in Proceedings of the 29th International Symposium
on High-Performance Parallel and Distributed Computing, ACM. (Cited on p. 37.)

Y.-K. Zhu and W. B. Hayes (2009), Correct rounding and a hybrid approach to exact floating-point
summation, SIAM J. Sci. Comput. 31(4), 2981–3001. (Cited on p. 48.)

Z. Zlatev (1982), Use of iterative refinement in the solution of sparse linear systems, SIAM J. Numer.
Anal. 19(2), 381–399. (Cited on p. 25.)

M. Zounon, N. J. Higham, C. Lucas and F. Tisseur (2022), Performance impact of precision reduction
in sparse linear systems solvers, PeerJ Comput. Sci. 8, e778(1–22). (Cited on p. 31.)

65

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

