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N Polydorides and W R B Lionheart

Dept. of Mathematics, UMIST, PO Box 88, Manchester, UK.  Nicholas.Polydorides@umist.ac.uk

ABSTRACT

Most reconstruction algorithms in electrical impedance tomography (EIT, ERT and ECT) are known to
suffer from the computational costs of calculating the Jacobian (also known as sensitivity matrix). In
this paper we review and slightly modify the adjoint fields technique already widely used in
electromagnetic imaging, diffuse optical and ultrasound tomography, which enables the reconstruction
of nonlinear solutions without the explicit calculation of the Jacobian. This has enormous
computational advantages in the efficiency of image reconstruction. Here we address the complex
isotropic EIT problem.

Keywords Adjoint operator, electrical impedance tomography, computational efficiency.

1 THE ADJOINT PROBLEM

The aim of this paper is to explain the computational advantages associated to the adjoint operator, in
that it calculates the product of the transpose of the Jacobian matrix with a vector of suitable
dimensions without calculating the Jacobian matrix explicitly. This operator can be introduced to a
variety of inverse solvers, linear and nonlinear alike; in particular to the so-called “low-storage”
methods, which only require first derivatives for the computation of their descent directions. The
nonlinear conjugate gradients algorithm for instance, has a regularised direction ip of the form

1
*

1 )( −− +−= ii
sim

i
meas

ii pVVJp β (1)

where 1−iJ is the Jacobian matrix based on the previous model update, sim
i

meas VV  − is the i’th residual
in the measurements and iβ a real scalar parameter. Throughout this paper *X  denotes the
Hermitian transpose of X . The method offers a substantial computational advantage to problems with
excessive degrees of freedom and numerous measurements, that is in the cases where the
computation and storage of the Jacobian matrix is computationally demanding. Thus, in the tendency
of solving realistic problems where accurate modelling is essential, apart from reducing the
computational time for image reconstruction, the method offers a memory saving alternative as well.

The adaptation of the method for electrical impedance tomography (EIT) is relatively easy in that the
framework is quite similar to that of the electromagnetic imaging (EM) case extensively described by
Dorn et al. in (Dorn 1999; Dorn 2002).  Nonetheless, there are still some critical differences, mainly
emerging from the boundary conditions in the complete electrode model (Vauhkonen 1999). In broad
terms, some extra care is required due to the mismatch between the direct sources (the actual current
patterns) and the adjoint sources, which are simply hypothetical sources situated at the positions of
the measuring electrodes.  This means that direct fields are defined by boundary current densities that
are not constant on the surfaces of the excited electrodes, while the measurements gathered; which
are then to be used as adjoint sources, are known to be constant on the surfaces of the measuring
electrodes (Paulson 1992).  Furthermore, current patterns and boundary measurements usually
involve two or more electrodes with a finite surface rather than single point sources and detectors as
used in the EM case, which poses some concerns in deriving the adjoint sources, as these are defined
on electrodes while the measurement residuals are defined on electrode pairs.

In general adjoint problems are usually based upon the reciprocity principle that holds in the
appropriate physical system. Considering for instance the low-frequency, Maxwell's time harmonic
equations on a conductive domain Ω , with boundary Ω∂  and ΩΓΓ ∂⊂21 ,  where 21 ,ΓΓ  are disjoint
then if r  and s  are the position and direction vectors respectively on 1Γ , then the potential
measurement collected at r  in the direction s  due to a current source 0q  situated at 2Γ∈0r  is the
same as the potential that would have been measured at 0r  due to a source 0q this time situated at
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r in direction s− . To derive the adjoint method for EIT we consider a system consisting of a conductive
domain Ω in a Euclidean 3-space and L electrodes attached to its boundary.

In the low-frequency range, the time harmonic Maxwell's equations reduce to the partial differential
equation
                                                             0)( =∇⋅∇ uγ  in Ω                                                                  (2)
with ωεσγ i+= , 0,0 >> εσ    . The electrical conductivity σ  in 1−Sm , and the electrical permittivity ε
in 1−Fm are taken, for the sake of simplicity, to be isotropic within the domain of interest, however the
extension of the following to the anisotropic case is trivial. According to the complete electrode model
(Vauhkonen 1999), the boundary conditions for the elliptic partial differential equation (2) are

                                                       ∫ ∂
∂

=
lel

uq
 n
γ  on driving electrodes l                                             (3)

where lq is the current at the surface of the l'th electrode, and

                                                      
n∂
∂

+=
uzuU ll γ   on measuring electrodes l                                 (4)

where lU is the constant potential value at the surface of the l'th electrode. The model is known to

have a unique solution (Somersalo 1992) when ∑ =
=L

i iq1 0  and ∑ =
=L

k kU1 0 . In equations (2) – (4),

u is the scalar electric potential, lz  is the contact impedance of the l'th electrode and n is the outward
normal unit vector on the boundary of the domain.

For the derivation of the adjoint method in EIT the following space definitions are introduced:
• S : The space of the parameters γ .
• Ψ : The space of the current sources lq .
• jW : The space of the current patterns jI .
• Υ : The space of potential distributions ju .
• V : The space of electrode potentials lU .
• jZ : The space of measurements corresponding to the j'th current pattern iζ for ki ,...,1= with

Z the direct sum of jZ .

In a bounded conductive domain Ω  with boundary Ω∂  and L boundary electrodes attached, the j'th
drive current pattern jj WI ∈ is given as a sequence of boundary current sources using the currents
operator jj WC →Ψ: as

                                     ( ) 




== ∫∫∫

Le LLeejLjj dsjdsjdsjCqqqCI
  22 1121

ˆ, ... ,ˆ,ˆ ..., ,,
21

                 (5)

where lĵ denotes the l'th orthogonal current density vector at the boundary. The j'th direct forward
solution Υ∈ju  satisfies

                                                               0) ( =∇⋅∇ juγ                                                                   (6a)

in the interior of the domain under a boundary current pattern jI . In a matrix form can be expressed as

                                                                        jj IuA =γ                                                                   (6b)
where γA  is the forward system matrix based on γ . The associated j'th adjoint problem is to find a
solution Υ∈jv that satisfies

                                                               0) ( =∇⋅∇ jvγ                                                                    (7a)

in the interior of the domain for an adjoint boundary current pattern +
jI . In matrix form

                                                                    += jj IvAγ                                                                        (7b)
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where ωεσγ i−=  and *
γγ AA = is the adjoint system matrix based onγ . The collection of differential

boundary potential measurements usually involves pairs of nearby located electrodes. If there are p
measurements to be gathered under jI then from the data potential distribution Υ∈ju in Ω one can
easily extract an array of potential readings VU jl ∈  for Ll ,...,1= at Ω∂  and thereafter assemble the
boundary measurements vector jjk Z∈ζ  for pk ,...,1= . To calculate the electrode potentials from the
forward solution the electrode potential operator VM j →Υ:  is used, hence

                                                  ( )jLjjjjjl UUUuMU ,...,, 21== o                                                  (8)
The differential measurements are then calculated using the measurements operator jj ZVD →:  so
that
                                                    ( )jpjjjjljk DU ζζζζ ,...,, 21== o                                                 (9)
and combining equations (8) and (9) yields
                                                                { } jjj

p
kjk uMD oo=
=1

 ζ                                                     (10)

In fact, the measurements operator jD is simply an pL× matrix, whose columns are the definitions of
the measurement patterns.

The forward operator ZSF →: , which relates the parameters of interest (admittivities) to the boundary
measurements (voltages) can be derived. Using F which is Frechét differentiable and nonlinear in γ ,
the aim of the inverse problem is to reconstruct a solution S∈γ  so that for all j
                                                                        jjF ζγ =)(                                                                  (11)
In reality though, the measurements are contaminated with noise so the right hand side of  (11) is
essentially replaced with a perturbed measurements vector Zj ∈ζ~ , where κζζ ≤− jj

~ , for some

noise level κ . In this context, the aim is to minimise the quadratic 
2

2

~)(
2
1

jjF ζγ − . Taking

perturbations on the parameters δγγγ +→  and recording the perturbations in the forward solution

jjj uuu δ+→  the Frechet derivative of jF  can be calculated, yielding the discrete linearised form of
the forward problem
                                                      jjjj uMDF δδγγ oo−=′ )(                                                         (12)
where ZSF j →′ :  is a compact linear operator and )(γjF ′ is the Jacobian matrix evaluated at γ . If

jj Z∈ξ  is the residual in the measurements of the j'th current pattern so that jjj F ζγξ ~)( −= , then for

an appropriately selected adjoint current pattern +
jI , the product of the transpose of the Jacobian times

a residuals vector jjF ξγ *)(′  can be calculated using one direct and one adjoint forward solution. If

there are p measurement residuals in jξ , then expanding jjF ξγ *)(′  yields

                                                         ∑
=

′=′
p

q
jqjqjj FF

1

** )()( ξγξγ                                                       (13)

From the integral derivation of the Jacobian in the complete electrode model (Polydorides 2002), the
above can be expressed as

                                                  ∫ ∑Ω
=









⋅∇∇−=′

 
1

** dV ˆ)ˆ()(
p

q
qjqjjj vuF ξξγ                                      (14)

where dV  is a volume metric. The following refer explicitly to the j’th current pattern so to eliminate
clutter the subscript is dropped in equations (15) – (18). Taking the gradients of the finite element
representations of the potentials gives

                                                 ∑
=

∇=∇
n

i
iiuu

1

ˆ φ    and   ∑
=

∇=∇
n

k
kkvv

1

ˆ φ                                            (15)
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where ki φφ , are linear nodal shape functions and ki vu  , the vectors of nodal potential values, and
substituting (15) into (14) yields
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                            (16)

where u is the conjugate of u and the quantity in parenthesis is simply the solution of the adjoint
problem. At this stage, in order to formulate the adjoint problem, one needs to trace the corresponding
adjoint sources. In contrast to the already developed adjoint formulations as in electromagnetic
imaging case described in (Dorn 1992) and (Dorn 2002), the diffuse optical imaging in (Arridge 1999)
and the ultrasound tomography (Natterer 1995), here the measurement residuals refer to electrode
pairs rather than single point detectors therefore the definition of the adjoint sources using the
residuals of the measurements is not so trivial. Expanding the parenthesised quantity in equation (16)
yields

                                                  ∑
=

++=
p

q
ppqq vvv

1
11  ,..., ξξξ                                                          (17a)

For clarity in the following we introduce the notation )( nIv to denote the linear operation nn IAv 1−= γ .
Here we make use of the following two properties of linear operators
                                                          )()()( mnmn IIvIvIv ±=±                                                   (17b)

                                                                   )()( nn IcvIvc ⋅=⋅                                                        (17c)
with ℜ∈c . With (17b) and (17c) the sum in (17a) takes the form of

                              ∑
=

++=++=
p

q
ppppqq )ξI, ξv(I)ξv(I)ξ v(Iv

1
1111   ... ,  , ... , ξ                             (17d)

Hence,
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ξ                                (17e)

and from the definition of the adjoint problem in (7), equation (16) can also be written as

                                                

  

dV )(
1 1

* ∫∑∑ Ω
= =

∇∇−=′ ki

n

i
k

n

k
ijj vuF φφξγ

                                           (18)

The exact form of +
jI  can be obtained via the differential measurements operator, this time aiming to

decouple the residuals in a way that each electrode is assigned an ‘individual’ residual error. Thus if
jD  is a real pL× matrix and jξ an array of complex measurement residuals then

                                                                jqjj DI ξo=+                                                                      (19)

The formation of the adjoint sources may at first seem as merely a computational trick, but it also has
a rational physical interpretation, in that `the sum of the fields developed when l electrodes are excited
individually in turn, is equal to the field that would have been deployed if all l electrodes were excited
simultaneously'. Thus

                                                 [ ][ ][ ]+−−−=′ jjjj IACIAF 11*    )( γγξγ                                                   (20)
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where C  is a fixed by the mesh topology matrix holding the integrals of the gradients of the shape
functions.

2 THE NONLINEAR ADJOINT FIELDS INVERSION ALGORITHM

A reconstruction algorithm based on adjoint fields has already been developed in (Dorn 1999; Dorn
2002) for electromagnetic imaging, in (Arridge 1999) for diffuse optical tomography and (Natterer
1995) for ultrasound tomography. This nonlinear method uses an iteration of the form
                                              ( ) jjkjjjkk FRFFR ξγγγζγγγ **

1 )()(~)( ′+=−′+=+                          (21)

where R is a positive definite regularization matrix and

( ) ( ) ∫∑∑ Ω
= =

∇∇−=′ dV )(
1 1

*
kijk

n

i

n

k
jijj vuF φφξγ (22)

The method reconstructs in turn subsets of the data, i.e. those corresponding from the same current
pattern, each time updating the model using equation (21). Note that for the anisotropic problem one
should keep separated the x, y and z components in the gradients of the shape functions in equation
(22). Practically, in EIT the implementation of the method in its original format is rather problematic.
This is mainly due to the fact that usually the measurements captured from a single current pattern,
are either too few or too noisy to reconstruct a solution of a reasonable spatial resolution. To rectify
this limitation, we calculate a block adjoint operator in the form of a sparse block diagonal matrix, so
that to accommodate several adjoint operators corresponding to a number of current patterns rather
than just a single one. If  jWg ⊆  is a subset of the current patterns, with jg Z∈ξ  the concatenated

vector of the residuals in the corresponding measurements then if ∑ =
= n

i jij uU 1 )( and ∑ =
= n

k jkj vV 1 )(

                                              ∫∑ Ω
=

∇∇−=′
 

1

* dV )( ki

c

j
jjgg VUF φφξγ                                                 (23)

which implies that for c  current patterns in g , the block adjoint operator g
T

gF ξγ )(′  can be calculated
after g  direct and g adjoint forward solutions. To implement the algorithm, one must first split the
current patterns d  and their corresponding measurements ζ~  in p  groups, such as { }pddd ,...,1=  and

{ }pζζζ ,...,~
1= . In addition, allow SSR →:  being a positive definite regularization matrix, here

incorporating some smoothing assumptions on the solution. If ℜ∈κ  is the estimated error in the
measurements, the adjoint fields algorithm is

• WHILE κζγ >−
2

2

~)(
2
1

ggF

• FOR qg :1=

• 







∇∇−+← ∑ ∫

= Ω

c

1j
i dV   kjjVUR φφγγ

• ENDFOR ENDWHILE.

Performance statistics of the adjoint fields’ algorithm for a number of problems with different
parameters are shown in table 1. In the same table, the relevant figures for the nonlinear conjugate
gradients algorithm are also supplied for comparison. The selection of the NLCG algorithm is based on
the fact that the computational cost of the method is roughly that of calculating the Jacobian. In this
sense the numbers in the NLCG column correspond to the amount of forward solutions required for
the calculation of the Jacobian matrix via the efficient integral formulation.
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D
dζ DoF NLCG AFM

20 50 5000 1020 40
20 500 5000 10020 40
20 5000 5000 100020 40

100 50 5000 1500 200

Table 1: Performance statistics for the adjoint fields algorithm compared to the nonlinear conjugate gradients
algorithm. In the above D is the number of current patterns, dζ  is the number of measurements per current pattern and
DoF is the number of degrees of freedom in the inverse problem. In the NLCG column the number of forward solutions

required for the nonlinear CG iteration are listed next to the relevant figures for the adjoint fields iteration under the
AFM column.
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