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MODEL ORDER REDUCTION OF LAYERED WAVEGUIDES
VIA RATIONAL KRYLOV FITTING

VLADIMIR DRUSKIN∗, STEFAN GÜTTEL† , AND LEONID KNIZHNERMAN‡

Abstract. Network-based data-driven reduced order models (ROMs) have recently emerged as an ef-
ficient numerical tool for forward and inverse problems of wave propagation. Currently, this technique is
limited to two classes of problems: bounded inhomogeneous domains (with applications in multiscale simu-
lation and imaging) and homogeneous halfspaces (for the solution of exterior forward problems). Here we
relax the constant coefficient requirement for the latter by considering ROMs of unbounded waveguides with
layered inclusions, thereby giving rise to efficient discrete perfectly matched layers (PMLs) for nonhomo-
geneous media. Our approach is based on the solution of a nonlinear rational least squares problem using
the RKFIT method [M. Berljafa and S. Güttel, SIAM J. Sci. Comput., 39(5):A2049–A2071, 2017].
We show how the solution of this least squares problem can be converted into an accurate sparse network
approximation within a rational Krylov framework. Several numerical experiments are included. They in-
dicate that RKFIT computes ROMs more accurately than previous analytic approaches and even works in
regimes where the transfer functions to be approximated are highly irregular due to pronounced scattering
resonances. Spectral adaptation effects allow for accurate ROMs with dimensions near or even below the
Nyquist limit.

Key words. Reduced order model, Helmholtz equation, Dirichlet-to-Neumann map, perfectly matched
layer, rational approximation, continued fraction, matrix function, Stieltjes function, scattering resonance

AMS subject classifications. 35J05, 65N06, 65N55, 30E10

1. Introduction. Electrical network synthesis based on rational approximation of fil-
ter transfer functions was one of the original approaches to model order reduction (MOR)
of linear time invariant (LTI) dynamical systems; see, e.g., [21, 34]. Recently, this elegant
approach was repurposed as a tool for the solution of forward and inverse problems for LTI
partial differential equations and systems; see [24, 23, 17, 26, 15, 16] and references therein.
In this paper we will introduce a new, data-driven, approach to constructing reduced order
models (ROMs) of layered waveguides. A particular feature of our approach is that these
ROMs can be converted into a sparse network format, allowing their efficient implementa-
tion within a finite difference framework. This also means that they can be used as perfectly
matched layers (PMLs) for unbounded layered media.

We will show that the waveguide MOR problem is equivalent to the rational approxima-
tion of a Neumann-to-Dirichlet map, which in turn can be viewed as the transfer function of
an LTI system. In order to make these connections and put our contribution into the appro-
priate context, we first outline the overall MOR approach for LTI systems arising from PDE
discretizations (section 1.1), and discuss some of its applications (section 1.2) and challenges
(section 1.3). We then outline our contribution in section 1.4.

The rest of this paper is structured as follows: in section 2 we derive analytic expres-
sions of DtN maps for constant- and variable-coefficient media. We also show how the
optimization of DtN approximants relates to rational approximation problems. In section 3
we establish a new connection between rational Krylov spaces and FD grids. In section 4
we review the RKFIT algorithm and tailor it to our specific application of FD grid opti-
mization. A pseudocode of our algorithm and computational considerations are discussed in
section 5. Sections 6 and 7 are dedicated to convergence comparisons, with relations made
to convergence results from the literature whenever possible. In section 8 we discuss the
numerical results and compare them to the Nyquist limit and other (spectral) discretization
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schemes. In the appendix we give a rational approximation interpretation of the Nyquist
limit and explain why this limit is not necessarily strict for RKFIT-FD grids.

1.1. Model order reduction of LTI systems related to PDE discretizations.
Let M ∈ RN×N be a symmetric operator, IN the identity operator in RN , and s, g ∈ RN
with N ∈ N ∪ {∞}. Here we identify R∞ ≡ `2. We consider the LTI system

(M + λIN )s = g . (1.1)

One can think of M as a discretization of the Schrödinger operator M defined as

Mw(x) ≡ w′′(x)− c(x)w(x), x ∈ [0, T ], (1.2)

with w satisfying the boundary conditions

w′(0) = 0, w(T ) = 0. (1.3)

Here, c is assumed to be a sufficiently regular function, and 0 < T ≤ ∞. If T = ∞ we
interpret the second boundary condition as limx→∞ w(x) = 0. As the right-hand side of
(1.1) we take a vector

g = de1 ∈ RN , e1 = (1, 0, 0, . . .)T ,

where the constant d is chosen so that s approximates a discretization of w. The function w
can be considered as a “slice” of the Green’s function of the Schrödinger operator M, i.e.,
it satisfies the equation

w′′(x)− c(x)w(x) + λw(x) = δ(x).

This equation can be equivalently transformed into

w′′(x)− c(x)w(x) + λw(x) = 0,

if we replace the Neumann condition w′(0) = 0 in (1.3) by w′(0) = 1, and so we can define
the Dirichlet-to-Neumann (DtN) map f(λ) at the left end of the interval [0, T ] by

f(λ)e∗1 s = 1. (1.4)

For semidefinite M ≤ 0, the function 1/f(λ) (also known as the Neumann-to-Dirichlet
map or Weyl function) is of Markov–Stieltjes type, which makes its rational approximation
a comparably easy task. The focus of this paper is on indefinite M , in which case the
Markov–Stieltjes property is lost.

For the construction of our reduced order model (ROM) we take a data-driven approach,
based on computing the ROM transfer function rn(λ) as an [n/n−1] rational approximation
of f(λ). The ROM transfer function rn can formally be written as

(Mn + λIn)sn = gn, rn(λ)e∗1 sn = 1, (1.5)

where Mn ∈ Rn×n, In is the identity matrix in Rn, and sn, gn ∈ Rn, assuming that n� N
(in the case N = ∞ this means that n 6= ∞). A special feature of the network-based
approach is that Mn is chosen to be tridiagonal. This tridiagonality of Mn gives rise to
its interpretation as a second-order finite difference operator of the reduced order n on a
specially chosen grid, also known as an optimal or spectrally matched grid. It happens that
also gn can be represented in the form gn = dne1, and so it can be interpreted as the discrete
delta function localized at the first grid node. Thus sn can similarly to s be viewed as an
approximation of a finite-difference slice of Green’s function, which allows us to interpret
rn(λ) as the DtN map of Mn at the first node.
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1.2. Applications. The outlined MOR approach has a variety of applications, related
to forward and inverse problems. Here we just give two examples.

Forward problem: Compressed representation of solutions of separable PDEs.
First we note that the above discussed LTI formulation can be extended to the PDEs

invariant with respect to at least one spatial variable or generally to problems allowing for
separation of variables. Let us consider the following Sylvester equation for U ∈ RNN

(M ⊗ IN + IN ⊗A)U = g ⊗ b, (1.6)

where A ∈ RN×N is a normal matrix and such that the sets of eigenvalues of M and −A do
not intersect, b ∈ RN , and IN is the identity matrix in RN .

The Sylvester formulation (1.6) is convenient for the description of discretized wave-
guides, with M and A being space discretizations in the propagation and transverse direc-
tion, respectively. For example, if A is an approximation of the Laplacian in Ω ⊂ R2 with a
homogeneous Dirichlet condition on the boundary ∂Ω, then equation (1.6) describes the dis-
cretization of a waveguide layered in the propagation direction. Its continuous formulation
is the Schrödinger equation

∆y,zw + wxx − c(x)w = δ(x)b̂(y, z) (1.7)

on the domain [0, T ]× Ω, where b̂ is a continuous analogue of b. By the same reasoning as
in the 1D case considered above, the DtN map F ∈ RN×N at x = 0 is given by

F · restrnNN U = b, (1.8)

where restrnNN is the restriction operator returning the vector of the first N entries of a size
NN vector. The efficient approximation of DtN maps is important for the truncation of
unbounded computational domains and the preconditioning of Helmholtz solvers [28, 29, 30],
as well as the mode matching of composite waveguides [37].

If b = bi ∈ RN×N is an eigenvector of A, then due to the problem’s separability
U = s̃i ⊗ bi, s̃i ∈ RN , and (1.6) becomes

(M + λiIN )s̃i = g ,

where λi is the eigenvalue of A corresponding to bi. Hence, Fbi = f(λi)bi and we arrive at

F = f(A). (1.9)

Let us construct a ROM realization of (1.6) as

(Mn ⊗ IN + In ⊗A)Un = gn ⊗ b, (1.10)

with Un ∈ RnN . Then the ROM DtN Fn ∈ RN×N is given by the equation

Fn · restrnNN Un = b. (1.11)

Further, following the same derivations as for (1.9), we obtain

Fn = rn(A).

Inverse problem: Approximate DtN from data. For the inverse problems (for both
time-invariant and space-invariant problems), the data f(λ) are given on a discrete set
Λ = {λ1, . . . , λN} ⊂ C \ spectrum(−M). A reasonable choice of rn should minimize the
data misfit ‖f − rn‖Λ in some norm. Likewise, for the DtN of the separable differential
equation we obtain

‖F − Fn‖2 = ‖f(A)− rn(A)‖2 ≤ max
1≤j≤N

|f(λj)− rn(λj)|, (1.12)
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i.e., ideally rn should minimize the `∞ error on Λ. The application of such inverse problems
is based on the so-called geometric embedding property of optimal grids, which enable
the imaging of an unknown coefficient function in the differential operator [14, 19]. This
approach was also extended to multi-dimensional PDE operators and systems via multi-
input/multi-output (MIMO) ROMs [26, 15, 16, 18].

These applications show that rational approximation on a discrete set is a generic prob-
lem arising with network-based ROM, both for the forward and inverse problems. As it
was already mentioned, for negative-definite M the function 1/f(λ) belongs to the class of
Markov–Stieltjes functions, in which case the `∞ optimal rational approximation is a convex
problem on real intervals. Such approximants can be computed using Remez algorithm, and
in special cases even be constructed analytically. Such ideas have been extended to arbitrary
indefinite M with N < ∞ corresponding to wave propagation in inhomogenoeus bounded
domains where f is meromorphic [25].

1.3. Challenges arising with layered waveguides. The above-mentioned rational
approximation problems become significantly more complicated for wave propagation in un-
bounded domains, in which case 1/f is a non-Stieltjes multi-valued function. An elegant
solution for such problems was pioneered and analyzed in [22, 28, 9, 4] and is nowadays
known as complex coordinate stretching, leading to the so-called perfectly matched layers
(PMLs). These works indicate that the minimal error of the DtN map can only be achieved
with a complex-valued rational approximant rn. Modifying the classical Zolotarev results for
real approximation one can indeed construct complex rational approximants rn and complex
tridiagonal matrices Mn with sub-optimal accuracy [24, 5]. However, due to the analytic
construction of these PMLs the medium needs to be invariant in the stretching direction.
A more detailed review of these techniques is given in [23]. Generally, optimal rational ap-
proximation in the complex case lacks convexity and generally suffers from local minima and
non-uniqueness. The situation is becoming particularly involved with discontinuous layers
causing multiple reflections along the waveguide propagation direction, manifested by the
presence of so-called scattering resonances (poles) [27] near the spectral interval of interest
(e.g., the spectral interval of transverse operator A). A similar difficulty arises with inverse
spectral problems in layered dissipative media; see e.g. the discussion in [18]. There are a
number of recent MOR developments addressing data-driven non-Stieltjes approximation,
however, they specifically optimize rational approximants (rn in our case) on the entire
imaginary axis [7, 6, 8], and it is not clear if they can be adjusted to approximation on the
targeted discrete sets.

1.4. New contribution: Rational Krylov fitting of irregular NtD maps. In
this work we present a new generic approach to rational optimization on discrete sets cir-
cumventing the above problems. Our main application is the approximation of NtD maps
for infinite waveguides with layered inclusions. Our approach is based on the RKFIT algo-
rithm proposed in [12], which has been demonstrated to have good performance for nonlinear
rational least squares approximation.

As a prototypical problem we consider the infinite FD scheme with N =∞

2

h

(
u1 − u0

h
+ b

)
= (A+ c0I)u0, (1.13a)

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= (A+ cjI)uj , j = 1, 2, . . . ,∞ (1.13b)

where either u0 ∈ CN or b ∈ CN is given, A is a Hermitian N × N matrix, cj = 0 for all
j > L, and the solution {uj}∞j=0 ⊂ CN is assumed to be bounded. This problem may arise
from the FD discretization of the three-dimensional (indefinite) Helmholtz equation

∇2u+ (k2
∞ − c(x))u = 0,
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for (x, y, z) ∈ [0,+∞) × [0, 1] × [0, 1] with a compactly supported offset function c(x) for
the wave number k∞ and appropriate boundary conditions. In this case the matrix A cor-
responds to the discretization of the transverse differential operator −∂2

yy − ∂2
zz − k2

∞ at
x = 0 and is Hermitian indefinite. After discretization, the variation of the wave number
in the x-direction is modelled by varying coefficients cj , with the “overall” wave number
being

√
k2
∞ − cj at each grid point. Most interesting are oscillatory Helmholtz problems

where k2
∞ − cj is positive on the entire domain. Note that system (1.13) corresponds to

(1.6) with M = DT where D = diag(2, 1, 1, . . .) and T is the symmetric indefinite tridi-
agonal matrix with the diagonal h−2 + c0/2, 2h

−2 + c1, 2h
−2 + c2, . . . and the subdiagonal

−h−2,−h−2,−h−2, . . .. In this setting, the DtN operator (1.9) is defined by the relationship
Fu0 = b. Since (1.13) is a linear recurrence relation, F = fh(A) is a matrix function in A.
If cj ≡ 0, the DtN function for (1.13) at x = 0 is fh(λ) =

√
λ+ (hλ/2)2. As h → 0 we

obtain the DtN function f(λ) =
√
λ for the continuous problem.

As will be explained in more detail in section 2, a compact representation of the FD grid
(1.13) can be obtained by computing a low-order rational matrix function rn(A) ≈ fh(A).
In the case where A is Hermitian and f(λ) =

√
λ, a near-optimal rational approximant rn

to f can be constructed analytically. More precisely, let the eigenvalues of A be contained
in the union of two intervals K = [a1, b1] ∪ [a2, b2], with a1 < b1 < 0 < a2 < b2. Then [23]

gives an explicit construction of a rational function r
(Z)
n of type (n, n− 1) such that

max
λ∈K
|1− r(Z)

n (λ)/f(λ)| � exp

−n · 2π2

log
(

256 · a1b2a2b1

)
 as n→∞, (1.14)

for sufficiently large interval ratios a1/b1 and b2/a2. The construction is based on combining
two Zolotarev approximants (see [39] and [3, Appendix E]), one being optimal for [a1, b1]
and the other being optimal for [a2, b2], and then balancing their degrees carefully. It can
also be shown that the convergence factor in (1.14) is optimal. Hence, the approximation
error

‖f(A)− r(Z)
n (A)‖2 ≤ C max

λ∈K
|1− r(Z)

n (λ)/f(λ)|

also decays exponentially at the same optimal rate. Interestingly, the continued fraction

form of the rational approximants r
(Z)
n gives rise to a geometrically meaningful three-point

FD scheme, called for short the optimal grid. By “geometrically meaningful” we mean that
the complex grid points align on a curve in the complex plane which can be interpreted as
a “smooth” deformation of the original x-coordinate axis.

The analytic approach is essentially limited to the scalar approximation of DtN func-
tions such as

√
λ and

√
λ+ (hλ/2)2. If the coefficients cj in (1.13) are nonconstant, fh is

more involved and an explicit construction of a rational approximant rn ≈ fh is generally
impossible. In the case of non-oscillatory boundary value problems (i.e., when k2

∞ − c(x)
is nonpositive for all x ≥ 0), variable-coefficient media have been considered in the context
of inverse problems; see, e.g., [17, 15]. In this case fh is analytic and of Stieltjes–Markov
type on the spectral interval of A, and rational approximants can be obtained efficiently via
(multi-point) Padé techniques. The coefficients of the continued fraction representation of
these approximants can again be interpreted as geometrically meaningful FD grids.1

The approximation problems become much more difficult in the oscillatory case. An
illustrating example is given in Figure 1.1, where the top panels show the amplitude/phase
of the solution of a waveguide problem on [0,+∞) × [0, 1], truncated and discretized by
300×150 points. The step size is h = 1/150 in both coordinate directions. For this problem

1We also point out another recent approach for compressing the NtD operator for the Helmholtz equation
based on randomized matrix probing [13]. This approach has advantage of handling a rather wide class of
multidimensional variable coefficient problems at the expense of losing the sparse representation in form of
a three-point finite-difference scheme.
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Figure 1.1. A waveguide with varying coefficient (wave number) in the x-direction (piecewise constant
over the first 150 grid points and the remaining grid points until infinity). The top row shows the amplitude
and phase of the solution, with the position of the coefficient jump highlighted by vertical dashed line. The
bottom shows a plot of the exact DtN function fh (solid red line) over the spectral interval of the indefinite
matrix A. The plot is doubly logarithmic on both axis, with the x-axis showing a negative and positive part
of the real axis, glued together by the gray linear part in between. The RKFIT approximant of degree n = 8
(dotted blue curve) exhibits spectral adaptation to some of the eigenvalues of A (black dots).

we have chosen k∞ = 14 and cj = −92 for the grid points j = 0, 1, . . . , L = 150. An
absorbing boundary condition has been fitted to the right end of the domain to mimic the
infinite extension x → ∞. The modulus of the associated DtN function fh is shown in the
bottom of Figure 1.1 (solid red curve). Apparently this function has several singularities
between and close to the eigenvalues of the transverse FD matrix A (the eigenvalue positions
are indicated by the black dots). In particular, one eigenvalue λj ≈ 50.5 is extremely close
to a singularity of fh, which can be associated with the near-resonance observed in the left
portion of the waveguide. These singularities make it impossible to construct a uniform
approximant rn ≈ fh over the negative and positive spectral subintervals.

Further complications arise when A is non-Hermitian, in which case the problem rn(A) ≈
F = fh(A) may require rational approximation in the complex plane. In order to overcome
these problems, we propose a new numerical approach using RKFIT, which is an iterative
rational Krylov-based algorithm for computing a rational function rn such that, for a given
nonzero training vector v ∈ CN , rn(A)v ≈ Fv in the Euclidean norm [11, 12]. The RKFIT
approximant naturally incorporates the spectral weights present in v and it exploits the
discreteness of the spectrum of A. In particular the latter property is crucial for solving
the aforementioned approximation problems where fh has singularities in or nearby the
spectral region of A. This is exemplified by the RKFIT approximant rn shown on the
bottom of Figure 1.1 (dashed blue curve). This approximant is of degree n = 8 and has
a relative accuracy of ‖Fu0 − rn(A)u0‖2/‖Fu0‖2 ≈ 1.4 · 10−6. As the plot illustrates, rn
achieves this high accuracy by being close to fh in the vicinity of the eigenvalues of A, but
not necessarily in between them. We emphasize that this remarkable spectral adaptation is
achieved without requiring a spectral decomposition of A explicitly ; RKFIT merely requires
the repeated computation of matrix-vector products with F .

The rational Krylov framework is very natural not only for the efficient computation
of rn, but we also present a rational Krylov-based algorithm for its direct conversion into
an implementable three-point FD scheme. We refer to the resulting grid as an RKFIT-
FD grid. Unlike the above mentioned optimal grids for constant-coefficient oscillatory and
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variable-coefficient non-oscillatory problems, RKFIT-FD grids may not have a nice geometric
interpretation but can nevertheless be used as efficient PMLs for nonhomogeneous media.

We typically observe that the RKFIT-FD grids are exponentially accurate as an ap-
proximation to the full FD scheme, with only a small number of grid points required for
practical accuracy. In fact, we will demonstrate that the Nyquist limit of two grid points
per wavelength does not fully apply to RKFIT-FD grids due to spectral adaptation effects.
For the problem in Figure 1.1, for example, we computed an RKFIT-FD grid of only n = 8
points which accurately (to about six digits of relative accuracy) mimics the response of the
full variable-coefficient waveguide discretized by 300 grid points in the x-direction. This is
a significant compression of the full grid.

2. Analytic forms of DtN maps. There is an intricate connection between FD grids
and rational functions. We will first consider a scalar constant-coefficient FD grid and show
how to convert it into an equivalent continued fraction. We will then discuss the variable-
coefficient case and finally introduce the problem of grid optimization.

2.1. The constant-coefficient case. Consider the ODE u′′(x) = λu(x) on x ≥ 0 and
its associated FD scheme

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= λuj , j = 1, 2, . . . , (2.1)

where λ and u0 are given constants, and we demand that un remains bounded as n → ∞.
This linear recurrence relation is a scalar version of (1.13b) with c ≡ 0. It can easily be
solved by computing the roots of the associated characteristic polynomial p(t) = (t2 − (2 +
h2λ)t+ 1)/h2 and choosing the solution

uj =

(
1 +

h2λ

2
− h
√
λ+

h2λ2

4

)j
u0.

Indeed this is the only solution that decays for λ > 0. Moreover, this solution is bounded
under the condition2 λ ≥ −4/h2 and unbounded for λ < −4/h2.

We can use the explicit solution {uj} to extract interesting information about the prob-
lem. For example, from the FD relation

2

h

(
u1 − u0

h
+ b

)
= λu0 (2.2)

we obtain an approximation b to the Neumann boundary data −u′(x = 0) for the continuous
analogue of the FD scheme. Eliminating u1 using the above formula, we can directly relate
u0 and b via

b =

√
λ+

h2λ2

4
u0 =: fh(λ)u0.

This is the Dirichlet-to-Neumann (DtN) relation, with fh being referred to as the DtN
function. By letting h → ∞ we recover the DtN relation b =

√
λu0 =: f(λ)u0 and indeed

b = −u′(0) for the continuous solution u(x) = exp(−x
√
λ)u0.

While closed formulas of DtN maps are certainly useful for the theoretical analysis of
solutions, they are not suitable for practical implementation in an FD framework. Hence

2This is an interesting condition in the indefinite Helmholtz case, where the role of λ is played by the
eigenvalues of the shifted Laplacian −∇2 − k2 and k is the wave number. Because we require λ ≥ −4/h2,
we have a condition k2 ≤ 4/h2 on the wave number, which is equivalent to kh ≤ 2. The solution of the
Helmholtz equation in a homogeneous medium has wave length ` = 2π/k. Hence the number of FD grid
points per wavelength, n = `/h, must satisfy n = `/h = 2π/(kh) ≥ π in order to approximate a bounded
oscillatory solution.
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our aim is to approximate DtN maps by FD grids with a small (and finite) number n
of grid points. One approach to obtain a finite FD scheme is to simply truncate (2.1)
after its first n − 1 terms, setting un = 0. Together with (2.2) and the auxiliary variables
ûj−1 = (uj − uj−1)/h we can then form a linear system

hλ
2 −1
1 h −1

1 hλ −1

1 h
. . .

. . .
. . . −1
1 hλ −1

1 h





u0

û0

u1

û1

...
un−1

ûn−1


=



b
0
0
0
...
0
0


.

By row-wise Gaussian elimination of the −1’s on the superdiagonal, starting from the
bottom-right and going up to the left, we find that

b/u0 =
hλ

2
+

1

h+
1

hλ+
1

h+ · · ·+
1

hλ+
1

h

=: rn(λ).

The rational function rn is of type (n, n− 1), that is, numerator and denominator degree n
and n − 1, respectively, and we expect that rn ≈ fh in some sense. Indeed, one can verify
that rn is the type (n, n− 1) Padé approximant to fh with expansion point λ =∞. Hence
rn can be expected to be a good approximation to fh for large values of λ, i.e., for rapidly
decaying solutions of (2.1).

2.2. Variable-coefficient case. The scalar form of the FD scheme (1.13) is

2

h

(
u1 − u0

h
+ b

)
= (λ+ c0)u0,

1

h

(
uj+1 − uj

h
− uj − uj−1

h

)
= (λ+ cj)uj , j = 1, 2, . . . .

By eliminating the grid points with indices j > L (at which we assumed cj = 0) in the same
manner as above, we find the DtN relation b/u0 = fh(λ) with

fh(λ) =
h(λ+ c0)

2
+

1

h+
1

h(λ+ c1) +
1

h+ · · ·+
1

h(λ+ cL) +
1

h+
1

hλ

2
+

√
λ+ h2λ2

4

. (2.3)

2.3. Optimizing FD grids. In view of the original vector-valued problem (1.13),
the role of λ is played by the eigenvalues of the matrix A. When employing a rational
approximant rn ≈ fh it hence seems reasonable to be accurate on the spectral region of A.
For example, if A is diagonalizable as A = X diag(λ1, λ2, . . . , λN )X−1, we have

‖fh(A)− rn(A)‖2 ≤ ‖X‖2‖X−1‖2 max
1≤j≤N

|fh(λj)− rn(λj)|.
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Hence if the condition number κ(X) = ‖X‖2‖X−1‖2 is moderate, we can bound the accuracy
of rn(A) using a scalar approximation problem on the eigenvalues λj .

The crucial observation for optimizing the rational approximant rn, or equivalently an
FD grid, is that the grid steps do not need to be equispaced, and not even real-valued.
Consider the FD scheme

1

ĥ0

(
u1 − u0

h1
+ b

)
= λu0, (2.4a)

1

ĥj

(
uj+1 − uj
hj+1

− uj − uj−1

hj

)
= λuj , j = 1, . . . , n− 1, (2.4b)

with arbitrary complex-valued primal and dual grid steps hj and ĥj−1 (j = 1, 2, . . . , n),
respectively. The continued fraction form of the associated DtN maps, derived in exactly
the same manner as for the case of constant h above, is

rn(λ) = ĥ0λ+
1

h1 +
1

ĥ1λ+
1

h2 + · · ·+
1

ĥn−1λ+
1

hn

. (2.5)

As before, rn is a rational function of type (n, n − 1), and by choosing the free grid steps
we can optimize it for our purposes. In particular, we can tune (2.4) so that it implements
a rational approximation to any DtN map, even if the associated analytic DtN function
fh is complicated. To this end, we need a robust method for computing such rational
approximants and a numerical conversion into continued fraction form. This will be subject
of the following two sections.

3. From FD grids to rational Krylov spaces. The vector form of (2.4) is

1

ĥ0

(
u1 − u0

h1
+ b

)
= Au0, (3.1a)

1

ĥj

(
uj+1 − uj
hj+1

− uj − uj−1

hj

)
= Auj , j = 1, . . . , n− 1. (3.1b)

In the previous section we have derived that b = rn(A)u0 with a rational function rn =

pn/qn−1 whose continued fraction form (2.5) involves the grid steps hj and ĥj−1. The vectors
uj and b = rn(A)u0 satisfy a rational Krylov decomposition

AUn+1K̃n = Un+1H̃n, (3.2)

where Un+1 = [ rn(A)u0 |u0 |u1 | · · · |un−1 ] ∈ CN×(n+1), and K̃n, H̃n ∈ C(n+1)×n are given
as

K̃n =


0

ĥ0

ĥ1

. . .

ĥn−1

 , H̃n =



1
−h−1

1 h−1
1

h−1
1 −h−1

1 − h
−1
2

. . .

. . .
. . . h−1

n−1

h−1
n−1 −h−1

n−1 − h−1
n

 . (3.3)

The entries in (H̃n, K̃n) encode the recursion coefficients in (2.4), and the columns of Un+1

all correspond to rational functions in A multiplied by the vector u0. The span of such
vectors is called a rational Krylov space [36]. In the next section we will show how to
generate decompositions of the form (3.2) numerically and how to interpret them as FD
grids.
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4. The RKFIT approach. Assume that F,A ∈ CN×N are given matrices, and v ∈
CN with ‖v‖2 = 1. Our aim is to find a rational approximant rn(A)v such that

‖Fv − rn(A)v‖2 → min . (4.1)

For the purpose of this paper, F is the linear DtN operator for a BVP with possibly varying
coefficients, and the sought rational function rn is of type (n, n− 1), i.e., rn = pn/qn−1 with
pn ∈ Pn and qn−1 ∈ Pn−1. Note that (4.1) is a nonconvex optimization problem which may
have many solutions, exactly one solution, or no solution at all. However, this difficulty has
not prevented the development of algorithms for the (approximate) solution of (4.1); see
[12] for a discussion of various algorithms. The RKFIT algorithm developed in [11, 12] is
particularly suited for this task, and in this section we shall briefly review it and adapt it
to our application.

4.1. Search and target spaces. Given a set of poles ξ1, ξ2, . . . , ξn−1 ∈ C and an
associated nodal polynomial qn−1(λ) =

∏n−1
j=1 (λ − ξj), RKFIT makes use of two spaces,

namely an n-dimensional search space Vn defined as

Vn := qn−1(A)−1Kn(A, v),

and an (n+ 1)-dimensional target space Wn+1 defined as

Wn+1 := qn−1(A)−1Kn+1(A, v).

Here, Kj(A, v) = span{v , Av , . . . , Aj−1v} is the standard (polynomial) Krylov space for
(A, v) of dimension j. Let Vn ∈ CN×n and Wn+1 ∈ CN×(n+1) be orthonormal bases for Vn
and Wn+1, respectively.

The space Vn is a rational Krylov space with starting vector v and the poles ξ1, . . . , ξn−1,
i.e., a linear space of type (n − 1, n − 1) rational functions (pj/qn−1)(A)v , all sharing the
same denominator qn−1. As a consequence, we can arrange the columns of Vn such that
Vne1 = v and a rational Krylov decomposition

AVnKn−1 = VnHn−1 (4.2)

is satisfied. Here, (Hn−1,Kn−1) is an unreduced upper Hessenberg pencil of size n× (n−1),
i.e., both Hn−1 and Kn−1 are upper Hessenberg matrices which do not share a common
zero element on the subdiagonal. Decompositions of the form (4.2) can be computed by
Ruhe’s rational Krylov sequence (RKS) algorithm [36]. The following result, established in
[11, Thm. 2.5], relates the generalized eigenvalues of the lower (n − 1) × (n − 1) subpencil
of (Hn−1,Kn−1), the poles of the rational Krylov space, and its starting vector.

Theorem 4.1. The generalized eigenvalues of the lower (n − 1) × (n − 1) subpencil
of (Hn−1,Kn−1) of (4.2) are the poles ξ1, . . . , ξn−1 of the rational Krylov space Vn with
starting vector v .

Conversely, let a decomposition AV̂nK̂n−1 = V̂nĤn−1 with V̂n ∈ CN×n of full column

rank and an unreduced upper Hessenberg pencil (Ĥn−1, K̂n−1) be given. Assume further that

none of generalized eigenvalues ξ̂j of the lower (n− 1)× (n− 1) subpencil of (Ĥn−1, K̂n−1)

coincides with an eigenvalue of A. Then the columns of V̂n form a basis for a rational Krylov
space with starting vector V̂ne1 and poles ξ̂j.

4.2. Pole relocation and projection step. The main component of RKFIT is a pole
relocation step based on Theorem 4.1. Assume that a guess for the denominator polynomial
qn−1 is available and orthonormal bases Vn and Wn+1 for the spaces Vn and Wn+1 have
been computed. Then we can identify a vector v̂ ∈ Vn, ‖v̂‖2 = 1, such that F v̂ is best
approximated by some vector in Wn+1. More precisely, we can find a coefficient vector
cn ∈ Cn, ‖cn‖2 = 1, such that

‖(IN −Wn+1W
∗
n+1)FVncn‖2 → min .
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The vector cn is given as a right singular vector of (IN −Wn+1W
∗
n+1)FVn corresponding to

a smallest singular value.
Assume that a “sufficiently good” denominator qn−1 of rn = pn/qn−1 has been found.

Then the problem of finding the numerator pn such that ‖Fv−rn(A)v‖2 is minimal becomes
a linear one. Indeed, the vector rn(A)v := Wn+1W

∗
n+1Fv corresponds to the orthogonal

projection of Fv onto Wn+1 and its representation in the rational Krylov basis Wn+1 is

rn(A)v = Wn+1cn+1, where cn+1 := W ∗n+1Fv . (4.3)

4.3. Conversion to continued fraction form. Similarly to what we did in (4.2), we
can arrange the columns of Wn+1 so that Wn+1e1 = v and a rational Krylov decomposition

AWn+1Kn = Wn+1Hn (4.4)

is satisfied, where (Hn,Kn) is an unreduced upper Hessenberg pencil of size (n + 1) × n.
Indeed, we have Vn ⊂ Wn+1 and Wn+1 is a rational Krylov space with starting vector v ,
finite poles ξ1, . . . , ξn−1, and a formal additional “pole” at ∞.

Our aim is to transform the decomposition (4.4) so that it can be identified with (3.2)
when u0 = v . This transformation should not alter the space Wn+1 but merely transform
the basis Wn+1 into the continued fraction basis Un+1 and the pencil (Hn,Kn) into the
tridiagonal-and-diagonal form of (3.3).

As a first step we transform (4.4) so that rn(A)v defined in (4.3) becomes the first vector
in the rational Krylov basis, and v the second. To this end, define the transformation matrix

X = [ cn+1 | e1 |x3 | · · · |xn+1] ∈ C(n+1)×(n+1),

with the columns x3, . . . ,xn+1 chosen freely but so that X is invertible, and rewrite (4.4)
by inserting XX−1:

AW
(0)
n+1K

(0)
n = W

(0)
n+1H

(0)
n , (4.5)

where W
(0)
n+1 = Wn+1X, K

(0)
n = X−1Kn and H

(0)
n = X−1Hn. By construction, the trans-

formed rational Krylov basis W
(0)
n+1 is of the form

W
(0)
n+1 =

[
rn(A)v | v | ∗ | · · · | ∗

]
∈ CN×(n+1).

The transformation to (4.5) has potentially destroyed the upper Hessenberg structure of the

decomposition and (H
(0)
n ,K

(0)
n ) generally is a dense (n + 1) × n matrix pencil. Here is a

pictorial view of decomposition (4.5) for the case n = 4:

AW
(0)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 = W
(0)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (4.6)

We now transform (H
(0)
n ,K

(0)
n ) into tridiagonal-and-diagonal form by successive right

and left multiplication, giving rise to pencils (H
(j)
n ,K

(j)
n ) (j = 1, 2, . . . , 5) all corresponding

to the same rational Krylov space Wn+1 and all without the two leading vectors in W
(0)
n+1

being altered. More precisely, the transformations we are allowed to perform are:

• right-multiplication of the pencil by any invertible matrix R ∈ Cn×n,

• left-multiplication of the pencil by an invertible matrix L ∈ C(n+1)×(n+1), the first

two columns of which are [ e1 | e2 ]. This ensures that inserting L−1L into the
decomposition will not alter the leading two vectors [ rn(A)v | v ] in the rational
Krylov basis.
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Here are the transformations we perform:

1. We right-multiply the pencil (H
(0)
n ,K

(0)
n ) by the inverse of the lower n × n part of

K
(0)
n , giving rise to (H

(1)
n ,K

(1)
n ) (we now only show a pictorial view of the trans-

formed pencils):

AW
(1)
n+1


0 ∗ ∗ ∗
1

1
1

1

 = W
(1)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
The Krylov basis matrix W

(1)
n+1 = W

(0)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ] has not changed.

The (1, 1) element of the transformed matrix K
(1)
n = [k

(1)
ij ] is automatically zero

because the decomposition states that the linear combination k
(1)
11 Arn(A)v + k

(1)
21 v

is in the column span of W
(1)
n+1, a rational Krylov space of type (n, n − 1) rational

functions. This linear combination is a type (n+ 1, n− 1) rational function unless
k11 = 0.

2. We left-multiply the pencil to zero the first row of K
(1)
n completely. This can be

done by adding multiples of the 3rd, 4th, . . . , (n+ 1)th row to the first. As a result
we obtain

AW
(2)
n+1


0
1

1
1

1

 = W
(2)
n+1


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 . (4.7)

This left-multiplication does not affect the leading two columns of the Krylov basis,

hence W
(2)
n+1 is still of the form W

(2)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].

3. We right-multiply the pencil to zero all elements in the first row of H
(2)
n except the

(1, 1) entry, which we can assume to be nonzero (see Remark 4.1). This can be done
by adding multiples of the first column to the 2nd, 3rd, . . . ,nth column. As a result
we have

AW
(3)
n+1


0
1 ∗ ∗ ∗

1
1

1

 = W
(3)
n+1


∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
Again, this right-multiplication has not affected W

(3)
n+1 = W

(2)
n+1.

4. With a further left-multiplication, adding multiples of the 3rd, 4th,. . . , (n+ 1)st

row to the second row, we can zero all the entries in the second row of K
(3)
n , except

the entry in the (2, 1) position:

AW
(4)
n+1


0
1

1
1

1

 = W
(4)
n+1


∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 .
Note that H

(4)
n still has zero entries in its first row. Also, W

(4)
n+1 is still of the form

W
(4)
n+1 = [ rn(A)v | v | ∗ | · · · | ∗ ].
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5. We apply the two-sided Lanczos algorithm with the lower n×n part of H
(4)
n , using e1

as the left and right starting vector. This produces biorthogonal matrices ZL, ZR ∈
Cn×n, ZHL ZR = In. Left-multiplying the decomposition with blkdiag(1, ZHL ) and
right-multiplication with ZR results in the demanded structure:

AW
(5)
n+1


0
1

1
1

1

 = W
(5)
n+1


∗
∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 . (4.8)

6. Finally, let the nonzero entries of H
(5)
n be denoted by ηi,j (1 ≤ j ≤ n, j ≤ i ≤

j + 2), then we aim to scale these entries so that they are matched with those of

the matrix H̃n in (3.3). This can be achieved by left multiplication of the pencil

with L = diag(1, 1, `3, . . . , `n+1) ∈ C(n+1)×(n+1) and right multiplication with R =
diag(ρ1, ρ2, . . . , ρn) ∈ Cn×n. The diagonal entries of L and R are found by equating

H̃n in (3.3) and LH
(5)
n R, starting from the (1, 1) entry and going down columnwise.

We obtain

r1 =
1

η1,1
, h1 =

−1

η2,1ρ1
, `3 =

1

η3,1h1ρ1
,

and for j = 2, 3, . . .

rj =
1

`jηj,jhj−1
, hj =

−1

1/hj−1 + `j+1ηj+1,jρj
, `j+2 =

1

ηj+2,jhjρj
.

The diagonal entries of K̃n in (3.3) satisfy

ĥj−1 = `j+1ρj , j = 1, . . . , n,

and thus the pencil has been transformed exactly into the form (3.3).

The above six-step procedure allows us to convert the rational function rn computed
via the RKFIT iteration into continued fraction form, and hence reinterpret it as an FD
scheme. This scheme is referred to as an RKFIT-FD grid. Note that all transformations
only act on small matrices of size (n+1)×n and the computation of the tall skinny matrices

W
(j)
n+1 is not required if one is only interested in the continued fraction parameters.

Remark 4.1. In Step 3 we have assumed that the (1, 1) element of H
(2)
n is nonzero.

This assumption is always satisfied: assuming to the contrary that the (1, 1) element of H
(2)
n

vanishes, the first column of (4.7) reads Av = W
(2)
n+2[0, ∗, . . . , ∗]T . This is a contradiction

as the left-hand side of this equation is a superdiagonal rational function in A times v ,

whereas the trailing n columns of W
(2)
n+1 can be taken to be a basis for Vn ⊂ Wn+1, which

only contains diagonal (and subdiagonal) rational functions in A times v (provided that all
poles ξ1, . . . , ξn−1 are finite).

Remark 4.2. In Step 5 we have assumed that the lower n × n part of H
(4)
n can be

tridiagonalized by the two-sided Lanczos algorithm. While this conversion can potentially
fail, we conjecture that if rn admits a continued fraction form (2.5) then such an unlucky

breakdown cannot occur. (The conditions for the rational function (rn(λ) − ĥ0λ) to posses
this so-called Stieltjes continued fraction form [38] are reviewed in [33]; see Theorem 1.39
therein.) Even if our conjecture were false, the starting vector v will typically be chosen at
random in our application. So if an unlucky breakdown occurs, trying again with another
vector v would easily solve the problem. We have not encountered any unlucky breakdowns
in our numerical experiments.
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5. Computational aspects.

5.1. Pseudocode and implementation. The pseudocode for a single RKFIT iter-
ation is given in Algorithm 5.1. A MATLAB implementation is contained in the Rational
Krylov Toolbox (RKToolbox), [10] which is available online at http://rktoolbox.org. The
provided rkfit method is very easy to use. For example, the following three lines of MAT-
LAB code will compute an RKFIT approximant rn(A)v ≈

√
Av for A = tridiag(−1, 2,−1)

and a random vector v of size 100:

A = gallery('tridiag', 100); F = @(V) sqrtm(full(A))*V;

v = randn(100, 1); xi = inf(1, 9); param.k = +1;

[misfit, ratfun] = rkfit(F, A, v, xi, param);

Note that F is a function handle for computing the action of
√
A onto a block of vectors, and

typically this can be done more efficiently than using dense matrix algorithms like sqrtm.
In particular, rational Krylov techniques themselves can be used for this purpose (see, e.g.,
[32, 31]). The degree (10, 9) of rn is specified by 9 initial poles at infinity (the variable
xi) and the numerator degree offset parameter k = +1 given to RKFIT. In all our numerical
experiments we choose all the initial poles to be at ∞. When used with its default options,
rkfit performs 10 iterations and then returns the solution rn (represented by the output
ratfun) with the smallest relative misfit

misfit =
‖Fv − rn(A)v‖2

‖Fv‖2
.

For the numerical experiments in the following sections we report the number of RKFIT
iterations required to achieve a relative misfit below 1.01 times the overall minimum achieved
in (at most) 30 iterations. This is to avoid artificially high iteration numbers being reported
in the case that RKFIT stagnates on its final accuracy level (where tiny misfit fluctuations
may occur due to floating point arithmetic).

For the purpose of this paper we have extended the RKToolbox by the contfrac method,
which allows for the conversion of an RKFUN, the fundamental data type to represent and
work with rational functions rn, into continued fraction form. The implementation fol-
lows exactly the procedure given in section 4.3. Numerically, these transformations may
be ill conditioned and the use of multiple precision arithmetic is recommended. The RK-
Toolbox supports both MATLAB’s Variable Precision Arithmetic (vpa) and, preferably,
the Advanpix Multiprecision Toolbox (mp) [1]. To compute the continued fraction coef-

ficients hj and ĥj−1 in (2.5) for the above ratfun object one simply types [h, hath] =

contfrac(mp(ratfun)).

5.2. Training and testing vectors. In section 2 we established that many DtN maps
can be written in the form b = fh(A)u0, where u0 is the Dirichlet data at the interface x = 0
for (1.13b), and b is the corresponding Neumann data. In section 4 we have replaced u0

by a general vector v because in many applications the Dirichlet data u0 may actually be
unknown. For example, if the DtN approximation is incorporated into an existing FD scheme
to mimic a perfectly matched layer, then u0 appears only implicitly as an unknown variable
in the FD grid. One may not know a priori which spectral components will be present in
u0, or in terms of the indefinite Helmholtz problem mentioned in the introduction, it may
not be clear a priori which wave modes will arrive at the x = 0 interface.

In order to still apply RKFIT in such situations and to compute a DtN approximation
rn(A) ≈ fh(A) independent of u0, we will compute the RKFIT approximant for a training
vector v and then assume that it is accurate for all testing vectors u0. In all our experiments
we choose both vectors at random, so that almost surely all spectral components of A enter
as weights into the computation of rn. We observed in the numerical experiments that if
rn(A)v ≈ fh(A)v is a good approximation, then typically also rn(A)u0 ≈ fh(A)u0 is a good
approximation.

http://rktoolbox.org
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Algorithm 5.1 One RKFIT iteration for superdiagonal approximants.

Input: Matrices A,F ∈ CN×N , nonzero v ∈ CN , and initial poles ξ1, ξ2, . . . , ξn−1 ∈
C \ Λ(A) (in the first iteration typically all chosen at ∞).

Output: Improved poles ξ̂1, ξ̂2, . . . , ξ̂n−1.

1. Compute rational Krylov decomposition AWn+1Kn = Wn+1Hn with Wn+1e1 = v/‖v‖2
and poles ξ1, ξ2, . . . , ξn−1,∞.

2. Define Vn = Wn+1[ In |0 ]T .

3. Compute a right singular vector cn ∈ Cn of (I −Wn+1W
∗
n+1)FVn corresponding to a

smallest singular value.

4. Form AV̂nĤn−1 = V̂nK̂n−1 spanning R(Vn) with V̂ne1 = Vncn.

5. Compute ξ̂1, ξ̂2, . . . , ξ̂n−1 as the generalized eigenvalues of the lower (n − 1) × (n − 1)

part of (Ĥn−1, K̂n−1).

5.3. Surrogate approximation. In some cases A ∈ CN×N may be too large to com-
pute F = f(A) or FVn directly. In this case we perform the RKFIT computation with a

surrogate matrix Ã ∈ CÑ×Ñ and a surrogate training vector ṽ ∈ CÑ , Ñ � N , instead of
(A, v). Similar approaches have been applied successfully in [20, 12]. In the case where A is
Hermitian, for example, the surrogate may be chosen as a diagonal matrix with sufficiently
dense eigenvalues in the spectral interval of A (which requires eigenvalue estimates) and
the vector ṽ = [1, 1, . . . , 1]T . The main operations in the RKFIT algorithm (like matrix-

vector products and linear system solves) involving a diagonal matrix become trivial O(Ñ)

operations. Moreover, the application of fh(Ã) reduces to Ñ scalar evaluations of the DtN
function. In some of our numerical experiments we will use this surrogate approach to test
the performance of RKFIT when being applied with a matrix A that has “essentially dense”
spectrum, thereby mimicking uniform approximation over its spectral interval.

6. Convergence comparisons for the constant-coefficient case. The nonlinear
rational least squares problem (4.1) is nonconvex and there is no guarantee that a mini-
mizing solution exists, nor that such a solution would be unique. Concrete examples of
nonlinear rational least squares problems with no or highly sensitive solutions are given in
the introduction of [12]. As a consequence of these theoretical difficulties and due to the
nonlinear nature of RKFIT’s pole relocation procedure, a comprehensive convergence anal-
ysis seems currently intractable. (An exception is [12, Corollary 3.2], which states that in
exact arithmetic RKFIT converges within a single iteration if F itself is a rational matrix
function of appropriate type.) However, for some special cases we can compare the RKFIT
approximants to analytically constructed near-best approximants. The aim of this section
is to provide such a comparison to the two-interval Zolotarev approach in [23], and the
one-interval approximants studied by Newman and Vjacheslavov [35, Section 4].

Throughout this section we assume that A is Hermitian with eigenvalues λ1 ≤ λ2 ≤
· · · ≤ λN . In our discussion of available convergence bounds we will usually focus on the
function f(λ) =

√
λ, however, as has been argued in [23, Section 5.1], it is possible to

obtain similar bounds for the “discrete impedance function” fh(λ) =
√
λ+ (hλ/2)2. Some

of our numerical experiments will be for the latter function, illustrating that the convergence
behavior is indeed similar to that for the former.

6.1. Two-interval approximation with coarse spectrum. Our first example fo-
cuses on the approximation of F = fh(A), fh(λ) =

√
λ+ (hλ/2)2, where A is a nonsingular

indefinite Hermitian matrix with relatively large gaps between neighboring eigenvalues. We
recall the convergence result (1.14) from the introduction, which states that the geometric
convergence factor is governed by the ratios of the spectral subintervals [a1, b1] and [a2, b2],
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a1 < b1 < 0 < a2 < b2.

Example 6.1. In Figure 6.1 (top left) we show the relative errors

‖Fu0 − rn(A)u0‖2/‖Fu0‖2

of the type (n, n − 1) rational functions obtained by RKFIT (dashed red curve) and the
two-interval Zolotarev approach (dotted blue) for varying degrees n = 1, 2, . . . , 25. Here the
matrix A is defined as A = L/h2− k2

∞I ∈ RN×N , where N = 150, h = 1/N , k∞ = 15, and

L =


1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 1

 . (6.1)

The matrix L corresponds to a scaled FD discretization of the 1D Laplace operator with
homogeneous Neumann boundary conditions. The spectral subintervals of A are

[a1, b1] ≈ [−225,−67.2] and [a2, b2] ≈ [21.5, 8.98 · 104].

The vector u0 ∈ RN is chosen at random with normally distributed entries. To compute the
RKFIT approximant rn we have used another random training vector v with normally dis-
tributed entries. The corresponding errors ‖Fv−rn(A)v‖2/‖Fv‖2 together with the number
of required RKFIT iterations are also shown in the plot (solid red curve). For all degrees n
at most 5 RKFIT iterations where required to satisfy the stagnation criterion described in
section 5.1. Note that the two RKFIT convergence curves (for the vectors u0 and v) are
very close together, indicating that the random choice for the training vector does not affect
much the computed RKFIT approximant. Note further that the RKFIT convergence follows
the geometric rate predicted by (1.14) (dotted black curve) very closely initially (up to a
degree n ≈ 10), but then the convergence becomes superlinear. This convergence acceleration
is due to the spectral adaptation of the RKFIT approximant.

The spectral adaptation is illustrated in the graph on the top right of Figure 6.1, which
plots the error curve |fh(λ)−r10(λ)| of the RKFIT approximant r10 (solid red curve) over the
spectral interval of A, together with the attained values at the eigenvalues of A (red crosses).
In particular, close to λ = 0, there are two eigenvalues at which the error curve attains a
relatively small value in comparison to the other eigenvalues farther away (meaning that rn
interpolates fh nearby). These eigenvalues have started to become “deflated” by RKFIT,
effectively shrinking the spectral subintervals [a1, b1] and [a2, b2], and thereby leading to the
observed superlinear convergence.

In the bottom of Figure 6.1 we show the poles and residues of the RKFIT approximant
r10 (left) and the associated continued fraction parameters (right), giving rise to the RKFIT-
FD grid steps. All the involved quantities have been calculated using the RKFUN calculus
of the RKToolbox as described in section 5.1.

6.2. Two-interval approximation with dense spectrum. The superlinear conver-
gence effects observed in the previous example should disappear when the spectrum of A is
dense enough so that, for the order n under consideration, no eigenvalues of A are deflated
by interpolation nodes of rn. The next example demonstrates this.

Example 6.2. In Figure 6.2 we show the relative errors ‖Fu0 − rn(A)u0‖2/‖Fu0‖2
of the type (n, n− 1) rational functions obtained by RKFIT and the Zolotarev approach for
varying degrees n = 1, 2, . . . , 25. Now the matrix A corresponds to a shifted 2D Laplacian
A = (L⊗L)/h2 − k2

∞I ∈ RN×N , where N = 1502, h = 1/150, k∞ = 15, and with L defined
in (6.1). The special structure of L (and A) allows for the use of the 2D discrete cosine
transform for computing F = fh(A). The spectral subintervals of A are

[a1, b1] ≈ [−225,−27.7] and [a2, b2] ≈ [21.5, 1.80 · 105].
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Figure 6.1. Top: Accuracy comparison of RKFIT and Zolotarev approximants for a shifted 1D Lapla-
cian which has a rather coarse spectrum, hence resulting in superlinear RKFIT convergence. The DtN
function is fh(λ) =

√
λ+ (hλ/2)2. The small numbers on the solid red convergence curve on the left indi-

cate the number of required RKFIT iterations. Bottom: The poles and residues of the RKFIT approximant
r10 (left) and the associated continued fraction parameters (right).

The vector u0 ∈ RN is chosen at random with normally distributed entries. We also show
the relative error of the RKFIT approximant rn(A)v with another randomly chosen training
vector v , and the number of required RKFIT iterations. As in the previous example there is
no big difference in accuracy when evaluating the RKFIT approximant for u0 or v , however,
the number of required RKFIT iterations is slightly higher in this example. As the eigenvalues
of the matrix A are relatively dense in its spectral interval, we now observe that no spectral
adaptation takes place and both the RKFIT and the Zolotarev approximants converge at the
rate predicted by (1.14).

In the bottom of Figure 6.2 we show the grid vectors uj satisfying the FD relation (3.1)

for n = 10, with the RKFIT-FD grid parameters hj and ĥj−1 (j = 0, 1, . . . , 10) extracted
from r10. The entries of uj are complex-valued, hence we show the log10 of the amplitude
and phase separately. Note how the amplitude decays very quickly as the random signal
travels further to the right in the grid, illustrating the good absorption property of this grid.

6.3. Approximation on an indefinite interval. In order to remove superlinear
convergence effects and the spectral gap [b2, a1] from which the previous two examples
benefited, we now consider the approximation on an indefinite interval. The following test
uses a diagonal matrix with sufficiently dense eigenvalues and hence is an example for the
surrogate strategy described in section 5.3.

Example 6.3. We approximate f(λ) =
√
λ on the indefinite interval

[a1, b2] = [−225, 1.80 · 105].



18 V. DRUSKIN, S. GÜTTEL, AND L. KNIZHNERMAN

0 5 10 15 20 25

10
−15

10
−10

10
−5

10
0

degree n

re
la

tiv
e 

2−
no

rm
 e

rr
or

Convergence for Shifted 2D Laplacian

 

 

 0

 2
 3

 3
 4

 4
 4

 4
 4

 5
 5

 5
 5

 5
 6

 6
 7

 7
 7

 8
 9

 9  9 10  9

RKFIT (iter)
RKFIT
Zolotarev
Rate

Error Curves, n = 10

 

 

−100 0 100 1000 10000 100000
10

−8

10
−6

10
−4

10
−2

10
0

RKFIT
Zolotarev

Figure 6.2. Top: Comparison of RKFIT and Zolotarev approximants for a shifted 2D Laplacian.
Bottom: The log10 of the amplitude and phase of the grid vectors uj (j = 0, 1, . . . , n = 10). Qualitatively,
the poles and residues and the complex grid steps for the associated RKFIT approximant r10 look similar
to those in Figure 6.1 and are therefore omitted.

Note that [a1, b2] is the same as in the previous Example 6.2, but without the spectral gap
about zero. This problem is of interest as, in the variable-coefficient case, one cannot easily
exploit a spectral gap between the eigenvalues of A which are closest to zero. This is because
a varying coefficient c(x) can be thought of as a variable shift of the eigenvalues of A; hence
an eigenvalue-free interval [b1, a2] may not always exist.

To mimic continuous approximation on an interval, we use for A a surrogate diagonal
matrix of size N = 200 having 100 logspaced eigenvalues in [a1,−10−16] and [10−16, b2],
respectively. The training vector v is chosen as [1, 1, . . . , 1]T . We run RKFIT for degrees
n = 1, 2, . . . , 25. The relative error of the RKFIT approximants ‖Fv − rn(A)v‖2/‖Fv‖2
seems to reduce like exp(−π

√
n); see Figure 6.3 (left).

We also compare RKFIT to a two-interval Remez-type approximant which is obtained
by using the interpolation nodes of numerically computed best approximants to

√
λ on [0, 1],

scaling them appropriately, and unifying them for the intervals [a1, 0] and [0, b2]. The number
of interpolation nodes on both intervals is balanced so that the resulting error curve is closest
to being equioscillatory on the whole of [a1, b2]. Again the error of the so-obtained Remez-
type approximant seems to reduce like exp(−π

√
n).

Remark 6.1. The uniform rational approximation of
√
λ on a semi-definite interval

[0, b2] has been studied by Newman and Vjacheslavov. In particular, it is known that the
error of the best rational approximant reduces like exp(−π

√
2n) with the degree n; see [35,

Section 4]. Based on the observations in Figure 6.3 we conjecture that the error of the best
rational approximant to

√
λ on an indefinite interval [a1, b2] reduces like exp(−π

√
n).

7. Variable-coefficient case. We now consider the case of a variable coefficient func-
tion c. As a motivating example, we consider a geophysical seismic exploration setup as
shown in Figure 7.1. Here a pressure wave signal of a single frequency is emitted by an
acoustic transmitter in the Earth’s subsurface, travels through the underground, and is
then logged by receivers on the surface. From these measurements geophysicists try to infer
variations in the wave speed which then allows them to draw conclusions about the subsur-
face composition. The computational domain of interest is a three-dimensional portion of
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compared to a two-interval Remez-type approximant. Qualitatively, the poles/residues and the complex grid
steps associated with r10 look similar to those in Figure 6.1 and are therefore omitted.

the Earth and we might have knowledge about the sediment layers below this domain, i.e.,
for x ≥ 0 in Figure 7.1. While the acoustic waves in x ≥ 0 may not be of interest on their
own, the layers might cause wave reflections back into the computational domain and hence
need be part of the model.
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Figure 7.1. Typical setup of a seismic exploration of the Earth’s subsurface. It is of practical interest
to compress the layered medium in x ≥ 0 into a single PML with a small number of grid points.

Example 7.1. At the x = 0 interface of the computational domain, shown in Figure 7.1,
we assume to have a 2D Laplacian A = (L ⊗ L)/h2 − k2

∞I with L defined in (6.1), and
N = 1502, h = 150, and k∞ = 15. Now the function fh of interest is (2.3), with the
coefficients cj obtained by discretizing the piecewise-constant coefficient function c given by

c(x) =


−400 if 0 ≤ x < T,

+125 if T ≤ x < 2T,

0 if 2T ≤ x <∞,

where the thickness of the two finite layers T is varied over {0.25, 0.5, 1, 2}. For each thick-
ness T , the four panels in the top of Figure 7.2 show the modulus of fh over the spectral
subintervals [a1, b1] and [a2, b2] of A, glued together with the gray linear region [b1, a2]. It
becomes apparent that with increasing T the function fh exhibits more poles on or nearby
the spectral interval of A, indicated by the upward spikes in the plot.

The convergence of the RKFIT approximants for varying degree parameter n is shown in
Figure 7.2 on the bottom left. For each thickness T there are two curves very nearby: a solid
curve showing the relative 2-norm approximation error for Fv (where v is a random training
vector) and a dashed curve for Fu0 (where u0 is another random testing vector). We observe
that RKFIT converges very robustly for this piecewise constant-coefficient problem. Similar
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Figure 7.2. Top: The four panels show the modulus of the discrete variable-coefficient DtN function
fh for varying thickness T of the two finite layers. Bottom: The two plots show the RKFIT convergence for
approximating fh(A)v when A is a shifted 2D Laplacian (left) and a diagonal matrix with dense eigenvalues
in the same spectral interval (right), respectively.

behavior has been observed in many numerical tests with other offset functions c. While we
cannot report on all these tests here, we highlight again that the codes for producing our
examples are available online and can easily be modified to other coefficient functions.

Example 7.2. Here we consider a diagonal matrix A with the same indefinite spec-
tral interval as the matrix in the previous example but with dense eigenvalues, namely 100
logspaced eigenvalues in [a1,−10−16] and [10−16, b2], respectively. The convergence is shown
on the bottom right of Figure 7.2. Again the RKFIT behavior is very robust even for high
approximation degrees n, but compared to the above Example 7.1 the convergence is delayed,
indicating that spectral adaptation has been prevented here.

8. Discussion and conclusions. An obvious alternative to our grid compression ap-
proach in the two examples of section 7 would be to use an efficient discretization method
on c’s support, and then to append it to the constant-coefficient PML of [23]. In principle
such an approach requires at least the integer part of

N =

∫ H

0

√
k2
∞ − c(x)

π
dx
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discretization points according to the Nyquist sampling rate, where H is the total thickness
of c’s support. In fact, the classical spectral element method (SEM) with polynomial local
basis requires at least π

2 N grid points [2]. (The downside of SEM compared to our FD
approach is its high linear solver cost per unknown caused by the dense structure of the
resulting linear systems.) The following table shows the minimal number of grid points
required for discretizing the two finite layers in the examples of section 7, depending on
the layer thickness T , as well as the number of RKFIT-FD grid points to achieve a relative
accuracy of 10−5 for the same problem:

T = 0.25 T = 0.5 T = 1 T = 2
Nyquist minimum N 8.75 17.5 35 70
SEM minium π

2 N 13.7 27.5 55.0 110.0
RKFIT-FD (Example 7.1) 8 10 16 19
RKFIT-FD (Example 7.2) 14 11 17 28

Although we also observe with RKFIT-FD a tendency that the DtN functions become more
difficult to approximate when the layer thickness increases (an increase of the coefficient
jumps between the layers will have a similar effect), the number of required grid points can be
significantly smaller than the Nyquist limit N. A possible explanation for this phenomenon
is RKFIT’s ability to adapt to the spectrum of A, not being slowed down in convergence by
singularities of the DtN function well separated from the eigenvalues of A. In the appendix
we give some insight into this phenomenon.

The obtained results demonstrate efficiency of the developed tool for one the most
difficult linear problems of data-driven network-based MOR. Thus it shows promise for
a variety of data-driven LTI problems where the state-of-the-art do not always produce
satisfactory results. In future work we plan to extend our approach for the multidimensional
MIMO PDE setting and also apply it to imaging problems in dissipative media.
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Appendix A. A Nyquist limit-type criterion for rational approximation. The
plots in Figure 7.2 suggest that the DtN function fh, specified in (2.3), develops more and
more poles on the real axis as the thickness of the finite layers increases. These poles are
also known as scattering resonances; see [27]. In order to obtain a better understanding
of this behavior, we consider a two-layer waveguide problem with piecewise constant wave
numbers similar to the one in Figure 1.1, but now in the continuous setting without any FD
approximation. This problem is governed by the equations

u′′(x) = (λ+ c)u(x), x ∈ [0, T ),

u′′(x) = λu(x), x ∈ [T,∞),

with given u(0) = u0 and the decay condition u(x)→ 0 as x→∞. Here, T is the thickness
of the first layer with an offset coefficient c. In terms of the Helmholtz equation, a value
c = −k2

0 < 0 means that the wave number on the first layer is larger than on the second,
whereas c > 0 means that the wave number on the first layer is smaller than on the second.
If c = 0 we have a homogeneous infinite waveguide.

Our aim is to solve for u explicitly and to determine a formula for the DtN function f
satisfying f(λ)u0 = −u′(0). For x ∈ [0, T ] we have

u(x) = αex
√
λ+c + (u0 − α)e−x

√
λ+c

= 2α sinh
(
x
√
λ+ c

)
+ e−x

√
λ+cu0,
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Figure A.1. The DtN function f defined in (A.1), as well as its discrete counterpart (2.3), for two
different choices of the parameters (T, c).

where the square roots are understood as the analytical continuation through the upper
half plane from the axis λ > −c. For x ∈ [T,∞) we require a decaying solution, hence

u(x) = βe−x
√
λ there. By continuity of u(x) at x = T , we have

β =
(
2α sinh

(
T
√
λ+ c

)
+ e−T

√
λ+cu0

)
· eT
√
λ.

By continuity of u′(x) at x = T we further require

√
λ+ c ·

(
2α cosh(T

√
λ+ c)− e−T

√
λ+cu0

)
= −β

√
λ · e−T

√
λ,

hence

√
λ+ c ·

(
2α cosh(T

√
λ+ c)− e−T

√
λ+cu0

)
= −

(
2α sinh

(
T
√
λ+ c

)
+ e−T

√
λ+cu0

)
·
√
λ,

from which α can be determined as

α =
u0

2
·

(√
λ+ c−

√
λ
)
e−T

√
λ+c

√
λ+ c cosh(T

√
λ+ c) +

√
λ sinh

(
T
√
λ+ c

) .
Note that α = αλ is a function of λ. Using the fact that u′(0) = (2αλ−u0)

√
λ+ c, the DtN

function f satisfying f(λ)u0 = −u′(0) is given as

f(λ) =

√
λ+ c · sinh(T

√
λ+ c) +

√
λ · cosh

(
T
√
λ+ c

)
√
λ+ c · cosh(T

√
λ+ c) +

√
λ · sinh

(
T
√
λ+ c

) · √λ+ c. (A.1)

A plot of this function for two different parameter choices T = 5 and c = ±9 is shown in
Figure A.1. It appears that for c ≥ 0, this function is smooth over the whole real axis, while
it develops singularities for c < 0. The following lemma shows that the number of real poles
is proportional to c and T .

Lemma A.1. The function f defined in (A.1) can be analytically continued from λ >
max{0,−c} through the upper half plane to the whole real axis except for two ramification
points λ = 0 and λ = −c and possibly a finite number of poles. For c > 0, the function f

has no poles on the real axis. For c < 0, the function f has
⌊
T
√
−c
π

⌋
+ q real poles, where

q ∈ {0, 1}, all located in the interval (0,−c).

Proof. We investigate the roots of the denominator function

g(λ) =
√
λ+ c · cosh(T

√
λ+ c) +

√
λ · sinh(T

√
λ+ c).

We first consider the case c < 0 and argue that there are no real roots of g outside [0,−c]. For
λ < 0, the factors

√
λ+ c and

√
λ are purely imaginary and nonzero, while cosh(T

√
λ+ c) =
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cos(Tz) is purely real and sinh(T
√
λ+ c) = i sin(Tz) purely imaginary (here and throughout

the proof z = imag(
√
λ+ c)). Hence, λ can only be a root of g if cos(Tz) = sin(Tz) = 0,

but this cannot happen as cos(·) and sin(·) do not have any roots in common. A similar
argument shows that there are no roots of g for λ > −c.

For λ ∈ (0,−c), z = imag(
√
λ+ c) varies in (0,

√
−c) and we want to count the number

of roots of the purely imaginary function h(z) = g(λ) = iz cos(Tz)+
√
z2 + c·sin(Tz) on that

interval. Consider the subintervals Ik = ((k−1)π/T, kπ/T ] for k = 1, 2, . . . ,K = bT
√
−c/πc.

Then on the first half of each Ik the function imag(h) is strictly positive (or negative), while
on the second half it is strictly monotonically decreasing (increasing) with a sign change.
Therefore each Ik contributes exactly one root of h. The final interval (Kπ/T,

√
−c) may or

may not contain a further root of h. By the same argument one shows that the roots of the
numerator of f are located on the first half’s of Ik, and hence the roots of the denominator
do not cancel out.

For c ≥ 0 one argues similarly to the first part of the proof that the denominator function
g has no roots for all real values of λ.

To interpret this result in terms of the indefinite Helmholtz equation (∂yy + ∂zz)u +
(k2
∞ − c(x))u = 0 for c < 0, first note that the DtN function (A.1) does not depend on

k∞, but merely on the offset c. We may therefore set k∞ = 0, in which case the wave
number on the first finite layer is simply k =

√
−c. Furthermore, ` = 2π/k = 2π/

√
−c is

the corresponding wavelength. Using this notation, Lemma A.1 states that f has ≈ 2T/`
poles on the real axis, that is, two real poles per wavelength!

Although Lemma A.1 is stated for the continuous waveguide problem, discrete DtN
functions fh seem to have poles very close to those of their continuous counterparts f .
An example is shown in Figure A.1 (dashed red curve), which corresponds to (2.3) with
“piecewise” constant coefficients cj and h = 0.05.

Returning to the RKFIT convergence, we observed in the experiments in section 7 that
the minimal number n of RKFIT-FD grid points required to achieve convergence does not
seem to be directly linked to the Nyquist criterion. Although fh may have a large number
N of singularities on the spectral interval of A, RKFIT’s spectral adaptation capabilities
mean that rn does not need to resolve them all, and therefore the degree n can be signifi-
cantly smaller than N. Although Lemma A.1 effectively states a Nyquist-type criterion for
the layered waveguide, from a rational approximation point of view RKFIT-FD grids can
outperform it in case of a favorable spectral distribution of the matrix A.
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