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A SPECTRAL-IN-TIME NEWTON–KRYLOV METHOD
FOR NONLINEAR PDE-CONSTRAINED OPTIMIZATION

STEFAN GÜTTEL∗ AND JOHN W. PEARSON†

Abstract. We devise a method for nonlinear time-dependent PDE-constrained optimization problems that uses a
spectral-in-time representation of the residual, combined with a Newton–Krylov method to drive the residual to zero. We
also propose a preconditioner to accelerate this scheme. Numerical results indicate that this method can achieve fast and
accurate solution of nonlinear problems for a range of mesh sizes and problem parameters, the numbers of outer Newton
and inner Krylov iterations required to reach the attainable accuracy of a spatial discretization are robust with respect to
the number of collocation points in time, and also do not change substantially when other problem parameters are varied.
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1. Introduction. PDE-constrained optimization is an important class of mathematical problems
[19, 23, 30], with a wide range of applications across science and engineering (see [1, 5, 11, 12], for
instance). The fast and accurate solution of the first-order optimality conditions resulting from such
problems is a significant challenge for researchers in these communities. For example, when an ‘all-
at-once’ approach is applied to solve such conditions, one is faced with coupled linear systems of huge
scale, particularly when standard finite difference or finite element schemes are used for the discretization
procedure in the spatial coordinates. For time-dependent problems, there is an additional challenge of
how to appropriately discretize in the time variable. When fast solvers for the resulting linear system
are required, in particular preconditioned iterative methods, it has been popular to utilize a backward
Euler scheme for this purpose (see for example [26, 27, 29]); however this requires a very small step size
in order to obtain an accurate numerical solution, and thus very large linear systems to solve.

Motivated by this, in [14] the authors devised deferred correction methods for linear PDE-constrained
optimization problems, where equations for the errors and residuals at each deferred correction step
were constructed in order to successively increase the order of the time-stepping scheme. As a result
one is required to solve a sequence of much smaller linear systems in order to achieve the same accu-
racy of the numerical solution, compared to a method without a deferred correction acceleration. This
approach was found to be highly effective for linear PDE-constrained optimization problems, however
a significant question remained how to devise a related strategy for nonlinear PDE-constrained opti-
mization. These problems possess a vastly increased level of difficulty, compared to linear problems, as
the matrices describing the spatial behavior of the physical system are different at every time step.

In this paper we devise a residual-based approach for nonlinear PDE-constrained optimization
problems; in particular this is based on using a spectral-in-time representation of the residual which
is then linearized and solved by a Newton method. The use of a spectral method in the time variable
means that high accuracy solutions can be obtained with only a small number of time steps, keeping the
linearized Newton system of relatively small dimension. We implement our approach using a Newton–
Krylov method, of the form described in [21, Chapter 3] and [22]. To make such a method numerically
viable we suggest a general preconditioning strategy, which is found to substantially accelerate the
Newton–Krylov scheme for the problems examined. Care has to be taken with the implementation of the
preconditioner as the spectral time integration matrix is dense. We hence transform the Jacobian arising
in the Newton system into a form that can be easily approximated by a Kronecker product, allowing for
the application of a preconditioner whose cost is approximately proportional to the number of spatial
degrees of freedom. Our approach mitigates a key difficulty encountered with alternative discretization
techniques for nonlinear PDE-constrained optimization problems, specifically being required to solve
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linear systems arising from very large numbers of grid points in time to obtain even modest discretization
error properties, and our new method is found to be an effective strategy for a number of examples,
mesh sizes, and problem parameters.

We highlight that there has been a substantial amount of research undertaken with the goal of
achieving numerical solutions to time-dependent PDE-constrained optimization problems, with low
discretization error and within reasonable computation time. Among many valuable references, we
refer to [6, 29] for low-rank solution methods, to [26, 27] for preconditioned iterative solvers, to [3, 16]
for a discussion of multigrid approaches, to [15] for a multiple shooting strategy, to [24, 25] for parareal
approaches, and to [10] for a recently-developed time-parallel method with the computation of the
adjoint gradient information performed using the PFASST framework. We also point to the body of
work on Krylov deferred correction methods for initial value problems developed in [18, 20]. Indeed,
for linear initial value problems, deferred correction can be interpreted as a preconditioned Newton-like
method for solving the time collocation system [17, 31].

While the use of a spectral-in-time residual function in this work is inspired by the spectral de-
ferred correction approach in [8], we found in extensive numerical tests that the direct Newton-based
minimization of this function without the outer deferred correction loop is both conceptually simpler
and indeed more efficient for nonlinear problems. This is the approach we would like to explore in
this paper. Compared to our previous work [14] on linear PDE-constrained optimization, the method
described here is not a deferred correction scheme. Our aim is to provide a general approach for nonlin-
ear time-dependent problems which, as we will demonstrate, can lead to very accurate solutions while
being applicable with any discretization in the spatial variables of the user’s choice, and which has
the potential to be combined with a number of the approaches listed above. Our focus is on problems
with a squared L2-norm regularization term applied to the control variable in the objective function,
along with first-order derivatives in time and a linear term involving the control within the PDE con-
straint, as such a formulation allows us to eliminate the control variable a-priori and solve a coupled
state–adjoint system. We believe that, with suitable modifications which we will describe, our method
is more generalizable still.

This paper is structured as follows. In Section 2 we present the residual-based method for nonlinear
PDE-constrained optimization. Specifically, in Section 2.1 we state the coupled systems of PDEs arising
from the PDE-constrained optimization problems considered in this paper, in Section 2.2 we derive the
residual-in-time representation and introduce the Newton–Krylov method we apply, then in Section
2.3 we present the preconditioner which is embedded within the Newton–Krylov scheme. Sections 2.4
and 2.5 further discuss the implementation and the stopping condition used. Section 3 presents the
results of a range of numerical experiments, using test problems for which analytic solutions are given
in Appendix A. In Section 4 we provide our concluding remarks.

2. Residual-based Newton–Krylov method. In this section we present our residual-based
method for nonlinear time-dependent PDE-constrained optimization problems. To focus our discussion,
we will present the methodology using two specific examples, although this approach is much more
general. Firstly, motivated by research in literature such as [4, 13], we consider the optimal control of
the Schlögl equation given by:

min
y,c

1

2

∫ T

0

∫
Ω

(
y − ŷ

)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt (2.1)

s. t.
∂y

∂t
−∇2y − y + y3 = c+ f in Ω× (0, T ),

y(~x, t) = h(~x, t) on ∂Ω× (0, T ),

y(~x, 0) = y0(~x) at t = 0.

Here, y, ŷ, and c denote the state, desired state, and control variables, respectively, f and h are given
functions in space and time, y0 is a given initial condition, β > 0 denotes a regularization parameter
(or Tikhonov parameter), and T > 0 is the final time. The PDE constraint is posed on a space–time
domain, with (~x, t) ∈ Ω × (0, T ), and with ∂Ω denoting the boundary of Ω. We highlight that the
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formulation (2.1) is also similar in structure to the optimal control problem constrained by the Nagumo
equation considered in [10, Section 5.2].

Secondly, we consider a reaction–diffusion control problem, based on the formulation in [2]:

min
y,z,c

βy
2

∫ T

0

∫
Ω

(
y − ŷ

)2
dΩ dt+

βz
2

∫ T

0

∫
Ω

(
z − ẑ

)2
dΩ dt+

βc
2

∫ T

0

∫
∂Ω

c2 dsdt (2.2)

s. t.
∂y

∂t
−D1∇2y + k1y = −γ1yz + f in Ω× (0, T ),

∂z

∂t
−D2∇2z + k2z = −γ2yz + g in Ω× (0, T ),

D1
∂y

∂n
= c on ∂Ω× (0, T ),

D2
∂z

∂n
= 0 on ∂Ω× (0, T ),

y(~x, 0) = y0(~x) at t = 0,

z(~x, 0) = z0(~x) at t = 0.

In this formulation, y and z denote state variables with corresponding desired states ŷ and ẑ, c is again
a control variable, f and g are given functions in space and time, y0 and z0 are given initial conditions,
and T > 0 is again a final time. The parameters βc, D1, and D2 are positive, with βy, βz, k1, k2, γ1,
and γ2 non-negative (and generally positive). In particular, at least one of βy and βz must be positive.
We highlight that a key structural difference between the two examples is that (2.1) is a distributed
control problem, whereas (2.2) is a boundary control problem. In both examples, the source terms f and
g would often be zero in practice, but we allow non-zero functions so that test problems with analytic
solutions are more readily available.

2.1. Derivation of coupled systems of PDEs. In order to apply our residual-based approach,
the first step is to describe the solution of our time-dependent PDE-constrained optimization problems
using a coupled system of PDEs, which define the first-order optimality conditions. A general approach,
an outline of which is provided in [30, Chapter 3] for time-dependent (parabolic) PDE-constrained
optimization problems, is to apply an optimize-then-discretize strategy. In that strategy one seeks the
stationary points of a continuous Lagrangian involving the cost functional being minimized, as well as
the PDE constraints and boundary conditions enforced by an adjoint variable (or Lagrange multiplier).
One may then take Fréchet derivatives in the direction of the adjoint, control, and state variables, and
test the conditions that the derivatives must be equal to zero using functions with appropriate continuity
and differentiability properties and which satisfy suitable boundary conditions. Taking the derivatives
in this order gives rise to state equations, gradient equations, and adjoint equations, respectively.

For instance, to briefly outline how this may be applied to the optimal control problem involving
the Schlögl equation (2.1), the continuous Lagrangian reads

L(y, c, p) =
1

2

∫ T

0

∫
Ω

(
y − ŷ

)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt

+

∫ T

0

∫
Ω

pΩ

(
∂y

∂t
−∇2y − y + y3 − c− f

)
dΩ dt+

∫ T

0

∫
∂Ω

p∂Ω (y − h) dsdt,

where the adjoint variable is split into its components in the interior of Ω and boundary ∂Ω, denoted pΩ

and p∂Ω. Here, we have omitted the initial condition from the definition of the Lagrangian for ease of
presentation. Using integration by parts and applying the Divergence Theorem allows us to rearrange
the Lagrangian to obtain that

L(y, c, p) =
1

2

∫ T

0

∫
Ω

(
y − ŷ

)2
dΩ dt+

β

2

∫ T

0

∫
Ω

c2 dΩ dt

+

∫ T

0

∫
Ω

y

(
−∂pΩ

∂t
−∇2pΩ − pΩ + y2pΩ

)
dΩ dt−

∫ T

0

∫
Ω

pΩ (c+ f) dΩ dt
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+

∫
Ω

[pΩy]
t=T
t=0 dΩ +

∫ T

0

∫
∂Ω

(
y
∂pΩ

∂n
− pΩ

∂y

∂n

)
dsdt+

∫ T

0

∫
∂Ω

p∂Ω (y − h) dsdt.

Applying the Fréchet derivatives in the directions of pΩ, c, and y, testing with appropriate functions,
and relabelling the adjoint variable pΩ as p, gives the state, gradient, and adjoint equations, respectively.
Here,

∂y
∂t −∇

2y − y + y3 = c+ f in Ω× (0, T )
y(~x, t) = h(~x, t) on ∂Ω× (0, T )
y(~x, 0) = y0(~x) at t = 0

 state equation (2.3)

βc− p = 0 in Ω× (0, T )
}

gradient equation (2.4)

−∂p∂t −∇
2p− p+ 3y2p = ŷ − y in Ω× (0, T )

p(~x, t) = 0 on ∂Ω× (0, T )
p(~x, T ) = 0 at t = T

 adjoint equation (2.5)

Applying a similar approach to the reaction–diffusion control problem (2.2), the first-order opti-
mality conditions are as follows (see also [2]):

∂y
∂t −D1∇2y + k1y = −γ1yz + f in Ω× (0, T )
∂z
∂t −D2∇2z + k2z = −γ2yz + g in Ω× (0, T )

D1
∂y
∂n = c on ∂Ω× (0, T )

D2
∂z
∂n = 0 on ∂Ω× (0, T )

y(~x, 0) = y0(~x) at t = 0
z(~x, 0) = z0(~x) at t = 0


state equations (2.6)

βcc− p = 0 on ∂Ω× (0, T )
}

gradient equation (2.7)

−∂p∂t −D1∇2p+ k1p+ γ1zp+ γ2zq = βy
(
ŷ − y

)
in Ω× (0, T )

−∂q∂t −D2∇2q + k2q + γ1yp+ γ2yq = βz
(
ẑ − z

)
in Ω× (0, T )

D1
∂p
∂n = 0 on ∂Ω× (0, T )

D2
∂q
∂n = 0 on ∂Ω× (0, T )

p(~x, T ) = 0 at t = T
q(~x, T ) = 0 at t = T


adjoint equations (2.8)

Note how in both cases the first-order optimality conditions take the form of coupled time-dependent
PDEs, with the state equations equipped with initial conditions, and the adjoint equations possessing
final-time conditions.

2.2. Derivation of the Newton system. The formulations derived in the previous section,
specifically (2.3)–(2.5) for the Schlögl problem and (2.6)–(2.8) for the reaction–diffusion control problem,
may be discretized in space and result in coupled initial/final value problems in time, of the form{

Muu
′(t) = f(t,u,v), Muu(0) = Muu0 ∈ RN given,

Mvv
′(t) = g(t,u,v), Mvv(T ) = MvvT ∈ RN given,

(2.9)

(2.10)

for two vector-valued functions u,v : [0, T ] 7→ RN and with matrices Mu,Mv ∈ RN×N . This system
may be thought of as a coupled system of ordinary differential equations in the time variable. We
highlight the key structures that allow us to re-write the optimization problem in the form (2.9)–(2.10):
(i) the spatial derivatives are separate to the first-order time derivatives within the PDE constraints;
(ii) a squared L2-norm term measures the control within the objective function and a linear term
incorporates the control within the constraints, allowing us to derive a linear relation between control
and adjoint variables (as above). We believe the second structure could be relaxed in order to allow a
nonlinear relation between control and adjoint, which may be incorporated into (2.9)–(2.10) through
an additional algebraic constraint (i.e., not involving a time derivative). In certain cases, higher-order
PDEs in time could also be written as (2.9)–(2.10) by rewriting these as a system of first-order equations.
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In the case of the Schlögl example, substituting the gradient equation (2.4) into (2.3) leads to a
coupled system of the form (2.9)–(2.10) with

u(t) := u(t)← y(t), Mu ← Id, f(t,u,v)← ∇2u+ u− u3 +
1

β
v + f,

v(t) := v(t)← p(t), Mv ← Id, g(t,u,v)← −∇2v − v + 3u2v + u− ŷ.

We have used the notation “←”, with the quantities on the left-hand side being the result of spatial
discretization. The symbol Id refers to the discretized identity operator.

For the reaction–diffusion example, we again have a system of the form (2.9)–(2.10) with

u(t) :=

[
u1(t)
u2(t)

]
←
[
y(t)
z(t)

]
, Mu ←

[
Id 0
0 Id

]
, f(t,u,v)←

[
D1∇2u1 − k1u1 − γ1u1u2 + f
D2∇2u2 − k2u2 − γ2u1u2 + g

]
,

v(t) :=

[
v1(t)
v2(t)

]
←
[
p(t)
q(t)

]
, Mv ←

[
Id 0
0 Id

]
,

g(t,u,v)←
[
−D1∇2v1 + k1v1 + γ1u2v1 + γ2u2v2 + βy

(
u1 − ŷ

)
−D2∇2v2 + k2v2 + γ1u1v1 + γ2u1v2 + βz

(
u2 − ẑ

) ] .
Having derived systems of the above forms, we need to equip the relevant operators with boundary
conditions. For example, in the reaction–diffusion example and with the notation above, using the
gradient equation (2.7) gives that the first Neumann boundary condition reads D1

∂u1

∂n = 1
βc
v1.

Given a system of the form (2.9)–(2.10), let us assume that approximations ũj and ṽj at time
points 0 = t0 < t1 < · · · < tn = T are available and consider the interpolants

ũ(t) =

n∑
j=0

`j(t)ũj and ṽ(t) =

n∑
j=0

`j(t)ṽj , (2.11)

where `j(t) are differentiable Lagrange functions satisfying `j(ti) = δij . We consider the associated
residual functions 

ru(t) :=

∫ t

0

f(τ, ũ(τ), ṽ(τ)) dτ −Muũ(t) +Muũ(0),

rv(t) :=

∫ t

0

g(τ, ũ(τ), ṽ(τ)) dτ −Mvṽ(t) +Mvṽ(0).

(2.12)

(2.13)

It is important to note that the residuals are zero for all solutions that satisfy the system (2.9) and
(2.10), irrespective of the initial/final condition for u/v. Hence, we still need to impose Muũ(0) = Muu0

and Mvṽ(T ) = MvvT explicitly.
Denoting by ru,j and rv,j the approximations to the residuals ru(tj) and rv(tj) at time points tj ,

respectively, we can write

[ru,0, ru,1, . . . , ru,n] = [f0, f1, . . . , fn]Q+Mu[ũ0 − ũ0, ũ0 − ũ1, . . . , ũ0 − ũn]

and

[rv,0, rv,1, . . . , rv,n] = [g0,g1, . . . ,gn]Q+Mv[ṽ0 − ṽ0, ṽ0 − ṽ1, . . . , ṽ0 − ṽn].

Here, the (n+ 1)× (n+ 1) collocation matrix Q corresponds to cumulative integration, i.e.,

qij =

∫ tj

0

`i(τ) dτ, i, j = 0, 1, . . . , n, (2.14)

with q00 being the top-left entry of Q. (The name of that matrix can be remembered by thinking of
“quadrature”.) The motivation for using forward integration for both (2.12) and (2.13), as opposed to
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using coupled forward–backward integration as in our previous work [14], is to avoid the introduction
of separate time-collocation matrices Qf and Qg (in [14] these matrices were called Cu and Cv, respec-
tively). We will see that using a common collocation matrix for both f and g results in a regular matrix
structure which we can exploit for the construction of a computationally efficient preconditioner.

We define the global residual function R : R2N(n+1) → R2N(n+1) as

R :



ũ0

ṽ0

ũ1

ṽ1

ũ2

ṽ2

...
ũn
ṽn


︸ ︷︷ ︸

=: w

7→



0
0∑n

i=0 qi1fi∑n
i=0 qi1gi∑n
i=0 qi2fi∑n
i=0 qi2gi

...∑n
i=0 qinfi∑n
i=0 qingi


+



ũ0 − u0

ṽn − vT
Mu(ũ0 − ũ1)
Mv(ṽ0 − ṽ1)
Mu(ũ0 − ũ2)
Mv(ṽ0 − ṽ2)

...
Mu(ũ0 − ũn)
Mv(ṽ0 − ṽn)


. (2.15)

We aim to apply the Newton method w(k+1) = w(k)− [DR(w(k))]−1R(w(k)) in order to approximately
solve Rw = 0. The Jacobian J = DR(w) is readily computed as:

J =



IN O · · · · · · · · · O O
O O · · · · · · · · · O IN

q01Duf0 + Mu q01Dvf0 q11Duf1 −Mu q11Dvf1 · · · qn1Dufn qn1Dvfn
q01Dug0 q01Dvg0 + Mv q11Dug1 q11Dvg1 −Mv · · · qn1Dugn qn1Dvgn

...
...

...
...

. . .
...

...
q0nDuf0 + Mu q0nDvf0 q1nDuf1 q1nDvf1 · · · qnnDufn −Mu qnnDvfn

q0nDug0 q0nDvg0 + Mv q1nDug1 q1nDvg1 · · · qnnDugn qnnDvgn −Mv

 ,
(2.16)

with Dufi ∈ RN×N denoting the Jacobian of f(t,u,v) with respect to u, evaluated at the linearization
point (ti, ũi, ṽi). The other Jacobians Dvfi,Dugi,Dvgi are denoted analogously.

At each Newton iteration we need to solve a linear system with the matrix J defined in (2.16). In
order to simplify its structure and make it more amenable to preconditioning, we apply a block-column
transformation by right-multiplication with a matrix K, adding trailing block-columns to the first and
second block-columns of J and thereby eliminating all appearances of Mu and Mv in the first two
block-columns and creating an invertible pivot in the leading 2-by-2 block. More precisely, the matrix
K is given by

K =


1
1 1
1 1
...

. . .

1 1

⊗ I2N .

We denote the resulting matrix by J̃ = J ·K,

J̃ =



IN O · · · · · · · · · O O
O IN · · · · · · · · · O IN
Duf̃1 Dv f̃1 q11Duf1 −Mu q11Dvf1 · · · qn1Dufn qn1Dvfn
Dug̃1 Dvg̃1 q11Dug1 q11Dvg1 −Mv · · · qn1Dugn qn1Dvgn

...
...

...
...

. . .
...

...

Duf̃n Dv f̃n q1nDuf1 q1nDvf1 · · · qnnDufn −Mu qnnDvfn
Dug̃n Dvg̃n q1nDug1 q1nDvg1 · · · qnnDugn qnnDvgn −Mv


,
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1. Initialize ũj := u0 and ṽj := vT for j = 0, 1, . . . , n

2. Set k := 0 and w(0) := [ũ0; ṽ0; ũ1; ṽ1; . . . ; ũn; ṽn] (‘;’ stands for row-wise concatenation)

3. Evaluate R(w(k)) =:

[
a
b

]
, partitioned such that a ∈ R2N , b ∈ R2Nn (note that a = 0)

4. If error criterion is satisfied, stop

5. Solve Sỹ = b where S := D − CB (S varies with each iteration k)

6. Set x̃ := −Bỹ

7. Compute

[
x̄
ȳ

]
:= K

[
x̃
ỹ

]
8. Set w(k+1) := w(k) −

[
x̄
ȳ

]
and go to step 3

Fig. 2.1: Pseudocode for the residual-based Newton solver. The notation follows that of Section 2.2.

with Duf̃i :=
∑n
j=0 qjiDufj , Dug̃i :=

∑n
j=0 qjiDugj , Dv f̃i :=

∑n
j=0 qjiDvfj , and Dvg̃i :=

∑n
j=0 qjiDvgj ,

for i = 1, . . . , n. Let us partition this matrix as

J̃ =

[
A B
C D

]
, A = I2N .

Within each Newton step, we then solve

J

[
x̄
ȳ

]
=

[
A B
C D

] [
x̃
ỹ

]
=

[
a
b

]
,

or equivalently, using the Schur complement S = D − CA−1B = D − CB,[
A B
O S

] [
x̃
ỹ

]
=

[
a

b− Ca

]
. (2.17)

A simplification is obtained by noting that, within the Newton iteration, we have as right-hand side

vector the global residual evaluated for the previous iterate,

[
a
b

]
= R(w(k)). If w(k) is such that ũ0 = u0

and ṽn = vT , then a = 0. As a consequence, the right-hand side of (2.17) does not require the evaluation

of Ca, which involves the submatrix C of the Jacobian J̃ that may not be explicitly available and may
need to be approximated by finite differencing.

A pseudocode for the resulting residual-based Newton method is given in Figure 2.1. Note that the
matrix computations in steps 6–7 can be performed cheaply: B is a very sparse matrix of size 2N -by-
2Nn whose only nonzeros correspond to an N × N identify matrix in its bottom right, while K can
be applied efficiently using its Kronecker representation. The main computational cost of this Newton
method is concentrated in step 5, the solution of the Schur complement system. In what follows we will
introduce a preconditioner for that problem, allowing the development of an efficient Newton–Krylov
solver.

2.3. Preconditioner. As a preconditioner for the Schur complement S arising in (2.17) (and
step 5 of Figure 2.1) we consider the following matrix:

P = D̂ − ĈB.
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Here, D̂ and Ĉ are approximations to D and C, respectively, defined as

D̂ =


q11 q21 · · · qn1

q12 q22 · · · qn2

...
...

. . .
...

q1n q2n · · · qnn

⊗G and Ĉ =


q̂1

q̂2

...
q̂n

⊗G,
with q̂i =

∑n
j=0 qji and the matrix G corresponding to

G :=

[
Duf −Mu Dvf
Dug Dvg −Mv

]
∈ R2N×2N ,

where the Jacobians of f and g are evaluated for the current Newton iterate at some time point in
[0, T ]. (In our experiments, we use the mid-point t = T/2 as the time evaluation point.) In order to
use this preconditioner efficiently, we need to be able to apply P−1 cheaply. By the Sherman–Morrison
formula we have

P−1 = D̂−1 + D̂−1Ĉ(I2N −BD̂−1Ĉ)−1BD̂−1 = [I2Nn + D̂−1Ĉ(I2N −BD̂−1Ĉ)−1B]︸ ︷︷ ︸
=:F

D̂−1.

Now using the facts that

D̂−1 =


q11 q21 · · · qn1

q12 q22 · · · qn2

...
...

. . .
...

q1n q2n · · · qnn


−1

⊗G−1

and hence

D̂−1Ĉ =



q11 q21 · · · qn1

q12 q22 · · · qn2

...
...

. . .
...

q1n q2n · · · qnn


−1 

q̂1

q̂2

...
q̂n


⊗

[
IN O
O IN

]
=:


q̃1

q̃2

...
q̃n

⊗
[
IN O
O IN

]
,

a simple calculation shows that

F = I2Nn+D̂−1Ĉ(I2N −BD̂−1Ĉ)−1B =



IN O O
IN O q̃1IN/(1− q̃n)

IN O O
IN O q̃2IN/(1− q̃n)

. . .
...

...
. . .

...
...

IN O
O (1 + q̃n/(1− q̃n))IN


.

This allows us to apply P−1 = FD̂−1 cheaply. In particular, we have

P−1v = FD̂−1v = F vec

G−1mat(v)


q11 q21 · · · qn1

q12 q22 · · · qn2

...
...

. . .
...

q1n q2n · · · qnn


−T , (2.18)

with the mat operation transforming a vector v ∈ R2Nn into an 2N -by-n matrix, and vec being the
inverse operation. All computational costs involved in applying the preconditioner are linear with
respect to N , with the exception of creating a factorization of the 2N -by-2N Jacobian matrix G, which
needs to be done once per Newton iteration.
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2.4. Newton–Krylov implementation. We do not wish to form the Schur complement S =
D − CB explicitly, but we will instead approximate its action within a Krylov method using finite
differencing. The resulting Newton–Krylov method is standard and described in detail, e.g., in [21,
Chapter 3]. We will therefore only outline the key parts required for its implementation.

Recall from (2.16) and the subsequent derivations that the matrix D, which is the lower-right 2Nn-

by-2Nn submatrix of J̃ = J · K, is the same as the lower-right submatrix of J = DR(w). We can
therefore obtain an approximation to the matrix-vector product Dx as a finite difference[

R(w + h[02N×1;x])−R(w)

h

]
2N+1:2N(n+1)

≈ Dx,

where again ‘;’ corresponds to row-wise concatenation and the MATLAB operator ‘:’ was used to
extract vector entries by their indices. For the appropriate choice of the parameter h in floating point
arithmetic, we refer to [21, Section 3.2.1]. Similarly, the action of the lower-left 2Nn-by-2N submatrix C

of J̃ = J ·K on a vector Bx can be approximated as[
R(w + hK[Bx; 02Nn×1])−R(w)

h

]
2N+1:2N(n+1)

≈ C(Bx).

Overall, three evaluations of R(·) are required to obtain an approximation of Sx = Dx − C(Bx). If
multiple such approximations with different vectors x are required consecutively, e.g., within a Krylov
iteration, then the evaluation of R(w) can be reused for all of them.

The left-preconditioned system P−1Sx = P−1b is solved using GMRES [28]. For these inner solves,
the standard Eisenstat–Walker residual stopping criterion based on the norm of the residual, ‖R(w(k))‖,
is used [9]; see also [21, Section 3.2.3].

2.5. Stopping criterion. There are several options to stop our method, with the most obvious
one being a norm criterion for the residual evaluated in step 3 of the algorithm in Fig. 2.1: stop at
Newton iteration k if ‖R(w(k))‖ ≤ tol ‖R(w(0))‖ for some user-specified tolerance tol.

An alternative option is to estimate the error in the iterate

w(k) =

[
ũ(k)

ṽ(k)

]
from the difference w(k+s) − w(k) for some integer lag parameter s ≥ 1. This strategy gives good
results if the method converges rapidly, as in this case w(k+s) will be an “accurate” (relative to w(k))
approximation for the vector to which the algorithm converges. As the state (ũ(k)) and adjoint compo-
nents (ṽ(k)) in w(k) often vary significantly in magnitude, it is advisable to treat them separately when
estimating the error. We therefore suggest to use the following estimate for relative error of ũ(k):

errest(k)
u =

maxj=0,1,...,n ‖ũ(k+s)
j − ũ

(k)
j ‖∞

maxj=0,1,...,n ‖ũ(k+s)
j ‖∞

,

and an analogous estimate for the relative error of ṽ(k). Together with an estimate for the expected
stagnation error level (dependent on the space and time discretization), these estimators provide a
practical stopping criterion. We will illustrate this in Section 3.

3. Numerical experiments. Our numerical experiments are guided by two nonlinear model
problems, the 2D Schlögl problem and a 2D reaction–diffusion problem, both posed on the spatial
domain Ω = (−1, 1)2 and with analytic solutions given in Appendix A (with α = 0.1 for the Schlögl
problem). The experiments have been performed in MATLAB 2019a on a Windows 10 laptop with
8 GB RAM and an Intel(R) Core(TM) i7-8650U CPU running at 2 GHz. A MATLAB implementation
of our method, including the preconditioner proposed in Section 2.3, as well as scripts reproducing these
experiments, can be downloaded from https://github.com/nla-group/pdeoptim. We use Chebfun
[7] to generate the spectral collocation matrices in space and time.

https://github.com/nla-group/pdeoptim
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Fig. 3.1: Eigenvalues of the Schur complement S and its preconditioned counterpart P−1S for the 2D Schlögl
problem with finite difference discretization. Only the first three Newton iterations are shown as the subsequent
ones look qualitatively similar. The condition numbers of the Schur complement S in the first seven iterations
(until stagnation of the Newton method as determined in Section 3.2) are [2.5, 2.3, 2.4, 2.7, 3.0, 3.0, 3.0] × 103,
and those of the preconditioned Schur complement P−1S are [1.8, 5.3, 14.2, 24.3, 27.0, 27.4, 27.4].
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Table 3.1: Outer Newton and inner GMRES iterations required to solve the Schlögl problem using a spectral
space discretization, to an accuracy below 10−10.

β outer iterations inner iterations total inner final accuracy total time (s)

1e− 1 4 4, 14, 18, 30 66 6.92e− 12 0.405
1e− 2 7 1, 4, 6, 8, 12, 16, 25 72 6.27e− 12 0.398
1e− 3 8 1, 2, 4, 6, 9, 12, 20, 35 89 3.35e− 13 0.480
1e− 4 8 1, 2, 4, 6, 9, 7, 12, 30 71 8.49e− 13 0.441
1e− 5 8 1, 2, 4, 6, 9, 9, 10, 25 66 1.51e− 12 0.409

3.1. Visual inspection of the preconditioner. We first explore visually the properties of our
preconditioner from Section 2.3 with the help of the Schlögl problem, discretized with finite differences
in space. The following parameters have been chosen: final time T = 2, regularization parameter
β = 0.01, nx = 16 equidistant interior grid points in each spatial dimension, and degree n = 5 Chebyshev
collocation on [0, T ], that is we use the time collocation points:

tj = T
1− cos(jπ/n)

2
, j = 0, 1, . . . , n.

In Figure 3.1 we show the eigenvalues of both the unpreconditioned (left) and preconditioned (right)
Schur complements, S and P−1S, at the first three Newton iterations. We observe that P−1S has tightly
clustered eigenvalues away from the origin, which serves as an indication (though not a guarantee) that
fast GMRES convergence can be expected for this preconditioned system. We also show, at the bottom
left of each eigenvalue plot, the condition numbers of S and P−1S, respectively. Again, the reduced
condition number of the preconditioned system indicates that the preconditioner is effective. We will
now turn to some concrete numerical tests to confirm this.

3.2. Schlögl problem, spectral in space. To test the achievable accuracy of our solver to the
extreme, as well as the robustness with respect to the regularization parameter β, we consider the Schlögl
2D example with a spectral space discretization. We use nx = 12 interior grid points in each spatial
dimension and degree n = 10 Chebyshev collocation on [0, T = 2] (i.e., n + 1 = 11 time collocation
points). The error of the computed state and adjoint solutions are obtained by taking the absolute
deviation on the spectral collocation grid over all time steps, i.e.,

erru =
maxj=0,1,...,n ‖uj − ũj‖∞

maxj=0,1,...,n ‖uj‖∞
,

where ũj is the computed approximation to u(tj), the latter of which is known analytically. Likewise,
the error in the adjoint, errv, is computed. The results are shown in Figure 3.2, with the number of
Newton iterations varying from 0 to 10. A number of zero Newton iterations corresponds to using the
constant initial guess ũj := u0 and ṽj := vT for j = 0, 1, . . . , n.

Figure 3.2 also indicates an error level of 10−10, which we have used in Table 3.1 to evaluate the
number of outer Newton iterations and inner GMRES iterations, as well as timings, required to achieve
that accuracy. More precisely, we consider the algorithm to have converged to the target accuracy if

err := max{erru, errv} ≤ 10−10.

As expected, the total computation time is roughly proportional to the number of inner GMRES
iterations performed, and this number increases steadily as the Newton iterates approach the sought
minimum of the residual norm. Overall, the number of inner iterations and total time does not seem to
depend much on the value of the regularization parameter β, and we can solve complex optimal control
problems in a fraction of a second using GMRES, up to spectral accuracy, for every β tested.
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Fig. 3.2: Error in the computed state (left) and adjoint (right) variables for the Schlögl problem using a spectral
space discretization, for varying regularization parameter β.
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Fig. 3.3: Error in the computed state (left) and adjoint (right) variables for the Schlögl problem using a finite
difference space discretization, with a varying number of grid points nx.

3.3. Schlögl problem, finite differences in space. We now consider the Schlögl example with a
finite difference discretization in space, while still using a spectral method in time. This example intends
to demonstrate that mixing these two discretizations is a viable option, as the spectral time discretization
helps to keep the number of solution vectors ũj , ṽj ∈ RN (j = 0, 1, . . . , n) small, thereby reducing the
overall memory consumption and arithmetic cost. This is in contrast to previous approaches that have
used a backward Euler approximation in time and hence required a much larger number of time steps,
at the cost of increased linear algebra complexity.

In this test we use degree n = 5 Chebyshev collocation in time and vary the number of equidistant
spatial interior grid points nx = 4, 8, 16, 32, 64, 128 in both coordinate directions. The time interval is
again [0, T = 2], and the errors of the computed state and adjoint solutions are obtained as before.

The results are presented in Figure 3.3 and Table 3.2. We first observe that, as the number of spatial
grid points is doubled, the finally attained accuracy improves by a factor of about 4. This is consistent
with the second-order centred finite difference scheme, and also indicates that the time discretization
is sufficiently fine. We further observe that, independently of nx, the error of the space discretization
is reached after about 6 Newton iterations. By inspecting the number of inner GMRES iterations in
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Table 3.2: Outer Newton and inner GMRES iterations required to solve the Schlögl problem using a finite
difference space discretization.

nx outer iterations inner iterations total inner final accuracy total time (s)

4 6 1, 3, 4, 6, 9, 10 33 4.13e− 03 0.0298
8 6 1, 3, 4, 6, 9, 9 32 1.22e− 03 0.0466
16 6 1, 3, 4, 6, 9, 9 32 3.37e− 04 0.0923
32 6 1, 3, 4, 6, 9, 9 32 8.92e− 05 0.388
64 6 1, 3, 4, 6, 9, 9 32 2.35e− 05 1.43
128 6 1, 3, 4, 6, 9, 9 32 7.67e− 06 6.71
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100

Schloegl FD: error in computed state

error
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error
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estimate (s=2)
estimate (s=3)

Fig. 3.4: Error and error estimates for the computed state (left) and adjoint (right) for the Schlögl problem
using a finite difference space discretization, with nx = 32 interior grid points. The lag parameter for the error
estimation is varied between s = 1, 2, 3.

Table 3.3, we find that the method is robust with respect to refinements in space, testament to an
effective preconditioner. As a consequence, the total computation time scales close to linearly in the
number of overall spatial grid points, n2

x. We highlight that if nx becomes very large, the factorization
of the matrix G in (2.18) at each Newton iteration could become a computational bottleneck, although
our results demonstrate that high accuracy can be achieved for moderate nx, thus mitigating this issue.

We also show in Figure 3.4 the error at each Newton iteration when nx = 32 interior grid points are
used in space, as well as the error estimate discussed in Section 2.5, using the lag parameter s = 1, 2, 3.
Note how the error estimates follow the actual error very closely until the method stagnates on the level
of the spatial/temporal discretization error. Together with estimates for the expected discretization
error, this error estimate is a useful stopping criterion for our algorithm, and the user can specify a
desired tolerance based on a reasonable expected discretization error given the n and nx chosen.

3.4. Reaction–diffusion problem, finite differences in space. We now turn our attention
to a nonlinear reaction–diffusion problem discretized using finite differences in space. We use degree
n = 10 Chebyshev collocation on the time interval [0, T = 1], and parameters βy = 1, βz = 1, βc = 0.01,
D1 = 0.5, D2 = 1, k1 = 1, k2 = 1, γ1 = 0.4, γ2 = 0.6, noting that the method demonstrates robustness
with respect to reasonable modifications of these parameters.

The results of the Newton–Krylov method are shown in Figure 3.5 and Table 3.3. We can see that
the error of the space discretization is reached after about 5 Newton iterations, and that a slightly
larger nx is required to obtain a satisfactory numerical solution than for the Schögl problem. As shown
in Figure 3.5, the very low value of nx = 4 (with nx including boundary points for this problem, due
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Fig. 3.5: Error in the computed state (left) and adjoint (right) variables for the reaction–diffusion problem using
a finite difference space discretization, with a varying number of grid points nx.

Table 3.3: Outer Newton and inner GMRES iterations required to solve the reaction–diffusion problem using a
finite difference space discretization.

nx outer iterations inner iterations total inner final accuracy total time (s)

4 4 12, 23, 33, 60 128 3.73e+ 00 0.556
8 4 18, 28, 39, 68 153 1.83e− 01 0.915
16 4 18, 30, 38, 60 146 1.84e− 02 2.62
32 4 18, 31, 37, 55 141 3.23e− 03 7.90
64 4 18, 31, 36, 50 135 6.63e− 04 38.4
128 4 18, 32, 36, 51 137 1.61e− 04 221

Fig. 3.6: Computed solution of the reaction–diffusion problem at time t = 0.5, using a finite difference space
discretization with nx = 128 spatial grid points.
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to the imposition of Neumann boundary conditions) leads to worse error properties in the computed
adjoint than an arbitrary initial guess; however, increasing the number of spatial grid points gives very
high accuracy once again. We may see from Table 3.3 that, for sufficiently large nx, doubling this value
leads to an improved accuracy by a factor of roughly 4 once more, as is expected. We also observe that
the computation time scales close to linearly with respect to number of spatial grid points, with the
only nonlinearity arising from the factorization of the matrix G: this nonlinear scaling becomes visible
for a smaller nx than for the Schlögl problem, as G is a larger matrix for the reaction–diffusion problem,
however all computation times are low considering the high complexity of the problem being solved.

A visualization of the computed solution components y and q at time t = 0.5 using a finite difference
space discretization with nx = 128 spatial grid points is shown in Figure 3.6. We conclude this section
by highlighting that we can also solve this reaction–diffusion control example using a spectral method
in space, and indeed our approach can in principle be applied to any space discretization, with all that
is required being the matrices arising from the discretization of the linearized PDE operators at a given
time-step. For instance, one may apply a finite element discretization in space, and take advantage of
the finite element method’s greater flexibility when it comes to grid and mesh structure.

4. Concluding remarks. In this short paper, we have derived a Newton–Krylov method to
allow the spectral-in-time solution of nonlinear time-dependent PDE-constrained optimization problems,
suggested a preconditioner to be applied within this method, and validated our approach numerically
on test problems relating to the optimal control of the Schlögl equation as well as a reaction–diffusion
system. Thanks to the spectral time discretization, as opposed to more commonly used low-order time
discretizations (such as backward Euler in [26, 27, 29]), our method allows for a fast and accurate
solution of such problems with relatively low memory requirements (as the solution is only collocated
at a small number of time nodes). The method is also amenable to a range of strategies for the space
discretization, and to apply the method the user only needs to provide matrices arising from their
preferred discretization of the linearized PDE operators at a given time-step. Possible extensions of this
approach include the solution of more sophisticated systems of PDEs or integro-PDEs, problems with
additional algebraic constraints on the state and control variables, and connecting with time-parallel
methods for parabolic control problems, for instance the work presented in [10]. The derivation of more
sophisticated preconditioning strategies and stopping criteria for the Newton–Krylov solver, taking
account of the specific structures of the PDE operators involved, would also be of interest.
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Appendix A. Test problems with analytic solutions. Our first test problem involves the
optimal control of the Schlögl equation, as given in (2.1). The continuous optimality conditions (2.3)–
(2.5) are solved by the following functions:

y = α

(
4

(dπ2 − 4)β
eT − 4

dπ2β
et
) d∏

k=1

cos
(πxk

2

)
,

p = α(eT − et)
d∏
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(πxk

2

)
,

[
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p

]
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f = α3

(
4

(dπ2 − 4)β
eT − 4

dπ2β
et
)3

[
d∏
k=1

cos
(πxk

2

)]3

,

y0 = α

(
4

(dπ2 − 4)β
eT − 4

dπ2β

) d∏
k=1

cos
(πxk

2

)
,

h = 0,

where d ∈ {2, 3} is the dimension of the problem, solved on the space–time domain (−1, 1)d × (0, T ),
and α 6= 0 denotes an arbitrary constant.

Our second test problem involves the reaction–diffusion control problem (2.2). The continuous
optimality conditions (2.6)–(2.8) are solved by the following functions:

y =
1

8
(eT − et)

d∑
k=1

x2
k,

z =
1

8
(eT − et),

p =
βcD1

4
(eT − et),

[
c =

1

βc
p on ∂Ω× (0, T )

]
q =
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4
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[1 + cos(πxk)] ,
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with d ∈ {2, 3} again the dimension of the problem, solved on the space–time domain (−1, 1)d× (0, T ).
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