ty
er

The Universi
of Manchest

MANCHESTER

1824

Model theory for algebra

Prest, Mike

2003

MIMS EPrint: 2006.113

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/

And by contacting: The MIMS Secretary
School of Mathematics
The University of Manchester
Manchester, M13 9PL, UK

ISSN 1749-9097


http://eprints.maths.manchester.ac.uk/

Model Theory for Algebra

Mike Prest,
Department of Mathematics
University of Manchester
Manchester M13 9PL
UK
mprest@ma.man.ac.uk

May 22, 2006

Abstract

The purpose of this article is to give a general introduction to the basic
ideas and techniques from model theory.

I begin with some general remarks concerning model theory and its
relationship with algebra. There follows a “mini-course” on first order
languages, structures and basic ideas in model theory. Then there is a
series of subsections which describe briefly some topics from model theory.
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1 Model theory and algebra

There is a variety of ways in which people have described the relationship be-
tween model theory, algebra and logic. Certainly, model theory fits naturally
between, and overlaps, algebra and logic. Model theory itself has a “pure”
aspect, where we investigate structures and classes of structures which are de-
lineated using notions from within model theory, and it has an “applied” aspect,
where we investigate structures and classes of structures which arise from out-
side model theory.

The first aspect is exemplified by stability theory where we assume just
that we are dealing with a class of structures (cut out by some axioms) in which
there is a “notion of independence” satisfying certain reasonable conditions. The
investigation of such classes and the development of structure theory within such
classes was a major project of Shelah and others (see [47], [48], [23]). Out of it
have grown other projects and directions, in particular, “geometrical stability
theory” which has close links with algebraic geometry (see, e.g., [39]).

The second aspect is exemplified by the model theory of fields (or groups,
or modules, or ...). Here the techniques used arise mostly from the specific area
but there is some input of model-theoretic ideas, techniques and theorems. The
input from model theory is typically not from the most highly developed “inter-
nal” parts of the area but one can be fairly sure that at least the Compactness
Theorem 2.10 will figure as well as a certain perspective. The model-theoretic
perspective, of course, leads one to ask questions which may not be algebraically
“natural” but it may also lead to fresh ideas on existing algebraic questions.

For example, within the model theory of modules one may aim to classify
the complete theories of modules over a given ring. Model-theoretically this is
a natural project because of the central role played in model theory by elemen-
tary classes. Algebraically it does not seem very natural, even though it can be
described in purely algebraic terms (by making use of the notion of ultraprod-
uct). Nevertheless, this project did lead to unexpected discoveries and algebraic
applications (see my Handbook of Algebra article on model theory and modules
for example).

In its development model theory has looked very much towards algebra and
other areas outside logic. It has often taken ideas from these areas, extracted
their content within a framework provided by logic, developed them within that
context and applied the results back to various areas of algebra (as well as parts
of analysis and geometry see, e.g., [8], [32], [61]). An example of this process
is provided by the concept of being “algebraic over” a set of elements (see the
subsection on this below). The inspirational example here is the notion of an
element of a field being algebraic (as opposed to transcendental) over a subfield.
This leads to a general and fundamental model theoretic notion which applies



in many different contexts.

That phase of the development of model theory provided most of the ideas
mentioned in this article. For some snapshots of model theory as it is now, one
may look at the various (especially survey) articles mentioned above, below and
in the bibliography.

2 The Basics

Most, but not all, model theory uses first-order, finitary logic. In this article I
confine myself to the first-order, finitary context. By a “formal language”, or
just “language”, I will, from now, mean a first-order finitary language.

“First order” means that the quantifiers range over elements of a given structure
(but also see the subsection on many-sorted structures). In a second-order lan-
guage we also have quantifiers which range over arbitrary subsets of structures
(there are intermediate languages where there are restrictions on the subsets).
A second-order language is, of course, much more expressive than a first-order
one but we lose the compactness theorem. One of the points of model theory
is that if a property can be expressed by a first-order formula or sentence then
we know that it is preserved by certain constructions.

“Finitary” means that the formulas of the (L,-) language all are finite strings
of symbols. An L..,-language is one where arbitrarily large conjunctions and
disjunctions of formulas are formulas. In such a language one can express the
property of a group being torsion by Vz \/;s, ' = e. In an Loo-language one
also allows infinite strings of quantifiers.

See [17], [24, Section 2.8], for these languages and for some algebraic applica-
tions of them.

From the great variety of languages that have been considered by logicians, it is
the first-order finitary ones which have proved to be most useful for applications
in algebra.

The concept of a first order, finitary formula is rather basic but is often

rather quickly passed over in accounts written for non-logicians. Certainly it
is possible to do a, perhaps surprising, amount of model theory without men-
tioning formulas and so, when writing an article for algebraists for instance,
one may wish to minimise mention of, or even entirely avoid, talking about for-
mulas because one knows that this will be a stumbling block to many readers.
Although this is possible and sometimes even desirable, this is not the course
that I take here.

A formula (by which I will always mean a formula belonging to a formal
language) is a string of symbols which can be produced in accordance with
certain rules of formation. In general a formula will contain occurrences of
variables (z,y,...). Some of these will be bound (or within the scope of) a
quantifier. For example in Vz3y(z # y) this is true of the occurrence of x and



that of y (the “z” in Vz is counted as part of the quantifier, not as an occurrence
of ). Some occurrences may be free. For example in Va(Jy(z # y)) A (z = 2)
the unique occurrence of z is free as is the second occurrence of x. The free
variables of a formula are those which occur free somewhere in the formula.
A formula without free variables is called a sentence and such a formula is
either true or false in a given structure for the relevant language (for instance
VaJy(xz # y) is true in a structure iff that structure has at least two distinct
elements). We write M = ¢ if the sentence ¢ is true in the structure M. We
write ¢(z1, ..., z,) to indicate that the set of free variables of the formula ¢ is
contained in {1, ...,z,} (it is useful not to insist that each of z; to z, actually
occurs free in ¢). Given a formula ¢(z1, ..., x,) of a language L, given a structure
M for that language and given elements as,...,a, € M we may replace every
free occurrence of z; in ¢ by a; - the result we denote by ¢(aq,...,a,) - and
then we obtain a formula with parameters, which is now a statement that
is either true or false in M: we write M | ¢(aq, ..., a,) if it is true in M. For
example if ¢(z, z) is Va(Jy(x # y)) Az = z and if a,b € M then M = ¢(a,b) iff
M has at least two elements and if a = .

One cannot literally replace an occurrence of a variable by an element of a
structure. Rather, one enriches the language by “adding names (new constant
symbols) for elements of the structure” and then, using the same notation for
an element and for its name, ¢(aq,...,a,) becomes literally a sentence of a
somewhat larger language. See elsewhere (for example [10], [24]) for details.

Also see those references for the precise definition of the satisfaction relation,
M ¢ and M | ¢(aq, ..., an), between structures and sentences/formulas with
parameters. It is a natural inductive definition and one does not normally have
to refer to it in order to understand the content of the relation in particular

cases.

A formal language has certain basic ingredients or building blocks. Some
of these, such as the symbol A which represents the operation of conjunction
(“and”), are common to all languages: others are chosen according to the in-
tended application. Then one has certain rules which delimit exactly the ways
in which the formulas of the language may be built up from these ingredients.

The ingredients common to all languages are: an infinite stock of variables
(or indeterminates); the logical connectives, A (conjunction “and”), V
(disjunction “or”), - (negation “not”), — (implication “implies”), < (bi-
implication “iff”); the universal quantifier ¥ (“for all”) and the existential
quantifier 3 (“there exists”); a symbol, =, for equality. We also need to use
parentheses, (and ), to avoid ambiguity but there are conventions which reduce
the number of these and hence aid readability of formulas. The language which
is built up from just this collection of symbols we denote by Ly and call the
basic language (with equality). The formulas of this language are built up
in a natural way, as follows.



The basic language We use letters such as z,y,u,v and indexed letters
such as x1, g, ... for variables. We also abuse notation (in the next few lines
and in general) by allowing these letters to range over the set of variables, so x
for instance is a “generic” variable.

The definition of the formulas of the language is inductive. First we de-
fine the atomic formulas (the most basic formulas) and then we say how the
stock of formulas may be enlarged by inductively combining formulas already
constructed.

If 2 and y are any two variables then z = y is an atomic formula (so
x = x,u = x,.. are atomic formulas). There are no more atomic formulas (for
this language).

If ¢ and ¢ are formulas then the following also are formulas: (¢pAY), (¢V)),
(=), (¢ — ), (¢ < ¥). Any formula constructed from the atomic formulas
using only these operations is said to be quantifier-free.

Examples 2.1 : (z = y Az = u) is a formula, so is (xt =y — u =), as is
((x =yrex=u)V(x =y — u="1)), asis (~((x = yAx = u)V(z =y — u =))).
In order to increase readability we write, for instance, (x # y) rather than
(mx = y). We may also drop pairs of parentheses when doing so does not lead
to any ambiguity in reading a formula. Some conventions allow the removal of
further parentheses. Just as X has higher priority than + (so 2+3 x4 equals 14
not 20) we assign — higher priority than N\ and V, which, in turn, have higher
priority than — and <. The assignment of priorities to Yxr and Jx is rather
less consistent.

If ¢ is a formula and z is any variable then (Vx¢) and (Jz¢) are formulas.

A formula is any string of symbols which is formed in accordance with these
rules.

A further convention sometimes used is to write Vz(¢) or just Vz¢ for (Vre)
and similarly for 3 and even for a string of quantifiers.

Examples 2.2 : (VzJy(z = yVa = 2)) V(x # y AVuu = 2) is a formula
which, with all parentheses shown, would be (Vx(3y(x = yVr = 2))) V (x #
y A Vuu = 2))).

We remark that only —, A and 3 (say) are strictly necessary since one has,
for instance, that ¢ V 1 is logically equivalent to —(—=¢ A =) and that Vz¢ is
logically equivalent to —=3z—¢. This allows proofs which go by induction on
complexity (of formation) of formulas to be shortened somewhat since fewer
cases need be considered.

The optional extras from which we may select to build up a more general
language, L, are the following: function symbols; relation symbols; constant
symbols. Each function symbol and each relation symbol has a fixed arity
(number of arguments). These optional symbols are sometimes referred to as
the signature of the particular language.



Example 2.3 Suppose that we want a language appropriate for groups. We
could take the basic language Ly and select, in addition, just one binary function
symbol with which to express the multiplication in the group. In this case it would
be natural to use operation, xxy, rather than function, f(z,y), notation and that
1s what we do in practice. Since inverse and identity are determined once we add
the group azxioms we need select no more. For instance the group aziom which
says that every element has a right inverse could be written VaIyVz((xxy)xz =
zAz*(x*xy) = z). But it would make for more easily readable formulas if we give
ourselves a unary (= 1-ary) function symbol with which to express the function
x — 2~ and a constant symbol with which to “name” the identity element of
the group. Again, we use the natural notation and so would have, among the
azioms for a group written in this language, Va(z x x71 = e).

For many purposes the choice of language is not an issue so long as the col-
lection of definable sets (see the subsection on these) remains unchanged. But
change of language does change the notion of substructure and it is also crucial
for the question of quantifier-elimination. For instance, we may consider the
p-adic field Q, as a structure for the language of ordered fields supplemented by
predicates, P, for each integer n > 2, by interpreting P,(Qp) to be the set of
elements of Q, which are n-th powers. In this language every formula is equiv-
alent, modulo the theory of this structure, to one without quantifiers [31]: (we
say that Q, has elimination of quantifiers in this language) but this is certainly
not true of Q, regarded as a structure just for the language of ordered fields
(note that the property of being an n-th power in this latter language requires
an existential quantifier for its expression).

Example 2.4 Suppose that we want a language appropriate for ordered rings
(such as the reals). We could take a minimal set consisting just of two binary
function symbols, + and x, (for addition and multiplication) together with a
binary relation symbol, <, for the order on the ring. But we could also have
constant symbols, 0 and 1, a unary function symbol, —, for negative (and/or
a symbol for subtraction), and binary relation symbols, >, < and >, for the
relations “associated” to <. If we are dealing with ordered fields note that we
cannot introduce a unary function symbol for multiplicative inverse because that
operation is not total. We could, however, introduce the symbol as an informal
abbreviation in formulas since this partial operation is certainly definable by a
formula of our language.

The inductive part of the definition of formula for a general language is
identical to that for Ly and it is in the atomic formulas that the difference lies.
First, we say that a term of the language L is any expression built up from the
variables, the constant symbols (if there are any) and any already constructed
terms by using the function symbols (if there are any).



Any variable is a term. Any constant symbol is a term. If f is an n-ary function
symbol and if ¢1, ..., t, are terms then f(¢i,...,t,) is a term. For example, if L
is a language for rings, with function and constant symbols +, x, —, 0,1, and
if we use the axioms for rings to replace some terms by equivalent terms, then
a term may be identified with a non-commutative polynomial, with integer
coefficients, in the variables.

An atomic formula is any expression of the form t; = to where ty,15

are terms or of the form R(ty,...,t,) where R is an n-ary relation symbol and
ti,...,t, are terms.

Example 2.5 Ezamples of atomic formulas in a language for ordered rings are
xy+2<z?y—1and xy —yzr = 0.

One point which we have rather glossed over is: exactly what is a language?
(That is, as a mathematical object, what is it?) The simplest answer is to
regard a formal language simply as the set of all formulas of the language and
that is what we shall do. In practice, however, one usually describes a language

by giving the building blocks and the ways in which these may be combined.

Suppose that L is a language. An L-structure is a set M together with, for
each optional (constant, function, relation) symbol of the language, a specific
element of, function on, relation on the set (of course the functions and relations
must have the correct arity). Just as we refer to “the group G” rather than “the
group (G, %)” usually we refer to “the structure M”. When we need to be more
careful (for example if a certain set is being considered as the underlying set of
two different structures for the same language or of structures for two different
languages) then we may use appropriate notation, such as that just below.

An L-structure is M = (M;cM, ..., fM, ..., RM,...) where: M is a set; for each
constant symbol ¢ of L, ¢™ is an element of M; for each function symbol f
of L with arity, say, n, fM : M™ — M is an n-ary function on M; for each
relation symbol R of L with arity, say, n, RM C M™ is an n-ary relation on M.

Suppose that L is a language. A property of L-structures is elementary, or
axiomatisable or first-order expressible, if there is a set, T, of sentences of
L such that an L-structure M has that property iff M satisfies (every sentence
in) T.

Example 2.6 The property of being abelian is an elementary property of groups
since it is equivalent to satisfying the sentence VaVy(x xy =y * x).

The property of being torsion free is an elementary property of groups since
it is equivalent to satisfying the set {Vx(z™ = e — x =€) : n > 1} of sentences.
Here x™ is just an abbreviation for xxx*...xx (n “c”s). (Strictly speaking, we
should say “The property of being an abelian group is an elementary property of
L-structures, where L is a language appropriate for groups.” but, having noted



that being a group is an elementary property, it is harmless and natural to extend
the terminology in such ways.)

The property of being torsion is not an elementary property of groups. Note
that the formal rendition, Yx3In(z™ = e), of this property is not a sentence of
the language for groups since the quantifier In should range over the elements of
the group, not over the integers. The fact that it is not an elementary property
will be proved later (3.8).

Example 2.7 Let L be a language for rings. The property of being a field of
characteristic p # 0 is finitely axiomatisable (meaning that there is a finite
number of sentences, equivalently a single sentence (their conjunction), which
aziomatises it).

The property of being (a field) of characteristic zero needs infinitely many
sentences of the form 14+14...4+1 #£ 0. It follows from the Compactness Theorem
2.10 that if o is any sentence in L which is true in all fields of characteristic
zero then there is an integer N such that all fields of characteristic greater than
N satisfy o.

Let T be a set of sentences of L (briefly, an L-theory). We say that an
L-structure M is a model of T and write M |= T if M satisfies every sentence
of T. A class C of L-structures is elementary, or axiomatisable, if there is
some L-theory T such that C = Mod(T) = {M : M = T}. If C is any class
of L-structures then the theory of C, Th(C) = {c € L : M = oVM € C},
is the set of sentences of L satisfied by every member of C. We write Th(M)
for Th({M}) and call this the (complete) theory of M (“complete” since for
every sentence o either ¢ or —o is in Th(M)).

Example 2.8 We show that the class of algebraically closed fields is an el-
ementary one (in the language for rings). A field K is algebraically closed
iff every non-constant polynomial with coefficients in K in one indeterminate
has a root in K. At first sight it may seem that there is a problem since
we cannot refer to particular polynomials (the coefficients are elements of a
field which are, apart from 0, 1 and other integers, not represented by con-
stant symbols or even terms of the language) but then we note that it is enough
to have general coefficients. So for each integer n > 1 let 1, be the sentence
Yug, ..., Up (Un, # 0 — Jz(upz™+...+urz+up =0)). Let S = {o;}U{r, :n > 1}
where oy is a sentence aviomatising the property of being a field. Then a struc-
ture K for the language of rings is an algebraically closed field iff K = S.

Theorem 2.9 (Completeness Theorem) Let T be a set of sentences of L.
Then Th(Mod(T)) is the deductive closure of T. In particular, if o € Th(Mod(T))
then there are finitely many sentences 71, ..., 7, € T such that every L-structure
M satisfies i A ... AT, — 0O.

The term deductive closure comes from logic and refers to some notion of
formal proof within a precisely defined system. The “completeness” in the name



of the theorem refers to the fact that this deductive system is strong enough to
capture all consequences of any set of axioms. One can set up such a system,
independent of L, in various alternative ways and then the deductive closure of
a set, T, of sentences consists of all sentences which can be generated from T'
using this system (see, for example, [18] for details). Since a formal proof is of
finite length the second statement follows immediately and is one of many ways
of expressing the Compactness Theorem. Here is another.

Theorem 2.10 (Compactness Theorem) Let T be a set of sentences of L.
If every finite subset of T has a model then T has a model.

Another reformulation of the Completeness Theorem is that if a set of sen-
tences is consistent (meaning that no contradiction can be formally derived
from it) then it has a model.

The Compactness Theorem can be derived independently of the Complete-
ness Theorem by using the ultraproduct construction and Los’ Theorem (and
thus this cornerstone of model theory can be obtained without recourse to logic
per se).

If two L-structures, M, N satisfy exactly the same sentences of L (that is
if Th(M) = Th(N)) then we say that they are elementarily equivalent,
and write M = N. This is a much coarser relation than that of isomorphism
(isomorphic structures are, indeed, elementarily equivalent) but it allows the
task of classifying structures up to isomorphism to be split as classification up
to elementary equivalence (sometimes much more tractable than classification
to isomorphism) and then classification up to isomorphism within elementary
equivalence classes (model theory is particularly suited to working within such
classes and so, within such a context, one may be able to develop some structure
theory). One may also be led to work within an elementary equivalence class
even if one is investigating a specific structure M. For M shares many prop-
erties with the structures in its elementary equivalence class (which is, note,
Mod(Th(M))) but some of these structures may have useful properties (exis-
tence of “non-standard” elements, many automorphisms, ...) that M does not.
This will be pointless if M is finite since, in this case, any structure elementar-
ily equivalent to M must be isomorphic to M. But otherwise the elementary
equivalence class of M contains arbitrarily large structures.

Theorem 2.11 (Upwards Lowenheim-Skolem Theorem) Let M be an in-
finite L-structure. Let k be any cardinal greater than or equal to the cardinality
of M and the cardinality of L. Then there is an L-structure, elementarily equiv-
alent to M, of cardinality k. Indeed M has an elementary extension of size k.

(The cardinality of L is equal to the larger of Xy and the number of optional
symbols in L.) If M is a substructure of the L-structure N then we say that M
is an elementary substructure of N (and N is an elementary extension
of M), and we write M < N, if for every formula ¢ = ¢(z1,...,z,) of L and



every ai,...,an, € M we have M | ¢(ai,...,a,) it N = é(a1,...,a,). A way
to see this definition is as follows. Let @ be any finite tuple of elements of M.
When regarded as a tuple of elements of IV, as opposed to M, the L-expressible
properties of @ may change (those expressible by quantifier-free formulas will not
but consider, e.g., the even integers as a subgroup of the group of all integers
and look at divisibility by 2). If they do not, and if this is true for all tuples a,
then M < N.

The upwards Lowenheim-Skolem Theorem says that if M is an infinite struc-
ture then there are arbitrarily large structures with the same first-order prop-
erties as M. The next theorem goes in the other direction.

Theorem 2.12 (Downwards Lowenheim-Skolem Theorem) Let M be an
L-structure and let k be an infinite cardinal with card(L) < x < card(M).
Then M has an elementary substructure of cardinality k. If A C M and if
card(A) < k then there is an elementary substructure N < M of cardinality &
and with A C N.

Example 2.13 Consider the reals R as a structure for the language, L, of
ordered rings. Then R has a countable elementary substructure R’. Among
the properties that R’ shares with R are the Intermediate Value Theorem for
polynomials with coefficients in the structure and factorisability of polynomials
into linear and quadratic terms, both these being expressible (at least indirectly)
by sets of sentences of the language.

So, for example, if L is a countable language and if T" is any L-theory with
an infinite model then T has a model of every infinite cardinality.

The second part of the above result can be used as follows. Start with a
structure M. Produce an elementary extension M’ of M which contains some
element or set, B, of elements with some desired properties. Use the result (with
A = M U B) to cut down to a “small” elementary extension of M containing
the set B.

Example 2.14 All algebraically closed fields of a given characteristic are ele-
mentarily equivalent. For, any two algebraically closed fields of the same char-
acteristic and the same uncountable cardinality, say Ny for definiteness, are
isomorphic (being copies of the algebraic closure of the rational function field in
Ry indeterminates over the prime subfield). If K, L are algebraically closed then,
by the Lowenheim-Sko lem theorems, there are fields K1, L1 elementarily equiv-
alent to K, L respectively and of cardinality X1. So if K and L, and hence K,
and L1, have the same characteristic then K1 ~ Ly and so K =Ky =11 =1L
as claimed.

A composition of elementary embeddings is elementary. Furthermore, one
as the following.

10



Theorem 2.15 (Elementary Chain Theorem) Suppose that My < My <
o = M; < ... are L-structures, each elementarily embedded in the next. Then
the union carries an L-structure induced by the structures on the various M;
and, with this structure, it is an elementary extension of each M;.

More generally, the direct limit of a directed system of elementary embed-
dings is an elementary extension of each structure in the system.

Proposition 2.16 (Criterion for elementary substructure) Let M be a sub-
structure of the L-structure N. Then M < N iff for every formula ¢(x,y) € L
and for every tuple b of elements of M (of the same length as §) if N = Jxp(z, b)
then there is a € M such that N = ¢(a,b).

This is proved by induction on the complexity (of formation) of formulas.

3 Topics

3.1 Applications of the Compactness Theorem

The Compactness Theorem pervades model theory, directly and through the
proofs of numerous other theorems. A common direct use has the following
form. We want to produce a structure with a specified set of properties. For
some reasons we know that every finite subset of this set of properties can be
realised in some structure. The Compactness Theorem guarantees the existence
of a structure which satisfies all these properties simultaneously.

Example 3.1 Suppose that T is the theory of (algebraically closed) fields and
let o be a sentence of the language of rings. Suppose that there is, for each of
infinitely many distinct prime integers p, a (algebraically closed) field K,, which
satisfies o. Then there is a (algebraically closed) field of characteristic zero which
satisfies o. For consider the set TU{c}U{l+...+1(n “1”s)#0:n>1}. By
assumption, every finite subset of this set has a model (K, for p large enough)
and so, by compactness, this set has a model K, as required.

Note the corollary: if o is a sentence in the language of rings then there is
an integer N such that for all primes p > N, and for p =0, every algebraically
closed field of characteristic p satisfies o or else every such field satisfies —o.
For otherwise there would be infinitely many primes p such that there is an al-
gebraically closed field of characteristic p satisfying o and the same would be
true for —o. So there would, by the first paragraph, be an algebraically closed
field of characteristic O which satisfies o and also one which satisfies —o, con-
tradicting the fact, 2.14, that all algebraically closed fields of characteristic 0 are
elementarily equivalent.

Another type of use has the following form (in fact it is just the kind of
use already introduced but omitting explicit enrichment of the language with

11



new constant symbols). In this case we want to produce an element, tuple or
even an infinite set of elements with some specified properties. Again, we know
for some reasons that these properties are finitely satisfiable. The Compactness
Theorem says that they are simultaneously satisfiable. This type of use often
takes place within the context of the models of a complete theory.

Corollary 3.2 Let M be a structure, B C M, and letn > 1. Suppose that ® is
a set of formulas over B which is finitely satisfied in M. Then ® is realised in
an elementary extension of M. (That is, there is a tuple € of elements in some
elementary extension of M such that ¢ satisfies every formula in ®.)

Example 3.3 Perhaps the best known example is the construction of infinites-
imals (“construction” is not an accurate term: “pulled out of a hat” is closer
to the truth). Consider the reals, R, regarded as an ordered field (in a suitable
language). Let ®(x) be the set {x > 0} U{z+..+2z < 1(n “©”s):n > 1}
of formulas which, taken together, describe an element which is strictly greater
than zero but less than % for each n > 1. Of course, no element of R satisfies
all these formulas but any finite subset of ® does have a solution in R. So, us-
ing the Compactness Theorem, there is an elementary extension R* of R which
contains a realisation of ®: and such a realisation is an infinitesimal so far as
the copy of R sitting inside R* (as an elementary substructure) is concerned.

Example 3.4 (Bounds in polynomial rings) There is a host of questions con-
cerning ideals in polynomial rings, of which the following is a basic exam-
ple. Consider the polynomial ring R = K[X1, ..., Xi| where K is a field. Let
fyg1,.ees9n € R.If f belongs to the ideal I = (g1, ..., gn) then there are poly-
nomials hy,...,h, € R such that f = hig1 + ... + hpgn. There is no a priori
bound on the (total) degrees of the h; which might be needed but if f does be-
long to I then there are, in fact, such polynomials h; with degree bounded above
by a function which depends only on the degree of f and the degrees of the g;.
Similarly, if f belongs to the radical of I - that is, some power of f belongs
to I - then the minimal such power can be bounded above by a function of the
degree of f and the degrees of the g; only. In many cases such bounds arise
directly from explicit computation procedures but existence of such bounds often
may be obtained, sometimes very easily, by use of the Compactness Theorem.
See, e.g., [15] and references therein. Such methods are used and extended in
[11] to obtain Lang- Weil-type estimates on the sizes of definable subsets of finite
fields Fpn as n — oo.

Example 3.5 (Polynomial maps) Suppose that V is an algebraic subvariety of
C™ (that is, V is the set, Vc(g1, ..., gk), of common zeroes, in C™, of some set,
915 s Gk, Of polynomials in C[X4, ..., X,]) and let f : V — V be a polynomial

map (that is f(a) = (f1(a), ..., fn(@)) for some polynomials f1,..., fn). Suppose
that f is injective. Then f is onto [3]. This can be proved as follows.
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Notice that the assertion is true if we replace C by a finite field (simply
because V' is then a finite set). It follows that the assertion is true if C is
replaced by the algebraic closure of any finite field (for this is a union of finite
fields F and, if F' is large enough to contain the coefficients of the polynomials
i, [, then Ve(g1, ..., gx) is closed under f).

Next observe that the assertion is expressible by a sentence in the language
of fields. Of course the polynomials g1, ..., gr have to be replaced by polynomials
with general coefficients as do f1,..., fn (as in the argument that “algebraically
closed” is axiomatisable) and the argument must be applied to each member of
an infinite set of sentences (since any single sentence refers to polynomials of
bounded total degree) but, having noted this, we may easily express the conditions
‘e V(gr,.s9r)” (meaning T € Vi (g1, ..., gr), where now K can be any field),
“f is surjective” and “f is injective”.

The fact that I have not written down the relevant sentences is rather typical
in model theory since, with some experience, it can be clear that certain condi-
tions are expressible by sentences (which may be rather indigestible if actually
written down) of the relevant language (it is also often clear “by compactness”
that certain properties are not so expressible).

Thus we have our sentence, o, true in each field ﬁ"; which s the algebraic
closure of the finite field F,. By 3.1 it follows that there is an algebraically closed
field of characteristic 0 which satisfies o. Finally we use the fact, proved earlier
2.14, that all algebraically closed fields of a given characteristic are elementarily
equivalent and hence we deduce that C satisfies o and, therefore, satisfies the
original assertion (indeed, this argument shows that every algebraically closed

field satisfies it).

3.2 Morphisms and the method of diagrams

A morphism o : M — N between L-structures is, of course, just a structure-
preserving map.

Precisely, we require that: for each constant symbol ¢ of L we have a(c™M) =
cN: for each m-ary function symbol f of L and n-tuple @ from M we have
a(fM(a)) = fN(aa); for each n-ary relation symbol R of L and n-tuple a
from M we have RM(a) implies RN(aa) (where aa denotes (aay, ..., aa,) if
a= ((11, e an))

If the language contains relation symbols then a bijective morphism need not
be an isomorphism (exercise: give a counterexample in posets) and for iso-
morphism one needs the stronger condition “RM(a) iff RN (aa)”.

A substructure, N, of an L-structure M is given by a subset N of M
which contains all the interpretations, ¢™, of constant symbols in M and which
is closed under all the functions, fM, on M. Then we make it an L-structure by
setting N = M, fN = fM | N? and RN = RMNON™ for each constant symbol,
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¢, n-ary function symbol, f, and n-ary relation symbol R of L. More generally
we have the notion of an embedding of L-structures: a monic morphism which
satisfies the additional condition “RM(a) iff RN(aa)” seen in the definition of
isomorphism above.

The “method of diagrams” is a means of producing morphisms between L-
structures. Suppose that M is an L-structure. Enrich the language L by adding
a new constant symbol [a] for every element a € M, thus obtaining the language
denoted Lj;. Of course M has a natural enrichment to an Lj,-structure, given
by interpreting [a] as a for each a € M. The atomic diagram of M is the collec-
tion of all Lys-sentences of the form ¢y = to, t1 # ta, R(t1, ..., tn), "R(t1, ..., tn)
satisfied by M, where the ¢; are terms of Ly; and R is any (n-ary) relation
symbol of L. This is the collection of all basic positive and negative relations
(in the informal sense) which hold between the elements of M. The positive
atomic diagram of M is the subset of the atomic diagram containing just
the positive atomic sentences (i.e. those of the forms t; = ¢y and R(ty, ..., t,)).
For instance, if M is a ring then the positive atomic diagram is (equivalent to)
the multiplication and addition tables of M and the atomic diagram further
contains a record of all polynomial combinations of elements of M which are
non-zero. The full diagram of M is the Ljs-theory of M (i.e. all sentences of
L satisfied by M).

Let D be any of the above “diagrams” and let 7/ = Th(M)UD - a set of L ;-
sentences (by Th(M) I mean the theory of the L-structure M, not the enriched
L ps-structure). If N’ is any model of T” then first note that the reduction of the
Ly-structure N’ to an L-structure N (i.e. forget which elements [a]N" interpret
the extra constant symbols [a]) satisfies Th(M) and hence N = M. Second, we
have a natural map, a, from M to N (= N’ as a set) given by taking a € M
to the interpretation, [a]™ ", of the corresponding constant symbol, [a], in N’.
Because N’ satisfies at least the positive atomic diagram of M it is immediate
that o is a morphism of L-structures.

Theorem 3.6 Let M be an L-structure and let D be any of the above diagrams.
Let N’ be a model of Th(M)UD and let N be the reduct of N' to L. Then N is
elementarily equivalent to M. Furthermore, if a : M — N is the map defined
above then: (a) if D is the positive atomic diagram of M then « is a morphism;
(b) if D is the atomic diagram of M then « is an embedding; (c) if D is the full
diagram of M then « is an elementary embedding.

There are variants of this. For instance, if D is the atomic diagram of M
and if we take N’ to be a model of just this (so drop Th(M)) then we have
that « is an embedding to the L-structure N (which need not be elementarily
equivalent to M). Or we can add names just for elements of some substructure
A of M and then we obtain a morphism « from that substructure to V.
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3.3 Types and non-standard elements

Suppose that M is an L-structure. Let a = (ay, ..., a,) be a tuple of elements of
M. The type of a in M is the set of all L-formulas satisfied by @ in M. Thus it
is the “L-description” of this tuple (or, better, of how this tuple sits in M). If
f € Aut(M) is an automorphism then the type of fa = (faq,..., fay) is equal
to the type of @ since, for any formula ¢, we have M |= ¢(a) iff M E ¢(fa)
because f is an isomorphism.

More generally, we may want a description of how a sits in M with respect
to some fixed set, B C M, of parameters. So we define the type of a in M
over B to be tp™(a/B) = {¢(z,b) : ¢ € L,bin B} - the set of all formulas
(in some fixed tuple, T, of free variables matching @) with parameters from B
satisfied by @ in M. We write tp(a) for tp(a/0). It is immediate that if N is an
elementary extension of M then tp” (a/B) = tp* (a/B) and so we often drop
the superscript.

Note that tp(a/B) has the following properties: it is a set of formulas with
parameters from B in a fixed sequence of n free variables; it is closed under
conjunction and under implication; it is consistent (it does not contain any con-
tradiction such as z7 # x1); it is maximal such (it is “complete”, equivalently,
for every formula ¢(Z,b) with parameters from B either this formula or its nega-
tion is contained in tp(a/B)). Any set of formulas satisfying these conditions is
called an n-type over B.

Theorem 3.7 Let M be a structure, B C M, and let n > 1. Suppose that p is
an n-type over B. Then p is realised in an elementary extension of M. That
is, there is N >= M and c1,...,c,, € N such that tp(¢/B) = p. (Then € is said
to be a realisation of p.)

We say “every type is realised in an elementary extension”. If ® is any
consistent set of formulas (that is, the closure of ® under conjunction and
implication contains no contradiction) in z with parameters from B then, by
Zorn’s Lemma, ® is contained in a maximal consistent such set, that is, in a
type over B (sometimes one says that the partial type ® is contained in a
complete type). This gives 3.2 above.

All the above goes equally for infinite tuples. In this way one can use com-
pactness to produce not just elements, but structures, as in the subsection on
the Method of Diagrams, for instance.

Example 3.8 We claimed earlier that the property of being a torsion group is
not elementary: now we justify that claim. Let G be a torsion group for which
there is no bound on the order of its elements (for example let G be the direct
sum of the finite groups Z/nZ forn > 2). Let & = ®(z) = {z" #e:n > 1}
where e denotes the identity element of G and where x™ is an abbreviation for
the term which is a product of n x’s (a slightly dangerous abbreviation since
the whole point is that we cannot refer to general integers n in our formulas!).
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Then @ is a partial type (in G) since any given finite subset of ® is realised
by an element of G which has high enough order. Therefore ® is realised by
some element, c say, in some elementary extension, G' say, of G. In particular
the group G’ is elementarily equivalent to G but it is not a torsion group (since
®(c) says that ¢ has infinite order). Thus the property of being torsion is not
an elementary one.

3.4 Algebraic elements

Suppose that M is a structure, that a € M and that B C M. We say that a is
algebraic over B if there is a formula ¢(z,b) with parameters b from B such
that a satisfies this formula, we write B |= ¢(a,b), and such that the solution
set, (M,b) = {c € B : B |= ¢(c,b)}, of this formula in M is finite. In this
case, if M’ is an elementary extension of M then the solution sets ¢(M’,b) and
#(M,b) are equal (exercise - use that M satisfies a sentence which gives the
size of the solution set of ¢(x,b)) so the relation of being algebraic over a set is
unchanged by moving to an elementary extension.

If M | ¢(a,b) and f is an automorphism of M which fixes B pointwise
then M = ¢(fa,b). Hence if a is algebraic over B then a has only finitely
many conjugates under the action of Autp M, by which we denote the group of
automorphisms of M which fix B pointwise. If M is sufficiently saturated (see
the subsection on saturated structures), though not for general structures M,
the converse is true.

A tighter relation is that of being definable over a set B: this is as “alge-
braic over” but with the stronger requirement that the element or tuple is the
unique solution of some formula with parameters from B (equivalently is fixed
by all elements of Autg (M) in a sufficiently saturated model M).

Example 3.9 If M is a vector space over a field then a is algebraic over B iff a
1s in the linear span of B iff a is definable over B. If M is an algebraically closed
field then a is algebraic (in the model-theoretic sense) over B iff a is algebraic
(in the usual sense) over B. Any element in the subfield, (B), generated by B
is definable over B but if the characteristic of the field is p > 0 then one also
has that any p"-th root of any element of (B) is definable over B.

3.5 Isolated types and omitting types

If we fix an integer n > 1 and a subset B of an L-structure M then the set,
Sn(B), of all n-types over B carries a natural topology which has, for a basis
of clopen sets, the sets of the form Oy(z,b) = {p € Sn(B) : ¢(z,b) € p}. We
also denote this set ST (B) where T' = Th(M) to emphasise that the notion of
“type” makes sense only relative to a complete theory. This is in fact the Stone
space (the space of all ultrafilters) of the boolean algebra of equivalence classes
of formulas with free variables Z (formulas are equivalent if they define the same
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subset of M and the ordering is implication). This space is compact (by the
Compactness Theorem).

A type p is isolated or principal if there is some formula ¢ in p which
proves every formula in p: for every v € p we have M | VZ(¢(z) — ().
In this case O, = {p} and p is an isolated point of the relevant Stone space.
Such a type must be realised in every model: for, by consistency of p, we have
M | 3x¢(Z), say M = ¢(¢), and then, since ¢ generates p, we have M = 1(¢)
for every ¢ € p, that is M |= p(¢) and ¢ realises p, as required. For countable
languages there is a converse.

Theorem 3.10 (Omitting Types Theorem) Let L be a countable language,
let M be an L-structure and let p € S,(0) = Sa" M (0). If p is a non-isolated
type then there is an L-structure N elementarily equivalent to M which omits

p (i.e. which does not realise p).

This is extended to cover the case of types over a subset B by enriching
L by adding a name for each element of B and then applying the above re-
sult (assuming, of course, that B is countable so that the enriched language is
countable). There are extensions of this result which allow sets of types to be
omitted simultaneously [10, 2.2.15, 2.2.19], [24, 7.2.1]. The result is not true
without the countability assumption [10, after 2.2.18].

3.6 Categoricity and the number of models

A theory is Nyp-categorical if it has just one countably infinite model up to
isomorphism. More generally it is k-categorical where x is an infinite cardinal
if it has, up to isomorphism, just one model of cardinality . If an L-theory
is k-categorical for any cardinal k > card(L) then, by the Léwenheim-Skolem
Theorems, it must be complete.

Example 3.11 Any two atomless boolean algebras (equivalently, boolean rings
with zero socle) are elementarily equivalent since there is, up to isomorphism,
just one such structure of cardinality Ng.

Theorem 3.12 (Morley’s Theorem) Suppose that L is a countable language
and that T is a complete L-theory which is k-categorical for some uncountable
cardinal k. Then T is A-categorical for every uncountable cardinal X.

The situation for k = ¥ is different. For instance, the theory of alge-
braically closed fields of characteristic zero is uncountably categorical but not
No-categorical. Indeed, examples show that Ng-categoricity, uncountable cate-
goricity and their negations can occur in all four combinations.

Theorem 3.13 Suppose that L is a countable language and that T is a complete
L-theory which has an infinite model. Then the following are equivalent.
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(i) T is No-categorical;

(ii) for each n > 1 the Stone space Sy (0) is finite;

(iii) each type in each Stone space Sy, (D) (n > 1) is isolated;

(iv) for each countable model M of T and for each integer n > 1 there are just
finitely many orbits of the action of Aut(M) on n-tuples;

(v) for each finite tuple, T, of variables there are just finitely many formulas
with free variables T up to equivalence modulo T'.

For instance, if some space Sy, () is infinite then, by compactness, it contains
a non-isolated type p. Then there will be a countably infinite model which
realises p but also a countable infinite model which omits p and so the theory
cannot be Ng-categorical.

Example 3.14 Any Ng-categorical structure is locally finite in the sense that
every finitely generated substructure is finite. For, let M be Ng-categorical, let
a be a finite sequence of elements from M and let b,c be distinct elements of
the substructure, (a), generated by a. Then tp(b,a) # tp(c,a) since the type
“contains the expression of b (respectively c) in terms of a”. Therefore tp(b,a) #
tp(c,a) are distinct (1 + n)-types, where n is the length of the tuple a. But
S14n(0) is finite and, therefore, (@) is finite. Indeed the argument shows that
M is uniformly locally finite since if s, =| S, (0) | then any substructure of

M generated by n elements has cardinality bounded above by sp1.

A more general question in model theory is: given a complete theory T
and an infinite cardinal x what is the number, n(x,T’), up to isomorphism, of
models of T of cardinality k7 Remarkably complete results on this question and
on the connected question of the existence or otherwise of structure theorems
for models of T have been obtained by Shelah and others (see [48]).

3.7 Prime and atomic models

Suppose that M is an L-structure. Set T' = Th(M). The elementary equiva-
lence class, Mod(T'), of M, equipped with the elementary embeddings between
members of the class, forms a category (not very algebraically interesting unless,
say, T has elimination of quantifiers, since there are rather few morphisms). A
model of T is a prime model if it embeds elementarily into every model of T'
and is atomic if every type realised in it is isolated (hence is a type which must
be realised in every model).

Theorem 3.15 Let T be a complete theory in the countable language L and
suppose that T has an infinite model. Then the L-structure M is a prime model
of T iff M is a countable atomic model of T. Such a model of T exists iff, for
every integer n > 1, the set of isolated points in S, (D) is dense in S, (D) (in
particular this will be so if each S, (0) is countable). If T has a prime model
then this model is unique to isomorphism.
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The proof of the second statement involves a back-and-forth construction:
we describe this construction in the next section.

3.8 Back-and-forth constructions

This is a method for producing morphisms between structures. Suppose that M
is a countably infinite L-structure and that N is an L-structure. Enumerate the
elements of M in a sequence ag, a1, ..., a;, ... indexed by the natural numbers.
If we are to embed M in N then we need to find an element, by, of N such
that the isomorphism type of the substructure, (by), of N generated by by is
isomorphic to the substructure, (ag), of M generated by ag. Supposing that
there is such an element, fix it. So now we have a “partial embedding” from
M to N (the map with domain {ag} (or, if one prefers, {ag)) sending ag to by).
Now we need an element b; of NV to which to map a;. It is necessary that the
substructures (bg, b1) and (ag, a;) be isomorphic by the map sending ag (resp.
a1) to by (resp. by). If there is such an element, by say, fix it. Continue in this
way. At the typical stage we have images by, ..., b, for ag, ..., a, and we need to
find an element b, ;1 of N which “looks the same over by, ..., b, as a,41 does
over ag, ..., a,”. In the limit we obtain an embedding of M into N.

This is the shape of a “forth” construction. Of course, the key ingredient
is missing: how can we be sure that the elements b; of the sort we want exist?
And, of course, that must somehow flow from the hypotheses that surround any
particular application of this construction.

We may want a stronger conclusion: that the constructed embedding of
M into N be an elementary embedding. In that case the requirement that
{(ag, -, @pt1) be isomorphic (via a; — b;) to (b, ..., b,) must be replaced by the
stronger requirement tp* (ag, ..., an1) = tp™¥(bg,...,b,11) (note that, in this
case we must assume M = N).

Example 3.16 The random graph is formed (with probability 1) from a count-
ably infinite set of wertices by joining each pair of vertices by an edge with
probability % It is characterised as the unique countable graph such that, given
any finite, disjoint, sets, U,V , of vertices, there is a point not in U UV which
1s joined to each vertex of U and to no vertex of V. An easy “forth” argument,
using this characterising property, shows that every countable graph embeds in
the random graph (and the corresponding back-and-forth argument shows the
uniqueness of this graph up to isomorphism).

For a back-and-forth construction, we suppose that both M and N are count-
ably infinite and we want to produce an isomorphism from M to N. For this we
interlace the forth construction with the same construction going in the other
direction. That is, on, say, even-numbered steps, we work on constructing the
map a and on odd-numbered steps we work on constructing its inverse a~! (in
order to ensure that the resulting map « is surjective).
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Example 3.17 Let Q denote the rationals regarded as a partially ordered set:
as such it is an example of a densely linearly ordered set without endpoints.
Finitely many axioms in a language which has just one binary relation symbol
suffice to axiomatise this notion. Let Ty, denote the theory of densely linearly
ordered sets without endpoints. Then any countable (necessarily infinite) model
of Taio is isomorphic to Q. This is a straightforward back-and-forth argument.
It follows that Ty, is a complete theory: all densely linearly ordered sets without
endpoints are elementarily equivalent. For let M |= Tg,. By the Downwards
Lowenheim-Skolem Theorem there is a countable My elementarily equivalent to
M. But then My~ Q and so M = My = Q, which is enough.

3.9 Saturated structures

A saturated structure is one which realises all types of a particular sort: a “fat”
structure as opposed to the “thin” atomic structures which realise only those
types which must be realised in every model. For instance, an L-structure M is
weakly saturated if it realises every type (in every Stone space S, () over the
empty set. An L-structure M is k-saturated, where k > N is a cardinal, if for
every subset A C M of cardinality strictly less than « and every n (it is enough
to ask this for n = 1) every type in S,(A) is realised in M. Such structures
always exist by a (possibly transfinite) process of realising types in larger and
larger models and they provide a context in which “every consistent situation
(of a certain “size”) can be found”. More precisely we have the following (which
is proved by a “forth” construction).

Theorem 3.18 (saturated implies universal) Let M be a k-saturated L-structure.
Then every model of the theory of M of cardinality strictly less than r elemen-
tarily embeds in M.

An L-structure M is saturated if it is card(M)-saturated.

Theorem 3.19 (saturated implies homogeneous) Suppose that M is a saturated
structure and that @,b are matching, possibly infinite, sequences of elements of
M of cardinality strictly less than card(M) and with tp™ (a) = tp™ (b). Then
there is an automorphism, o, of M with a(a) = b.

Thus, in a saturated structure, types correspond to orbits of the automor-
phism group of M.

Corollary 3.20 Let M be a saturated structure of cardinality k and suppose
that the theory of M has complete elimination of quantifiers (for this see later).
Suppose that A, B are substructures of M each generated by strictly fewer than
k elements and suppose that 3 : A — B is an isomorphism. Then 3 extends
to an automorphism of M.
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Often in model theory it is convenient to work inside a (“monster”) model
which embeds all “small” models and which is (somewhat) homogeneous in
the above sense. With some assumptions on Th(M) one knows that there are
saturated models of Th(M) of arbitrarily large cardinality but, for an arbitrary
theory, unless some additional (to ZFC) set-theoretic assumptions are made,
such models might not exist. One does have, however, without any additional
set-theoretic assumptions, arbitrarily large elementary extensions which are,
for most purposes, sufficiently saturated (see [24, Section 10.2]) to serve as a
“universal domain” within which to work.

Related ideas can make sense in contexts other than the category of models
of a complete theory, indeed, even in non-elementary classes.

Example 3.21 (Universal locally finite groups) A group G is locally finite
if every finitely generated subgroup of G is finite. A group G is a universal
locally finite group if G is locally finite, if every finite group embeds into G
and if, whenever G1,Gy are finite subgroups of G and f : Gi — G35 is an
isomorphism, then there is an inner automorphism of G which extends f.

For each infinite cardinal k there exists a universal locally finite group of car-
dinality k. Up to isomorphism there is just one countable locally finite group (an
easy back-and-forth argument). This structure is not, however, Rg-categorical,
since it is not uniformly locally finite, nor is it No-categorical (it has elements
of unbounded finite order but no element of infinite order). If k is uncountable
then, [33], there are many non-isomorphic locally finite groups of cardinality .
Each locally finite group of cardinality k can be embedded in a universal locally
finite group of cardinality A for each A\ > k.

Example 3.22 (Saturated structures have injectivity-type properties) Suppose
that M, N are L-structures for some language L. Suppose that Ny is a substruc-
ture of N and that f : Ng — M is a morphism. Suppose that for every finite
tuple a from N there is an extension of f to a morphism from the substructure,
(Ng,a), of N generated by Ny together with a, to M. Let M’ be a sufficiently
saturated elementary extension of M (precisely, M’ should be (| N | + | L |)*-
saturated). Then there is an extension of f to a morphism from N to M’.

To see this, enumerate N as {cqo}acr U {dg}ges with {ca}acr = No. Let
O = O({zglpes) = {d(f(car)s - f(Ca,), Tpys s Tp,) * @ is atomic and N |=
d(Cays s Cam»dpys -, dg, ) . By assumption @ is a partial type (any finite sub-
set of ® mentions only finitely many elements outside Ny and then a morphism
extending f and with domain including these elements provides us with a re-
alisation of this finite subset since, as is easily seen, morphisms preserve the
truth of atomic formulas). Since M’ is sufficiently saturated it realises ®, say
M’ = ®({bg}pes), and we extend f by mapping dg to bg for B € J.
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3.10 Ultraproducts

The ultraproduct construction has been extensively used in applications of
model theory to algebra. In many, though by no means all, cases an appeal
to the existence of suitably saturated extensions would serve equally well but
the ultraproduct construction does have the advantage of being a purely alge-
braic one (although perhaps “construction” is not really the right word since it
inevitably appeals to Zorn’s lemma at the point where a filter is extended to an
ultrafilter).

We start with a set, {M; : i € I}, of L-structures, M;, indexed by a set I.
The ultraproduct construction produces a kind of “average” of the M;. Let D
be an ultrafilter on I.

A filter on a set I is a filter, D, in the boolean algebra, P(I), of all subsets of
I. Thatis: 0 ¢ D; T € D;if XY € Dthen XNY € D;if X CY C I and
X € D then Y € D. An ultrafilter is a maximal filter and is characterised by
the further condition: if X C I then either X € D or X¢ € D. An ultrafilter,
D, on I is principal if there is i € I such that D = {X C I :iy € X}.
Any ultrafilter which contains a finite set must be principal. An example of a
filter, sometimes called the Fréchet filter, on the infinite set I is the set of all
cofinite sets (X C I is cofinite if X° is finite). Any filter can be extended to
an ultrafilter: but, unless the ultrafilter is principal, there is no explicit way to
describe its members (the existence of non-principal ultrafilters is just slightly
weaker than the Axiom of Choice). Any ultrafilter containing the Fréchet filter

is non-principal.

The ultraproduct, [[,.; M;/D, of the M; (i € I) with respect to the
ultrafilter D on I is, as a set, the product [[,.; M; factored by the equivalence
relation ~=~p given by (a;)ier ~ (bi)icr iff a; = b; “D-almost-everywhere”,
that is, if {i € I : a; = b;} € D. Then the set [[,.; M;/D is made into an
L-structure by defining the constants, functions and relations pointwise almost
everywhere (the defining properties of a filter give that this is well-defined).

Example 3.23 Suppose that the M; are groups. Then [[, M;/D is the product
group factored by the normal subgroup consisting of all tuples (a;); which are
equal to the identity on D-almost-all coordinates: [[, M;/D = ([ [, M;)/{(as); :
{i €I:a;=-e;} € D} (where e; denotes the identity element of M;).

Example 3.24 Suppose that the M; are fields. Let a = (a;);/ ~€ [[; M;/D
be a non-zero element of the ultraproduct. Define the element b = (b;);/ ~ by
setting b; = ai_1 for each i with a; # 0 and setting b; to be, say, 0 on all other
coordinates. Since J ={i € I:a;, #0} € D we have {i € I : a;b; =1} € D and
hence ab = 1. That is, [[, M;/D is a field.

If D={X C1I:iy€ X} is a principal ultrafilter then the ultraproduct
I, M;/D is isomorphic to M;, so the interesting case is when D is non-principal.
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Theorem 3.25 (Los’ Theorem) Let M; (i € I) be a set of L-structures and
let D be an ultrafilter on I. Set M* = [[,.; M;/D to be the ultraproduct. If
o is a sentence of L then M* = o iff {i € I : M; =0} € D (that is, iff “D-
almost all” coordinate structures satisfy o).

More generally, if ¢(x1,...,x,) is a formula and if o', ...,a™ € M* with / =
(al)i/ ~ (j =1,...n) then M* = ¢(a',...,a") iff {i € I : M; = ¢(a},...,al)} €
D.

Example 3.26 Let P be an infinite set of non-zero prime integers and let K,
be a finite field of characteristic p for p € P. Let D be a non-principal ultrafil-
ter on P and let K be the corresponding ultraproduct Hp K,/D. Then K has
characteristic zero and is an infinite model of the theory of finite fields (for such
pseudofinite fields see [2]). For example it has, for each integer n > 1, just
one field extension of degree m since this is true, and can be expressed (with
some work) in a first-order way of finite fields.

Example 3.27 (Ultraproduct proof of the compactness theorem) Let T be a set
of sentences, each finite subset of which has a model. Let X be the set of all
finite subsets of T'. For each S € X choose a model Mg of S. Given any o € T
let (c) = {S € X : 0 € S}. Note that the intersection of any finitely many of
these sets is non-empty and so F' = {S € X : (o) C S for someo € T} is a
filter. Let D be any ultrafilter containing F. Then [[gox Ms/D is a model of
T. Forleto € T. Then (o) € D and, since o € S implies Mg |= o, we have
{S:Ms o} eD andso[[gex Ms/D = o (by Los Theorem), as required.

If all M; are isomorphic to some fixed L-structure M then we denote the
ultraproduct by M!/D and call it an ultrapower of M. In this case the con-
struction does not produce an “average structure” but creates “non-standard”
elements of M. For instance, any ultrapower of the real field R by a non-principal
ultrafilter will contain infinitesimals.

A variant of the construction is to allow D to be an arbitrary filter in P(I):
the result is then called a reduced power. For reduced products there is a
(considerably) weaker version of Los” Theorem (see [10, Section 6.2]).

Example 3.28 (Embeddings into general linear groups ) The following exam-
ple of the use of ultraproducts is from [34]. It makes use of the fact that the
ultraproduct construction, when extended in the obvious way to morphisms, is
functorial. A group G is linear of degree n if there is an embedding of G into
the general linear group GL(n, K) for some field K.

Suppose that G is a group such that every finitely generated subgroup is linear
of degree n. Then G 1is linear of degree n.

For the proof, let G; (i € 1) be the collection of finitely generated subgroups
of G. For each i choose an embedding f; : G; — GL(n, K;) for some field K;.
Let D be a non-principal ultrafilter on I and let f =[], fi/D : 11, Gi/D —
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[L; GL(n, K;)/D. It is easy to see (for example think in terms of matriz repre-
sentations of elements of GL(n, —)) that [[, GL(n, K;)/D = GL(n,[], K;/D).
By Los Theorem [[, K;/D s a field. It remains to see an embedding of G into
[L; Gi/D: at this point we realise that the ultrafilter D should not be arbitrary
(non-principal). Given an element g € G let [g] denote the set of all i € I such
that g € G; and let F = {[g] : g € G}. Since [g1]N...0[g:] ={i : g1, -, 9t € Gy}
the set F' has the finite intersection property (the intersection of any finitely
many elements of F' is non-empty and hence the collection of those subsets of T
which contain an element of F' forms a filter). Take D to be any ultrafilter con-
taining F. Now we can define the morphism from G to [[, Gi/D. Given g € G
let g be the element of ], G; which has i-th coordinate equal to g if g € G; and
equal to the identity element of G otherwise. Map g to g/D. Our choice of D
(to contain each set [g]) ensures that this map is an injective homomorphism,
as required.

The next result is an algebraic criterion for elementary equivalence. The
result after that often lends itself to algebraic applications.

Theorem 3.29 Two L-structures are elementarily equivalent iff they have iso-
morphic ultrapowers.

Theorem 3.30 A class of L-structures is elementary iff it is closed under ul-
traproducts and elementary substructures.

3.11 Structure of definable sets and quantifier elimination

Suppose that M is an L-structure. A definable subset of M is one of the form
d(M) ={a € M : M = ¢(a)} for some formula ¢ = ¢(z) € L. More gener-
ally if A C M then an A-definable subset of M is one which is definable by
a formula ¢ = ¢(z,a) with parameters from A. Yet more generally one may
consider subsets of powers, M™, of M definable by formulas with n free vari-
ables. The logical operations on formulas correspond to set-theoretic operations
on these sets: for instance conjunction, negation and existential quantification
correspond, respectively, to intersection, complementation and projection.

For many questions it is important to understand something of the structure
of these sets and the relations between them. Of particular importance are
quantifier elimination results. A theory T has (complete) elimination of
quantifiers if every formula is equivalent modulo 7' to the conjunction of a
sentence and a quantifier-free formula (so if T is also a complete theory then
every formula will be equivalent modulo T to one without quantifiers). In order
to prove quantifier elimination for a complete theory T it is enough to show
that any formula of the form Jyé(z,y) with ¢ quantifier-free is itself equivalent
to one which is quantifier-free. In other words, it is sufficient to show that any
projection of any set which can be defined without quantifiers should itself be
definable without quantifiers.
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Examples 3.31 The geometric content of elimination of quantifiers is illus-
trated by the case of the theory of algebraically closed fields. This theory does
have elimination of quantifiers, a result due to Tarski and, in its geometric
form (the image of a constructible set under a morphism is constructible), to
Chevalley. The elimination comes down to showing that if X is a quantifier-free
definable subset of some power K™, where K is an algebraically closed field, then
the projection along, say, the last coordinate is also quantifier-free definable (of
course it is definable using an existential quantifier).

Tarski also proved the considerably more difficult result that the real field and,
therefore, all real-closed fields, have elimination of quantifiers in the language
of ordered rings (so as well as 0,1,4, X, — there is a relation symbol < for the
order). The geometric form of this statement is fundamental in the study of real
algebraic geometry. See, for example, [14].

Partial elimination of quantifiers may be useful. If every formula is equiv-
alent, modulo the theory T, to an existential formula (equivalently, if every
formula is equivalent, modulo T, to a universal formula) then 7' is said to be
model-complete. This is equivalent to the condition that every embedding
between models be an elementary embedding. See, for example [30] for more
on this.

For another example, the theory of modules over any ring has a partial
elimination of quantifiers: every formula is equivalent to the conjunction of a
sentence and a boolean combination of “positive primitive” (certain positive
existential) formulas and numerous consequences of this can be seen in [45].

A proof of model-completeness can be a stepping stone to a proof of full
quantifier-elimination and has, in itself, geometric content (see, e.g., [19], [50]).

3.12 Many-sorted structures

A single-sorted structure is one in which all elements belong to the same set (or
sort). Most model theory textbooks concern themselves with these. Yet many-
sorted structures are very important within model theory and in its applications.
Fortunately, there almost no difference between the model theory of single- and
many-sorted structures.

Some structures are naturally many-sorted. For example, in the model-
theoretic study of valued fields it is natural to have one sort for the (elements
of the) field and another sort for the (elements of the) value group. One would
also have a function symbol, representing the valuation, taking arguments in
the field sort and values in the group sort.

Other structures can be usefully enriched to many-sorted structures. In fact,
it is common now in model theory to work in the context of the many-sorted
enrichment described in the following subsection.
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3.13 Imaginaries and elimination of imaginaries

All the ideas that we have discussed up to now are quite “classical”. What we
describe next is more recent but now pervades work in pure model theory and in
many areas of application. A precursor was the practice of treating n-tuples of
elements from a structure M as “generalised elements” of the structure. Shelah
went much further.

Let M be any L-structure, let n > 1 be an integer and let E be a ({)-, that
is, without extra parameters) definable equivalence relation on M™. By that
we mean that there is a formula, ¥(Z,y) € L, with [(Z) = I(§) = n, such that
for all n-tuples, @,b of elements of M we have M = (a,b) iff E(a,b) holds.
For example the relation of conjugacy of elements in a group is definable by the
formula 3z(y = 27 !xz). The E-equivalence classes are regarded as generalised
or imaginary elements of M.

Formally, one extends L to a multi-sorted language, denoted L®4. This
means that for each sort (set of the form M™/FE) we have a stock of variables
and quantifiers which range just over the elements of that sort. One also adds
to the language certain (definable) functions between sorts, such as the canon-
ical projection from M™ to M™/E for each n,E. The structure M, together
with all its associated imaginary sorts M™/E and morphisms between them,
is an L°d-structure, denoted M®%. There is a natural equivalence between the
category of models of Th(M) and the category of models of Th(M®?) (we mean
the categories where the morphisms are the elementary embeddings) and most
model-theoretic properties are unchanged by moving to the much richer struc-
ture MY a notable exception being not having elimination of quantifiers. It
has proved to be enormously useful in model theory to treat these imaginary
elements just as one would treat ordinary elements of a structure.

3.14 Interpretation

This is a long-standing theme in model theory which seems to have ever- growing
uses and significance. The idea is that, “within” a structure, one may find, or
“interpret”, other structures (of the same kind or of quite different kinds). Then,
for example, if the first structure has some good properties (finiteness conditions,
dimensions, ranks...), these transfer to the interpreted structure and, conversely,
if the interpreted structure has “bad” properties then this has consequences for
the initial structure. Let us be somewhat more precise, using the notion of
imaginary sorts that we introduced above.

Suppose that M is an L-structure and that M™/E is some sort of M. The
structure on M induces structure on M™/E (via reference to inverse images, in
M", of elements in M™/FE). The set M"/E equipped with some chosen part
of all this induced structure is an L’-structure for some other language L’ and
is said to be interpreted in M. In fact it is convenient here to extend the
structure M°? to include, as additional sorts, all definable subsets of structures
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M™/E. See [24] for more on interpretation.

Example 3.32 If K is a field, p an irreducible non-constant polynomial in
K[X] and L the corresponding finite extension field then L can be interpreted
as K™, where n is the degree of p, equipped with the obvious addition and with
multiplication defined according to the polynomial p.

Example 3.33 The simplest example which uses quotient sorts is the inter-
pretation of the set of un-ordered pairs of elements of a structure M. This is
M?/E where E is the equivalence relation on M? defined by E((z,y), (z'y’)) iff
ME@=2nNy=y)V(@=y Ay=2a).

For examples in the context of groups and fields see, for example, Chapter
3 of [6]. For very general results on finding interpretable groups and fields (the
“group configuration”) see [7], [38], [42].

3.15 Stability: ranks and notions of independence

There are various ranks which may be assigned to the definable subsets of a
structure. These ranks give some measure of the complexity of the structure
and are technically very useful since they allow one to have some measure of
the extent to which one set depends on another. They also allow one to give
meaning to the statement that an element a is no more dependent on a set
B than on a subset A C B. The notion of independence that is referred to
here, and which generalises linear independence in vector spaces and algebraic
independence in algebraically closed fields, exists for all so-called stable theories
(and beyond, see [29]) and is defined even when there is no global assignment of
ranks to definable sets. To give an idea of one of these ranks we define Morley
rank.

Let M be any structure. By a definable set we will mean one which is
definable by a formula perhaps using as parameters some elements of M. A
definable set has Morley rank 0 exactly if it is finite. Having defined what it
means to have Morley rank > n we say that a definable set X has Morley rank
> n + 1 if there is an infinite set X; (i € I) of definable sets, each of which is a
subset of X of rank n and with the X; pairwise disjoint. The definition can be
continued for arbitrary ordinals and can also be extended to types (of course a
definable set or type may have Morley rank undefined or “c0”). Thus Morley
rank is a measure of the extent to which a definable set may be chopped up into
smaller definable sets. An L-structure M is said to be totally transcendental
or, if L is countable, w-stable, if every definable subset of M has Morley rank.
See [6] for the rich theory of groups with finite Morley rank.

The origin of this notion of rank, and hence of model-theoretic stability
theory, was Morley’s Theorem 3.12, from the proof of which it follows that an
Ni-categorical theory in a countable language must be w-stable.
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Example 3.34 Any algebraically closed field is w-stable since, as we have seen,
(2.14), any such field is X1 -categorical. It follows that any structure interpretable
i an algebraically closed field must be w-stable: in particular this applies to
affine algebraic groups. Cherlin conjectured (and Zilber has a similar conjecture)
that any simple w-stable group is an algebraic group over an algebraically closed
field. For more on this influential conjecture, see [6].
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