
Solving Block Low-Rank Linear Systems by LU
Factorization is Numerically Stable

Higham, Nicholas J. and Mary, Theo

2019

MIMS EPrint: 2019.15

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Solving Block Low-Rank Linear Systems by
LU Factorization is Numerically Stable†

NICHOLAS J. HIGHAM
Department of Mathematics, University of Manchester, Manchester, M13 9PL, UK

(nick.higham@manchester.ac.uk)
THEO MARY

Sorbonne Université, CNRS, LIP6, Paris, France.
(theo.mary@lip6.fr)

Block low-rank (BLR) matrices possess a blockwise low-rank property that can be exploited to reduce
the complexity of numerical linear algebra algorithms. The impact of these low-rank approximations on
the numerical stability of the algorithms in floating-point arithmetic has not previously been analyzed.
We present rounding error analysis for the solution of a linear system by LU factorization of BLR matri-
ces. Assuming that a stable pivoting scheme is used, we prove backward stability: the relative backward
error is bounded by a modest constant times ε , where the low-rank threshold ε is the parameter control-
ling the accuracy of the blockwise low-rank approximations. In addition to this key result, our analysis
offers three new insights into the numerical behavior of BLR algorithms. First, we compare the use of a
global or local low-rank threshold and find that a global one should be preferred. Second, we show that
performing intermediate recompressions during the factorization can significantly reduce its cost without
compromising numerical stability. Third, we consider different BLR factorization variants and determine
the update–compress–factor (UCF) variant to be the best. Tests on a wide range of matrices from various
real-life applications show that the predictions from the analysis are realized in practice.

Keywords: Block low-rank matrices, rounding error analysis, floating-point arithmetic, numerical stabil-
ity, LU factorization

1. Introduction

In many applications requiring the solution of a linear system Ax = v, the coefficient matrix A has been
shown to have a blockwise low-rank property: most of its off-diagonal blocks are of low numerical rank
and can therefore be well approximated by low-rank (LR) matrices. Several formats have been proposed
to exploit this property, differing in how the matrix is partitioned into blocks. In this article, we focus
on the block low-rank (BLR) format (Amestoy et al., 2015), which is based on a flat, non-hierarchical
partitioning allowing it to reduce both the theoretical complexity (Amestoy et al., 2017) and the practical
time and memory costs (Amestoy et al., 2019b) of key numerical linear algebra computations such as
solving Ax = v by LU factorization.

Even though the BLR format has been extensively studied and widely used in numerous applications
(see, among others, Amestoy et al. (2019b), Amestoy et al. (2016), Shantsev et al. (2017), Pichon
et al. (2018), Charara et al. (2018), and Ida et al. (2018)), little is known about its numerical behavior
in floating-point arithmetic. Indeed, no rounding error analysis has been published for BLR matrix

†Version of January 4, 2021. Funding: This work was supported by Engineering and Physical Sciences Research Council
grant EP/P020720/1, The MathWorks, and the Royal Society. The opinions and views expressed in this publication are those of
the authors, and not necessarily those of the funding bodies.

2

algorithms. The difficulty of such an analysis lies in the fact that, unlike classical algorithms, there
are two kinds of errors to analyze: the floating-point errors (which depend on the unit roundoff u)
and the low-rank truncation errors (which depend on the low-rank threshold ε > u). Moreover, these
two kinds of errors cannot be easily isolated because the BLR compression and factorization stages
are often interlaced. Yet performing such an analysis is crucial to better understand the effect of BLR
approximations on the stability of these algorithms and, in particular, to shed light on the following open
problems.

1. It has been experimentally observed that the solution to BLR linear systems generally yields a
backward error closely related to the low-rank threshold ε . This is an important and valuable
property that has, however, never been formally proved. The dependence of the backward error
on the unit roundoff should also be investigated.

2. In contrast to hierarchical matrices, the number of block-rows and block-columns in BLR matrices
usually grows with the matrix size and may thus become very large. It is therefore important to
determine how the error grows as the matrix size increases and whether it depends on the number
of blocks.

3. The low-rank approximation Ãi j to a block Ai j is computed such that ‖Ai j− Ãi j‖6 εβi j, where βi j
is a scalar that can be freely chosen and whose impact on the numerical behavior of the algorithms
is currently not well understood. In particular, local (βi j = ‖Ai j‖) and global (βi j = ‖A‖) low-rank
thresholds have both been proposed in the literature and should be compared.

4. Several BLR LU factorization algorithms can be distinguished, depending on when the compres-
sion is performed. These algorithms have been compared in terms of asymptotic complexity,
performance, and storage requirements (Mary, 2017). However, it is not currently known how
they compare in terms of numerical stability.

In this article, we answer these questions by doing detailed rounding error analyses of various BLR
matrix algorithms. We begin in section 2 with the preliminary material necessary for the analysis.
Section 3 analyzes several kernels involving LR matrices, such as LR matrix–vector and matrix–matrix
products. Then, section 4 builds upon these results to analyze two BLR LU factorizations algorithms
and their use to solve BLR linear systems. Throughout the article, numerical experiments are interlaced
with theoretical results to illustrate them. We provide additional experiments on a wide range of matrices
coming from various real-life applications in section 5. We gather our conclusions in section 6.

This article focuses on the direct solution of a BLR linear system Ax = v by LU factorization of A.
Such systems can be alternatively solved by iterative methods, which rely on multiplying the BLR ma-
trix A with a vector. We have also performed the rounding error analysis of matrix–vector multiplication
with A replaced by its BLR approximation, which we include as supplementary material.

2. Technical background and experimental setting

2.1 Low-rank (LR) and block low-rank (BLR) matrices

Let A ∈ Rb×b have the SVD UΣV T , where Σ = diag(σi) with σ1 > · · · > σb > 0. Given a target rank
k6 b, the quantity ‖A− Ã‖ for any rank-k matrix Ã is known to be minimized for any unitarily invariant
norm by the truncated SVD

Ã =U:,1:kΣ1:k,1:kV T
:,1:k. (2.1)

3

If the singular values of A decay rapidly, ‖A− Ã‖ can be small even for k � b. In this case, Ã is
referred to as a low-rank (LR) matrix, and the cost of storing Ã and computing with it can be greatly
reduced. While Ã can directly be represented by the truncated SVD (2.1), in this article we use the
alternative form Ã = XY T , where X =U:,1:k and Y =V:,1:kΣ T

1:k,1:k; the matrix X can thus be assumed to
have orthonormal columns.

A block low-rank (BLR) representation Ã of a dense matrix A has the block p× p form

Ã =

A11 Ã12 · · · Ã1p

Ã21 · · · · · ·
...

... · · · · · ·
...

Ãp1 · · · · · · App

 , (2.2)

where off-diagonal blocks Ai j of size b×b are approximated by LR matrices Ãi j of rank ki j given by

Ãi j =

{
Xi jY T

i j , i > j,
Yi jXT

i j , i < j,
(2.3)

where Xi j and Yi j are b×ki j matrices, and where Xi j has orthornormal columns. Note that even though, in
general, each block can be of different dimensions, we assume for simplicity that they are all of the same
dimensions b×b, and so n = pb. Representation (2.3) allows for efficient intermediate recompressions
during the BLR factorization, as will be explained in section 3.2.

We assume that the ranks ki j are chosen as

ki j = min
{
`i j : ‖Ai j− Ãi j‖6 εβi j, rank

(
Ãi j
)
= `i j

}
, (2.4)

where ε > 0 is referred to as the low-rank threshold and controls the accuracy of the approximations
Ãi j ≈ Ai j, and where we have either βi j = ‖Ai j‖ or βi j = ‖A‖. The parameters βi j therefore control
whether the blocks are approximated relative to their own norm ‖Ai j‖ or the norm of the global matrix
‖A‖. We refer to the low-rank threshold as local in the former case and as global in the latter case.

With a local threshold, ki j corresponds to the usual definition of numerical rank. Importantly, with a
global threshold, blocks that do not have rapidly decaying singular values may still be approximated by
LR matrices if they are of small norm compared with ‖A‖. Indeed, even though such blocks have high
numerical rank relative to their own norm, their contribution to the global computation can be considered
to be negligible compared with other blocks of larger norm. In the most extreme cases, some blocks
may be of norm smaller than ε: these blocks can then approximated by zero-rank matrices, that is, they
may be dropped entirely. Exploiting this fact can drastically improve the compression, sometimes even
leading to an improved asymptotic complexity (Amestoy et al., 2017).

Note that in general, low-rank approximations only hold in a normwise sense: that is, given a matrix
A and a LR matrix Ã satisfying ‖Ã−A‖6 ε‖A‖, the componentwise inequality |Ã−A|6 ε|A| does not
hold. For this reason we perform a normwise error analysis.

Throughout this article, the unsubscripted norm ‖·‖ denotes the Frobenius norm ‖A‖=(∑i, j |ai j|2)1/2,
which we use for all our error analysis. We choose to work with this norm for three of its useful proper-
ties. First, it is submultiplicative (also called consistent): ‖AB‖6 ‖A‖‖B‖. Second, it is invariant under
multiplication on the left by a matrix with orthonormal columns X : ‖XA‖ = ‖A‖ (note that X is not
necessarily unitary: XT X = I must hold but XXT = I need not). Finally, unlike for the spectral norm, it

4

is easy to switch between blockwise and global bounds using the relation ‖A‖=
(
∑i, j ‖Ai j‖2

)1/2 for any
block partitioning of A. We will use all these properties of the Frobenius norm without comment. More
specific examples of why the Frobenius norm is the best choice for our analysis are given throughout
sections 3 and 4.

2.2 Floating-point arithmetic and rounding error analysis

Throughout the article, we use the standard model of floating-point arithmetic (Higham, 2002, sec. 2.2)

fl(x op y) = (x op y)(1+δ), |δ |6 u, op ∈ {+,−,×,/}. (2.5)

We also define γk = ku/(1−ku) for ku < 1. We will use without comment the relations (Higham, 2002,
Lem. 3.3)

jγk 6 γ jk, γ j + γk + γ jγk 6 γ j+k,

which hold for any j,k > 1 (including non-integer j,k, which we will sometimes use).
We recall normwise error bounds for some basic matrix computations.

LEMMA 2.1 (Error bounds for matrix–vector and matrix–matrix products (Higham, 2002, p. 71)) Let
A ∈ Ra×b, v ∈ Rb, and w = Av. The computed ŵ satisfies

ŵ = (A+∆A)v, ‖∆A‖6 γb‖A‖. (2.6)

Let B ∈ Rb×c and let C = AB. The computed Ĉ satisfies

Ĉ = AB+∆C, ‖∆C‖6 γb‖A‖‖B‖. (2.7)

LEMMA 2.2 (Backward error bound for triangular systems (Higham, 2002, Thm. 8.5)) Let T ∈ Rb×b

be nonsingular and triangular and let v ∈ Rb. The computed solution x̂ to the triangular system T x = v
satisfies

(T +∆T)x̂ = v, ‖∆T‖6 γb‖T‖. (2.8)

The computed solution X̂ to the multiple right-hand side triangular system T X = V , where V ∈ Rb×c,
satisfies

T X̂ = B+∆B, ‖∆B‖6 γb‖T‖‖X̂‖. (2.9)

LEMMA 2.3 (Backward error bound for LU factorization (Higham, 2002, Thm. 9.3)) If the LU factor-
ization of A ∈ Rb×b runs to completion then the computed LU factors L̂ and Û satisfy

L̂Û = A+∆A, ‖∆A‖6 γb‖L̂‖‖Û‖. (2.10)

Finally, we make the assumption that rounding errors can be ignored in the computation of the LR
approximations Ãi j of all blocks Ai j of a BLR matrix A via their truncated SVD.

ASSUMPTION 2.1 (Error bound for the truncated SVD computation) Given a BLR matrix A and two
positive parameters ε (the low-rank threshold) and βi j, the LR blocks Ãi j computed via the truncated
SVD Ãi j = X̂:,1:ki j Σ̂1:ki j ,1:ki jŶ

T
:,1:ki j

satisfy

Ãi j = Ai j +∆Ai j, ‖∆Ai j‖6 εβi j.

We recall that βi j = ‖Ai j‖ or βi j = ‖A‖ controls whether we use a local or global threshold, as
explained in the previous section.

Note that Assumption 2.1 is only satisfied if the unit roundoff u is safely smaller than the low-rank
threshold ε , which we assume to be the case throughout the analysis.

5

2.3 Experimental setting

All numerical experiments reported in this article have been performed with MATLAB R2018b. Unless
otherwise specified, we use IEEE double precision floating-point arithmetic. In some experiments we
also use IEEE single and half precisions. The use of half precision has been simulated as described
in Higham & Pranesh (2019). We have made all our codes used for the experiments available online1.

One of the most common application domains where block low-rank matrices arise is the solution
of discretized partial differential equations. These matrices are then sparse. In our analysis we however
consider dense matrices, which serve as building blocks for sparse direct solvers. Therefore, in our
experiments, we use a set of dense matrices obtained from the Schur complements of sparse matrices:
these correspond to the root separator in the context of a nested dissection (George, 1973) solver.

In section 4, we illustrate our analysis by interlacing it with experiments on matrices coming from
a Poisson problem −∆u = f , discretized with a 7-point finite-difference scheme on a 3D domain of
dimensions k× k× k. This leads to a dense k2× k2 matrix. We test variable sizes (from n = 322 to
n = 1282) to explore how the error behaves as n = k2 increases. In section 5, we complement these tests
with experiments on matrices from the SuiteSparse collection (Davis & Hu, 2011) coming from various
real-life applications.

Throughout sections 4.1 and 4.2 we present experiments on the BLR LU factorization. Instead of
measuring the backward error for LU factorization ‖A− L̃Ũ‖/‖A‖, which is expensive to compute,
we solve a linear system Ax = v by forward and backward substitutions with the BLR LU factors (as
described in section 4.3), where x is the vector of all ones. We then measure the backward error

‖Ax̂− v‖
‖A‖‖x̂‖+‖v‖

(2.11)

of the computed x̂, which is much cheaper to compute.
For all experiments, the block size is set to b = 256 unless otherwise specified.

3. Rounding error analysis of LR matrix kernels

In this section we analyze some key kernels involving LR matrices, which are necessary to the analysis
of the BLR matrix algorithms considered in the subsequent sections.

3.1 LR matrix times vector or full matrix

We begin by analyzing the product of an LR matrix Ã with a vector v, for which we can establish a
backward error bound. We then generalize the analysis to the product of Ã with a full matrix B, for
which only a forward error bound can be derived.

LEMMA 3.1 (LR matrix times vector) Let A ∈ Rb×b, X ∈ Rb×r, Y ∈ Rb×r, and v ∈ Rb, where X has
orthonormal columns and Ã = XY T is an LR approximation of A satisfying ‖A− Ã‖ 6 εβ for some
β > 0. If the matrix–vector product Av is computed as z = X(Y T v), the computed ẑ satisfies

ẑ = (Ã+∆ Ã)v, ‖∆ Ã‖6 γc‖Ã‖, (3.1)

1https://gitlab.com/theo.andreas.mary/BLRstability

https://gitlab.com/theo.andreas.mary/BLRstability

6

where c = b+ r3/2, and therefore

ẑ = (A+∆A)v, ‖∆A‖6 γc‖A‖+ ε(1+ γc)β (3.2)
= γc‖A‖+ εβ +O(uε).

Proof. Let w = Y T v; the computed ŵ satisfies

ŵ = (Y +∆Y)T v, ‖∆Y‖6 γb‖Y‖= γb‖Ã‖. (3.3)

Let z = Xŵ; the computed ẑ satisfies

ẑ = (X +∆X)ŵ, ‖∆X‖6 γr‖X‖= γr
√

r, (3.4)

where ‖X‖ =
√

r because X has orthonormal columns. Combining (3.3) and (3.4), we obtain ẑ =

(X +∆X)(Y +∆Y)T v = (Ã+∆ Ã)v, with ‖∆ Ã‖ 6 (γb + γr
√

r + γbγr
√

r)‖Ã‖ 6 γc‖Ã‖, yielding (3.1).
The bound (3.2) is obtained by replacing Ã by A+E, where ‖E‖6 εβ . �

Note that for the particular choice β = ‖A‖, the bound (3.2) simplifies to

ẑ = (A+∆A)v, ‖∆A‖6
(
ε + γc + εγc

)
‖A‖.

This is a backward error bound, from which the forward error bound

‖ẑ−Av‖6
(
ε + γc + εγc

)
‖A‖‖v‖

trivially follows.
Before commenting on its significance, we immediately generalize this result to the case where v is

a full matrix rather than a vector, in which case only a forward error bound can be obtained.

LEMMA 3.2 (LR matrix times full matrix) Let A ∈ Rb×b and V ∈ Rb×m, and let Ã = XY T be defined as
in Lemma 3.1. If the product AV is computed as Z = X(Y TV), the computed Ẑ satisfies

‖Ẑ− ÃV‖6 γc‖Ã‖‖V‖ (3.5)

and therefore

‖Ẑ−AV‖6 γc‖A‖‖V‖+ ε(1+ γc)β‖V‖, (3.6)
= γc‖A‖‖V‖+ εβ‖V‖+O(uε),

with c = b+ r3/2.

Proof. The result follows from the columnwise bounds

‖ẑ j− Ãv j‖6 γc‖Ã‖‖v j‖, j = 1: m,

that are obtained from (3.1). �
For β = ‖A‖, bound (3.6) simplifies to

‖Ẑ−AV‖6
(
ε + γc + εγc

)
‖A‖‖V‖. (3.7)

The bounds (3.1) and (3.5) generalize the classical bounds (2.6) and (2.7) to the case where Ã is
an LR matrix rather than a full one. The bounds (3.2) and (3.6) have more informative forms, as

7

10
-15

10
-10

10
-5

10
0

10
-15

10
-10

10
-5

10
0

(A) Backward error (3.8) for three floating-point
precisions.

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

(B) Forward error (3.9) with multiplications per-
formed in single precision, either classically or by
Strassen’s algorithm.

FIG. 3.1. Errors for different ε for computing z = Ãv (left) or C = ÃV (right), with β = ‖A‖, b = 1024,
A = gallery(’randsvd’,b,1e16,3), v = rand(b,1), and V = rand(b,128).

they measure not only the effect of floating-point errors but also that of the low-rank truncation errors.
They consist of three terms: the term ε , corresponding to the low-rank truncation errors; the term γc,
corresponding to the floating-point errors; and their product εγc, which reflects the fact that the two
types of error accumulate, although this O(uε) term can be considered to be of lower order and will not
always be explicitly tracked in the rest of the analysis below.

Since u� ε , the main conclusion of Lemma 3.1 is that the bound (3.2) is dominated by the low-rank
truncation error term εβ and is almost independent of both the unit roundoff and the constants b and r.
This is a very positive result, since for β = ‖A‖ we have ‖∆A‖. ε‖A‖, meaning that the computation is
backward stable with respect to the low-rank threshold ε . Moreover, a crucial consequence of this result
is that we can and should use the lowest floating-point precision such that u remains safely smaller than
ε . This is illustrated by Figure 3.1a, which shows that the backward error is not affected by the use of
single rather than double precision arithmetic when ε � 10−8. Similarly, half precision arithmetic can
be used with no impact on the error when ε� 10−4. In this experiment, the backward error is computed
by the formula

‖ẑ−Av‖
‖A‖‖v‖

, (3.8)

which is a consequence of the Rigal–Gaches theorem (Higham (2002, Thm. 7.1), Rigal & Gaches
(1967)).

It is important to note that Lemma 3.1, as well as all other results in this paper, provides only
a normwise error bound. This is unavoidable because low-rank approximations do not satisfy useful
componentwise error bounds. Interestingly, this means that algorithms that sacrifice componentwise
stability for speed, such as the 3M algorithm to multiply complex matrices with only three real multipli-
cations (Higham, 1992), or fast matrix algorithms such as Strassen’s algorithm, are much more attractive
when used on LR matrices, since only normwise stability can be expected anyway. Another possible
drawback of Strassen’s algorithm is that the constants in the error bound are much larger: for exam-
ple, for matrix multiplication, the constant b in (2.7) increases to O(blog2 12)≈O(b3.6) (Higham (1990),
Higham (2002, sec. 23.2.2)). This larger constant is insignificant for LR matrices because the low-rank

8

errors dominate the floating-point ones, and so the constant c in (3.2) has essentially no impact on the
overall error. This is illustrated in Figure 3.1b, where we compare the error2

‖Ẑ−AV‖
‖A‖‖V‖

(3.9)

for computing the product of two full matrices, Z = AV , with that for computing the product of an LR
matrix with a full one, Z = ÃV , for multiplication performed classically and by Strassen’s algorithm.
While the use of Strassen’s algorithm leads to an error larger by about an order of magnitude for the
product Z = AV , the error for the product Z = ÃV does not increase as long as the threshold ε is large
enough to hide the larger constant of Strassen’s algorithm.

Even though the constant c = b+ r3/2 has no significant impact on the overall error, further insight
can nevertheless be gained by analyzing its form. First, note that c heavily depends on the choice of
norm used for the analysis: the proof of Lemma 3.1 repeatedly uses the fact that the Frobenius norm is
both submultiplicative and unitarily invariant, which helps us to obtain a relative small constant. With
the maximum norm ‖A‖M = maxi, j |ai j| (for example) which satisfies neither of these two properties,
bound (3.5) holds with a much larger constant c = b3/2r(b+ r). Second, it may seem surprising that
γc is larger than γb, the constant in the error bound (2.6) for the classical matrix–vector product, since
computing Ãv rather than Av reduces the number of flops from 2b2 to 4br. However, not all flops are
equal, as is clearly illustrated by the case of inner and outer products xT y and xyT of two vectors x,y∈Rn,
which require O(n) and O(n2) flops, but yield error bounds proportional to γn and γ1, respectively. In
the case of Lemma 3.1, b rounding errors combine in the first product w = Y T v, but r additional errors
combine in the second product Xw. The extra

√
r factor comes from the term ‖X‖, and could thus be

avoided by using the 2-norm rather than the Frobenius norm; however we need the Frobenius norm
when working on BLR matrices, as will become clear in section 4.

We also note the importance of assuming that X has orthonormal columns, as it allows for replacing
‖Y‖ by ‖Ã‖ in (3.3). Without that assumption, the bound would be proportional to ‖X‖‖Y‖ instead of
‖Ã‖, reflecting the fact that the computation X(Y T v) would be subject to possibly severe cancellation
when ‖X‖‖Y‖ � ‖Ã‖. Note that assuming the columns of Y , rather than X , to be orthonormal would
lead to the same bound. We also mention that using the alternative form Ã = XΣY T , with Σ ∈Rr×r and
where both X and Y have orthonormal columns yields a similar bound with a slightly different constant
c.

3.2 LR matrix times LR matrix

Next we analyze the product of two LR matrices Ã = XAY T
A and B̃ = YBXT

B , where XA and XB have
orthonormal columns. Note that we consider B̃ of the form YBXT

B rather than XBY T
B , because of the

representation (2.3) whose usefulness is made clear below.

LEMMA 3.3 (LR matrix times LR matrix) Let A,B ∈ Rb×b and

Ã = XA︸︷︷︸
b×r

Y T
A︸︷︷︸

r×b

, B̃ = YB︸︷︷︸
b×r

XT
B︸︷︷︸

r×b

,

2Note that the quantity (3.9) is not a backward error; it can be interpreted as a combination of the columnwise backward
errors (3.8) for each column vi of V .

9

where XA and XB have orthonormal columns and

‖A− Ã‖6 εβA, ‖B− B̃‖6 εβB.

If the product C = ÃB̃ is computed as C = (XA(Y T
A YB))XT

B or C = XA((Y T
A YB)XT

B), where the parentheses
indicate the order in which the intermediate products are performed, then the computed Ĉ satisfies

‖Ĉ− ÃB̃‖6 γc‖Ã‖‖B̃‖, (3.10)

where c = b+2r3/2, and therefore

‖Ĉ−AB‖6 γc‖A‖‖B‖+ ε(1+ γc)
(
βA‖B‖+‖A‖βB + εβAβB

)
. (3.11)

Proof. We consider the case where the product is computed as (ÃYB)XT
B = (XA(Y T

A YB))XT
B , the other

case being analogous. Let W = ÃYB; by Lemma 3.2, the computed W satisfies

Ŵ = ÃYB +∆W, ‖∆W‖6 γb+r3/2‖Ã‖‖YB‖= γb+r3/2‖Ã‖‖B̃‖.

Let C = ŴXT
B ; the computed Ĉ satisfies

Ĉ = ŴXT
B +∆C, ‖∆C‖6 γr‖Ŵ‖‖XB‖6 γr3/2(1+ γb+r3/2)‖Ã‖‖B̃‖,

= ÃB̃+∆WXT
B +∆C = ÃB̃+F.

Bounding ‖F‖ 6 γc‖Ã‖‖B̃‖, with c = b+2r3/2, proves (3.10). We then replace Ã by A+EA and B̃ by
B+EB to obtain

Ĉ = AB+F +G, ‖F‖6 γc‖A‖‖B‖+ γcε
(
βA‖B‖+‖A‖βB + εβAβB

)
,

‖G‖= ‖EAB+AEB +EAEB‖6 ε
(
βA‖B‖+‖A‖βB + εβAβB

)
,

which yields (3.11). �
In the case βA = ‖A‖, βB = ‖B‖, the bound (3.11) simplifies to

‖Ĉ−AB‖6
(
2ε + ε

2 + γc(1+ ε)2)‖A‖‖B‖, (3.12)

which is similar to bound (3.7) from Lemma 3.2 for an LR matrix times a full matrix.
In the context of the BLR matrix LU factorization, computing products of LR matrices asymptoti-

cally represents the dominant cost. This has generated interest in strategies seeking to reduce this cost.
For instance, in Amestoy et al. (2017) it is proposed that the middle product M = Y T

A YB should be re-
compressed, that is, we should compute an LR approximation M̃ = XMY T

M ≈M. Indeed, matrix M often
has a lower numerical rank than A and B, because even though σmin(Ã) and σmin(B̃) are both larger than
ε , σmin(M) = σmin(ÃB̃) can potentially be as small as ε2.

The motivation for representation (2.3) is now clear: the above only holds when Ã = XAY T
A and

B̃ = YBXT
B , that is, when the matrices with orthonormal columns XA and XB are on the outside of the

product ÃB̃.
The cost of computing the product C = ÃB̃ can thus be reduced by replacing M by an LR matrix.

The following lemma bounds the additional errors introduced in doing so.

10

LEMMA 3.4 (LR matrix times LR matrix with intermediate recompression) Let A,B, Ã, B̃ be defined as
in Lemma 3.3 and let M =Y T

A YB. If the product C = ÃB̃ is computed as (XAXM)(Y T
M XT

B), where XM,YM ∈
Rr×r, XM has orthonormal columns, and M̃ = XMY T

M satisfies ‖M− M̃‖ 6 εβM , then the computed Ĉ
satisfies

‖Ĉ− ÃB̃‖6 ε(1+ γc)βM + γc‖Ã‖‖B̃‖+O(u2), (3.13)

where c = b+ r2 +2r3/2, and therefore

‖Ĉ−AB‖6 γc‖A‖‖B‖+ ε(1+ γc)
(
βM +βA‖B‖+‖A‖βB + εβAβB

)
+O(u2). (3.14)

Proof. In order to do the compression, we first compute M = Y T
A YB, obtaining M̂ satisfying

M̂ = M+∆M, ‖∆M‖6 γb‖YA‖‖YB‖= γb‖Ã‖‖B̃‖.

Then, we compute an LR approximation to M̂ satisfying M̃ = M̂ +EM , ‖EM‖ 6 εβM . Let W = XAXM
and Z = Y T

M XT
B ; the computed Ŵ and Ẑ satisfy

Ŵ = XAXM +∆W, ‖∆W‖6 γr‖XA‖‖XM‖6 γr2 , (3.15)

Ẑ = Y T
M XT

B +∆Z, ‖∆Z‖6 γr‖XB‖‖YM‖6 γr3/2‖M̃‖. (3.16)

Finally, let C = Ŵ Ẑ; the computed Ĉ satisfies

Ĉ = Ŵ Ẑ +F, ‖F‖6 γr‖Ŵ‖‖Ẑ‖6 γr3/2‖M̃‖+O(u2),

= XAXMY T
M XT

B +∆WY T
M XT

B +XAXM∆Z +∆W∆Z +F

= XA
(
M̂+EM

)
XT

B +∆WY T
M XT

B +XAXM∆Z +∆W∆Z +F

= ÃB̃+XA
(
∆M+EM

)
XT

B +∆WY T
M XT

B +XAXM∆Z +∆W∆Z +F

= ÃB̃+∆C, ‖∆C‖6 ε(1+ γr2+2r3/2)βM + γc‖Ã‖‖B̃‖+O(u2),

where c = b+ r2 + 2r3/2. We obtain the slightly weaker bound (3.13) by bounding γr2+2r3/2 by γc.
Replacing Ã by A+EA and B̃ by B+EB yields (3.14) and concludes the proof. �

The introduction of an intermediate low-rank approximation has two consequences. First, the con-
stant c is slightly larger in Lemma 3.4 than in Lemma 3.3, a consequence of computing one more product
than previously (four instead of three products). Second, and more importantly, a new low-rank trunca-
tion term εβM is introduced and is dominant in the bound (3.13) on ‖Ĉ− ÃB̃‖. However, in the overall
bound (3.14) on ‖Ĉ−AB‖, εβM is just one more term that adds to ε

(
βA‖B‖+‖A‖βA

)
. For instance, in

the case βA = ‖A‖, βB = ‖B‖, and βM = ‖A‖‖B‖, the bound (3.14) simplifies to

‖Ĉ−AB‖6
(
3ε + ε

2 + γc(1+3ε + ε
2)
)
‖A‖‖B‖+O(u2),

which is roughly 3ε‖A‖‖B‖, compared with roughly 2ε‖A‖‖B‖ in the bound (3.12).

3.3 Triangular system with LR right-hand side

We now consider the solution of a triangular system where the right-hand side is an LR matrix B̃ =Y XT ,
which will be needed to analyze the UCF factorization in section 4.2. Note that we consider B̃ of the
form Y XT rather than XY T , where X has orthonormal columns, because this is the form that arises in
the UCF factorization.

11

LEMMA 3.5 (Triangular system with LR right-hand side) Let T ∈ Rb×b be a triangular matrix and let
B ∈Rb×m such that the LR matrix B̃ =Y XT , where X has orthonormal columns, satisfies ‖B− B̃‖6 εβ

for some β > 0. If the solution to the triangular system T Z̃ = B̃ is obtained as the LR matrix Z̃ = ŴXT ,
where Ŵ is the computed solution ot the system TW = Y , then Z̃ satisfies

T Z̃ = B̃+∆ B̃, ‖∆ B̃‖6 γb‖T‖‖Z̃‖ (3.17)

and therefore
T Z̃ = B+∆B, ‖∆B‖6 γb‖T‖‖Z̃‖+ εβ . (3.18)

Proof. By Lemma 2.2, the computed solution Ŵ to the triangular system TW = Y satisfies TŴ =
Y +∆Y , where ‖∆Y‖6 γb‖T‖‖Ŵ‖. Defining Z̃ = ŴXT , we obtain T Z̃ = B̃+∆ B̃, with ‖∆ B̃‖= ‖∆Y‖6
γb‖T‖‖Z̃‖, proving (3.17). Replacing B̃ by B+E, with ‖E‖6 εβ , yields (3.18) and concludes the proof.
�

Note that the assumption that X has orthonormal columns is important, as otherwise we could only
prove that ‖∆ B̃‖6 γb‖T‖‖Ŵ‖‖X‖, reflecting the possibility of cancellation if ‖Z̃‖� ‖Ŵ‖‖X‖.

Also note that the solution Z̃ is given in LR form. If it is needed as a full matrix instead, we must
compute the product ŴXT and the analysis must therefore be adapted to take into account the errors
introduced by this additional computation.

4. Rounding error analysis of solving BLR linear systems by LU factorization

We now turn to BLR matrices, building on the results on LR matrices obtained in the previous section.
We first analyze two LU factorization algorithms in sections 4.1 and 4.2, and then turn to their use to
solve to BLR linear systems in section 4.3.

Given a BLR matrix A, we define its BLR rank as the largest of the ranks of any of its off-diagonal
blocks. Throughout this section, we denote by r the BLR rank of the LU factors of A (which is in general
larger than the BLR rank of A). We emphasize that the compression of the blocks is controlled solely
by the ε and βi j parameters defined in sect. 2. The value of r is not tunable but rather depends on the
matrix and on the choice of threshold.

4.1 BLR matrix LU factorization: UFC algorithm

To compute the LU factorization of BLR matrices, the classical partitioned LU factorization of full
matrices must be adapted by incorporating the compressions of the blocks into LR matrices. Several
algorithms have been distinguished depending on when this compression step is performed. In this sec-
tion, we analyze the UFC algorithm (standing for update, factor, compress) described in Algorithm 4.1.
Another algorithm, referred to as UCF (update, compress, factor), is analyzed in section 4.2.

The algorithm is written in a left-looking fashion: at step k of the UFC algorithm, the kth block-row
and block-column are first updated (lines 4–7) using the BLR LU factors “to the left” (note that at step
k = 1, the update step therefore does not do anything). Then, this block-row and block-column are fac-
tored (lines 9–12) before being finally compressed (lines 14–17). We note that the right-looking variant
of this algorithm, used in some of the literature, is numerically equivalent since the same operations are
performed in a different order.

Note that the compression and factorization steps are interlaced, unlike other variants such as the
CUF algorithm (discussed at the end of section 4.2), where the entire matrix A is initially compressed.

We recall that, for all the experiments on the BLR LU factorization, we measure the backward error
by solving a linear system as explained in section 2.3.

12

Algorithm 4.1 BLR LU factorization: UFC algorithm.

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: UPDATE:
4: Akk← Akk−∑

k−1
j=1 L̃k jŨ jk.

5: for i = k+1 to p do
6: Aik← Aik−∑

k−1
j=1 L̃i jŨ jk and Aki← Aki−∑

k−1
j=1 L̃k jŨ ji.

7: end for
8: FACTOR:
9: Compute the LU factorization LkkUkk = Akk.

10: for i = k+1 to p do
11: Solve LikUkk = Aik for Lik and LkkUki = Aki for Uki.
12: end for
13: COMPRESS:
14: Set L̃kk = Lkk and Ũkk =Ukk.
15: for i = k+1 to p do
16: Compute LR approximations L̃ik ≈ Lik and Ũki ≈Uki.
17: end for
18: end for

The next theorem analyzes the UFC algorithm. We recall that the βik parameters control the type of
threshold (global or local) and are defined by (2.4).

THEOREM 4.1 (BLR LU factorization: UFC algorithm) Let A ∈ Rn×n be a nonsingular matrix parti-
tioned into p2 blocks of order b. If Algorithm 4.1 runs to completion it produces computed BLR LU
factors L̃ and Ũ of A satisfying

A = L̃Ũ +∆A+F +G,

with ‖∆A‖6 γp‖A‖ and ‖F‖6 γc‖L̃‖‖Ũ‖+O(uε), where c = b+2r3/2 + p and

Gik =

EikŨkk i > k,
0 i = k,
L̃iiEik i < k,

‖Eik‖6 εβik.

Proof. The (i,k) block of the L factor is computed by solving

LikŨkk = Rik, Rik = Aik−
k−1

∑
j=1

L̃i jŨ jk, i > k, (4.1)

where L̃ and Ũ are the partial BLR LU factors computed in the previous k− 1 steps (line 16 of Algo-
rithm 4.1). Let R(j)

ik = L̃i jŨ jk; by (3.10), the computed R̂(j)
ik satisfies

R̂(j)
ik = L̃i jŨ jk +∆R(j)

ik , ‖∆R(j)
ik ‖6 γd‖L̃i j‖‖Ũ jk‖+O(u2) (4.2)

13

with d = b+2r3/2. The computed R̂ik then satisfies

R̂ik = Aik ◦ (J+Θk)−
k−1

∑
j=1

R̂(j)
ik ◦ (J+Θ j), |Θ j|6 γpJ, (4.3)

where J is the matrix of ones, ◦ denotes the Hadamard product (A◦B = (ai jbi j)), and where the inequal-
ity |Θ j| 6 γpJ holds componentwise (the constant p comes from the additions of the R̂(j)

ik matrices, of
which there are at most p). By (2.9) we have

L̂ikŨkk = R̂ik +∆R(k)
ik , ‖∆R(k)

ik ‖6 γb‖L̂ik‖‖Ũkk‖. (4.4)

After compression, we finally obtain the BLR factor L̃ik = L̂ik+Eik, with ‖Eik‖6 εβik. Combining (4.2),
(4.3), and (4.4) gives

Aik ◦ (J+Θk)−
k

∑
j=1

L̃i jŨ jk =
k−1

∑
j=1

∆R(j)
ik ◦ (J+Θ j)−∆R(k)

ik −EikŨkk.

We therefore obtain

Aik−
k

∑
j=1

L̃i jŨ jk = ∆Aik +Fik +Gik, ‖∆Aik‖6 γp‖Aik‖, (4.5)

‖Fik‖6 γd+p+O(u)

(k−1

∑
j=1
‖L̃i j‖‖Ũ jk‖

)
+ γb‖L̂ik‖‖Ũkk‖

6 γd+p+O(ε)

(k

∑
j=1
‖L̃i j‖‖Ũ jk‖

)
, (4.6)

‖Gik‖6 ‖EikŨkk‖6 εβik‖Ũkk‖, i > k. (4.7)

This concludes the blocks for i > k. For i = k, Lkk is determined together with Ukk on line 9 of Algo-
rithm 4.1, and by Lemma 2.3 we have ‖L̃kkŨkk− R̂kk‖6 γb‖L̃kk‖‖Ũkk‖. Therefore (4.4) holds for i = k,
too, and hence so does (4.5), with the same bound (4.6) on ‖Fkk‖ and with Gkk = 0, because diagonal
blocks are not compressed. Finally, the case i < k is analogous to the case i > k and yields (4.5) where
the bound (4.6) becomes

‖Fik‖6 γd+p+O(ε)

(i

∑
j=1
‖L̃i j‖‖Ũ jk‖

)
(4.8)

and with

‖Gik‖6 εβik‖L̃ii‖, i < k. (4.9)

We have therefore proved that A− L̃Ũ = ∆A+F +G, where Gkk = 0 and blockwise bounds on ‖∆A‖,
‖F‖, and ‖G‖ are given by (4.5)–(4.9). It thus remains to derive global bounds. Bounding ‖G‖ is
delayed to section 4.1.1, as it depends on the choice of the βik parameters. The bound ‖∆A‖ 6 γp‖A‖

14

trivially holds. Finally, for matrix F , the Cauchy–Schwarz inequality gives

‖F‖6 γd+p+O(ε)

(p

∑
i=1

p

∑
k=1

(min(i,k)

∑
j=1
‖L̃i j‖‖Ũ jk‖

)2)1/2

6 γd+p+O(ε)

(p

∑
i=1

i

∑
j=1
‖L̃i j‖2

p

∑
k=1

k

∑
j=1
‖Ũ jk‖2

)1/2

6 γd+p+O(ε)

((p

∑
i=1
‖L̃i‖2

p

∑
k=1
‖Ũk‖2

))1/2

6 γd+p‖L̃‖‖Ũ‖+O(uε), (4.10)

where L̃i and Ũk denote the ith block-row of L̃ and kth block-column of Ũ , respectively. �
Theorem 4.1 yields a backward error bound that is comparable with the other results obtained so

far: we obtain a term ‖∆A‖+‖F‖ proportional to the unit roundoff u, and a term ‖G‖ depending on the
low-rank threshold ε , the latter likely dominating the former. However, before further commenting on
the significance of this bound, we must compute a global bound on ‖G‖ by examining several possible
choices for the βik parameters.

4.1.1 Bounding ‖G‖ and choice of βik. The blockwise bounds on ‖Gik‖ given in Theorem 4.1 yield
the global bound

‖G‖2 6 ε
2

p

∑
k=1

(
‖L̃kk‖2

k−1

∑
i=1

β
2
ik +‖Ũkk‖2

p

∑
i=k+1

β
2
ik

)
.

With a local threshold βik = ‖Aik‖, we have

‖G‖6 ε

(p

∑
k=1

max
(
‖L̃kk‖,‖Ũkk‖

)2
p

∑
i 6=k
‖Aik‖2

)1/2

6 ε max
k=1:p

(
max

(
‖L̃kk‖,‖Ũkk‖

))
‖A‖. (4.11)

On the other hand, a global threshold βik = ‖A‖ yields

‖G‖6 ε

(p

∑
k=1

max
(
‖L̃kk‖,‖Ũkk‖

)2
p

∑
i 6=k
‖A‖2

)1/2

6 (p−1)1/2
ε‖D‖‖A‖, (4.12)

where D is the diagonal matrix defined by Dkk = max
(
‖L̃kk‖,‖Ũkk‖

)
. Bound (4.12) is thus up to a factor(

p(p−1)
)1/2 ≈ p times larger than (4.11).

Two main observations can be made. First, the use of a global threshold leads to a bound about p
times larger than with a local threshold. This is illustrated experimentally in Figure 4.1a, which shows
that for a fixed ε , a global threshold yields a backward error about two orders of magnitude larger than
with a local threshold. However, this experiment is not sufficient to determine which type of threshold
is better: we must determine whether the increased error of the global threshold pays off by improving
the compression and thus reducing the number of flops for the computation. To answer this question we

15

must assess which type of threshold achieves the best flops–accuracy tradeoff. To do so, we perform the
following experiment in Figure 4.1b: taking several values of ε , we plot the error (2.11) as a function
of the corresponding number of flops required to compute the factorization. This experiment shows
that a global threshold achieves the best tradeoff, since it is always closer to the bottom left corner of
the plot: that is, for the same accuracy as a local threshold, a global threshold performs fewer flops
or, equivalently, for the same number of flops as a local threshold, a global threshold delivers a more
accurate result. A global threshold is therefore the best choice for this matrix and algorithm. We will
show in section 5 this remains the case for LU factorization of a wide range of BLR matrices.

The second important observation is that the error depends on the norm of the diagonal blocks of the
LU factors (max(‖L̃kk‖,‖Ũkk‖) in (4.11) and ‖D‖ in (4.12)). This is due to the compress step (lines 14–
17 of Algorithm 4.1) being performed after the factor step (lines 9–12). Indeed, the blocks that are
compressed are equal to AikU−1

kk and L−1
kk Aki and so their norms depend on those of the diagonal blocks.

This property of the UFC factorization is undesirable because the L and U factors are often not scaled
comparably: the entries of L are bounded by 1 with partial pivoting, whereas those of U are scaled
similarly to those of A. As a consequence, the average ranks of the blocks differ depending on whether
they belong to the L or U factors, even for symmetric matrices where U = LT . For example, on the
Poisson matrix used in Figure 4.1, which is symmetric, the L factor requires up to 15% more storage
than the U factor.

There exist several solutions to avoid the dependence of the ranks of the BLR LU factors and the
backward error on the norms of the diagonal blocks. One solution consists in scaling the βik differently
for the L and U factors: specifically, setting βik = ‖Aik‖/‖Ũkk‖ (if i > k) and βik = ‖Aik‖/‖L̃ii‖ (if i < k)
changes bound (4.11) to

‖G‖6 ε‖A‖ (4.13)

and setting βik = ‖A‖/‖Ũkk‖ (if i > k) and βik = ‖A‖/‖L̃ii‖ (if i < k) changes bound (4.12) to

‖G‖6 pε‖A‖. (4.14)

This scaling of the threshold yields similar ranks in both L and U . Even though Figure 4.1b shows
that this strategy does not achieve a visibly better flops–accuracy tradeoff, in the following we consider
scaled thresholds since they simplify the bounds.

Note that there are alternative strategies to scaling the threshold. For example computing an LDU
rather than LU factorization, where both the L and U factors have entries bounded by one. Interestingly,
as we show in section 4.2, another solution is to perform a UCF factorization, which avoids this issue
by compressing the blocks before factorizing them.

4.1.2 General comments on Theorem 4.1. Outside the technical discussion of the previous section
on how to choose the βik parameters, some higher level conclusions can be drawn from Theorem 4.1,
which we summarize in the following result.

COROLLARY 4.1 Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks of order b. If Algo-
rithm 4.1 runs to completion, it produces BLR LU factors L̃ and Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖6
(
ξpε + γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.15)

where c = b+2r3/2 + p, and ξp = 1 or ξp = p for a scaled local or global threshold, respectively.

16

10
-12

10
-10

10
-8

10
-6

10
-4

10
-15

10
-10

10
-5

(A) Backward error for varying ε threshold.

0.6 0.8 1 1.2 1.4 1.6 1.8

10
10

10
-15

10
-10

10
-5

(B) Flops–accuracy tradeoff. Each point corre-
sponds to a different ε threshold.

FIG. 4.1. Comparison of several choices for βik in the BLR UFC factorization (Algorithm 4.1) of a Poisson matrix of order
n = 4096. Local: βik = ‖Aik‖; local scaled: βik = ‖Aik‖/‖Ũkk‖ (i > k) and βik = ‖Aik‖/‖L̃ii‖ (i < k); global: βik = ‖A‖; global
scaled: βik = ‖A‖/‖Ũkk‖ (i > k) and βik = ‖A‖/‖L̃ii‖ (i < k).

Proof. Directly follows from Theorem 4.1, (4.10), (4.13), and (4.14). �
Corollary 4.1 states that the backward error ‖A− L̃Ũ‖ is of order O(ε‖A‖+ u‖L̃‖‖Ũ‖). The first

term corresponds to the low-rank truncations errors and the second term to the floating-point errors. If
we set ε = 0, we recover the backward error bound (2.10) for classical LU factorization (with a slightly
higher constant). If we set u = 0, we obtain a bound on the error introduced by BLR approximations in
exact arithmetic. In the general case, since u� ε , the low-rank error term dominates if ‖L̃‖‖Ũ‖ is not
too large compared with ‖A‖. For a stable LU factorization, using for example partial pivoting, ‖L̃‖‖Ũ‖
is bounded and therefore the BLR factorization is also stable. This is the main conclusion drawn from
Corollary 4.1: it proves the long conjectured rule of thumb that the backward error for the BLR LU
factorization is proportional to the low-rank threshold ε . This is a very desirable theoretical guarantee
that can now be given to the users of BLR solvers. This is illustrated by the numerical experiments on a
Poisson matrix reported in Figure 4.2a, which additionally show that the unit roundoff u has no impact
on the error as long as u� ε . We will verify experimentally that this crucial result holds for a wide
range of matrices in section 5.

The low-rank error term ξpε‖A‖ grows at most linearly with the number of blocks p. Figure 4.2b
illustrates that a roughly linear growth (indicated by the dashed lines) is indeed observed in practice
when using a global threshold (except for the largest of the tested thresholds, ε = 10−4, for which the
error growth is sublinear). This seems quite acceptable, especially considering that the constant in the
error bound for traditional LU factorization is usually of order n3 (Higham, 2002, Thm. 9.5).

We also briefly comment on the use of fast matrix operations, such as Strassen’s algorithm. Similarly
to the LR matrix algorithms analyzed in section 3.1, fast matrix algorithms are especially attractive with
BLR matrices since only normwise stability is expected, and because they only affect the floating-point
error term, which is negligible compared with the low-rank error term for large enough ε . Our analysis
therefore theoretically explains why the stability of the BLR factorization is much less sensitive to the
use of fast matrix arithmetic, as experimentally observed in Jeannerod et al. (2019). We mention that the
algorithm proposed in Jeannerod et al. (2019) recasts the operations so as to work on matrices of larger
dimensions, which allows for exploiting fast matrix arithmetic more efficiently. The error analysis of
this new algorithm is outside our scope, but we expect it to retain the same backward stability as the

17

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

(A) Error for varying low-rank thresholds ε and
floating-point precisions.

4096 6400 9216 12544 16384

10
-14

10
-12

10
-10

10
-8

10
-6

(B) Error for increasing n. Dashed lines indicate a
linear growth.

FIG. 4.2. Backward error (2.11) for computing the BLR LU factorization of a Poisson matrix of order n = 4096 with the UFC
algorithm (Algorithm 4.1) and with a global threshold.

algorithms analyzed here.
More generally, any numerical instabilities coming from the algorithm (such as when no pivoting is

employed, leading to a large growth factor) may potentially be hidden behind the low-rank error term,
if ε is large enough compared with u. We however wish to emphasize that, with pivoting, the BLR LU
factorization is numerically stable even if ε ∼ u. Indeed, the error bound (4.15) is not any worse than
standard LU factorization (modulo a slightly larger constant c).

4.1.3 Impact of intermediate recompressions. We now discuss the impact on the accuracy of per-
forming intermediate recompressions during the update step, as described and analyzed in Lemma 3.4.

Adapting the proof of Theorem 4.1 to the use of intermediate recompressions is straightforward. It
suffices to invoke Lemma 3.4 instead of Lemma 3.3, which changes the expression for Rik in (4.1) to

Rik = Aik−
k−1

∑
j=1

(
L̃i jŨ jk +H(j)

ik

)
,

which has an extra term H(j)
ik satisfying ‖H(j)

ik ‖6 εβ
(j)
ik . For simplicity, let us consider the same choice

β
(j)
ik = β H

ik for all j. The rest of the proof carries over and we obtain A = L̃Ũ +∆A+F +G, where we
now have

Gik =

EikŨkk +Hik, i > k,
0, i = k,
L̃iiEik +Hik, i < k,

‖Eik‖6 εβik, ‖Hik‖6 (min(i,k)−1)εβ
H
ik .

To proceed further we must consider specific choices for the βik and β H
ik parameters, as in section 4.1.1.

For a scaled local threshold (4.13) and for β H
ik = ε‖Aik‖, we have ‖Gik‖6min(i,k)ε‖Aik‖, whereas for

a scaled global threshold (4.14) and β H
ik = ε‖A‖, we obtain instead ‖Gik‖6min(i,k)ε‖A‖.

18

TABLE 4.1. Expression of ξp in Theorems 4.2, 4.3, and 4.5, depending on whether a local or global threshold is used, and on
whether intermediate recompressions are performed during the LU factorization.

Local threshold Global threshold

Without recompressions 1 p
With recompressions p p2/

√
6

Tedious but straightforward computations lead to the bound ‖G‖ 6 ξpε‖A‖, where ξp = p and
ξp = p2/

√
6 for a local and global threshold, respectively. The low-rank error is therefore a factor

roughly p times larger when intermediate recompressions are performed than when they are not, for
both local and global thresholds.

THEOREM 4.2 Let A ∈ Rn×n be a nonsingular matrix partitioned into p2 blocks of order b. If Algo-
rithm 4.1 runs to completion, it produces BLR LU factors L̃ and Ũ of A satisfying

A = L̃Ũ +∆A, ‖∆A‖6
(
ξpε + γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.16)

where c = b+2r3/2 + p, and where ξp is given in Table 4.1.

We illustrate the above analysis with some numerical experiments in Figure 4.3, using a scaled
global threshold (results with a local threshold are similar and omitted). In Figure 4.3a, we compare
the error growth with and without recompressions. Recompression increases the error by a noticeable
factor; however, this factor increases relatively slowly with n. The error growth of the factorization
with recompression therefore remains contained. To determine whether this increased error pays off in
terms of flops, we plot in Figure 4.3b the error as a function of the flop count for the factorization for
several values of ε . Clearly, for this Poisson matrix, the strategy using recompressions achieves a better
tradeoff. We will show that this remains true for a wide range of matrices in section 5.

We mention that there exist more advanced recompression strategies that have been described in
detail in Mary (2017, Chap. 3). Their rounding error analysis is outside our scope, although we expect
them to behave comparably to the simple recompression strategy analyzed by Lemma 3.4.

4.2 BLR matrix LU factorization: UCF algorithm

In the UFC algorithm (Algorithm 4.1), the compress step is performed after the factor step and thus
the latter does not exploit the LR property of the blocks. The UCF algorithm, described in Algorithm 4.2,
is based on the idea of performing the compress step earlier, before the factor step, so that the off-
diagonal blocks may be factored in LR form, as shown on line 15 and as analyzed in Lemma 3.5. This
reduces the number of flops needed for the factor step, which is especially important because this step
is asymptotically dominant in the UFC algorithm. The UCF algorithm is thus necessary to achieve an
optimal complexity (Amestoy et al., 2017).

However, the UCF algorithm has not yet been widely accepted as the method of choice, and some
BLR solvers still use the UFC algorithm by default, such as MUMPS (Amestoy et al., 2019b). There
are two reasons for this. The first is that the impact on the accuracy of switching from UFC to UCF was
not fully understood and quantified. The next theorem provides an answer to this open question. The
second reason is related to numerical pivoting. Well-known pivoting strategies (e.g., partial pivoting,
rook pivoting) require access to the entire row and/or column to be factored; however, in the UCF

19

4096 6400 9216 12544 16384

10
-10

10
-5

(A) Backward error (2.11) for increasing n, depend-
ing on whether recompressions are “off” or “on”.
The numbers indicate the ratio between the corre-
sponding errors.

0.5 1 1.5

10
10

10
-15

10
-10

10
-5

(B) Flops–accuracy tradeoff. Each point corre-
sponds to a different ε threshold.

FIG. 4.3. Impact of intermediate recompressions on the backward error for a Poisson matrix of order n = 4096 with the UFC
algorithm (Algorithm 4.1) and with a global threshold.

Algorithm 4.2 BLR LU factorization: UCF algorithm.

1: {Input: a p× p block matrix A. Output: its BLR LU factors L̃ and Ũ .}
2: for k = 1 to p do
3: UPDATE:
4: Akk← Akk−∑

k−1
j=1 L̃k jŨ jk.

5: for i = k+1 to p do
6: Aik← Aik−∑

k−1
j=1 L̃i jŨ jk and Aki← Aki−∑

k−1
j=1 L̃k jŨ ji.

7: end for
8: COMPRESS:
9: for i = k+1 to p do

10: Compute LR approximations Ãik ≈ Aik and Ãki ≈ Aki.
11: end for
12: FACTOR:
13: Compute the LU factorization L̃kkŨkk = Akk.
14: for i = k+1 to p do
15: Solve L̃ikŨkk = Ãik for L̃ik and L̃kkŨki = Ãki for Ũki.
16: end for
17: end for

20

algorithm, the blocks have already been compressed and so the entries of the original block are no
longer available. Strategies estimating these entries based on the entries of the LR blocks have been
proposed by Mary (2017) and appear to deliver satisfying results. This is however the object of ongoing
research and is outside our scope.

THEOREM 4.3 (BLR LU factorization: UCF algorithm) Let A ∈ Rn×n be a nonsingular matrix parti-
tioned into p2 blocks of order b. If Algorithm 4.2 runs to completion, it produces BLR LU factors of A
satisfying

A = L̃Ũ +∆A, ‖∆A‖6
(
ξpε + γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε), (4.17)

where c = b+2r3/2 + p, and where ξp is given in Table 4.1.

Proof. In contrast with (4.1) in the proof of Theorem 4.1, the (i,k) block of the L factor is now computed
by solving instead

LikŨkk = R̃ik, i > k, (4.18)

where R̃ik is a LR approximation to R̂ik satisfying R̃ik = R̂ik +Eik, with ‖Eik‖6 εβik, and where R̂ik still
satisfies (4.3). (4.18) takes the form of a triangular solve with an LR right-hand side, and thus by (3.17)
we have

L̃ikŨkk = R̃ik +∆R(k)
ik , ‖∆R(k)

ik ‖6 γb‖L̃ik‖‖Ũkk‖. (4.19)

We therefore obtain

Aik ◦ (J+Θk)−
k

∑
j=1

L̃i jŨ jk =
k−1

∑
j=1

∆R(j)
ik −∆R(k)

ik −Eik = Fik +Gik, (4.20)

with the same bound (4.6) on ‖Fik‖ as for the UFC algorithm, but a different bound ‖Gik‖6 εβik instead
of (4.7), without the term ‖Ũkk‖. This concludes the proof for the case i > k. The cases i = k and i < k
are similar and overall we have A− L̃Ũ = ∆A+F +G, where the blockwise bounds on ‖∆A‖ and ‖F‖
are the same as those for the UFC algorithm, whereas ‖Gik‖6 εβik for all i (with βkk = 0). The bound
‖G‖ 6 ξp‖A‖ trivially follows with ξp = 1 or ξp = p depending on whether βik = ‖Aik‖ or βik = ‖A‖,
respectively. �

A notable difference of the UCF algorithm is that, unlike the UFC algorithm, it does not depend on
the norm of the diagonal blocks of the LU factors. The UCF algorithm thus avoids the issue of having
different compression in the L and U factors, as discussed in section 4.1.1, and hence there is no reason
to scale the threshold as suggested for the UFC algorithm (see (4.14)). The main conclusion to draw
from Theorem 4.3 is therefore that the UCF algorithm satisfies the same error bound as the UFC one
when the latter algorithm uses a scaled threshold (as in Theorem 4.2).

This conclusion is supported by numerical experiments in Figure 4.4. Figure 4.4a shows that the
UFC and UCF algorithms yield similar errors on Poisson matrices, regardless of the matrix size n.
Indeed, even though the UCF algorithm yields a backward error larger by a noticeable factor, this factor
does not increase with n. Therefore, since the UCF algorithm achieves a lower flop count, it achieves a
much better tradeoff than the UFC one, and this is illustrated in Figure 4.4b. These observations will be
extended to a wider range of matrices in section 5.

Finally, we briefly comment on some other BLR LU factorization variants, for which we have per-
formed similar analyses that we omit for the sake of conciseness.

The FUC algorithm (Mary, 2017) performs the compression step only after the completion of the
LU factorization. This variant therefore only reduces the storage, not the flops, for performing the LU

21

4096 6400 9216 12544 16384

10
-13

10
-11

10
-9

10
-7

10
-5

10
-3

(A) Backward error (2.11) for increasing n (without
intermediate recompression). The numbers indicate
the ratio between the errors for the UCF and UFC
algorithms.

5 10 15

10
9

10
-15

10
-10

10
-5

(B) Flops–accuracy tradeoff (n = 4096). Each point
corresponds to a different ε threshold.

FIG. 4.4. Comparison between UFC (Algorithm 4.1) and UCF (Algorithm 4.2) BLR LU factorizations for Poisson matrices.

factorization. Its main advantage is to avoid the low-rank and the floating-point errors accumulating
together, replacing the O(uε) term in the bounds of Theorems 4.1 and 4.3 by O(u2). This is however a
negligible reduction of the error, and therefore the FUC variant is not competitive with the other variants.

Another widely used algorithm is the CUF variant (see, for example, Amestoy et al. (2017) and
Pichon et al. (2018)), which compresses the entire matrix A and then computes its BLR LU factorization.
The CUF algorithm is very similar to the UCF one, only differing in that, at line 6 of Algorithm 4.2, the
blocks Aik (and Aki) are already in LR form. Therefore the result of the product of the LR factors L̃i jŨ jk
may be obtained directly as an LR matrix, avoiding the last product in Lemma 3.3: this just affects
the constant in the error bound and we therefore conclude that the UCF and CUF algorithms achieve
similar error bounds. Note that one particularity of the CUF algorithm is that the use of intermediate
recompressions (section 4.1.3) is mandatory to contain the growth of the ranks of the BLR LU factors
throughout the factorization.

4.3 BLR linear systems

We first analyze the solution of a triangular system T̃ x = v, where T̃ is a BLR matrix.

THEOREM 4.4 (BLR triangular system) Let T̃ ∈ Rn×n be a triangular BLR matrix partitioned into p2

LR blocks T̃i j ∈ Rb×b and let v ∈ Rn. If the solution to the system T̃ x = v is computed by solving the
triangular system Tiixi = vi−∑

i−1
j=1 T̃i jx j for each block xi = x((i−1)b+1 : ib), the computed solution x̂

satisfies (
T̃ +∆ T̃

)
x̂ = v+∆v, ‖∆ T̃‖6 γc‖T̃‖, ‖∆v‖6 γp‖v‖, (4.21)

where c = b+ r3/2 + p.

Proof. Let w(j)
i = T̃i j x̂ j, where x̂ j is the jth block-row of the computed x̂ in the previous i−1 steps. By

22

Lemma 3.1, the computed ŵ(j)
i satisfies

ŵ(j)
i =

(
T̃i j +Fi j

)
x̂ j, ‖Fi j‖6 γd‖T̃i j‖,

with d = b+ r3/2. Let wi = vi−∑
i−1
j=1 w(j)

i ; the computed ŵi satisfies

ŵi = vi ◦ (e+∆ei)−
i−1

∑
j=1

ŵ(j)
i ◦ (e+∆e j), |∆e j|6 γpe,

where e= [1, . . . ,1]T is the vector of ones. By Lemma 2.2, the computed solution x̂i to Tiixi = ŵi satisfies(
Tii +Fii

)
x̂i = ŵi, ‖Fii‖6 γb‖Tii‖.

Therefore, recalling that T̃ii = Tii, we have

i

∑
j=1

(
T̃i j +∆ T̃i j

)
x̂ j = vi ◦ (e+∆ei), (4.22)

with ∆ T̃i j =Θ j ◦ T̃i j +Fi j ◦ (J+Θ j) and thus ‖∆ T̃i j‖6 γd+p+O(u)‖T̃i j‖. Gathering (4.22) over all block-
rows i, we obtain (T̃ +∆ T̃)x̂ = v+∆v, with ‖∆v‖6 γp‖v‖ and

‖∆ T̃‖6 γd+p+O(u)

(p

∑
i=1

i

∑
j=1
‖T̃i j‖2

)1/2

6 γd+p‖T̃‖+O(u2),

as required. �
We are ready for our final theorem, which builds upon all our previous analyses to prove the back-

ward stability of the solution to linear systems by BLR LU factorization.

THEOREM 4.5 (BLR linear system) Let Ã ∈Rn×n be a pb× pb BLR matrix and let v ∈Rn. If the linear
system Ãx = v is solved by solving the triangular systems L̃y = v, Ũx = y, where L̃ and Ũ are the BLR
LU factors computed by either Algorithm 4.1 or 4.2, then the computed solution x̂ satisfies(

A+∆A
)
x̂ = v+∆v, (4.23)

‖∆A‖6
(
ξpε + γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε), (4.24)

‖∆v‖6 γp
(
‖v‖+‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2), (4.25)

where c = b+2r3/2 + p, and where ξp is given in Table 4.1.

Proof. By Theorems 4.2 and 4.3, the BLR LU factors computed by the UFC algorithm or the UCF
algorithm satisfy A+∆A = L̃Ũ , with

‖∆A‖6
(
ξpε + γp

)
‖A‖+ γc‖L̃‖‖Ũ‖+O(uε).

By Theorem 4.4, the computed ŷ satisfies(
L̃+∆ L̃

)
ŷ = v+∆v, ‖∆ L̃‖6 γc‖L̃‖, ‖∆v‖6 γp‖v‖.

23

Similarly the computed x̂ satisfies(
Ũ +∆Ũ

)
x̂ = ŷ+∆ ŷ, ‖∆Ũ‖6 γc‖Ũ‖, ‖∆ ŷ‖6 γp‖ŷ‖.

We therefore obtain on the one hand(
L̃+∆ L̃

)(
Ũ +∆Ũ

)
x̂ =

(
A+∆A+∆ L̃Ũ + L̃∆Ũ +∆ L̃∆Ũ

)
x̂ =

(
A+∆A′

)
x̂

and on the other hand (
L̃+∆ L̃

)(
Ũ +∆Ũ

)
x̂ = v+∆v+ L̃∆ ŷ+∆ L̃∆ ŷ = v+∆v′,

yielding
(
A+∆A′

)
x̂ = v+∆v′, with

‖∆A′‖= ‖∆A+∆ L̃Ũ + L̃∆Ũ +∆ L̃∆Ũ‖6
(
ξpε + γp

)
‖A‖+ γ3c‖L̃‖‖Ũ‖+O(uε),

‖∆v′‖= ‖∆v+ L̃∆ ŷ+∆ L̃∆ ŷ‖6 γp
(
‖v‖+‖L̃‖‖Ũ‖‖x̂‖

)
+O(u2).

�

5. Additional experiments and discussion

In the previous sections we have illustrated our analysis with numerical experiments performed on
Poisson matrices (as described in section 2.3). In this final section, we provide some additional experi-
ments to demonstrate that the conclusions drawn in the previous sections extend to many other kind of
problems coming from various real-life applications. We use 26 root separators (Schur complements)
obtained from sparse matrices from the SuiteSparse collection (Davis & Hu, 2011). The full list is given
in Table 1.1 in the supplementary materials.

The main conclusions drawn from our analysis and experiments in the previous sections were the
following.

1. As predicted by our analysis, we have observed a tight correlation between the low-rank threshold
ε and the backward error. We show that this crucial result remains true for a wide range of matrices
in section 5.1.

2. We experimentally determined using a Poisson matrix of relatively small order n = 4096 that the
use of a global threshold, the UCF algorithm, and intermediate recompressions achieves a better
flops–accuracy tradeoff than the use of a local threshold, the UFC algorithm, and no recompres-
sions, respectively. In section 5.2, we first analyze using Poisson matrices how this comparison
evolves as n increases. Then, in section 5.3, we extend these conclusions to a wide range of
matrices.

5.1 Impact of ε for a wide range of matrices

For each matrix A we solve a linear system Ax = v via BLR LU factorization, using the UCF algo-
rithm with a global threshold and intermediate recompressions. We report the backward error (2.11) in
Figure 5.1, which shows that for all these matrices there is a good and often even excellent correlation
between the threshold ε and the measured backward error.

The main conclusion of our analysis, which is that the backward error is directly determined by ε ,
is therefore confirmed experimentally for a wide range of matrices.

24

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

10
-2

FIG. 5.1. Backward error (2.11) for solving a linear system by BLR LU factorization for 26 real-life matrices using the UCF
algorithm (Algorithm 4.2) with a global threshold and intermediate recompressions.

5.2 Flops–accuracy tradeoff for increasing n

On the one hand, the use of a global threshold and intermediate recompressions both lead to a constant ξp
larger by about a factor p = n/b, as shown in Table 4.1. On the other hand, intermediate recompressions
and the UCF algorithm both reduce the asymptotic complexity of the LU factorization (Amestoy et al.,
2017). Even a global threshold may provide an asymptotic improvement, because the proportion of
blocks of small norm with respect to the norm of the global matrix increases with n.

It is therefore important to investigate whether the strategy achieving the best flops–accuracy trade-
off depends on n. Figure 5.2 compares the tradeoff achieved by two strategies: the first uses the UFC
algorithm with a local threshold and without recompressions, whereas the second uses the UCF algo-
rithm with a global threshold and with recompressions. We compare these strategies for two Poisson
matrices of order n = 4096 and n = 16384. Not only is the second strategy the best choice for both
matrices, but the gap between the two is larger for n = 16384 than for n = 4096. Indeed, for five differ-
ent values of ε (from 10−13 to 10−3, indicated by the dashed lines on the figure), we measure the flops
required by each strategy and plot the ratio between the two. The figure shows that, except for ε = 10−3,
this ratio is larger for the larger matrix. Additional experiments (not shown) on matrices of intermediate
order between 4096 and 16384 show that this ratio gradually increases with n. We conclude that the
second strategy becomes more and more beneficial with respect to the first strategy as n increases.

This experimental observation may in fact be justified theoretically for some classes of matrices.
For instance, for Poisson matrices, the ranks of the blocks are known to be logarithmically dependent
on the threshold ε , that is, r = O(log1/ε) (Bebendorf, 2008). The impact of a larger ξp on the error
can be compensated by simply using a smaller threshold ε ′ = ε/ξp, which in turn yields a larger rank
r′ = O(logξp/ε). Therefore, as p = n/b increases, compensating for the error increase due to a larger
ξp only increases the cost of the factorization by logarithmic factors of n. Since a global threshold,
intermediate recompressions, and the UCF algorithm all reduce this cost by factors O(nα), with α > 0,
we conclude that the use of these strategies must eventually become beneficial for large enough n.

25

2 4 6 8 10 12 14

10
9

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

1 2 3 4

10
11

10
-14

10
-12

10
-10

10
-8

10
-6

FIG. 5.2. Flops–accuracy tradeoff for two opposite strategies for the solution of a BLR linear system, using two Poisson matrices
of different orders n = 4096 (left) and n = 16384 (right). The numbers indicate the ratio between the flops required by the two
strategies for a given cutoff value of ε (corresponding to the dashed lines).

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

FIG. 5.3. Performance profile of the eight possible strategies to solve a BLR linear system over 26 real-life matrices. ρ (y-axis)
indicates the percentage of matrices for which a given strategy requires less than α (x-axis) times the flops required by the best
strategy. For any given matrix, all eight strategies achieve roughly the same backward error.

5.3 Flops–accuracy tradeoff for a wide range of matrices

We finally compare the flops–accuracy tradeoff achieved by global and local thresholds, the UFC and
UCF algorithms, and the use of intermediate recompressions on the set of real-life matrices. We compare
the eight possible strategies depending on the combination of parameters.

For each matrix, we run each strategy multiple times with slightly different values of ε between 10−7

and 10−9. We then select a cutoff value and choose for each strategy the largest ε producing a backward
error smaller than this cutoff. This is done to guarantee that all eight strategies achieve roughly the same
backward error. We can then measure the number of flops required by each strategy and plot the result
as a performance profile in Figure 5.3.

As the figure shows, the strategy using the UCF algorithm with a global threshold and with recom-
pressions achieves the best tradeoff for all 26 matrices, thereby confirming our previous observations
that this is the best parameter setting. This strategy can reduce the number of flops by a factor up to 10

26

with no loss of accuracy. The performance of the remaining seven strategies gives some indication of
the relative importance of each parameter: using a global threshold has the greatest impact, followed by
the UCF algorithm, and finally the intermediate recompressions.

6. Conclusions

We have analyzed the errors introduced in various matrix algorithms by the use of block low-rank
(BLR) approximations. Our analysis provides important new theoretical guarantees, as well as some
new insights into the numerical behavior of BLR matrix algorithms in floating-point arithmetic. We
now gather and summarize our main conclusions.

6.1 Summary

We have derived a set of normwise error bounds that share a common point: they are expressed as
the sum of two terms, one associated with the low-rank truncation errors, whose magnitude can be
controlled via the low-rank threshold ε , and the other associated with the floating-point errors, whose
magnitude depends on the unit roundoff u.

Usually, we have u� ε , and therefore the error is mainly determined by ε . In particular, we have
proved in Theorem 4.5 that BLR linear systems Ax = v can be solved with a backward error proportional
to ξpε‖A‖, where ξp is a small constant growing at most quadratically with the number of block-rows
and block-columns p = n/b. Our analysis therefore proves for the first time the backward stability of
the solution of BLR linear systems and provides a theoretical justification for the empirical observation
that the backward error is closely related to the low-rank threshold. Users can therefore control the
numerical behavior of BLR solvers simply by setting ε to the target accuracy.

When u� ε , the unit roundoff has only a limited impact. This remark is of particular relevance
in the context where BLR solvers are used as preconditioners for iterative methods (Higham & Mary,
2019), for which the low-rank threshold may be set to very large values (such as ε = 0.01 or even 0.1).
In this setting, our analysis indicates that the use of low precisions, such as half precision, should be
very attractive; see Higham et al. (2019) and the references therein for details of half precision and how
it can be exploited in standard LU factorization.

We have analyzed several key parameters in the BLR LU factorization and assessed how to choose
them to obtain the best possible tradeoff between flops and accuracy. First, we have shown that the use
of a global threshold (block Ai j is compressed such that ‖Ai j− Ãi j‖6 ε‖A‖) should be preferred to that
of a local one (‖Ai j− Ãi j‖6 ε‖Ai j‖). Second, the use of intermediate recompressions in the update step
(the so-called LUAR strategy in Amestoy et al. (2017)) only impacts the constant in the error bound
and is therefore recommended. Finally, we have compared two different factorization variants, the UFC
and UCF algorithms, which differ in when the BLR compression is incorporated in the LU algorithm,
and we have shown that they yield similar error bounds; the UCF algorithm, which achieves the best
complexity, should therefore be preferred.

We have supported all of these conclusions with numerical experiments on a wide range of matrices
from various real-life applications.

6.2 Perspectives

There exist numerous structured matrix representations other than BLR, such as multilevel (Amestoy
et al., 2019a) and hierarchical (Bebendorf, 2008) representations, HSS matrices (Xia et al., 2010), and so

27

on. Our analysis could be extended to these other type of matrices (we note the existing work regarding
HSS matrices by Xi & Xia (2016)), and we expect that the resulting analyses would yield similar results.

If the threshold ε is chosen too close to the unit roundoff u, Assumption 2.1 no longer holds and we
are unable to accurately detect the numerical rank of the blocks, which dramatically increases the cost of
the factorization. This situation is becoming more likely with the growing use of low precision floating-
point arithmetic. In this context, recent advances that reduce rounding error accumulation (Blanchard
et al., 2020a,b) can help to decrease the threshold of ε at which we are forced to switch to a higher
precision arithmetic.

Acknowledgments

We thank Cleve Ashcraft and an anonymous referee for their constructive comments. Some experiments
on the larger problems have been run using the crunch machines at the LIP laboratory (ENS Lyon).

References

AMESTOY, P. R., BROSSIER, R., BUTTARI, A., L’EXCELLENT, J.-Y., MARY, T., MÉTIVIER, L.,
MINIUSSI, A., & OPERTO, S. 2016. Fast 3D frequency-domain full waveform inversion with a
parallel Block Low-Rank multifrontal direct solver: application to OBC data from the North Sea.
Geophysics, 81(6), R363–R383.

AMESTOY, P. R., BUTTARI, A., L’EXCELLENT, J.-Y., & MARY, T. 2017. On the Complexity of the
Block Low-Rank Multifrontal Factorization. SIAM J. Sci. Comput., 39(4), A1710–A1740.

AMESTOY, PATRICK, ASHCRAFT, CLEVE, BOITEAU, OLIVIER, BUTTARI, ALFREDO,
L’EXCELLENT, JEAN-YVES, & WEISBECKER, CLÉMENT. 2015. Improving Multifrontal Methods
by Means of Block Low-Rank Representations. SIAM J. Sci. Comput., 37(3), A1451–A1474.

AMESTOY, PATRICK R., BUTTARI, ALFREDO, L’EXCELLENT, JEAN-YVES, & MARY, THEO. 2019a.
Bridging the Gap Between Flat and Hierarchical Low-Rank Matrix Formats: The Multilevel Block
Low-Rank Format. SIAM J. Sci. Comput., 41(3), A1414–A1442.

AMESTOY, PATRICK R., BUTTARI, ALFREDO, L’EXCELLENT, JEAN-YVES, & MARY, THEO. 2019b.
Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Archi-
tectures. ACM Trans. Math. Software, 45(1), 2:1–2:26.

BEBENDORF, MARIO. 2008. Hierarchical Matrices: A Means to Efficiently Solve Elliptic Bound-
ary Value Problems. Lecture Notes in Computational Science and Engineering (LNCSE), vol. 63.
Springer-Verlag.

BLANCHARD, PIERRE, HIGHAM, NICHOLAS J., & MARY, THEO. 2020a. A Class of Fast and Accu-
rate Summation Algorithms. SIAM J. Sci. Comput., 42(3), A1541–A1557.

BLANCHARD, PIERRE, HIGHAM, NICHOLAS J., LOPEZ, FLORENT, MARY, THEO, & PRANESH,
SRIKARA. 2020b. Mixed Precision Block Fused Multiply-Add: Error Analysis and Application to
GPU Tensor Cores. SIAM J. Sci. Comput., 42(3), C124–C141.

CHARARA, ALI, KEYES, DAVID, & LTAIEF, HATEM. 2018. Tile Low-Rank GEMM Using Batched
Operations on GPUs. Pages 811–825 of: ALDINUCCI, MARCO, PADOVANI, LUCA, & TORQUATI,
MASSIMO (eds), Euro-Par 2018: Parallel Processing. Cham: Springer International Publishing.

28

DAVIS, TIMOTHY A., & HU, YIFAN. 2011. The University of Florida Sparse Matrix Collection. ACM
Trans. Math. Software, 38(1), 1:1–1:25.

GEORGE, A. 1973. Nested Dissection of a Regular Finite Element Mesh. SIAM J. Numer. Anal., 10(2),
345–363.

HIGHAM, NICHOLAS J. 1990. Exploiting Fast Matrix Multiplication within the Level 3 BLAS. ACM
Trans. Math. Software, 16(4), 352–368.

HIGHAM, NICHOLAS J. 1992. Stability of a Method for Multiplying Complex Matrices with Three
Real Matrix Multiplications. SIAM J. Matrix Anal. Appl., 13(3), 681–687.

HIGHAM, NICHOLAS J. 2002. Accuracy and Stability of Numerical Algorithms. Second edn. Philadel-
phia, PA, USA: Society for Industrial and Applied Mathematics.

HIGHAM, NICHOLAS J., & MARY, THEO. 2019. A New Preconditioner that Exploits Low-Rank
Approximations to Factorization Error. SIAM J. Sci. Comput., 41(1), A59–A82.

HIGHAM, NICHOLAS J., & PRANESH, SRIKARA. 2019. Simulating Low Precision Floating-Point
Arithmetic. SIAM J. Sci. Comput., 41(5), C585–C602.

HIGHAM, NICHOLAS J., PRANESH, SRIKARA, & ZOUNON, MAWUSSI. 2019. Squeezing a Matrix
Into Half Precision, with an Application to Solving Linear Systems. SIAM J. Sci. Comput., 41(4),
A2536–A2551.

IDA, AKIHIRO, NAKASHIMA, HIROSHI, & KAWAI, MASATOSHI. 2018. Parallel Hierarchical Matrices
with Block Low-rank Representation on Distributed Memory Computer Systems. Pages 232–240 of:
Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region.
HPC Asia 2018. New York, NY, USA: ACM.

JEANNEROD, C.-P., MARY, T., PERNET, C., & ROCHE, D. 2019. Exploiting fast matrix arithmetic in
block low-rank factorizations. SIAM J. Matrix Anal. Appl. Submitted.

MARY, THÉO. 2017 (Nov.). Block Low-Rank Multifrontal Solvers: Complexity, Performance, and
Scalability. Ph.D. thesis, Université de Toulouse, Toulouse, France.

PICHON, GRÉGOIRE, DARVE, ERIC, FAVERGE, MATHIEU, RAMET, PIERRE, & ROMAN, JEAN.
2018. Sparse supernodal solver using block low-rank compression: Design, performance and analy-
sis. Journal of Computational Science, 27, 255–270.

RIGAL, J. L., & GACHES, J. 1967. On the Compatibility of a Given Solution With the Data of a Linear
System. J. Assoc. Comput. Mach., 14(3), 543–548.

SHANTSEV, D. V., JAYSAVAL, P., DE LA KETHULLE DE RYHOVE, S., AMESTOY, P. R., BUTTARI,
A., L’EXCELLENT, J.-Y., & MARY, T. 2017. Large-scale 3D EM modeling with a Block Low-Rank
multifrontal direct solver. Geophys. J. Int., 209(3), 1558–1571.

XI, Y., & XIA, J. 2016. On the Stability of Some Hierarchical Rank Structured Matrix Algorithms.
SIAM J. Matrix Anal. Appl., 37(3), 1279–1303.

XIA, JIANLIN, CHANDRASEKARAN, SHIVKUMAR, GU, MING, & LI, XIAOYE S. 2010. Fast Algo-
rithms for Hierarchically Semiseparable Matrices. Numer. Linear Algebra Appl., 17(6), 953–976.

