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DETERMINANTS OF NORMALIZED
BOHEMIAN UPPER HESSENBERG MATRICES∗

Massimiliano Fasi† Gian Maria Negri Porzio‡

Abstract. A matrix is Bohemian if its elements are taken from a finite set
of integers. A upper Hessenberg matrix is normalized if all its subdiagonal
elements are ones, and hollow if it has only zeros along the main diagonal.
All possible determinants of families of normalized and hollow normalized Bo-
hemian upper Hessenberg matrices are enumerated. It is shown that in the
case of hollow matrices the maximal determinants are related to a general-
ization of Fibonacci numbers. Several conjectures recently stated by Corless
and Thornton follow from these results.

Key words. Bohemian matrix, Integer matrix, Normalized upper Hessenberg
matrix, Determinant, Fibonacci number.
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1. Introduction. Matrices whose entries are drawn from a finite discrete set D are
said to be Bohemian. The term is a partial acronym for “BOunded HEight Matrix of
Integers”, and is due to the fact that D is bounded, being finite, and is typically a subset
of the integers. This terminology is of recent introduction [5], but Bohemian matrices
have been a subject of interest for at least a century and a half, with early work of
Sylvester [10] and Hadamard [9] dating back to the second half of the nineteenth century.

The study of families of matrices with integer elements flourished in the sixties: mul-
tiple authors examined theoretical [11] as well as practical [7] applications of Bohemian
matrices, and many important conjectures on the subject were first stated in that decade.
A good example is the expository survey of “computational problems involving integral
matrices” collected by Taussky [12], where combinatorial problems involving matrices of
integers are tackled, for small dimensions, by means of a brute force, computer-aided
approach.
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More recently, Chan et al. studied the distribution of the eigenvalues and the height of
the characteristic polynomials of families of Bohemian upper Hessenberg [3] and upper
Hessenberg Toeplitz matrices [2]. Many observations made by the authors while preparing
these two manuscripts were collected in the form of conjectures in the Characteristic
Polynomial Database [13].

Some of these conjectures have been either proved or disproved since, but many remain
open. Here we focus on those that state properties of the determinants of families of
normalized upper Hessenberg matrices, that is, upper Hessenberg matrices with ones on
the subdiagonal and elements in the upper triangular part drawn from the sets {0, 1},
{0,−1}, {−1, 1}, {−1, 0, 1}, and {0, 1, 2}. Our goal will be to enumerate all possible
determinants for matrices with these structures: this will allow us to count the number
of distinct determinants and find the maximum absolute determinant of each of these
matrix families. We will often be able to work with more general domains, thus proving
the aforementioned conjectures as special cases.

The next section introduces our notation and recalls background definitions and results
that will be used later on. In Sections 3 and 4, we discuss the determinants of families
of normalized and normalized hollow Bohemian upper Hessenberg matrices, respectively,
and prove a generalization of most of the open conjectures in the Characteristic Polyno-
mial Database. Finally, in Section 5, we prove [13, Conjecture 8], the only conjecture we
were not able to prove in its generalized form, and state our generalization.

2. Background and notation. Here and in the following sections, n and d always
denote positive integers. We say that the matrix H ∈ Cn×n is upper Hessenberg if hij = 0
for i > j + 1. An upper Hessenberg matrix H ∈ Cn×n is normalized if hi+1,i = 1, for
i = 1, . . . , n− 1, and is hollow if hii = 0, for i = 1, . . . , n. For any D ⊂ Z, we denote by
Hn(D) the family of normalized upper Hessenberg matrices with elements from D in the
upper triangular part, and by Hn

0 (D) the family of hollow normalized upper Hessenberg
matrices with elements from D in the strictly upper triangular part.

It is useful to introduce a shorthand notation for integer intervals. For any i1, i2 ∈ Z
such that i1 < i2 we denote by 〈i1, i2〉 the set of integers between i1 and i2 inclusive, and
if i1 < 0 < i2 we denote by 〈i1, i2〉◦ the set 〈i1, i2〉 \ {0}.

Finally, we recall a well-known result that can be used to write the determinant of a
normalized upper Hessenberg matrix in terms of its leading principal minors.

Lemma 1. ([6, Section 7.11]) Let H ∈ Hn(D). Then

detH = (−1)n+1

(
h1n +

n∑
i=2

(−1)i−1hin detH(i−1)
)
,

where H(i) ∈ Hi(D) is the ith leading principal submatrix of H.

Proof. The identity can be verified by expanding along the last column of H.

3. Normalized Bohemian upper Hessenberg matrices. In this section, we con-
sider normalized Bohemian upper Hessenberg matrices with elements in the upper trian-
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gular part drawn from 〈−d, d〉, 〈−d, 0〉, and 〈−d, d〉◦. First we will find a closed expression
for the maximum absolute value of the determinant of matrices in these classes, then we
will show how to build matrices with a given determinant.

Proposition 2. We have that

max
H∈Hn(〈−d,d〉)

|detH| = max
H∈Hn(〈−d,0〉)

|detH| = max
H∈Hn(〈−d,d〉◦)

|detH| = d(d+ 1)n−1,

where the maximum is attained by the matrix K(d,n), defined by

k
(d,n)
ij =


0, i > j + 1,

1, i = j + 1,

−d, i ≤ j,

(1)

for which
detK(d,n) = (−1)nd(d+ 1)n−1. (2)

Proof. We begin by showing (2). It is easy to verify that the identity holds for n = 1.
For the inductive step, from Lemma 1 we have that

detK(d,n) = (−1)n+1

(
k
(d,n)
1n +

n∑
i=2

(−1)i−1k
(d,n)
in detK(d,i−1)

)
= (−1)n

(
d+

n∑
i=2

d2(d+ 1)i−2
)

= (−1)n
(
d+ d2

1− (d+ 1)n−1

1− (d+ 1)

)
= (−1)nd(d+ 1)n−1.

(3)

Using the notation in Lemma 1 gives, for any H ∈ Hn(〈−d, d〉),

|detH| =

∣∣∣∣∣h1n +
n∑

i=2

(−1)i−1hin detH(i−1)

∣∣∣∣∣
≤ d+

n∑
i=2

d2(d+ 1)i−2

= |detK(d,n)|,

where the last equality follows from (3). Observing that K(d,n) belongs to Hn(〈−d, 0〉)
and Hn(〈−d, d〉◦) and that both sets are subset of Hn(〈−d, d〉) concludes the proof.

Note that Proposition 8 generalizes [13, Conjecture 4], since for d = 1 it shows that
the sequence of maximal absolute determinants of normalized upper Hessenberg matrices
with entries from the set 〈−1, 1〉 is given by the OEIS sequence A03433.

Next we prove three technical results that will be necessary in order to construct a
Bohemian matrix with a given determinant.
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Lemma 3. For any γ ∈ 〈0, d(d+ 1)n−1〉 there exist β, α0, . . . , αn−2 ∈ 〈0, d〉 such that

γ = β + d
n−2∑
i=0

αi(d+ 1)i. (4)

Proof. If γ is strictly smaller than d(d+ 1)n−1, then there exists a unique pair of integers
µ ∈ 〈0, d− 1〉 and ν ∈ 〈0, (d+ 1)n−1− 1〉 such that γ = µ+ dν. Since ν ≤ (d+ 1)n−1− 1,
we can write

ν =
n−2∑
i=0

αi(d+ 1)i,

and the representation (4) is obtained by setting β to µ and α0, . . . , αn−2 ∈ 〈0, d〉 to the
n − 1 digits in the representation of ν in radix d + 1. If γ = d(d + 1)n−1, on the other
hand, setting β, α0, . . . , αn−2 to d gives

d+ d

n−2∑
i=0

(d+ 1)i = d+ d((d+ 1)n−1 − 1) = d(d+ 1)n−1,

which concludes the proof.

Corollary 4. For any γ ∈ 〈−d(d+1)n−1, d(d+1)n−1〉 there exist β, α0, . . . , αn−2 ∈ 〈−d, d〉
such that

γ = β + d
n−2∑
i=0

αi(d+ 1)i. (5)

Proof. If γ is nonnegative, then the result follows from Lemma 3. Otherwise, β, α0, . . . , αn−2
can be obtained by changing the sign of the corresponding coefficients in the representa-
tion (4) for −γ.

A consequence of Lemma 3 and Corollary 4 is that all integers in the intervals 〈0, d(d+ 1)n−1〉
and 〈−d(d+ 1)n−1, d(d+ 1)n−1〉 have at least one representation of the form (4) and (6),
respectively. In the remainder of this section, we will obtain determinantal formulae
of the forms (4) and (6) and will exploit the representation results above to construct
Bohemian matrices with a given determinant.

The next result shows that the representation (5) can be rewritten so to have only
nonzero coefficients.

Lemma 5. If d > 1, for any γ ∈ 〈−d(d+1)n−1, d(d+1)n−1〉 there exist β, α0, . . . , αn−2 ∈
〈−d, d〉◦ such that

γ = β + d
n−2∑
i=0

αi(d+ 1)i. (6)

Proof. If γ ≥ 0, then by Lemma 3 there exist β′, α′0, . . . , α
′
n−2 in 〈0, d〉 such that

γ = β′ + d

n−2∑
i=0

α′i(d+ 1)i. (7)
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Algorithm 1: Convert representation coefficients from 〈0, d〉 to 〈−d, d〉◦.
Input: β′, α′0, . . . , α

′
n−2 ∈ 〈0, d〉 that satisfy (7).

Output: β, α0, . . . , αn−2 ∈ 〈−d, d〉◦ that satisfy (6).
(β, α0, . . . , αn−2)← (β′, α′0, . . . , α

′
n−2);

for i = n− 2 down to 1 do
if αi = 0 or αi = −d− 1 then

(αi−1, αi)← (αi−1 − d− 1, αi + 1);

if α0 = 0 or α0 = −d− 1 then
(β, α0)← (β − d, α0 + 1);

if β = 0 then
if α0 6= 1 and α0 6= −d then

(β, α0)← (d, α0 − 1);
else

(β, α0)← (−d, α0 + 1);

Algorithm 1 shows how the coefficients of the representation (6) can be computed from
those of (7). In order to prove the correctness of the algorithm, note that the two sets of
coefficients represent the same number, that all zero coefficients in (7) are changed into
a positive or negative number smaller than d in absolute value, and that no new zero
coefficients are introduced. If γ < 0, it suffices to find the representation (7) for −γ in
〈0, d〉 and change the sign of its coefficients.

The result in Lemma 5 is not true for d = 1. In order to represent n = 3 in the form (6),
for instance, we would have to find β, α0, and α1 in {−1, 1} such that β + α0 + 2α1 = 3.
But such a triple cannot exist: the right-hand side is odd, but the left-hand side is even,
being the sum of the two even numbers β + α0 and 2α1. Therefore, we will need two
different strategies to prove the result for d 6= 1 and d = 1.

Proposition 6. If d > 1, then the set of possible determinants of matrices in the family
Hn(〈−d, d〉◦) is 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proof. In this case we show how to construct a matrix H ∈ Hn(〈−d, d〉◦) such that
detH = k for any k ∈ 〈−d(d+ 1)n−1, d(d+ 1)n−1〉. Here we take the matrix

H =


b
a0
...

K(d,n−1)

an−3
0 . . . 1 an−2

 , (8)
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where K(d,n−1) is defined in (1). From Lemma 1 and Proposition 2, it follows that

detH = (−1)n+1b+
n−2∑
i=0

(−1)n+iai detK(d,i+1)

= b̃+ d
n−2∑
i=0

ãi(d+ 1)i,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n−2. The coefficients b, a0, . . . , an−2
belong to 〈−d, d〉◦, and in view of Lemma 5 the last column of H can be chosen so that
detH = k for any k ∈ 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proposition 7. The set of possible determinants of matrices in the family Hn(〈−1, 1〉◦)
is

{2k | k ∈ 〈−n+ 1, n− 1〉}.

Proof. As noted by Ching [4], there are only 2n−1 possibly nonzero terms in the determi-
nant expansion of an n×n Hessenberg matrix. If the matrix is in Hn(〈−1, 1〉◦), then each
of these 2n−1 monomials evaluates to either +1 or −1, which implies that the determinant
of any such matrices must be even and cannot be larger than 2n−1 in absolute value. Now
we explain how to construct a matrix H ∈ Hn

0 (〈−1, 1〉◦) such that detH = 2k for any
k ∈ 〈0, n−1〉. Matrices with negative determinants can be obtained by changing the sign
of the last column of the matrices thus obtained.

Let us consider the matrix

H =


(−1)n+1

a0
...

K(1,n−1)

an−3
0 . . . 1 (−1)n+1,

 ,

where K(1,n−1) is defined in (1). Using Lemma 1 followed by Proposition 2, we obtain
that

detH = 1 +
n−3∑
i=0

(−1)n+1ai detK(1,i+1) + (−1)n+1 detK(1,n−1)

= 1 + (−1)n+1

n−3∑
i=0

ai2
i + 2n−2.

Let k′ := 2n−2 − k and let b0, . . . , bn−3 ∈ {0, 1} be such that

k′ =
n−3∑
i=0

bi2
i =

∑
i∈I

bi2
i,

where I := {i ∈ N : bi 6= 0}. If we set ai = (−1)n+1+bi , we are taking the coefficients that
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would create the matrix K(d,n) with the last column multiplied by (−1)n+1 and changing
the signs in the corresponding nonzero coefficients of the binary representation of k′. It
follows that

detH = 1 + (−1)b0 + · · ·+ (−1)bn−32n−3 + 2n−2

= 1 +
n−2∑
i=0

2i − 2
∑
i∈I

bi2
i

= 2n−1 − 2k′ = 2k,

which concludes the proof.

Proposition 8. For any d ∈ N, the set of possible determinants of matrices in the family
Hn(〈−d, d〉) is 〈−d(d+ 1)n−1, d(d+ 1)n−1〉.

Proof. The proof is analogous to that of Proposition 6, if Lemma 5 is replaced by Corol-
lary 4.

Proposition 9. For any d ∈ N, the set of possible determinants of matrices in the family
Hn(〈−d, 0〉) is {(−1)nk | k ∈ 〈0, d(d+ 1)n−1〉}.

Proof. This proof follows the steps of the proof of Proposition 6. Note thatHn(〈−d, 0〉) ⊂
Hn(〈−d, d〉), and that since K(d,n−1) ∈ Hn(〈−d, 0〉), the matrix H in (8) is in Hn(〈−d, 0〉)
if b, a0, . . . , an−2 ∈ 〈−d, 0〉. Combining Lemma 1 and Proposition 2 in this case gives

detH = (−1)n+1b+
n−2∑
i=0

(−1)n+iai detK(d,i+1)

= (−1)n
(
b̃+ d

n−2∑
i=0

ãi(d+ 1)i
)
,

where b̃ = −b and ãi = −ai, for i = 0, . . . , n−2. Since b̃, ã0, . . . , ãn−2 ∈ 〈0, d〉, by Lemma 3
we can choose the last column of H so that detH = (−1)nk for all k ∈ 〈0, d(d+1)n−1〉.

Note that Propositions 9, 8, and 7 prove [13, Conjecture 18], [13, Conjecture 19], and
[13, Conjecture 20], respectively: they show that the number of distinct determinants
of normalized Bohemian upper Hessenberg matrices with entries from the sets 〈−1, 0〉,
〈−1, 1〉, and 〈−1, 1〉◦ is given by a suitable shift of the OEIS sequence A000051.

4. Hollow normalized Bohemian upper Hessenberg matrices. In the previous
section, we explained how to build a Bohemian upper Hessenberg matrix for every possible
determinant, and by doing so we generalized some of the conjectures in [13]. Now, we
follow the same steps and prove the corresponding conjectures for the normalized hollow
Bohemian upper Hessenberg matrices in the family Hn

0 (D) for the same finite domains
as in the previous section.
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We will rely on the sequence of d-weighted Fibonacci numbers, which are generated by
the two-term recurrence

fd
0 = 0,

fd
1 = d,

fd
n = fd

n−1 + d fd
n−2, n ∈ N \ {0, 1} .

(9)

Note that for d = 1 one obtains the sequence of Fibonacci numbers. In that case we
drop the superscript and write fn := f 1

n to indicate the term in position n in the OEIS
sequence A000045.

The next lemma shows one possible way of constructing a matrix with maximum
absolute determinant for all families of interest in this section.

Proposition 10. We have that

max
H∈Hn

0 (〈−d,d〉)
|detH| = max

H∈Hn
0 (〈−d,0〉)

|detH| = max
H∈Hn

0 (〈−d,d〉◦)
|detH| = fd

n−1, (10)

where the maximum is attained by the matrix K̂(d,n), defined by

k
(d,n)
ij =


0, i > j + 1 or i = j,

1, i = j + 1,

−d, i < j,

(11)

for which
det K̂(d,n) = (−1)nfd

n−1. (12)

Proof. First we prove (12) by induction. For the base case, it is easy to verify that that

det K̂(d,1) = 0 and det K̂(d,2) = d. For the inductive step, by subtracting the ith row from
the row above it, for i from 2 to n, we obtain

det K̂(d,n) =

∣∣∣∣∣∣∣∣∣∣∣

0 −d −d . . . −d
1 0 −d . . . −d

1
. . . . . .

...
. . . 0 −d

1 0

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

−1 −d
1 −1 −d

1
. . . . . .
. . . −1 −d

1 0

∣∣∣∣∣∣∣∣∣∣∣
.

By using the Laplace expansion by minors along the first column of the tridiagonal matrix
thus obtained, we get

det K̂(d,n) = − det K̂(d,n−1) −

∣∣∣∣∣∣∣∣∣∣∣

−d
1 −1 −d

1
. . . . . .
. . . −1 −d

1 0

∣∣∣∣∣∣∣∣∣∣∣
,
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and by expanding along the first row, we can conclude that

det K̂(d,n) = − det K̂(d,n−1) + d det K̂(d,n−2)

= (−1)nfd
n−2 + (−1)n−2d fd

n−3 = (−1)nfd
n−1.

In order to prove the optimality result in (10), we define the family of Bohemian
Hessenberg matrices Bn = {H + x ene

T
n : H ∈ Hn

0 (〈−d, d〉), x ∈ 〈−d, d〉}, and show by in-
duction that for all H ∈ Hn

0 (〈−d, d〉) and all B ∈ Bn, we have that |detH| ≤ fd
n−1 and

|detB| ≤ fd
n .

The only matrix inH1
0(〈−d, d〉) has determinant 0, and it is easy to check by exhaustion

that the absolute value of the determinant of matrices in H2
0(〈−d, d〉), B1, and B2 is at

most d. For the inductive step, let us consider the matrices

H =


0 × × . . . ×
1 0 × . . . ×

1
. . . . . .

...
. . . 0 ×

1 0

 ∈ Hn
0 (〈−d, d〉) and B =


0 × × . . . ×
1 0 × . . . ×

1
. . . . . .

...
. . . 0 ×

1 bnn

 ∈ Bn.

For the first matrix, we have that |detH| = |− detB′| for some B′ ∈ Bn−1, and by the
inductive hypothesis we can conclude that |detH| ≤ fd

n−1. For the matrix B, by observing
that detB = bnn detH ′ − detB′, for some H ′ ∈ Hn−1

0 (〈−d, d〉) and B′ ∈ Bn−1, we obtain
that

|detB| = |bnn detH ′ − detB′| ≤ |bnn||detH ′|+ |detB′| ≤ d fd
n−2 + fd

n−1 = fd
n .

We conclude that the absolute value of the determinant of matrices in the family
Hn

0 (〈−d, d〉) is bounded by fd
n−1, and observing that K̂(d,n) belongs to Hn

0 (〈−d, d〉) shows
that the bound is attained by a matrix in that family. The optimality result in (10)
follows from the fact that Hn

0 (〈−d, 0〉) and Hn
0 (〈−d, d〉◦) are subfamilies of Hn

0 (〈−d, d〉)
and that K̂(d,n) belongs to Hn

0 (〈−d, 0〉) ∩Hn
0 (〈−d, d〉◦).

For d = 1, the three equalities in (10) prove [13, Conjecture 13], [13, Conjecture 15],

and [13, Conjecture 17]. We stress that K̂(d,n) is not the only matrix H ∈ Hn
0 (〈−d, d〉)

such that |detH| = fd
n−1.

Now we can use these results to build matrices with specific determinants, but first
we need to show the counterpart of Lemma 3, Corollary 4, and Lemma 5 for d-weighted
Fibonacci numbers.

Lemma 11. For any γ ∈ 〈0, fd
n−1〉 there exist β, α0, . . . , αn−3 ∈ 〈0, d〉 such that

γ = β +
n−3∑
i=0

αif
d
i ,

where the sequence (fd
i )i∈N is defined in (9).
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Proof. The proof is by induction on n. The base cases n = 1 and n = 2 are trivially
satisfied.

For the inductive step, if γ ≤ fd
n−1, then the statement is true by the inductive hy-

pothesis. Otherwise we have that fd
n−1 < γ ≤ fd

n , which implies that γ − dfd
n−2 ≤ fd

n−1.
Therefore, there exist β′, α′0, . . . , α

′
n−3 in 〈0, d〉 such that

γ − dfd
n−2 = β′ +

n−3∑
i=0

α′if
d
i . (13)

It follows that

γ = β′ +
n−3∑
i=0

α′if
d
i + dfd

n−2 = β +
n−2∑
i=0

αif
d
i ,

where β = β′, αi = α′i for i = 0, . . . , n− 3, and αn−2 = d.

Lemma 11 can be related to a famous and perhaps surprising result for standard
Fibonacci numbers, known as Zeckendorf ’s theorem [1], which we now state.

Theorem 12. (Zeckendorf ’s theorem) Every nonzero natural number m ∈ N can be
written as the sum of one or more distinct Fibonacci numbers so that the sum does not
contain two consecutive Fibonacci numbers, i.e.,

m =
k∑
i

fci , (14)

where ci ≥ 2 and ci+1 > ci + 1. Moreover, this representation is unique.

Corollary 13. For any γ ∈ 〈−fd
n−1, f

d
n−1〉 there exist β, α0, . . . , αn−3 ∈ 〈−d, d〉 such that

γ = β +
n−3∑
i=0

αif
d
i , (15)

where the sequence (fd
i )i∈N is defined in (9).

Proof. If γ ≥ 0, then (15) follows from Lemma 11. For γ < 0, the coefficients in (15) can
be obtained by changing the sign of those in the representation of −γ in (13).

Lemma 14. If d > 1, for any γ ∈ 〈−fd
n−1, f

d
n−1〉 there exist β, α0, . . . , αn−3 ∈ 〈−d, d〉◦

such that

γ = β +
n−3∑
i=0

αif
d
i , (16)

where the sequence (fd
i )i∈N is defined in (9).

Proof. From Lemma 11, if γ ≥ 0 then there exist β′, α′0, . . . , α
′
n−3 in 〈0, d〉 such that

γ = β′ +
n−3∑
i=0

α′if
d
i . (17)
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Algorithm 2: Convert representation coefficients from 〈0, d〉 to 〈−d, d〉◦.
Input: β′, α′0, . . . , α

′
n−3 ∈ 〈0, d〉 that satisfy (17).

Output: β, α0, . . . , αn−3 ∈ 〈−d, d〉◦ that satisfy (16).
(β, α0, . . . , αn−3)← (β′, α′0, . . . , α

′
n−3);

for i = n− 3 down to 3 do
if αi = 0 or αi = −d− 1 then

(αi−2, αi−1, αi)← (αi−2 − d, αi−1 − 1, αi + 1);

if α2 = 0 or α2 = −d− 1 then
(α1, α2)← (α1 − 1, α2 + 1);

if α1 = 0 or α1 = −d− 1 then
(β, α1)← (β − d, α1 + 1);

if β = 0 then
if α1 6= 1 and α1 6= −d then

(β, α1)← (d, α1 − 1);
else

(β, α1)← (−d, α1 + 1);

The pseudocode in Algorithm 2 shows that the coefficients in the representation (16) can
be computed from those of (17). The case γ < 0 is analogous, it suffices to consider the
representation in (17) for −γ and change the sign of the coefficients thus obtained.

We need one last technical lemma. In Proposition 7, we use a result by Ching [4] to
count the number of nonzero terms in the determinant expression of a Hessenberg matrix.
Lemma 15 achieves the same goal for matrices in Hn

0 (D).

Lemma 15. Let H ∈ Hn
0 (D), let pn(h12, . . . , h(n−1)n) be the determinant of H seen as a

polynomial in the n(n− 1)/2 variables h12, . . . , h(n−1)n, and let aj denote a monomial of
pn. Then

pn(h12, . . . , h(n−1)n) = (−1)n
fn−1∑
j=0

(−1)deg ajaj, (18)

where fn is the nth Fibonacci number and deg aj is the total degree of the monomial aj.

Proof. We will prove this claim by induction on the matrix

H =


0 h12 h13 . . . h1n
1 0 h23 h2n

1
. . . . . .

...
. . . 0 h(n−1)n

1 0

 .
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The claim is true for the base cases n = 1, n = 2, and n = 3, since p1(0) = 0,

p2(h12) = −h12 = (−1)2 · (−1) · h12,

and
p3(h12, h13, h23) = h13 = (−1)3 · (−1) · h13.

Then, by using the Laplace expansion twice, we get

detHn = −h12

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h34 h35 h36 . . . h3n
1 0 h45 h46 . . . h4n

1 0 h56 . . . h5n

1
. . . . . .

...
. . . 0 h(n−1)n

1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 h13 h14 h15 . . . h1n
1 0 0 0 . . . 0

1 0 h45 . . . h4n
. . . . . . . . .

...
1 0 h(n−1)n

1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which reads, using the inductive hypothesis,

pn(h12, . . . , h(n−1)n) = −h12pn−2(h34, . . . , h(n−1)n)− pn−1(h13, . . . , h(n−1)n)

= h12(−1)n−1
fn−3∑
k=0

(−1)deg âk âk + (−1)n
fn−2∑
j=0

(−1)deg ajaj

= (−1)n
fn−3∑
k=0

(−1)deg akak + (−1)n
fn−2∑
j=0

(−1)deg ajaj,

where h12 âk = ak. This proves the claim about the sign of the monomials.
For the number of terms in the formula, note that the total number of monomials

in pn(h12, . . . , h(n−1)n) cannot exceed fn−2 + fn−3 = fn−1, but could be smaller as some
monomials might cancel out. However, these cancellations cannot occur, because every
monomial in pn−2(h34, . . . , h(n−1)n) contains one coefficient among h34, h35, . . . , h3n that
does not appear in pn−1(h13, . . . , h(n−1)n). This concludes the proof.
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Proposition 16. If d > 1, then the set of possible determinants of matrices in the family
Hn

0 (〈−d, d〉◦) is 〈−fd
n−1, f

d
n−1〉, where fd

n is the nth d-weighted Fibonacci number as defined
in (9).

Proof. In this case we show how to construct a matrix H ∈ Hn
0 (〈−d, d〉◦) such that

detH = k for any k ∈ 〈−fd
n−1, f

d
n−1〉. Let

H =


b
a0
...

K̂(d,n−1)

an−3
0 . . . 1 0,

 ,

where K̂(d,n−1) is defined in (11). By Lemma 1 and Proposition 10, it follows that

detH = (−1)n+1b+
n−3∑
i=0

(−1)n+iai det K̂(d,i+1)

= b̃+
n−3∑
i=0

ãif
d
i ,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n − 3. Since b, a0, . . . , an−3 ∈
〈−d, d〉◦, by Lemma 14 we can conclude that the last column of H can be chosen so that
detH = k for any k ∈ 〈−fd

n−1, f
d
n−1〉.

Proposition 17. The set of possible determinants of matrices in the family Hn
0 (〈−1, 1〉◦)

is
{−fn−1,−fn−1 + 2,−fn−1 + 4, . . . , fn−1 − 4, fn−1 − 2, fn−1},

where fn is the nth Fibonacci number as defined in (9).

Proof. By Lemma 15, there are only fn−1 possibly nonzero terms in the determinant ex-
pression of a n×n Hessenberg matrix with a zero diagonal. If a matrix is in Hn

0 (〈−1, 1〉◦),
then each of these fn−1 monomials evaluates to either +1 or −1, which implies that the
determinant of any such matrices must have the same parity as fn−1. Now we explain
how to build a matrix H ∈ Hn

0 (〈−1, 1〉◦) such that detH = fn−1 − 2k for k ∈ 〈0, fn−1〉.
Let

H =


b
a0
...

K̂(1,n−1)

an−3
0 . . . 1 0,

 ,
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where K̂(1,n−1) is defined in (11). By Lemma 1 and Proposition 10, we have that

detH = (−1)n+1b+
n−3∑
i=0

(−1)n+iai det K̂(1,i+1)

= b̃+
n−3∑
i=0

ãifi,

where b̃ = (−1)n+1b and ãi = (−1)n+1ai, for i = 0, . . . , n − 3. By Lemma 11 we can

choose b̃ and ãi in {0, 1} so that b̃+
∑n−3

i=0 ãifi = k for k ∈ 〈0, fn−1〉. If we then substitute
the coefficients that are zeros with −1, then the last column is such that

detH = b̃+
n−3∑
i=0

ãifi = fn−1 − 2k,

which concludes the proof.

Proposition 18. For any d ∈ N, the set of possible determinants of matrices in the
family Hn

0 (〈−d, d〉) is 〈−fd
n−1, f

d
n−1〉, where fn is the nth Fibonacci number as defined in

(9).

Proof. The proof is analogous to that of Proposition 16: it suffices to use Corollary 13 in
lieu of Lemma 14.

Proposition 19. For any d ∈ N, the set of possible determinants of matrices in the
family Hn

0 (〈−d, 0〉) is (−1)n · 〈0, fd
n−1〉, where fn is the nth Fibonacci number as defined

in (9).

Proof. This proof follows the lines of the proof of Proposition 16. Note thatHn
0 (〈−d, 0〉) ⊂

Hn
0 (〈−d, d〉), and that since K̂(d,n−1) ∈ Hn

0 (〈−d, 0〉), the matrix H in (8) is in Hn
0 (〈−d, 0〉)

if b, a0, . . . , an−3 ∈ 〈−d, 0〉. Combining Lemma 1 and Proposition 10, in this case gives

detH = (−1)n+1b+
n−3∑
i=0

(−1)n+iai det K̂(d,i+1)

= (−1)n
(
b̃+

n−3∑
i=0

ãif
d
i

)
,

where b̃ = −b and ãi = −ai, for i = 0, . . . , n − 3. Since b̃, ã0, . . . , ãn−2 ∈ 〈0, d〉,
by Lemma 11 we can choose the last column of H so that detH = (−1)n · k for all
k ∈ 〈0, fd

n−1〉.

Propositions 19, 18, and 17 show [13, Conjecture 12], [13, Conjecture 14], and [13,
Conjecture 16], respectively. For d = 1, these results show that the number of distinct
determinants of normalized hollow Bohemian upper Hessenberg matrices of size n with
entries from the sets 〈−1, 0〉 and 〈−1, 1〉◦ is given by the nth element of the OEIS sequence
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A001611. For the family of matrices with elements drawn from 〈−1, 1〉, an analogous
result holds for the OEIS sequence A001588.

5. Future developments. In the previous sections, we generalized all conjectures
in [13] dealing with upper Hessenberg matrices, except [13, Conjecture 8] and [13, Con-
jecture 9]. The latter has so far resisted our efforts, and will be the subject of future
investigation. In this section, we show that the former is true and state a generalization
we were unable to prove. We will make use of the numbers defined by the recursion

gd1 = d,

gd2 = d2,

gdn = dgdn−1 + gdn−2, n ∈ N \ {0, 1, 2}.
(19)

The sequence in (19) is a generalization of Fibonacci numbers which grows significantly
faster than that in (9).

Conjecture 20. We have that

max
H∈Hn(〈0,d〉)

|detH| = detL(d,n) = gdn, (20)

where gn is defined in (19) and

`
(d,n)
ij =


0, i > j + 1 or i < j and i+ j is odd,

1, i = j + 1,

d, i ≤ j and i+ j is even.

(21)

Evidence of this is the fact that the entries in the upper triangular part of a matrix
with largest absolute determinant must be either 0 or d. This can be easily seen by noting
that the determinant is just the signed sum of the product of entries of L(d,n). The proof
for d = 1 is a special case of [4, Theorem 1]. In the following we supply a proof for the
case d = 2.

Proof of Conjecture 20 for d = 2. The second equality in (20) can be proven easily by

induction, by expanding along the last row of L(2,n) and noting that `
(2,n)
nn = d. The first

equality can also be proven by induction. It is straightforward to check that the result
holds for n = 1, 2, and 3. For n ≥ 4, let H ∈ Hn(〈0, 2〉). By expanding along the first
column of H we have

detH = h11

∣∣∣∣∣∣∣∣∣
h22 h23 . . . h2n
1 h33 . . . h3n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
h12 h13 . . . h1n
1 h33 . . . h3n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣ .
If h11 6= 2 or h12 = 0, then |detH| ≤ 2g2n−1 + g2n−2 = g2n, and the proof is completed.
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Otherwise we can expand along the first column of the two resulting matrices, to obtain

detH = (2h22− h12)

∣∣∣∣∣∣∣∣∣
h33 h34 . . . h3n
1 h44 . . . h4n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣− 2

∣∣∣∣∣∣∣∣∣
h23 h24 . . . h2n
1 h44 . . . h4n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
h13 h14 . . . h1n
1 h44 . . . h4n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣ . (22)

If h13 = 0, then |detH| ≤ 5g2n−2 + g2n−3 < g2n, which as above would conclude the proof.
Otherwise, the last two determinants can be rewritten, by expanding along the last row
and collecting like terms, as

(h13 − 2h23)

∣∣∣∣∣∣∣∣∣
h44 h45 . . . h4n
1 h55 . . . h5n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣+ 2

∣∣∣∣∣∣∣∣∣
h24 h25 . . . h2n
1 h55 . . . h5n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣∣
h14 h15 . . . h1n
1 h55 . . . h5n

. . . . . .
...

1 hnn

∣∣∣∣∣∣∣∣∣ , (23)

and substituting (23) into (22) yields

|detH| ≤ |2h22 − h12| g2n−2 + |h13 − 2h23| g2n−3 + 3g2n−3 ≤ 3g2n−2 + 6g2n−3 < g2n,

which concludes the proof.
This proof does not generalize to d > 2, but shows that [13, Conjecture 8] is true, since

the maximum absolute determinant of matrices in Hn
0 (〈0, 2〉) is the nth element of the

OEIS sequence A052542.
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