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Abstract—We explore the floating-point arithmetic used by the
NVIDIA Volta tensor cores, which are hardware accelerators
for mixed-precision matrix multiplication. We investigate what
precision is used for intermediate results, whether subnormal
numbers are supported, what rounding mode is used, in which
order the operations in the dot products arising in the matrix
multiplication are performed, and whether partial sums are
normalized. These aspects are not documented by NVIDIA, and
we gain insight by running carefully designed numerical exper-
iments on these hardware accelerators. Knowing the answers to
these questions is important if one wishes to: 1) build hardware
that computes a matrix-matrix product matching the results of
NVIDIA tensor cores; 2) achieve bit-reproducible results when
designing on conventional hardware with IEEE 754 floating-
point arithmetic code meant to run on NVIDIA tensor cores;
and 3) understand the differences between results produced by
code that utilizes tensor cores and code that uses only IEEE 754-
compliant arithmetic operations. As an additional result, we point
out a non-monotonicity issue that arises in floating-point multi-
operand addition without the normalization of the intermediate
results.

Index Terms—NVIDIA V100 GPU, tensor core, dot product,
matrix multiply-accumulate, rounding, floating-point arithmetic,
half precision, binary16, fp16, IEEE 754 arithmetic

I. INTRODUCTION

Ninety-four of the supercomputers in the November 2019
TOP500 list1 are equipped with NVIDIA GPUs featuring Volta
chips. A prominent feature of the Volta microarchitecture
are the tensor cores, specialized hardware accelerators for
performing the matrix multiply-accumulate operation

D = AB + C, (1)

where A, B, C, and D are 4 × 4 matrices. The entries of A
and B must be in binary16 format, whereas those of C and D
can be either binary16 or binary32 floating-point numbers
depending on the accumulation mode. The element dij can
be seen as the sum of cij and the dot product between the ith
row of A and the jth column of B, so that, for instance

d11 = a11b11 + a12b21 + a13b31 + a14b41 + c11. (2)

Unfortunately, NVIDIA provides very little information
about the numerical features of these units, and many questions
naturally arise. The white paper that describes the Volta
microarchitecture [1, p. 15] states that2

Tensor Cores operate on FP16 input data with FP32
accumulation. The FP16 multiply results in a full precision

1https://www.top500.org/lists/2019/11
2The IEEE 754 [2] formats binary16 and binary32 are sometimes referred

to as fp16 (or FP16) and fp32 (or FP32), respectively.

TABLE I
PROCESSING UNITS EQUIPPED WITH MIXED-PRECISION MATRIX

MULTIPLY-ACCUMULATE ACCELERATORS.

matrix dimensions input acc.

(’16) Google TPU v2 128× 128× 128 bfloat16 binary32 [4]
(’17) Google TPU v3 128× 128× 128 bfloat16 binary32 [4]
(’17) NVIDIA V100 4× 4× 4 binary16 binary32 [1]
(’18) NVIDIA T4 4× 4× 4 binary16 binary32 [5]
(’19) ARMv8.6-A arch. 2× 4× 2 bfloat16 binary32 [6]

product that is then accumulated using FP32 addition with
the other intermediate products for a 4 × 4 × 4 matrix
multiply.

The official documentation [3] adds only a few more details:
Element-wise multiplication of matrix A and B is per-
formed with at least single precision. When .ctype or
.dtype is .f32, accumulation of the intermediate values
is performed with at least single precision. When both
.ctype and .dtype are specified as .f16, the accumulation is
performed with at least half precision. The accumulation
order, rounding and handling of subnormal inputs is
unspecified.

From a numerical point of view, many essential aspects of
tensor cores are not specified. This makes building hard-
ware that can match the numerical results of tensor cores
challenging, renders bit reproducibility between conventional
IEEE 754-compliant systems and tensor cores hard to achieve,
and can lead to unexpected differences between the results
computed on NVIDIA devices with tensor cores enabled
or disabled. The IEEE 754 standard provides a somewhat
relaxed set of requirements for reduction operations such as
multi-operand addition and dot product [2, Sec. 9.4], since
it does not prescribe the order in which the partial sums
should be evaluated and allows the use of a higher-precision
internal format. In particular, the standard does not specify:
1) whether this internal format should be normalized, as it
would be if the multi-operand addition were implemented
using IEEE 754 elementary arithmetic operations, 2) which
rounding mode should be used, and 3) when the rounding
should happen. These loose requirements can potentially cause
the results computed with a given multi-operand addition unit
to be significantly different from those obtained using other
hardware implementations or a software implementation based
on IEEE 754-compliant elementary arithmetic operations.

With matrix multiplication being ubiquitous in artificial
intelligence, accelerators for mixed-precision matrix multiply-



accumulate operations are becoming widely available, as
Table I shows. Hardware vendors often design these units
focusing on performance rather than numerical reliability,
and this may lead to the implementation of unconventional,
non-IEEE-compliant arithmetics. Some of the hardware units
in Table I, for instance, use bfloat16, a 16-bit format with
an 8-bit significand (including the implicit bit) and an 8-bit
exponent [7] which does not support subnormals. In order to
better understand the differences between the results computed
using different systems, it is necessary to develop techniques
to probe the numerical features of these units. This is not much
different from the situation with single and double precision
before the wide adoption of the IEEE 754-1985 standard.

Using idiosyncrasies of floating-point arithmetic, we design
tests to better understand the numerical behavior of tensor
cores. Our aim is to clarify the following points.

• Are subnormal inputs supported or are they flushed to
zero? Can tensor cores produce subnormal numbers?

• Are the multiplications in (2) exact and the additions per-
formed in binary32 arithmetic, resulting in four rounding
errors for each element of D? In what order are the four
additions in (2) performed?

• What rounding mode is used in (2)?
• Where is floating-point normalization done in tensor

cores and what rounding mode is used?
The results discussed here were produced by running our

test suite3 on an NVIDIA Tesla V100 SXM2 16GB (Volta
microarchitecture) graphic card. We stress, however, that the
ideas in Section III are very general, and can be exploited to
understand the numerical features of any hardware accelerator
based on operations of the form (2). Finally, it is worth noting
that binary16 arithmetic in NVIDIA CUDA cores is not fully
IEEE 754 compliant, as round-to-nearest is the only rounding
mode implemented for elementary arithmetic operations [8].

II. PREVIOUS WORK

Despite being purpose-built to accelerate training of deep
neural networks [1, p. 12] tensor cores have found applications
in traditional high-performance scientific computing. Markidis
et al. [9] discuss various aspects of tensor cores and propose a
technique, called precision refinement, to enhance the accuracy
of mixed-precision matrix multiplication. Tensor cores have
also been used to accelerate the solution of linear systems
using mixed-precision iterative refinement [10], [11].

From a hardware perspective, instruction-level details, reg-
ister configuration, and memory layout of the tensor cores in
the NVIDIA Volta [12], [13] and Turing [13], [14] GPUs have
been extensively described. Another study [15] explores the
reliability of tensor cores in terms of reducing the hardware
error rate of the matrix multiplications. The main finding
is that low-precision operations and usage of tensor cores
increases the amount of correct data produced by the GPU.
In order to quantify the accuracy of tensor cores, Blanchard et
al. [16] provide a rounding error analysis of what they call

3Available at https://github.com/mfasi/tensor-cores-numerical-behavior.

a block FMA, a generalization of the multiply-accumulate
operation in (1) in which the precisions of the arguments
and the internal precision of the accumulator are taken as
parameters.

None of the these sources, however, examines whether
tensor cores conform to the IEEE 754 standard or investigates
how tensor cores compare with a matrix multiply-accumulate
operation based on dot products implemented in software. Our
work complement the results therein and supplies details on
the numerical behavior of these hardware accelerators that are
now quickly gaining popularity.

III. EXPERIMENTS

Tensor cores can be accessed using the cuBLAS library, or
the native hardware assembly instructions HMMA.884 [12],
[14] and HMMA.1688 [13], [14]. In our experiments, we
opted for the warp-level C++ function wmma::mma_sync(),
which performs a 16 × 16 × 16 matrix multiply-accumulate
operation. This is the lowest level interface to access the tensor
cores in the NVIDIA CUDA programming environment. In
order to use only a single tensor core, we set all but the top
left 4× 4 blocks to 0. We ensure that our experiments do use
the tensor cores by running our test suite with the NVIDIA
profiler nvprof.

A. Support for subnormal numbers

We start by investigating the support for subnormal num-
bers, as this knowledge will dictate what range of input values
we are allowed to use in further tests.

TABLE II
PROPERTIES OF BINARY16 AND BINARY32 FLOATING-POINT FORMATS.

Property binary32 binary16

p (bits in the significand) 24 11
ε 2−23 2−10

emax 127 15
emin −126 −14
Min. positive normal 2−126 2−14

Min. positive subnormal 2−126 × 2−23 2−14 × 2−10

Table II shows the precision p (number of bits in the
significand, including the implicit bit), the machine epsilon
ε = 21−p, the exponent range [emin, emax], and the min-
imum normal and subnormal values for the two floating-
point formats supported by tensor cores. Based on the table
we highlight two points. First, conversion from binary16 to
binary32 does not result in subnormal numbers. Second, the
product of two binary16 numbers requires at most 22 bits for
the significand, 6 bits for the exponent and one for the sign,
and thus can be represented exactly in binary32 format. In
terms of tensor cores, there are multiple questions regarding
the support of subnormal numbers.

1) Can tensor cores take binary16 subnormal numbers as
inputs for A and B in (2) without flushing them to zero,
use them in computation, and return binary16 or binary32
normal or subnormal answers?

https://github.com/mfasi/tensor-cores-numerical-behavior


2) Can tensor cores take binary32 subnormal numbers as
inputs for C in (2) without flushing them to zero, use
them in computation, and return subnormal binary32
answers?

3) Can tensor cores compute subnormal numbers from nor-
mal numbers and return them?

The first question can easily be answered by setting in (2)
a11 = 2−24, b11 = 22 (arbitrarily chosen), and the other
elements to zero. Tensor cores return the subnormal result
a11b11 = 2−22 in both binary16 and binary32 mode.

To clarify the second point, a similar idea can be used:
setting c11 to the smallest positive binary32 subnormal 2−149

and A and B to zero matrix, yields d11 = 2−149, which tells us
that the subnormal c11 is not altered by the dot product in (2).
We note, however, that the need for binary32 subnormals is
questionable. The absolute value of the smallest nonzero value
that can be produced from the multiplications of two binary16
numbers is 2−48, thus c11 would simply be rounded off if it
were a binary32 subnormal: in binary32 arithmetic with round-
to-nearest 2−48 + x > 2−48 only if x > 2−48 × 2−24 = 2−72,
which is normal in binary32 format.

For the third point, we can obtain subnormal numbers as
outputs in a few ways. For instance, we can set a11 to 2−14,
the smallest normal number in binary16, and b11 to 2−1, and
confirm that tensor cores return the binary16 subnormal 2−15

both in binary16 and binary32 modes. Another possibility is
to set a11 = 2−14, b11 = 1, c11 = −2−15, which produces
the subnormal binary16 number d11 = 2−15. As mentioned
above, it is not possible to obtain subnormal binary32 number
from binary16 inputs in (2). In summary, these experiments
demonstrate that there is full support for subnormal inputs in
tensor cores.

One might wonder whether tensor cores natively support
subnormals or some degree of software interaction is present.
The NVIDIA profiler confirms that the experiments discussed
in this section make use of the tensor cores, but we imple-
mented an additional test to further reinforce the evidence
that subnormals are supported in hardware. In Section III-C
we show that tensor cores use round-toward-zero. We can use
the fact that CUDA cores provide only round-to-nearest for
binary16 computations to show that subnormals are in fact
manipulated with tensor cores. The test is to set a11 and a12
to 1, b11 to the binary16 subnormal 2−23+2−24, b21 to 2 and
the other elements of A and B to 0. Since the addition in (2)
is done in binary32 arithmetic, the smallest value that can be
exactly added to b21 = 2 is 2−22. Since b11 = 2−23 + 2−24

is below this value and is 3/4 of 2−22, it will be either lost
(round-toward-zero) or rounded up due to round-to-nearest if
the summation is done in software to support subnormals. We
found that the sum returned 2, which means b11 was rounded
down—further indication that subnormals are supported in
tensor cores.

B. Accuracy of the dot products

Our second goal is to test the accuracy of the dot prod-
uct (2) with tensor cores. The first step is to check that

the multiplications of binary16 values are computed exactly,
which implies that the products must be kept in some wider
intermediate format and accumulated without being rounded
back to binary16. Specifically we want to test that a11b11 and
the other products are exact. This can be achieved by ensuring
that the four multiplications produce floating-point numbers
that are not representable in binary16 and checking that these
are preserved and returned as binary32 entries of D.

In order to demonstrate this, we set the first row
of A and the first column of B to 1 − 2−11 and
c11 = 0. Each of the partial products evaluates exactly
to (1− 2−11)× (1− 2−11) = 1− 2−10 + 2−22 which, if the
products were stored in binary16 precision, would be rounded
to 1 − 2−10 or 1 − 2−11, depending on the rounding
mode. As tensor cores produce the exact binary32 answer
d11 = 4× (1− 2−10 + 2−22), we conclude that partial prod-
ucts are held exactly.

Another question is whether the precision of the 5-term
addition in (2) changes in any way when binary16 is used for
C and D in (1). The test is to set a11 = b11 = a12 = 1−2−11,
b21 = 2−11, and the remaining elements to 0. In this test, the
first product is as before a11b11 = 1−2−10+2−22 and requires
precision higher than binary16 to be represented, whereas the
second evaluates to a12b21 = 2−11 − 2−22. The sum of these
two products is a11b11 + a12b21 = 1− 2−10 + 2−11, which is
representable in binary16 but could not be calculated exactly
by binary16 accumulator, since the first product requires
higher precision. Indeed we found that tensor cores output
the exact value, confirming that the partial products are still
held exactly even when C and D are in binary16 format.

A third question concerns the number of rounding errors in
the 5-term addition of the partial products. The dot product
in (2) contains 4 additions: 3 additions sum the exact partial
products and a fourth adds the binary32 argument c11. Our
expectation is that the additions are done in binary32 rather
than exactly, as indicated by [1], [3]. In order to confirm this,
we can set the first row of A to 1, thereby reducing (2) to

d11 = b11 + b21 + b31 + b41 + c11, (3)

and then run 5 different cases with one of the addends in (3)
set to 1 and the rest set to 2−24. In this test, an exact addition
would return 1 + 2−22, whereas inexact arithmetic would
cause 4 round-off errors when adding 2−24 to 1, causing the
number 1 to be returned. All permutations return d11 = 1,
leading to the following conclusions.

• In the worst case each element of D includes four
rounding errors, which conforms to the block FMA model
used in [16, Sec 2.1].

• The partial products in (2) are not accumulated in
a fixed order, but always starting from the value of
largest magnitude. This sorting is necessary in order to
know which arguments require to be shifted right in the
significand alignment step of a standard floating-point
addition algorithm [17, Sec. 7.3], [18], and is most likely
done in hardware. This is in line with the literature
on hardware dot products [19], [20], [21], [22], where



either sorting or a search for the maximum exponent
is performed. Furthermore, this experiment demonstrates
that none of the additions is performed in parallel with the
first addition to the largest magnitude value: if evaluated
before being shifted right, any other sum would return
2−24 + 2−24 = 2−23, a value that then could be added
exactly to the total sum.

In summary, each entry of D in (1) can have up to four
rounding errors and the 5-term additions to compute each
element are performed starting from the largest summand in
absolute value.

C. Rounding modes in tensor core computations

If binary32 mode is used, only the four additions in (2)
can be subject to rounding errors. The IEEE 754 standard
defines four rounding modes [2, Sec. 4.3], round-to-nearest,
round-toward-zero, round-down, and round-up. In this section
we use the notation defined in [17, Sec. 2.2.1] and denote the
corresponding rounding operators by RN, RZ, RD, and RU,
respectively.

As round-to-nearest is the default rounding direction in the
IEEE 754 standard, we start by testing whether this is the
rounding mode used by tensor cores. This can be verified
by setting any two partial products to values that would be
rounded up only if round-to-nearest or round-up were used.
If the result has not been rounded up, then we will know that
round-to-nearest (or round-up) is not implemented and that it
instead is either round-toward-zero or round-down (Figure 1a).
One such test is to set in (3) b11 = 2, b21 = 2−23+2−24, and
the remaining entries in the first column of B to 0. Note that
in binary32 arithmetic RN(2+x) > 2 if x > 2×2−24 = 2−23,
whereas the smallest positive y such that RZ(2 + y) > 2 is
2 × 2−23 = 2−22. The choice b21 = 3

4 × 2−22 is such that
x < b21 < y, thus RN(b11+b21) = RU(b11+b21) = 2+2−22

while RZ(b11 + b21) = RD(b11 + b21) = 2. Running this
experiment on tensor cores returns c11 = 2, suggesting that
either round-to-zero or round-down is used for the additions
in (2).

We can discriminate between these two rounding modes
by repeating the same experiment on the negative semiaxis
(Figure 1b), by changing the sign of the nonzero elements
in B. This experiment produces c11 = −2, and assuming that
the rounding mode does not depend on the input, we conclude
that the additions in (2) are performed in round-toward-zero.
We note that this rounding mode is known to be the cheapest
option to implement [23, Sec. 6.1] and is usually chosen for
that reason.

In binary16 mode, the result computed in the 5-term adder’s
internal accumulator’s format has to be rounded to binary16.
To test the rounding mode of this operation, we set a11 =
a12 = 2−24, b11 = 2−1, b21 = 2−2, and the rest of elements
of A and B as well as c11 to 0. The exact result of the dot
product in this case is 2−25+2−26, which is not representable
in binary16, and therefore will cause rounding error in the
result. Note that 2−25+2−26 = 3

4×2
−24, therefore RN(2−25+

2−26) = 2−24 while RZ(2−25+2−26) = RD(2−25+2−26) =

a) 0 xRZ / RD RN / RU

b) 0xRN / RD RZ / RU

c) 0 xRN / RZ / RD RU

d) 0xRD RN / RZ / RU

Fig. 1. Demonstration of the possible IEEE 754 rounding modes for different
positions of the exact value x. The solid markers illustrate two adjacent
floating-point values and the dashed marker the half-way point between them.
The dashed arrows near x show in which direction various rounding modes
would round it.

0. The fact that tensor cores return 2−24 confirms that round-
to-nearest is used, thereby suggesting that this conversion is
performed in software rather than hardware.

D. Features of the accumulator

We now discuss our tests that disclose various features of
the internal accumulator of the 5-term adder calculating (2).
Note that the quotes from NVIDIA that we have provided in
Section I indicate that the internal accumulation is done in
binary32 format—however, here we show that the format has
more precision and that no normalization of partial sums is
performed.

1) Extra bits in the significand alignment: In order to com-
pute the sum of two floating-point values, the floating-point
adder matches the exponents of the two summands by shifting
the significand of the number that has the smaller exponent to
the right. In general this operation causes loss of information,
as the least significant bits of the shifted significand are
typically discarded, but it is customary to retain a few of these
digits to guard the computation against numerical cancellation
and to obtain faithful rounding in round-to-nearest, round-
up, and round-down. As tensor cores use truncation in the
additions, we know that they do not require any such guard
digits for rounding, and we can easily show that in fact they
do not implement guard digits at all. If in (3) we set b11 = 1
and c11 = −1 + 2−24, tensor cores return d11 = 2−23, which
represents a relative error of (2−23 − 2−24)/2−24 = 1.

2) Normalization in addition: When two floating-point val-
ues are added, the significand of the result may become larger
than 2, in which case a normalization step is required (shift
the significand right by one place and increase the exponent
by one) [17, Sec. 7.3]. On an IEEE 754-compliant system,
the result of each partial sum in (2) would be normalized, as
floating-point adders always normalize the result in order to
produce a normalized floating-point number. But tensor cores
are not IEEE-compliant, and it is natural to ask whether the



each partial result in (2) is normalized or only the final answer
is. We can verify this by adding values chosen so to produce
different results with and without normalization of the partial
sums. In (3) we set c11 = 1 − 2−24 and the elements of the
first column of B to 2−24.

Recalling that the values are accumulated on the summand
of largest magnitude, we start by examining what would
happen if each partial result were normalized. The exact value
of the partial sum s := c11+2−24 is 1, and the normalization
step would shift the significand by one bit to the right. At
this point the three remaining addends would be smaller than
the least significant bit of the partial sum, thus adding it to
s would have no effect in round-to-zero. If the partial results
were not normalized, on the other hand, the partial sum of
c11 + 2−24 would be held with one extra bit and therefore
the rest of the addends could be added into it. Running this
test on tensor cores shows that only the final result of the dot
product is normalized. This has probably been done in order
to simplify the implementation, a choice that has also been
made for example in the hardware accelerator for performing
vector inner product described in [21].

3) Normalization in subtraction: As the products in (2) can
be positive as well as negative, some of the partial sums can
in fact be subtractions. The significand of the difference of
two-floating point numbers may be smaller than 1, in which
case the result has to be normalized by shifting the significand
left and decreasing the exponents accordingly until the result
becomes normalized. We can show that tensor cores do not
perform this kind of normalization as follows. If in (3) we set
c11 = −1+2−24, and two of the elements of the first column
of B to 1 and −2−24, we will have that d11 evaluates to 0 if the
partial sums are normalized. Instead, running this experiment
on tensor cores yields d11 = 2−23, which can be explained
as follows. When the sum is evaluated as (1 + c11) − 2−24,
then the lack of guard digit implies that 1 + c11 evaluates
to 2−23, and if the partial results were normalized the tensor
cores would return 223−224, which can be represented exactly
in binary32 format’s precision. If, on the other hand, the sum
were evaluated as (−2−24+1)+c11, the first sum would return
1 due to the lack of guard digit, and the lack of normalization
would not have any effect in this case. Therefore we can
assume that the result of the subtraction is not normalized
only if we assume that the summands in (3) are accumulated
on the largest in magnitude in a fixed order.

4) Extra bits for carry out: Another question concerns extra
bits required due to lack of normalization. If only the final
result is normalized, then accumulating k addends requires
dlog2 ke bits for the carry-out bits, and the hardware for
accumulating the 5 values in (2) would internally require
dlog2 5e = 3 extra carry-out bits at the top of the significand.
We can prove that the 5-term adder’s accumulator in tensor
cores has at least two extra bits as follows. In (3) we take
c11 = 1 + 2−22 + 2−23, which sets the two least significant
bits of the significand to 1, and assign to the first column of B
a permutation of the values 1, 1, 1, and 2−23. All four possible
permutations of assigning the elements of the first column of

B should be run, assuming that the addends apart from the
largest in magnitude are not sorted. The main idea is to show
that when 1 is accumulated three times into c11 the last two bits
of c11 are not dropped as they would be in IEEE 754 floating-
point arithmetic, due to the sum becoming larger than 4 and
requiring to be shifted right by two positions. Then, when 2−23

is added into it at the end, the carry propagates into the third
bottom bit and therefore is not lost in the final normalization
step. If there are 2 extra bits, then all 4 combinations of
ordering the first column of B would return the precise results
of 4 + 2−21. Running these tests on tensor cores, we found
that all four combinations returned the exact result of this test
case, therefore proving that there are at least 2 extra bits in
the internal accumulator’s significand.

It worth to note at this point that if 1) there is no normal-
ization, 2) the additions in (2) start with the largest value in
magnitude, and 3) all of the significands of the addends are
shifted right relative to the exponent of the largest value in
magnitude, then the order of the rest of the addends will not
impact the final result.

In the test case above, replacing one of the 2−23 by 1, we
can also confirm using the methods developed in Section III-C.
that the rounding mode in the final normalization step (internal
accumulator conversion to binary32 answer) is round-toward-
zero.

5) Monotonicity of dot product: The observation in sec-
tion III-D2 raises one final question regarding the monotonic-
ity of the sums in (2). The accumulation is monotonic if in
floating-point arithmetic the sum x1 + · · · + xn is no larger
than y1 + · · ·+ yn when xi ≤ yi for all 1 ≤ i ≤ n.

We can show that the lack of normalization causes the
dot product in tensor cores and most likely any other similar
architectures without the normalization of partial sums [19],
[20], [21], [22] to behave non-monotonically by setting in (3)
all the elements in the first column of B to 2−24 and then
c11 to 1 − 2−24 and 1 in turn. When c11 = 1 − 2−24, the
difference in exponents guarantees that the values in B are
large enough to be added to c11. This causes the result to
become larger than 1, requiring a normalization that returns
1 − 2−24 + 3 × 2−24 = 1 + 2−23. On the other hand, when
c11 = 1, none of the summands in (3) is large enough
be added to c11, as the elements in the first column of B
are all zeroed out during the significand alignment step of
each addition. This happens because the exponent of 1 is
larger than that of 1 − 2−24. In summary, the following two
calculations demonstrate that tensor cores can produce non-
monotonic behaviour:

d11 = c11 + 2−24 + 2−24 + 2−24 + 2−24 = 1 + 2−23,

when c11 = 1− 2−24,

d11 = c11 + 2−24 + 2−24 + 2−24 + 2−24 = 1,

when c11 = 1.

IV. CONCLUSION

In summary, our experiments indicate that the tensor cores
in the NVIDIA V100 architecture have the following numer-



ical features.
• Subnormal numbers in binary16 and binary32 are sup-

ported.
• The binary16 products in (2) are computed exactly, and

the results kept in full precision and not rounded to
binary16 after the multiplication.

• The five summands in (2) are accumulated starting with
the largest in absolute value.

• The additions in (2) are performed using binary32 arith-
metic with round-toward-zero.

• Only the final result of (2) is normalized; the partial sums
are not, but the accumulator uses two extra bits for carries.

• The dot products in a tensor core are non-monotonic:
in some cases, increasing the magnitude of the inputs
to (2) reduces the magnitude of the final result when the
summands in (2) are all nonnegative or all nonpositive.

Some of these findings confirm and clarify what was reported
by NVIDIA and some had not previously been reported.

The test suite that we have developed as part of this work
can be used to test various properties of the floating-point
arithmetic of future versions of tensor cores as well as similar
accelerators. We aim to keep extending our test suite by adding
new test cases for standard non-mixed-precision binary32 or
binary64 dot product or matrix multiply units, as well as for
integer arithmetic. The new NVIDIA Turing tensor cores, for
instance, added support for 4- and 8-bit integer modes [5],
and rounding issues become relevant when these are used to
implement fixed-point arithmetic.
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