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1 Introduction

Here is yet another “non-commutative geometry”. It can be described briefly
as follows: take a commutative noetherian ring R (e.g. the coordinate ring
of an affine variety); describe Spec(R) in terms of the category, Mod-R, of
representations of R; now use the same description with any small pre-additive
category A in place of R. The result is a topological space (with points the
“primes” of A) with associated presheaf (of “localisations” of A).

We may, in particular, apply this definition with mod-R (the category of
finitely presented right R-modules) in place of R to obtain a non-commutative
geometry associated with R. Admittedly this has moved us one ‘representation-
level’ up since it is rather the spectrum of mod-R than of R. Nevertheless the
“usual spectrum” of R, if it has one, sits inside this richer structure (more
accurately, inside that with (R-mod)op replacing R). For example if R is com-
mutative noetherian then the (Zariski) spectrum of R is a subspace of the larger
space, 2.7, and the associated sheaf of rings is a part of the larger presheaf, see
7.11.

If discovery could peer at itself through hindsight this, no doubt, would have
been how I had come to the definition. In fact I first defined this space as the
dual of another, the Ziegler spectrum, and only later realised that it could be
presented as a natural generalisation of the Zariski spectrum [36].

Here is the exact definition. Let A be a small preadditive category and let
Mod-A denote the category of rightA-modules (that is, the category, (Aop,Ab),
of contravariant additive functors fromA to the category,Ab, of abelian groups).
Let inj-A denote the set of isomorphism classes of indecomposable injective A-
modules: this is the set underlying our topological space. The topology is deter-
mined by declaring the following sets to be open: [F ] = {E ∈ inj-A : (F,E) = 0}
where F ranges over (isomorphism classes of) finitely presented A-modules.
Since F ⊕G is finitely presented if F and G are, these basic open sets are closed
under finite intersection, so an arbitrary open set will just be a union of sets of
the form [F ].

We will call this the Gabriel-Zariski spectrum of A because the idea of
representing prime ideals by the corresponding indecomposable injective repre-
sentations goes back to Gabriel’s thesis [10]. We write GZspec(A). If A itself
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has the form (R-mod)op for some ring (or small preadditive category) R then
we will refer to this as the rep-Zariski spectrum of R and we write just ZarR.
This means that if R is commutative noetherian then we write Spec(R) for the
usual spectrum and ZarR for this larger space in which, as we will see, the
former embeds.

We have yet to describe the ring(oid)ed structure on this space: the descrip-
tion requires a little setting up.

For GZspec(A) this is the presheaf of localisations defined as follows. Given
M ∈ mod-A, the indecomposable objects in the basic open set [M ] = {E ∈
inj-A : (M,E) = 0} together cogenerate a hereditary torsion theory on Mod-A:
the torsionfree objects are those which embed in some direct product of copies of
members of [M ] and the torsion objects are those with no non-zero morphism to
any member of [M ]. Recall, [55], that each of the classes, T , of torsion and, F ,
of torsionfree objects determines the other and the pair τ = (T ,F) is referred
to as a hereditary torsion theory. Throughout this paper when we say “torsion
theory” we always mean a hereditary torsion theory.

In fact we want a torsion theory which is determined by the finitely pre-
sented torsion objects, that is, one of finite type, so we use instead the torsion
theory whose torsion class, which we denote T[M ], is generated as such by the
finitely presented objects with no non-zero morphism to any member of [M ] (so
T[M ] ⊆ T ). Denote by F[M ] (⊇ F) the corresponding torsionfree class. The
localisation Mod-A −→ (Mod-A)τ[M]

(the latter category we also write just as
(Mod-A)[M ]) at this finite type torsion theory, τ[M ] = (T[M ],F[M ]), correspond-
ing to [M ], is the Grothendieck category which is obtained from Mod-A by
forcing all objects of T[M ] to become zero. The image of A in (Mod-A)τ[M]

(via
the Yoneda embedding of A in Mod-A), we denote it Aτ[M]

, is the localisation
of A which is assigned to the basic open set [M ]. With the natural restriction
maps, this gives a presheaf defined on the given basis (which is enough to define
the corresponding sheaf).

We would also like to say explicitly how the above definition reads for the
rep-Zariski spectrum, ZarR, of a ring R or, more generally, for ZarA where A is
a small preadditive category.

So let mod-A denote (a small version of) the category of finitely presented
right A-modules. Recall that an A-module M is finitely presented if there is
an exact sequence P −→ Q −→M −→ 0 where P,Q are finitely generated pro-
jective A-modules (that is, are finite direct sums of representable functors from
Aop to Ab). It is equivalent to require that the hom-functor (M,−) commute
with direct limits. Similarly A-mod denotes the category of finitely presented
left A-modules. Now consider the category (A-mod,Ab) (of left (A-mod)-
modules). There is a full embedding [16] of Mod-A into (A-mod,Ab) given
by sending the right A-module M to the functor M ⊗A − : A-mod −→ Ab

(this functor is determined by its being right exact and having the action,
(M ⊗ −) : (A,−) 7→ MA (A ∈ A) on this generating set of projectives in
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A-Mod) and having the obvious effect on morphisms. In particular, since A
embeds as a full subcategory of mod-A (via the Yoneda embedding A 7→ (−, A)
for A an object of A), there is also a copy of A sitting as a full subcategory of the
functor category (A-mod,Ab). This may be identified with the Yoneda-image
of the Yoneda-image of A in A-Mod. That is, map A ∈ A to (A,−) ∈ A-mod
and then this to the representable functor ((A,−),−) in (A-mod,Ab). This
latter doesn’t look quite so bad in the case where A is a ring R since the usual
practice is to denote the projective left R-module (R,−) also by R (or RR) and
then the image of this in the functor category is denoted (RR,−) (and is just
the forgetful functor).

Now let F ∈ (A-mod,Ab)fp (the full subcategory of finitely presented func-
tors, which we could, though won’t, write as (A-mod)-mod). As described
above, the indecomposable injective functors in the basic open set [F ] together
cogenerate a torsion theory and we take the largest torsion theory of finite type
smaller (in the sense of inclusion of torsion classes) than this, denoting it τ[F ].
Let (A-mod,Ab)[F ] denote the quotient category of (A-mod,Ab) with respect
to this torsion theory. Denote by A[F ] the image of A (regarded as a full subcat-
egory of the functor category) in this localisation. It is a category with the same
objects as A but, in general, modified morphism groups and we can think of it
as a kind of localisation of A. Assign to the basic open set [F ] this localisation
of A.

Note that in the case where A is a ring R (identified with the forgetful
functor (RR,−) sitting in (R-mod,Ab)) the localisation at F is again a one-
point category, that is, a ring which, qua ring, is the endomorphism ring R[F ] =
End((RR,−)[F ]). The ring morphism R −→ R[F ] is not necessarily a localisation
in the usual sense since we used a torsion theory on the functor category rather
than on the module category but we remark that this notion of localisation in
the functor category includes all finite type localisations in the module category
(7.11), as well as all ring epimorphisms with domain R ([39]), so, for a right
noetherian ring, this is literally a more general notion of localisation.

In this way, to every basic open set [M ] of GZspec(A) we have associated
a localisation Aτ[M]

of A, and, at the ‘rep’-level, to every basic open set [F ]
of ZarA we have associated a “localisation”, A[F ], of A. In each case we have
a presheaf defined on a basis, that is, a presheaf on the lattice of basic open
sets. To see this let, say, F,G be such that [F ] ⊇ [G]. Then the corresponding
torsionfree classes satisfy F[F ] ⊇ F[G] and hence T[F ] ⊆ T[G], so localisation
at τ[G] factors canonically through localisation at τ[F ]. Therefore there is a
canonical “restriction of scalars” functor A[F ] −→ A[G].

Each of these presheaves extends to a presheaf defined on the whole space,
see Section 7.2, which we will denote, in the case of GZspec(A), as FTA and
refer to as the finite-type structure presheaf and, in the case ZarA, by
DefA and call it the presheaf of definable scalars of A (the terminology
is defined below). We will see, 7.7, that if R is commutative noetherian then

4



FTR = OSpec(R), the usual structure sheaf.
We emphasise that, even in ‘nice’ cases, ZarR will be a presheaf, rather

than a sheaf, though it will always be separated (i.e. a monopresheaf) and, in
many cases, interesting parts of it will be have the gluing property, so will be
subsheaves.

The terminology “definable scalar” comes from a completely different way
of arriving at this structure, which we describe. To do so we must first defined
another space.

The Ziegler spectrum of a ring was defined in Ziegler’s work [57] on the
model theory of modules. The points of this space are the isomorphism classes of
indecomposable pure-injective (also called algebraically compact; the definition
is given later) right R-modules; let us denote that set by pinj-R. A basis for the
topology is defined in terms of pairs of “pp conditions” but may be defined in
other (purely algebraic) ways. The resulting space, the (right) Ziegler spectrum
of R, denoted ZgR, also makes sense if we start with any preadditive category
A in place of R and the result is denoted ZgA.

To every closed subset, X, of ZgR there corresponds a definable subcate-
gory X of Mod-R and conversely (5.2). Definable subcategories were originally
described model-theoretically but they have the algebraic characterisation of
being those subcatgories of Mod-R which are closed under direct limits, direct
products and pure submodules (and X is the closure of the set X of modules
under these operations). To each definable subcategory X there corresponds
the ring of all additive relations which are definable in the natural first-order
language of R-modules and which are functional on (i.e. which define abelian
group endomorphisms on) each member of X (equivalently, on each member of
X). We refer to the ring (under addition and composition) of these as the ring
of definable scalars of X and denote it by RX , also by RX . Since for every
element r ∈ R the multiplication- by-r map is definable on every module there
is a natural ring homomorphism R −→ RX .

Now, by the work of Gruson and Jensen [15] there is a bijection between
pinj-R and (R-mod)-inj given by N 7→ N ⊗R − (i.e. this is defined via the
embedding of Mod-R into (R-mod,Ab) which we have already introduced).
Therefore the Ziegler spectrum of R and the rep-Zarski spectrum of R can be
regarded as topologies on the same underlying set. They are not, however, the
same topology. In fact, if we follow Hochster’s definition [20] for spectral spaces
(which these spaces are not, but never mind) and declare the complements
of compact Ziegler-open sets to form a basis of open sets for a new, “dual”,
topology, then we obtain precisely the rep-Zariski topology. That is, and this
is true for all small preadditive categories A (recall that these are also called
‘ringoids’ or ‘rings with many objects’) in place of R, ZarA is the dual of the
Ziegler topology ZgA. Furthermore, if [F ] is a basic open set of the rep-Zariski
topology, hence is a closed set of the Ziegler topology, then the ring(oid) of
definable scalars corresponding to [F ] coincides with the [F ]-localisation, A[F ],
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of A defined above. Thus the presheaf of localisations of A has an entirely
different interpretation in terms of rings of definable maps. It was as the dual-
Ziegler topology that I first defined ZarR in [36].

Definitions omitted or left incomplete in this introduction are given at ap-
propriate places below.

This paper is a rewritten and updated version of (part of) [37], with material
from [43] added.

2 The Gabriel-Zariski and rep-Zariski spectra

2.1 The Zariski spectrum through representations

A key idea of algebraic geometry is to replace a geometric object (such as an
affine variety) by an algebraic object (its coordinate ring) which contains equiv-
alent information. The rings which arise from affine algebraic varieties are
commutative but the notion of localisation, which is so central in algebraic ge-
ometry, can be extended (though in more than one way) to non-commutative
rings.

Localisation of non-commutative rings goes back to Ore [30] and was de-
veloped much further, and in different directions, by Gabriel [10] (torsion the-
ory) and Cohn [6] (universal localisation). More recently a host of other non-
commutative geometries have arisen, often bearing rather little resemblance
to each other, reflecting the great variety of their origins and motivations. A
feature of many of these is that a non-commutative ring is, or represents, a
geometry even though it may not be obvious how to, or whether it is possible
to, associate to this ring a geometry (in any classical sense) of which it is some
sort of coordinate ring.

As was seen in the introduction, the “non-commutative geometry” described
here is a rather direct generalisation of the usual Zariski geometry and involves
first describing that geometry in terms of the category of representations and
then simply applying this definition beyond the context of the category of mod-
ules over a commutative noetherian ring.

Also seen in the introduction was the point that this definition of a geom-
etry can be applied at different levels. For instance, given a ring R, it can be
applied to Mod-R, giving a topology on the space of (isomorphism types of)
indecomposable injective R-modules. Or it can be applied to the functor cate-
gory (R-mod,Ab) and then this topology on the set of indecomposable injective
functors (left (R-mod)-modules) may be viewed as a topology on the set of inde-
composable pure-injective right R-modules. In principle one may go arbitrarily
further: in this case the next stage would be to have a topology on the set of
indecomposable injective functors on the functor category (i.e. on the set of in-
decomposable pure-injective functors) and so on, even transfinitely! But here at
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most three levels will concern us: a ring R (or small preadditive category A); its
module category Mod-R and ‘the functor category’ (R-mod,Ab). One might
feel uneasy about the fact that, though we started with right R-modules, this
last is the category of left modules over the finitely presented left R-modules: we
remark that there is a duality, see 3.1, between the finitely presented functors in
(R-mod,Ab) and those in (mod-R,Ab) so, despite the switch from right to left
finitely presented modules, we do stay close to the category of right modules.

Recall the definition of the Zariski spectrum, Spec(R), of a commutative
ring R. The points are the prime ideals of R and a basis of open sets for the
topology is given by the sets D(r) = {P ∈ Spec(R) : r /∈ P} for r ∈ R. If R is
the coordinate ring of an affine variety then the maximal primes of R correspond
to the (usual, i.e. closed) points of the variety and the other primes correspond
to (indeed, are generic points of) irreducible subvarieties.

Assuming now that R is commutative noetherian, we show that the spectrum
may be defined purely in terms of the category, Mod-R, of representations of R.
This is essentially Gabriel’s approach [10] and in part it builds on earlier work
of Matlis [28] (see also Roos [51]).

Each point P ∈ Spec(R) is replaced by the injective hull, EP = E(R/P ),
of the corresponding quotient module R/P. Because P is prime, hence ∩-
irreducible in the lattice of ideals (this does use commutativity of R), EP is
indecomposable. Furthermore each indecomposable injective R-module E has
this form. To see this, let a and b be non-zero elements of E and let I, J be
their respective annihilators in R. Since E is indecomposable injective, hence
uniform, the intersection aR ∩ bR is non-zero, so choose a non-zero element c
in this intersection. Then c(I + J) = 0. Since R is noetherian it follows that
there is a unique maximal annihilator, P say, of non-zero elements (equivalently,
submodules) of E. A line of calculation (which can be found at 9.2) shows that
this is a prime ideal and hence that E is the injective hull of R/P (since E
contains an element with annihilator exactly P ). This ideal is usually called the
associated prime of E and is denoted ass(E). So we may, and will, take the
underlying set of Spec(R) (R commutative noetherian) to be the set, inj-R, of
(isomorphism classes of) indecomposable injective R-modules.

As for the topology, we have D(r) = {E ∈ inj-R : Hom(R/rR,E) = 0}. For,
if r ∈ R\P and if f : R/rR −→ EP then annR(f(1+rR)) ≥ annR(1+rR) = rR
and so, since P is the unique maximal annihilator of non-zero elements of EP

(see the proof of 9.2), it must be that f(1 + rR) = 0 hence f = 0. For the
converse, if r ∈ P then the canonical surjection from R/rR to R/P followed by
inclusion is a non-zero morphism from R/rR to EP .

Thus a basis of open sets for the Zariski topology is given by those sets of
the form [M ] = {E ∈ inj-(R) : Hom(M,E) = 0} as M ranges over modules
of the form R/rR. This, however, is not yet a description of the topology in
terms of the category Mod-R because the property of being of this form (that is,
cyclic-projective modulo cyclic) is not invariant under equivalence of categories.
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We show that if we allow M to range instead over arbitrary finitely presented
R-modules then we do not change the topology.

First consider the case that M = R/I is cyclic. The argument used to re-
interpret D(r) applies equally well to show that, for any ideal I, the set [R/I] =
{E ∈ inj-R : Hom(R/I,E) = 0} coincides with {EP : P ∈ Spec(R), I £ P}
and, since I is finitely generated, say I =

∑n
1 riR, we have [R/I] =

⋃n
1 [R/riR]

(the inclusion “⊆” uses commutativity of R, see 9.4) =
⋃n
1 D(ri), which is

indeed open. This is not yet enough because the property of being cyclic is not
Morita-invariant.

So now consider the case that M is finitely presented, in particular, is finitely
generated, by b1, . . . , bn say. Set Mk =

∑

j≤k bjR, M0 = 0. Each factor Cj =
Mj/Mj−1 is cyclic and, we claim, [M ] = [C1] ∩ · · · ∩ [Cn]. For, if there is a
non-zero morphism from Cj to E then, by injectivity of E, this extends to a
morphism from M/Mj−1 to E and hence there is induced a non-zero morphism
from M to E. Conversely, if f : M −→ E is non-zero let j be minimal such that
the restriction of f to Mj is non-zero. Then f induces a non-zero morphism
from Cj to E.

We have shown the following (outside the commutative situation, the same
holds if R is fully bounded noetherian, see 2.8).

Theorem 2.1 Let R be a commutative noetherian ring. Then the space whose
points are the isomorphism classes of indecomposable injective R-modules, E,
and which has, for a basis of open sets, those of the form [M ] = {E : Hom(M,E) =
0} as M ranges over finitely presented R-modules, is naturally homeomorphic
to Spec(R). The bijection is given by P 7→ E(R/P ) and E 7→ ass(E).

The word “natural” can be taken in the categorical sense. If α : R −→ S is
a morphism of commutative rings then there is induced the map Spec(S) −→
Spec(R) which takes the prime ideal Q of S to α−1Q = {r ∈ R : αr ∈ Q}.
For instance the projection k[X] −→ k ' k[X]/〈X〉 induces the embedding
{0} = Spec(k) −→ {〈X〉} ⊆ Spec(k[X]). In terms of indecomposable injectives
it is almost as direct: the S-module E(S/Q) is uniform, so is also uniform as
an R-module and hence has indecomposable injective hull, ER(E(S/Q)) which,
since it has an element (1S+Q) with annihilator α−1Q (and no non-zero element
has larger annihilator), is isomorphic to E(R/α−1Q). It is also easy to check
that, assuming the rings are noetherian, the two topologies on the image of
inj-(S) in inj-(R) (the quotient topology induced from inj-(S) and the subspace
topology induced from inj-(R)) coincide. For non-noetherian commutative rings
one has naturality for the “ideals”, rather than the “fg-ideals” topology, see the
discussion after 2.3.

The above statement rather begs the question of whether it applies to ar-
bitrary commutative rings and we do consider these in Section 9 but now we
proceed to the next stage, which is to turn this description into a definition.
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2.2 Zariski-injective and Gabriel-Zariski spectra of cate-

gories

The reformulated definition of the Zariski spectrum of a ring that we obtained
above may be applied to any abelian category but surely makes most sense
when the category is Grothendieck (so has enough injectives) and is locally
finitely presented (so has enough finitely presented objects). Throughout this
section, therefore, C will be a locally finitely presented abelian, hence [9, 2.4]
Grothendieck, category. Because every such category is a nice localisation of a
functor category ([32]) one may, when it is convenient to do so, concentrate on
the case where C = (A,Ab) with A a small preadditive category.

Denote by inj(C) the set of isomorphism types of indecomposable injective
objects of C (so, in this notation, inj-R = inj(Mod-R)): that this is a set follows
directly from the fact that C has a generating set of finitely generated objects
(and the fact that each object of such a category has only a set of subobjects).
Equip this set with the topology which has, for a basis of open sets, those of
the form [F ] = {E ∈ inj(C) : (F,E) = 0} with F a finitely presented object of
C. This is indeed a basis for a topology since [F ] ∩ [G] = [F ⊕ G]. Denote the
resulting space by Zarinj(C) and call it the Zariski-injective spectrum of C.
If C = (A,Ab) for some small preadditive category A we have already called this
space the left Gabriel-Zariski spectrum of A and denoted it GZspec(Aop).
If A is itself of the form R-mod for some ring (or small preadditive category)
R then we have used the notation ZarR (and will use the notation RZar for
ZarRop) and, reflecting the change of level, called it the rep-Zariski spectrum
of R. In summary, our notation is as follows:

GZspec(A) = Zarinj(Mod-A) and
ZarA = GZspec((A-mod)op) = Zarinj((A-mod,Ab)).

Example 2.2 Let Γ be the path category of the quiver A∞.

1 // 2 // 3 // . . .

It is easily checked that the indecomposable injective objects of C = Γ-Modk

(the category of representations of Γ in the category of k-vectorspaces) are the
En where, using the representation-theoretic description, En(i) = k if i ≤ n, = 0
if i > n, and where at each arrow is an isomorphism, together with E∞, which
is 1-dimensional at each vertex. Note that En is the injective hull of the simple
representation Sn which is 0 everywhere except at n, where it is 1-dimensional.
This gives us the points of inj(C).

Dually, the indecomposable projective objects are the Pn (n ≥ 1), where Pn

is 1-dimensional at each vertex m ≥ n and 0 elsewhere (note that P1 = E∞).
Clearly the indecomposable representation M[n,m] which is 1-dimensional at i
for n ≤ i ≤ m and 0 elsewhere is finitely presented.

For any representation M one has (M,En) = 0 iff M does not have Sn as a
subquotient, that is, iff M(n) = 0. Therefore each indecomposable injective En
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is an isolated (by [S1]∩· · ·∩ [Sn−1]∩ [Pn+1]) point and a basis of open neighbour-
hoods of E∞ consists of the cofinite sets which contain that point (clearly the
latter are open and, from the description of the Pn, it is easily seen that every
infinite-dimensional finitely presented object is eventually > 0-dimensional, so
there are no other open neighbourhoods of E∞).

Therefore Zarinj(Γ-Modk) is the one-point compactification, by E∞, of the
discrete set {En : n ≥ 1}.

The category Modk-Γ is the category of representations of the opposite quiver,
which we regard as the same quiver but with arrows reversed. Now, one has a
finite-dimensional indecomposable projective P ′n for each n and, for each n, an
indecomposable injective E ′n. The dimension vector of P ′n is as for En above
and that of E′n is as for Pn above.

It is similarly checked that the open sets (apart from ∅) of Zarinj(Modk-Γ)
are the cofinite sets.

2.3 Embedding the Zariski spectrum

If R is any ring then, as a set, inj-R embeds in pinj-R (every injective module is
pure-injective). Here we compare the Zariski-injective topology on inj-R, that
is GZspec(R), with the topology inherited from the larger space ZarR. We will
see that if R is a right noetherian ring (or even just right coherent) then they
do coincide so, in this case, the injective spectrum really is part of the larger
pure-injective spectrum.

First, observe that we have the following (the proof is just as before 2.1).

Lemma 2.3 For any ring R the sets [M ] = {E ∈ inj-R : (M,E) = 0} for
M a finitely presented R-module form a basis of open sets of a topology which
coincides with that obtained by taking just those sets of the form [R/I], where I
is a finitely generated ideal of R, as (sub-)basic open.

We will also use the following.

Lemma 2.4 Let I ≤ J be right ideals of a ring R and let E be an injective
right R-module. Then annEI/annEJ ' Hom(J/I,E).

Proof. Just apply (−, E) to the short exact sequence 0 −→ J/I −→ R/I −→
R/J −→ 0 and note that Hom(R/I,E) ' annEI (and similarly for J) and
Ext1(R/J,E) = 0. 2

Proposition 2.5 [47, 1.1] If E is any injective right R-module and F is any
finitely presented functor from R-mod to Ab which is a subfunctor of a power

of the forgetful functor then
−−→
DF (E) = annE(F (RR)).
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The notation
−−→
DF is explained in 3.1. Also, if F (RR) ≤ Rm with m > 1 then

by annE(F (RR)) we mean {(a1, . . . , am) ∈ Em :
∑m

i=1 airi = 0 for all (r1, . . . , rm) ∈
F (RR)}.

The statement at [47, 1.1], as are various of our other references, is in terms
of pp formulas. We give some explanation of that terminology in Section 10.

Theorem 2.6 [58, 1.3], [52, Prop. 7] A ring R is right coherent iff every right
ideal of the form F (RR) with F a finitely presented functor from R-mod to Ab
is finitely generated.

Proposition 2.7 Let R be right coherent. Then the Gabriel-Zariski topology
on inj-R coincides with the topology induced from the rep-Zariski topology on
pinj-R. That is, we may regard GZspec(R) as a subspace of ZarR.

Proof. One direction needs no assumption on R: given M ∈ mod-R, the basic
Gabriel-Zariski-open set [M ] = {E ∈ inj-R : (M,E) = 0} (see just after 3.1) is
just the intersection of the basic rep-Zariski-open set [(M,−)] with the image
of inj-R in pinj-R.

For the other direction, given F ∈ (R-mod,Ab)fp we have the basic rep-
Zariski-open set [F ] = {N ∈ pinj-R : (F,N ⊗ −) = 0} = {N ∈ pinj-R :
−−→
DF (N) = 0} by 3.1. Since every finitely presented functor is the quotient
of two finitely generated subfunctors of some power of the forgetful functor it

follows from 2.5 that for E ∈ inj-R,
−−→
DF (E) = annEI/annEJ for some right

ideals I, J which, by 2.6 are finitely generated. Hence, by 2.4, {E ∈ inj-R :
−−→
DF (E) = 0} = [I/J ] in the notation established in Section 2.1. Since [I/J ] is
finitely presented this is a basic Gabriel-Zariski open set, as required. 2

The same holds also with any small preadditive category A in place of R
(i.e., provided that Mod-A is a locally coherent category, the two topologies on
inj-A coincide).

In general inj-R is neither an open nor closed subset of ZarR. Take R = Z.
To see that inj-Z is not closed, just note (refer to the list after 4.2 or use 6.1 and
the fact that Q ∈ Zg-cl(Zp)) that Zp ∈ Zar-cl(Q). To see that it is not open,
again just check the list after 4.2, and note that it is not the case that every
injective point has an open neighbourhood completely contained in inj-Z (and
the same will be true for any PI Dedekind domain with infinitely many primes).

If R is not noetherian then there is the question of whether it is more ap-
propriate to use all right ideals rather than only the finitely generated ones to
define a topology on the set of indecomposable injectives. We may, for contrast,
refer to the Zariski-injective topology (i.e. that defined using finitely presented
modules) also as the fg-ideals topology and refer to the space with basis of
open sets the D(I) = {E ∈ inj-R : (R/I,E) = 0}, where now I is any ideal,
as the ideals topology. By the same sort of argument that we used with the
Zariski-injective topology, this is the same topology as that with basis of open
sets the sets [M ] where now M is finitely generated.

11



Proposition 2.8 Let R be a fully bounded noetherian (FBN) ring. Then the
following spaces are naturally homeomorphic:

Spec(R) (defined exactly as in the commutative case);
GZspec(R) = Zarinj(Mod-R)

Proof. The main difference between this and the commutative case is that if P
is a prime ideal then E(R/P ) need not be indecomposable. It will, however, be
a direct sum of finitely many copies of a unique indecomposable injective which,
in this context, we denote by EP . Then everything goes more or less as in the
commutative case (e.g. cf. [33] which can be regarded as dealing with the, dual,
Ziegler spectrum). 2

3 Dualities

In the section after this we describe the rep-Zariski topology over various classes
of rings. We will make use of the following alternative description of basic open
sets.

Recall that the points of ZarR are the indecomposable pure-injective right
R-modules and that if F is a finitely presented functor in (R-mod,Ab) then
[F ] = {N ∈ ZarR : (F,N ⊗ −) = 0} is a typical basic open set. We use the
following theorem.

Theorem 3.1 ([2], [16] for the first “'”, [36, p. 193] for the second) There is
a duality D : (R-mod,Ab)fp ' ((mod-R,Ab)fp)op such that, if M is any right

R-module and G ∈ (mod-R,Ab)fp then (DG,M⊗−) '
−→
GM , where

−→
G denotes

the unique extension of G to a functor from Mod-R to Ab which commutes with
direct limits (sometimes we write just G for this extension).

Regarding the extension
−→
G ; if M = lim

−→
Mλ with the Mλ finitely presented

then
−→
GM = lim

−→
GMλ and, if (B,−) −→ (A,−) −→ G −→ 0 with A,B ∈

mod-R is a projective presentation of G then, interpreting the representable
functors as functors on Mod-R, this can also be read as a projective presentation
of this canonical extension of G.

It follows from this theorem that an alternative form for the basic open sets
is what we will still write as [G] = {N ∈ ZarR : GN = 0} as G ranges over the
finitely presented functors in (mod-R,Ab) (really, their canonical extensions to
(Mod-R,Ab)).

There is, in general almost and in many cases actually, a homeomorphism
between the right and left rep-Zariski spectra of a ring. What we mean by “al-
most a homeomorphism” is that the lattices (indeed complete Heyting algebras)
of open sets are isomorphic.

12



Theorem 3.2 [18, Section 4] (for the case of rings) Let A be a small preaddi-
tive category. Then there is a bijection between the open subsets of ZarA and
those of AZar which preserves containment, intersection and arbitrary union (we
will say “a homeomorphism at the level of topology”). If A is countable (alter-
natively, under various conditions, such as A having Krull-Gabriel dimension,
see [18, 4.10]) this is induced by a homeomorphism (ZarA/ ∼) ' (AZar/ ∼)
where ∼ denotes the equivalence relation on a topological space which identifies
topologically indistinguishable points (i.e. those which belong to exactly the same
open sets).

This duality of spaces is an expression of a duality which exists at various
levels. At the level of functor categories, we have already mentioned the Gruson-
Jensen/Auslander duality ((A-mod,Ab)fp)op ' (mod-A,Ab)fp. At the level of
pp conditions it is due to the author [34]. At the level of theories of modules it
is due to Herzog [18] and is a refinement of his duality, like that in 3.2 above,
for Ziegler spectra (for which see Section 5) and hence, since ‘rep-Zariski=dual-
Ziegler’ (Section 5.1), the above result follows. The duality also exists at the
level of Serre subcategories of the functor categories (see [19], [24]).

Corollary 3.3 If R is countable and if there is an equivalence Mod-A ' A-Mod
(for example, if R is countable and commutative) then this induces a self-
homeomorphism (ZarA/ ∼) ' (ZarA/ ∼).

Proof. Combine the homeomorphism (ZarA/ ∼) ' (AZar/ ∼) of 3.2 with that
induced by the assumed equivalence. 2

In the case of a commutative Dedekind domain R (which, even if not count-
able, does satisfy the other parenthetically referred-to condition, in 3.2, of hav-
ing Krull-Gabriel dimension (= 2 in fact, or = 0 if R is a field)) the self-
homeomorphism of ZarR fixes all finite length points, interchanges, for each
prime P , the P -adic and P -Prüfer points, and fixes the generic point (the quo-
tient field of R).

4 Examples

4.1 The rep-Zariski spectrum of a PI Dedekind domain

The class of Dedekind domains includes both the ring of integers Z and the
archetypal tame algebra k[X] (where k, as always in this paper, denotes a
field). What we say here extends with essentially no extra work to those non-
commutative Dedekind domains which satisfy a polynomial identity, so we work
in that generality.

First we have to list the points of the space, that is, the indecomposable
pure-injective modules. For R = Z this goes back to Kaplansky [22] and the
general case is much the same (see, [57], [27], [40]).
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It is the case (e.g. see the last reference above) that if N is an indecomposable
pure-injective R-module then the elements of the centre, C(R), of R which do
not act as automorphisms of N form a prime ideal and so N is a module over the
corresponding localisation of R. This allows 4.2 below to be proved by reducing
to the ‘local’ case, since there is, for R as above, see [29, 13.7.9], a bijection
between the (prime) ideals of the centre and the (prime) ideals of the ring. This
bijection also gives the following.

Remark 4.1 Let R be a PI Dedekind domain, with centre C(R). Then P 7→
P ∩C(R) gives a homeomorphism of Spec(R) with Spec(C(R)) (and hence, 2.8,
induces Zarinj(R) ' Zarinj(C(R))).

Theorem 4.2 ([27], [40, 1.6]) Let R be a PI Dedekind domain. The points of
ZarR are the following:
• the indecomposable modules, R/P n, of finite length, for n ≥ 1 and for P a
maximal ideal of R;
• the completion, RP = lim

←−n
R/Pn, of R in the P -adic topology, for P a maxi-

mal prime of R; we call these adic modules;
• the Prüfer modules RP∞ = E(R/P ) as P ranges over the maximal (equiva-
lently non-zero) primes of R;
• the quotient division ring, Q = Q(R), of R.

Since any Dedekind prime ring is Morita equivalent to a Dedekind domain
([29, 5.2.12]) this and what we say below apply equally well to such rings, since
everything involved is Morita-invariant.

Now we describe the topology on ZarR by giving a basis of open neighbour-
hoods at each point. Of course, to do this we need to know something about
the finitely presented functors. Such information is available, though in most
sources it is expressed in terms of ‘pp-formulas’ (we explain what these are in
Section 10).

Over these rings all finitely presented functors are, in a sense (which may be
made precise e.g. see [35, 2.Z.1] or [48, Section 2.2]), built up from annihilator
and divisibility conditions. It is easy to check that, for each element r ∈ R,
both the functors (given on objects by) M 7→ Mr and M 7→ annM (r) are
finitely presented. Note that these are subfunctors of the forgetful functor. If
L is a finitely generated (by s1, . . . , sl) left ideal then the functor M 7→ ML is
finitely presented, being the sum of the functors M 7→ Msj . If I is a finitely
generated (by r1, . . . , rm) right ideal then the functor M 7→ annM (I) also is
finitely presented, being the intersection of the functors M 7→ annM (ri) (since
every finitely presented functor is coherent, such an intersection will again be
finitely presented). We will use a fairly obvious (we hope) notation, based
on that after 3.1, with M as dummy variable where this aids description, in
referring to such functors and their quotients.
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• R/Pn: This point is isolated by the open set [MP n] ∩ [ann(P )/(MPn−1 ∩
ann(P ))]. We go through the details. The open set [MP n] contains exactly those
indecomposable pure-injectivesN satisfyingNP n = 0, namelyR/P,R/P 2, . . . , R/Pn.
The open set [ann(P )/(MP n−1∩ann(P ))] contains exactly thoseN with annN (P ) ≤
NPn−1 and, on consulting the list, one sees that this defines the set {R/P n, R/Pn+1, . . . , RP∞}.
The intersection of these two open sets is exactly {R/P n}, as claimed. (We leave
similar checks to the reader.)

• RP : First, there is a neighbourhood which excludes all points associated to
the prime P apart from RP itself, namely [ann(P )]. Then, given finitely many
non-zero primes Q1, . . . , Qk different from P there is a neighbourhood of RP

which excludes all points associated to those primes, namely
⋂k

i=1([M/MQi] ∩
[ann(Qi)]). We cannot exclude points associated to more than finitely many
primes since, otherwise, looking at the complementary Zariski-closed=Ziegler-
open set, we could express a basic (so, 5.1, compact) Ziegler-open set as a union
of infinitely many proper open subsets (one for each of the excluded primes).
Therefore a basis consists of the sets given by ‘finite localisation’ (i.e. removing
all trace of finitely many other primes) then removing all other points associated
to P .

If R has only finitely many primes then there is a minimal neighbourhood,
{RP , Q}.

• RP∞ : The comments for RP apply here also (alternatively use the duality after

3.3) and the sets [M/MP ]∩
⋂k

i=1([M/MQi]∩ [ann(Qi)]), where Q1, . . . , Qk are
any non-zero primes of R different from P , form a basis of open neighbourhoods.

• Q: Again, ‘finite localisation’ allows us to remove all trace of any finitely many
non-zero primes but, for the same reasons as before, no more.

So, if R has only finitely many primes then Q is an open point.

Observe that ZarR, provided R is not a division ring, is not compact: it is
the union of the sets [M/MP ], [ann(P )] and the [MP n] ∩ [ann(P )/(MPn−1 ∩
ann(P ))] for n ≥ 1 and there is no finite subcover.

With this description to hand one may check that the following is true.

Proposition 4.3 Let R be a PI Dedekind domain. The isolated (i.e. open)
points of ZarR are precisely the points of finite length, except in the case where
R has only finitely many primes, in which case the generic point Q also is
isolated. Every point of ZarR, apart from Q, is closed.

Taking the simplest example, that of a local ring, say k[X](X) or k[[X]], one
has the maximal ideal, which is closed, together with the generic point, which is
open, with closure itself plus the closed point (X). The ‘extra’ points in ZarR,
the finite length modules k[X]/(Xn), are all clopen.

The Zariski spectrum in the usual sense (since these rings are PI, hence
fully bounded, there is a bijection between indecomposable injectives and prime
ideals) is embedded via the indecomposable injective modules (see Section 2.3).
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We also have the following conclusions where we denote by ZarfR the open
set of points of ZarR of finite length.

Lemma 4.4 If R is a PI Dedekind domain with infinitely many primes then
ZarfR is Zariski-dense in ZarR. In particular, ZarfR is exactly the set of isolated
points of ZarR.

Proof. From the list above, every open neighbourhood of every infinite length
point contains a point of finite length. 2

We denote by Zar1R the set ZarR\Zar
f
R of points of infinite length and endow

this with the topology inherited from ZarR. Since ZarfR coincides with the set
of all isolated points, Zar1R also equals the first Cantor-Bendixson derivative of
ZarR. From the description of open neighbourhoods we have the following.

Lemma 4.5 Let R be a PI Dedekind domain, with division ring of quotients
Q. Then the non-empty Zariski-open subsets of Zar1R are exactly the cofinite
sets which contain the generic point Q.

4.2 The rep-Zariski spectrum of a PI hereditary order

A PI hereditary order is a hereditary ring which is an order in a simple
artinian ring, equivalently a PI hereditary noetherian prime ring. Here we note
that the results of the previous section generalise to such rings. There is little
to check since, by [40, Section 3], the description of the Ziegler spectrum, points
and topology, and hence of the Zariski topology, is just as in the case of a
Dedekind domain. In particular to every point, N , of ZarR is associated a
prime ideal, P (N), of R. The only significant difference is that if the ring R is
not a Dedekind prime ring then the map from Spec(R) to Spec(C(R)) given by
intersecting a prime ideal with the centre is not 1-1. So it is essential here to
use Spec(R), rather than Spec(C(R)), to parametrise the primes.

Example 4.6 Let R be the ring
(

Z 2Z
Z Z

)

- a non-maximal order in the simple

artinian ring A =
( Q Q

Q Q

)

. For each non-zero prime p ∈ Z, p 6= 2, we have

the corresponding prime ideal Pp =
( pZ 2pZ
pZ pZ

)

, and the corresponding p-adic and

p-Prüfer modules, which may be regarded as (Z̄(p), Z̄(p)) and (Zp∞ ,Zp∞) respec-
tively, as well as the finite length indecomposable modules, R/P n, associated to
P .

Corresponding to the prime p = 2, there are two prime ideals of R, P1 =
(

Z 2Z
Z 2Z

)

and P2 =
(

2Z 2Z
Z Z

)

with corresponding simple modules Si = R/Pi and
we have Ext(Si, S3−i) 6= 0 for i = 1, 2. The P1-adic module has a unique
infinite descending chain of submodules with simple composition factors S1,S2
alternating and starting with S1. Dually the P1-Prüfer module N is the injective
module with socle S1, soc(N/S1) = S2, (N/S1)/soc(N/S1) ' N . Similarly for
P2.
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4.3 The rep-Zariski spectrum of a tame hereditary artin

algebra

If R is an artin algebra then every indecomposable module of finite length
is a point of ZarR. Therefore, one should not expect to be able to give a
complete description of ZarR for algebras which are of wild representation type.
Nevertheless, one may aim to describe parts of this space and over some (tame)
rings one may hope to give a complete description of the topological space and
of the associated (pre-)sheaf of rings.

Throughout this section let R be a tame hereditary artin algebra (not of
finite representation type).

We recall some facts about the points of ZarR and then we recall the de-
scription of the topology from [40], [50] (refer to these for more detail). We do
mean “recall”: those who have not seen this before will need to consult, say,
[49].

First we have the fact that over every artin algebra every indecomposable
module of finite length is an open and closed point of ZarR (see 6.4).

In fact, the open points are exactly those of finite length. These fall into
three disjoint sets: the set, P, of preprojective points, the set, R, of regular
points, and the set, I, of preinjective points.

The setR, regarded as part of the Auslander-Reiten quiver of R, is a disjoint
union of ‘tubes’, each containing a finite number of quasisimple modules and all
but finitely many being homogeneous, that is, containing just one quasisimple.
We denote the tube (regarded as a set of modules) to which the quasisimple
module S belongs by T(S) and, similarly, the coray of epimorphisms in T(S)
containing S by E(S) and the ray of monomorphisms in T(S) containing S by
M(S) (the terms ‘ray’ and ‘coray’ refer to the structure of the Auslander-Reiten
quiver). To each quasisimple S is associated the S-adic module P (S) which is
the inverse limit of E(S) and the S-Prüfer module E(S) which is the direct limit
of M(S). (In Example 4.6 the prime p = 2 gives, in an analogous context, a
non-homogeneous tube, with two quasisimples, S1 and S2.)

The modules P (S) and E(S), for S a quasisimple regular module, are points
of the spectrum and the only other infinite-dimensional point is the generic
module Q. We denote by Zar1R the set or space of infinite-dimensional (=non-
isolated) points. Thus, to each point N of R ∪ Zar1R apart from the generic
point, we have an associated quasisimple module which we denote S(N). In
this context the quasi-simples play the role that primes did in previous examples
(this is more than an analogy, see [7]). As in that case, the process of ‘finite
localisation’, i.e. removing all trace of finitely many primes/quasisimples lies
behind the description of neighbourhood bases. Given a set, S, of quasisimple
modules, let U(S) denote the set consisting of the generic point and all points
of R ∪ Zar1R which are associated to some quasisimple not in S.

The papers [40], [50] describe the Ziegler, rather than the rep-Zariski, topol-
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ogy but, since the latter may be defined in terms of the former (5.4), one may
deduce the following.

Theorem 4.7 [43] Let R be a tame hereditary artin algebra. A basis of open
sets for ZarR is as follows.
As for every artin algebra, the finite-dimensional points are open.
If N is S-adic or S-Prüfer then the sets of the form {N} ∪ U(S) where S is a
finite set of quasisimples, form a basis of open neighbourhoods for N .
The sets of the form U(S) where S is a finite set of quasisimples, form a basis
of open neighbourhoods for the generic point G.

In particular, the sets P and I are Zariski-closed (as well as Zariski-open)
so do not figure in the description of neighbourhood bases of the infinite-
dimensional points.

4.4 Other examples

Let R be the k-path algebra of one of the quivers Λn (n ≥ 2) shown:

1
α1

66

β1
((
2

γ1
// 3

α2

88

β2

&& . . .
αn−1

11

βn−1
--
2n− 2

γn−1
// 2n− 1

αn

44

βn

**
2n

with relations βiγi = 0 = γiαi+1

The Ziegler and rep-Zariski spectra of these algebras were described in [5],
with Λ2 being treated in full detail, the others more briefly. To give these details
would take some technical setting up so we refer the reader to that paper and
make only a few remarks.

Corresponding to the n subquivers isomorphic to the Kronecker quiver Ã1
(the quiver with two vertices and two arrows from one to the other - a tame
hereditary algebra, so covered by the previous section) there are n Zariski-
open subsets each homeomorphic to ZarÃ1

. In particular there are the n corre-
sponding ‘generic’ points (and no other generic points). There are some other,
discretely parametrised, infinite-dimensional points which ‘link’ these n open
subsets (in the same way that they are linked in the quiver). After the (open
and closed) finite-dimensional points are removed, all other points are ‘generic’,
‘linking’ or adic or Prüfer. All these infinite-dimensional points, except the
generics, are closed. Roughly, after removing the finite-dimensional points, we
have n double-except-for-generics copies of the projective line over k with some
N-parametrised families of points linking them into a chain.

In particular, for each of these algebras the space, Zar1, of infinite-dimensional
points is ‘one-dimensional’ in the algebraic-geometric sense and we do, in that
paper, conjecture (based on admittedly rather limited examples) that for a
finite-dimensional algebra of infinite representation type the ‘algebraic-geometric’
dimension of the space Zar1 will be either 1 or ∞. By the latter we mean that
it embeds algebraic varieties of arbitrarily high dimension.
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It is shown in [41, Section 9] that wild algebras do have algebraic-geometric
dimension ∞ in this sense.

We also mention the first Weyl algebra, A1(k) where k is a field of charac-
teristic zero: this is a wild algebra [1] and the comment just above applies. One
may, however, look at parts of the spectrum, as is done, among other things, in
[46], where the relative topologies on inj-R, on the torsionfree indecomposable
pure-injective modules, and on closures of some tubes are described (in fact, in
a somewhat more general context than just this algebra).

5 The Ziegler spectrum

We recall the main definitions but for more detail see, for example, [35], [19],
[24], [44].

An embedding A −→ B of right R-modules is said to be a pure embed-

ding if for every left R-module L the induced map A ⊗R L −→ B ⊗R L of
abelian groups is monic (it is enough to test with L being finitely presented,
see, e.g., [55]). A right R-module N is said to be pure-injective (=alge-
braically compact) if it is injective over pure embeddings in Mod-R, equiva-
lently if every pure embedding with domain N is split, equivalently if the functor
(N ⊗−) ∈ (R-mod,Ab) is injective.

The set of (isomorphism classes of) indecomposable pure-injective right R-
modules is topologised, and the result is called the (right) Ziegler spectrum,
ZgR, of R, by taking, for a basis of open sets, the sets of the form (F ) = {N ∈
ZgR : Hom(F,N ⊗ −) 6= 0} where F ranges over (R-mod,Ab)fp. This is a
reformulation of Ziegler’s original definition which is in terms of notions (pp
formulas) from model theory.

Theorem 5.1 [57, 4.9] The sets of the above form constitute a basis for a
topology and they are all compact.

To every module MR is associated a closed subset, supp(M), of ZgR, called
the support of M and defined by supp(M) = {N ∈ ZgR : Hom(F,N ⊗ −) =
0 for all F ∈ (R-mod,Ab)fp such that Hom(F,M ⊗−) = 0}. That is, take the
torsion theory, which we denote τM , of finite type, on the functor category,
associated to M (in the sense that it is the largest torsion theory of finite
type for which M ⊗ − is torsionfree): then the support of M consists of those
N ∈ ZarR such that N ⊗ − is (indecomposable injective and) τM -torsionfree.
Notice that τM is quite different from τ[M ] defined in the Introduction: these
torsion theories are defined on different categories and τ[M ] was defined only
for M finitely presented (the two notations, at least derived notations, may be
compared in the statement of 7.12).

All this works with a small preadditive category A in place of R. The only
notable difference is that for a ring R, ZgR is compact, since it is the open set
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defined by the forgetful functor (R,−) but, if A has infinitely many objects,
then ZgA is not a finite union of basic open sets, hence not compact.

In fact, the category Mod-Amay be replaced by any locally finitely presented
abelian category C. One may prove this by developing the theory of purity
directly in such categories but more convenient is to use the fact that they are
all ‘nice’ localisations of categories of the form Mod-A (one may take A to be
(a small version of) the full subcategory of finitely presented objects of C), [32],
and then the Ziegler spectrum, Zg(C), of C is (or may be defined to be) a closed
subset of ZgA (see [45] for more detail).

A subcategory of Mod-A is definable if it is closed under direct products,
direct limits and pure submodules. There is the following characterisation of
the closed subsets of ZgA.

Theorem 5.2 [57, 4.10] A subset of ZgA is closed in the Ziegler topology iff
it has the form D ∩ ZgA for some definable subcategory D of Mod-A (and this
gives a bijection between closed subsets and definable subcategories).

5.1 rep-Zariski = dual-Ziegler

In [36] the underlying set of ZgR was re-topologised by taking, for a basis of
open sets, the complements of the compact open sets, that is, those of the form
[F ] = ZgR \ (F ) = {N ∈ ZgR : Hom(F,N ⊗−) = 0}. We immediately recognise
that this “dual-Ziegler” topology is the rep-Zariski topology, ZarR and the
notation [F ] has the same meaning as before.

More generally, we have the following.

Theorem 5.3 Suppose that C is locally coherent. Then the Zariski topology on
inj(C) coincides with the dual-Ziegler topology on inj(C) (regarded as a subset of
pinj(C)).

Proof. This follows directly from 2.7 (and the extensions of that result indicated
just after it and in the previous section). 2

We state the, already noted, special case.

Corollary 5.4 Suppose that A is a small preadditive category. Then the dual-
Ziegler topology on pinj-A coincides with the rep-Zariski topology, via the iden-
tification of pinj-A with inj(A-mod,Ab).

6 Topological properties of ZarR

In this section we point out various properties of this space.

• Although the rep-Zariski topology can be defined in terms of the Ziegler
topology, the reverse is not true. This was shown in [5, 3.1] where one sees a

20



homeomorphism of ZarΛ2
which is not a homeomorphism with respect to the

Ziegler topology.

• By definition of the topologies, we have the following.

Lemma 6.1 N ′ ∈ Zar-cl(N) iff N ∈ Zg-cl(N ′).

• The next result concerns (rep-)Zariski-closure.

Proposition 6.2 Let R be any ring. Suppose that X ⊆ ZarR. If N ∈ Zar-cl(X)
then there is N ′ ∈ Zg-cl(X) such that N ∈ Zar-cl(N ′).

Proof. Let F be the filter of basic Zariski-open neighbourhoods of N . By
assumption, for each [F ] ∈ F , X ∩ [F ] 6= ∅. Since ZgR is compact so is its closed
subset Zg-cl(X), therefore there is N ′ ∈ Zg-cl(X) ∩

⋂

F , as required. 2

• A closed set is said to be irreducible if it is not the union of two proper
closed subsets. A generic point of a closed set is one whose closure is that set.

Proposition 6.3 If the basic Zariski-closed set (F ) is irreducible then it has a
generic point.

Proof. Suppose, for a contradiction, that (F ) does not have a Zariski-generic
point. Then for each N ∈ (F ) there is N ′ ∈ (F ) such that N ′ /∈ Zar-cl(N), that
is, such that N /∈ Zg-cl(N ′) and so there is a Ziegler-open neighbourhood, (FN ),
of N which is a proper subset of (F ). Thus we obtain a representation of (F )
as a union of proper Ziegler-open subsets and so, since (F ) is Ziegler-compact,
there is a finite subcover. But this gives a covering of (F ) by finitely many
Zariski-closed sets so, by Zariski-irreducibility of (F ), there is a single one of
these, (FN ) say, which is equal to (F ) - contradiction, as required. 2

• Recall that a point, N , of a topological space is said to be isolated if {N} is
open. We also say that a point N is closed, resp. clopen, if {N} is.

Proposition 6.4 [42, 2.21] Let N be an indecomposable finitely generated mod-
ule over the artin algebra R. Then N is both open and closed in the Zariski
topology.

Proof. It is known [35, 13.1] (following from the existence of almost split
sequences over artin algebras) that N is Ziegler-isolated (so {N} is basic Ziegler-
open) and hence, since rep-Zariski=dual-Ziegler, N is Zariski-closed.

It is also the case that (over any ring) every point of finite endolength

(i.e. of finite length when considered as a module over its endomorphism ring)
is Ziegler-closed (essentially this goes back to [11, Theorem 13]) so {N}c is both
Ziegler-open and Ziegler-closed, hence compact, hence, by the description of the
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Ziegler topology, of the form (F ) for some F . Therefore {N} = [F ], as required.
(This very short argument was pointed out by Henning Krause.) 2

Proposition 6.5 (a) Let R be a countable artin algebra and let N ∈ ZarR be
Zariski-open. Then N is of finite endolength.

(b) Let R be a finite-dimensional algebra over a countable algebraically closed
field and let N ∈ ZarR be Zariski-open. Then N is of finite length.

Proof. (a) Say {N} = [F ]. Then N has Krull-Gabriel dimension: otherwise, by
[57, 8.3] (also see [45] for this said in non-model-theoretic language), there would
be 2ℵ0 points, rather than just one point, in supp(N) = [F ] (this is where we
use the assumption that R is countable). Since N has Krull-Gabriel dimension
supp(N) contains a point of finite-endolength (by [57], see [35, 10.17]) - which
must be N , as required.

(b) For the second statement, if N is not of finite length then it is a generic
point in the sense of [8] and so, by [8], there is a Dedekind domain D with
infinitely many primes and a representation embedding from Mod-D to Mod-R
with N being the image of the generic D-module Q (=the quotient field of D).
By [38] this induces a homeomorphism of the rep-Zariski spectrum of D into
that of R. Since Q is not isolated in ZarD, N cannot be isolated in ZarR. 2

It is an open question whether, over an arbitrary ring, a Zariski-open (more
generally, Ziegler-closed) point of the spectrum need be of finite endolength.
This is related to the question (which has to be asked in localisations of the
functor category as well as in the functor category itself) of whether for each
Ziegler-open point N there is a simple functor F with (F ) = {N}. See the
discussion of the “isolation condition” in [44, p. 382] or [45]).

7 The presheaf structure

7.1 Rings of definable scalars

Recall, from the introduction, the full embedding of Mod-A into (A-mod,Ab)
which is given on objects by M 7→ M ⊗A −. Recall that we denote by τM
the largest torsion theory of finite type with M ⊗ − torsionfree. This torsion
theory depends only on the closed subset, supp(M), of ZgA (alternatively, on the
definable subcategory of Mod-A generated by M). More generally, if X ⊆ ZarA,
we define the torsion theory τX corresponding to X to be that whose torsion
class is generated by the Serre subcategory {F : (F,N ⊗−) = 0 for all N ∈ X}
of (A-mod,Ab)fp.

For the special case that A is a ring R we have the, already-mentioned
interpretation of the ‘localisation’ at τM as the ring of definable scalars of M .
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Theorem 7.1 ([37, A4.2], see [4, 4.6]) Let M ∈ Mod-R and let τM be the
torsion theory of finite type on (R-mod,Ab) corresponding to M. Then the
natural map R −→ End((R,−)τM

) is the ring of definable scalars, R −→ RM ,
of M .

Indeed, this interpretation is also valid for general A ([45]).
We may also obtain this ring as the biendomorphism ring of a suitably large

module.

Theorem 7.2 ([37, A4.1/4.2] see [4, 4.3] (for the ring case), [4, 4.8] (for, in
essence, the general case)) Let A be a small preadditive category and let M ∈
Mod-A. Suppose that N is a (necessarily pure-injective) module such that N⊗−
is an injective cogenerator for the finite type torsion theory, τM , corresponding
to M. Then there is an index set I such that the biendomorphism ring of N I is
the ring of definable scalars of M : AM ' Biend(N I).

In summary we have the following, stated for the case of a ring but valid
(with the obvious notion of “category of definable scalars” replacing “ring of
definable scalars”) for any small preadditive category.

Theorem 7.3 ([37, 4.3], see [4]) To each Ziegler-closed subset X of pinjR there
is associated an R-algebra, R −→ RX , called the ring of definable scalars of
X. This ring may be described by the following equivalent means.

(i) RX is the ring of pp-definable (i.e. definable in terms of projections of
systems of linear equations, see Section 10) functions on any module with sup-
port equal to X.

(ii) RX is the endomorphism ring of the image of the forgetful functor in the
localisation of the category (R-mod,Ab) at the torsion theory, τX , corresponding
to X.

(iii) RX is the biendomorphism ring of any suitably ‘large’ module N with
support equal to X, “large” meaning that N ⊗− is an injective cogenerator for
τX and N is cyclic over its endomorphism ring.

For some modules every biendomorphism is a definable scalar.

Proposition 7.4 ([37, A1.5], [4, 3.6]) If M is a module of finite endolength
then its ring of definable scalars coincides with its biendomorphism ring.

Proposition 7.5 ([37, A.1.5′], see [4, after 3.6]) If M is a finitely presented
module which is finitely generated over its endomorphism ring then its ring of
definable scalars coincides with its biendomorphism ring.

By way of contrast, the biendomorphism ring of the Prüfer group Zp∞ is
the ring, Z(p), of p-adic integers whereas its ring of definable scalars is just the

localisation Z(p). The same goes for Z(p) regarded as a Z-module (though, if

regarded as a Z(p)-module, the two rings will coincide).
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Theorem 7.6 ([39], [37, A4.4] for the last statement) If f : R −→ S is an
epimorphism of rings then ZarS may be identified with the (Ziegler-closed) subset
“Mod-S ∩ZarR” of ZarR and the ‘localisation’ of R corresponding to this closed
subset (i.e. its ring of definable scalars) is just S (regarded as an R-algebra via
f). Moreover, if S is regarded as an R-module via f then the ring of definable
scalars of SR is exactly S.

Notice that we also have a larger presheaf of small categories which associates
to each basic open set the whole localised category of finitely presented functors
(which, [37, A3.16], equals the category of finitely presented functors of the
localisation), and this makes sense as a presheaf over inj(C) for any locally
coherent category C.

7.2 The sheaf of locally definable scalars

Recalling the definition, in the introduction, of the “presheaf defined on a basis”,
we wish to extend this to a sheaf. One may go via a presheaf defined on the
whole space (see later in this section) but, since we have local data sufficient to
define a sheaf, we go straight for that. First, we check that what we described in
the introduction really does extend the usual definition of the structure sheaf.

In the classical case, associated to an affine variety, X, equivalently to its
coordinate ring R, is a sheaf, written OX=Spec(R), of rings which is defined
on the standard basis (D(r))r∈R\{0} of Spec(R) by OXD(r) = R[r−1] - the
localisation of R obtained by inverting r ∈ R (and the restriction maps are just
the canonical localisation maps). Any open set is already a basic open set (note
that D(r) ∩D(s) = D(rs)) and so this presheaf defined on a basis already is a
presheaf indeed, see e.g. [17, Section II.2], a sheaf of local rings, with the stalk
at a prime P being the localisation, R(P ), of R at P. We must rewrite this sheaf
in terms of Mod-R as we have done already for the base space Spec(R).

Given r ∈ R, consider the corresponding open set D(r) = {E ∈ inj(R) :
(R/rR,E) = 0} and consider the torsion theory on Mod-R which these injec-
tive modules cogenerate. Since every hereditary torsion theory over a (right)
noetherian ring is of finite type this is the torsion theory previously denoted by
τ[R/rR]. Clearly the localisation of R at this torsion theory is precisely R[r−1],
as required.

Proposition 7.7 If R is commutative noetherian then the torsion-theoretic
presheaf, FTR defined earlier coincides with the usual structure (pre)sheaf OSpec(R).

Given any presheaf F on a topological space T and given any point t ∈ T
the stalk of F at t is defined to be Ft = lim

−→
{F (U) : t ∈ U and U is open}. If

U0 is a basis for the topology then clearly Ft = lim
−→
{F (U) : t ∈ U ∈ U0} so the

notion of stalk is independent of any way that we might extend a presheaf on a
basis to a presheaf (on arbitrary open sets).
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Proposition 7.8 ([37, C1.1], see [41, 3.1]) Let A be a small preadditive cat-
egory and let E ∈ inj-A. Then the stalk of the presheaf, FTA at E is the
localisation of A at the torsion theory of finite type corresponding to E.

In particular if A is a ring and if N ∈ ZarA then the stalk of the presheaf,
DefA, of definable scalars at N is the ring of definable scalars at N : (DefA)N =
AN .

Strictly speaking, the proof in [37] is for the second statement. To show the
first, for each point E of GZspec(A) we have the direct limit lim

−→{F :E∈[F ]}
A[F ]

of small categories and we have to show that this limit is the image of A in the
localisation of (A-mod,Ab) by the finite type torsion theory corresponding to E.
The proof in [41] more or less applies (after translating away the model-theoretic
terminology), the key fact being that we are dealing with torsion theories of finite
type.

Then we may define the topology on the stalk space in the usual way (see
[56, 4.2.6]) and from that define the sheafification of FTA, respectively DefA,
which we denote by LFTA, respectively LDefA. The latter we refer to as the
sheaf of locally definable scalars of A.

One has, in particular, that the centre of this sheaf is a sheaf of local rings.
This follows from the fact (essentially [57, 5.4], see [35, 2.Z.8] or [45]) that if
N is any indecomposable pure-injective then the endomorphisms (in particular,
the multiplications by elements of the centre, C(R), of R) of N which are not
automorphisms form a prime ideal and so there is a prime ideal, P , of C(R) such
that N is a module over the localisation of R at P (and the canonical morphism,
R −→ RN to the stalk of the presheaf of definable scalars at N factors through
this localisation).

Theorem 7.9 ([37, D1.1], see [41, 6.1]) The centre of the presheaf of definable
scalars is a presheaf of commutative local rings.

Next we consider finite type localisation.

Proposition 7.10 (e.g. [45]) Let τ be a torsion theory of finite type on the
locally finitely presented abelian category C. Then τ is cogenerated by the set of
indecomposable injective torsionfree objects.

The following result is [37, A1.7] and is also given proof avoiding model
theory (but still using pp conditions) in [45]

Theorem 7.11 Let τ be a torsion theory of finite type on Mod-R and let
E = Fτ ∩ inj-R ⊆ ZarR be the corresponding set of indecomposable torsion-
free injectives. Then the torsion-theoretic localisation, Rτ , of R at τ coincides
(as an R-algebra) with the ring of definable scalars, RE , of E.
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This, together with the comments at the beginning of the section, show
that if R is commutative noetherian then the embedding of inj-R into pinj-R
discussed in Section 2.3 extends to an embedding of the usual structure sheaf
into the presheaf of definable scalars.

Although we went straight from the presheaf on a basis to the sheaf, we do
now turn briefly to what we bypassed, namely extending the presheaf from the
basis to all open sets. We follow a construction indicated in [56, after 4.2.6].
We may begin by extending the presheaf to finite unions of basic open sets as
follows. Given basic open sets [F ] and [G] consider the torsion theory whose
torsion class is the intersection of T[F ] ∩ T[G]. This will be of finite type (if H ′

is a finitely presented functor and H ′ is T[F ] ∩ T[G]-dense in H then there is
some finitely generated H1 ≤ H ′ which is T[F ]-dense in H ′ and there is some
finitely generated H2 ≤ H ′ which is T[G]-dense in H ′, then H1 + H2 is finitely
generated and T[F ] ∩ T[G]-dense in H, which is enough by, e.g., [37, A3.2]). So
we have the localisation, denote it A[F ]∪[G], of A at that torsion theory. Then,
to an arbitrary open set U we may assign the inverse limit (in the category
of small preadditive categories) lim

←−{V :V⊆U}
A[V ] where the limit is taken over

finite unions of basic open sets contained in U .
We also have the following which generalises 7.8 (and has the same proof).

Lemma 7.12 Let R be any ring and let Y be any subset of ZarR. Then
lim
−→
{R[F ] : Y ⊆ [F ] and F ∈ (R-mod,Ab)fp} ' RZg-cl(Y ) where the latter is

the ring of definable scalars associated, in the sense of 7.3, with the closed sub-
set Zg-cl(Y ) of the Ziegler spectrum.

8 Examples

We describe the (pre-)sheaf structure over some of the examples for which we
calculated or described the space ZarR. Tame hereditary artin algebras are
treated in some detail in [43] (we deal with just one example here) and one
could, with some work, do the computations for the domestic string algebras
Λn.

8.1 The sheaf of locally definable scalars of a PI Dedekind

domain

Recall, from Section 4.1, that to every point N of ZarR (R a PI Dedekind
domain) is associated a prime ideal, P (N), of R, which may be obtained by
taking the unique maximal ideal of End(N) (which is local), taking the inverse
image of this under the canonical map from the centre, C(R), of R to End(N),
then taking P (N) to be the prime ideal of R which is generated by this prime
ideal of C(R).

The rings of definable scalars of individual points (see 7.8) are as follows.
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• The ring of definable scalars of the module R/P n (P a non-zero prime) is
the ring R/Pn: for the module has finite endolength and hence (7.4) its ring of
definable scalars coincides with its biendomorphism ring, which is R/P n.

• If N is the P -adic or P -Prüfer module then the ring of definable scalars,
RN , is the localisation, R(P ), of R at P (by 7.8 for the Prüfer module and then
directly, or using duality [18, 6.2] and 3.3, for the adic case).

• If N is the generic point, Q, the quotient division ring of R, then RN is
the ring Q (again by 7.4 since N has finite endolength and Biend(QR) = Q
(because R −→ Q is an epimorphism of rings)).

For any subset, P, of the set, maxspec(R), of maximal ideals of R, let
U(P) = {N ∈ ZarR : P (N) /∈ P}. If we denote by R[P−1] the localisation
of R at maxspec(R) \ P then, since the canonical map R −→ R[P−1] is an
epimorphism, we have, see 7.6, that U(P) is a Ziegler-closed subset of ZgR. In
the case that P is a finite subset of maxspec(R) then U(P) is Zariski-open,
being, in the notation introduced earlier,

⋂

P∈P([ann(P )] ∩ [M/MP ]).
We compute the presheaf of definable scalars. The following result is imme-

diate from 7.11.

Lemma 8.1 Let R be a PI Dedekind domain and let P be a finite subset of
maxspec(R). Then the ring of definable scalars over the corresponding Zariski-
open subset, U(P), of ZarR is the localisation, R[P−1], of R. Furthermore, if
P ⊆ P ′, then the restriction map from RU(P) to RU(P′) is the natural embedding
between these localisations of R.

Lemma 8.1 gives all the information that we need to compute the sheafifi-
cation, LDefR, of the presheaf of definable scalars. We will describe, by way of
example, the ring of definable scalars and the ring of sections, that is, the ring
of locally definable scalars, over some basic open subsets of ZarR.

• If U = {R/Pn1
1 , . . . , R/Pnt

t } where the primes P1, . . . , Pt are all distinct,
then LDefR(U) = R/Pn1

1 × · · · ×R/Pnt

t = R/(Pn1
1 . . . Pnt

t ).

• If U = {R/Pm, R/Pn} with n ≥ m then RU = R/Pn (by 7.4 RU is
Biend(R/Pm ⊕ R/Pn)R and, noting that there is the endomorphism of this
module projecting the second component on to the first, one easily computes
that this is R/Pn). Since the set U has the discrete topology, LDefR(U) is
the direct product R/Pm × R/Pn and so we see that the presheaf of definable
scalars is not a sheaf.

• RU for U an arbitrary finite set of finite length points is given by combining
the above observations.

• Let U = ZarR \ {N1, . . . , Nt} where each Ni is an adic or Prüfer module:
then RU = RV where V is the smallest set of the form U(P) which contains
U (i.e., provided at least one of the P -adic, P -Prüfer is in U then P cannot
be inverted over U). The presence in U of infinitely many finite length, hence
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isolated, points means that the ring of locally definable scalars, LDefR(U), is
rather large. It makes sense, therefore, to throw away these isolated points (see
later).

• Consider the special (but illustrative) case, R = k[X], U = U((X)) ∪
{R/(X)}. A module with support U (which is basic Zariski-open, so also Ziegler-
closed) is k[X,X−1] ⊕ (k[X]/(X)) and so we have to compute the definable
scalars on this module. By 7.3(iii) this is the biendomorphism ring of a module of
the form M⊕M ′ where M , resp. M ′, is a ‘large enough’ module in the definable
subcategory generated by k[X,X−1], resp. by k[X]/(X). Since Hom(M,M ′) =
0 = Hom(M ′,M) the endomorphism ring of this module is just the block-
diagonal matrix ring diag(End(MR),End(M

′
R)) and hence the biendomorphism

ring is just the block-diagonal matrix ring diag(k[X,X−1], k[X]/(X)) - that is,
the direct product of these rings.

Now we compute the sheaf of locally definable scalars restricted to the set
Zar1R, obtained by throwing away the finite length points. Since Zar1R is not
Zariski-open, we need the following observations concerning restriction. Define
LDef1R to be the inverse image sheaf of LDefR under the inclusion of Zar1R
in ZarR: by definition (e.g. see [17, p. 65]) this is the sheaf associated to the
presheaf which assigns to a relatively open subset U ∩ Zar1R of Zar1R (where U
is a Zariski-open subset of ZarR) the direct limit of the rings LDefR(V ) as V
ranges over Zariski-open subsets of ZarR with V ⊇ U ∩ Zar1R. If U ∩ Zar1R =
Zar1R \ {N1, . . . , Nt} let V be the set of all points of ZarR except those which
belong to a prime P such that both the P -adic and P -Prüfer appear among
N1, . . . , Nt, that is, V is the smallest set of the form U(P) which contains U .
Then, by the computations above, this limit is already equal to RV and hence
this presheaf is already a sheaf. That is, we have the following description of
LDef1.

Lemma 8.2 Let R be a PI Dedekind domain and let Zar1R be the set of infinite-
length points, regarded as a subspace of ZarR. Let LDefR denote the sheaf of
locally definable scalars over ZarR. Then the inverse image sheaf, LDef1R, on
Zar1R may be computed as follows. Given a Zariski-open subset U of ZarR, let V
be smallest set of the form U(P) which contains U . Then LDef1R(U ∩ Zar1R) =
LDefR(V ) = R[P−1] and the restriction maps are those of LDefR, that is, the
canonical localisation maps.

In particular, the ring of definable scalars, RZar1
R
, of Zar1R is R itself.

The sheaf LDef1R is ‘unseparated’ in the sense that it contains points N ,N ′

such that U is an open neighbourhood of N iff (U \{N})∪{N ′} is an open neigh-
bourhood of N ′ (namely the Prüfer and adic associated to any maximal prime).
In order to recover the ‘classical’ situation we have to identify corresponding
adic and Prüfer points.

So let α : Zar1R −→ Zar1R be the map which interchanges the P -adic and
P -Prüfer point for every P and which fixes the generic point.
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Lemma 8.3 The map α : Zar1R −→ Zar1R is a homeomorphism of order 2 and
LDef1R ' α?LDef1R ' α?LDef1R where α?, α? denote the inverse image and
direct image sheaves respectively (see [17], [56]).

Proof. From the description of the topology it is clear that α is a homeo-
morphism. For any basic Zariski-open set, U , of Zar1R we have, again by what
has been said above, RU ' RαU and so the isomorphisms are direct from the
definitions. 2

We can, therefore, form the quotient space Zar1R/α of α-orbits and the cor-
responding sheaf LDef1R/α over this space, thus obtaining a ringed space with
centre isomorphic (via the identification of maxspecR with maxspec(C(R))) to
the structure sheaf over the commutative Dedekind domain C(R).

8.2 The sheaf of locally definable scalars of a PI hereditary

order

First we have to compute rings of definable scalars. These are obtained for
primes P belonging to singleton cliques (in the sense of [7]) by localising just as
in the Dedekind prime case. For the other primes we use universal localisation,
as in [7] (alternatively, as mentioned there, Goodearl’s localisation from [14]),
to obtain the corresponding Prüfer and adic modules. We give an example
below for illustration. Beyond this, the description of the presheaf of definable
scalars and the corresponding sheaf, both on ZarR and on Zar1R, is as before,
using the fact that if R −→ S is an epimorphism of rings then, in addition to
the induced homeomorphic embedding of ZarS into ZarR (7.6), there is induced
an embedding of LDefS , ‘up to Morita equivalence’ into LDefR. This follows
from the argument of [41, Section 8]. (And every universal localisation is an
epimorphism of rings.)

By way of example, we continue Example 4.6 by computing the various rings
of definable scalars. We retain the notation of that example.

Corresponding to the prime Pp there is the ring of definable scalars
( Z(p) Z(p)

Z(p) Z(p)

)

,

which is a maximal order in A.
The rings of definable scalars corresponding to P1 and P2 may be computed

using [14, first paragraphs of Section 2]. Explicitly, and adopting the notation of
that paper, we remove the simple module S1 by localising at X1 = {P2}∪ {Pp :
p 6= 2}. Let S1 be the set of essential right ideals I of R such that none of R/P2,
R/Pp (p 6= 2) occurs as a composition factor of R/I. Note that P1 ∈ S1. Let
R(1) denote the localisation of R at the torsion theory which has S1 as dense
set of right ideals. Then, [14], R(1) = {a ∈ M2(Q) : aI ≤ R for some I ∈ S1}.

One checks that R(1) =
(

Z Z
Z Z

)

. Similarly, if R(2) denotes the ring obtained by

localising away S2 then one checks that R(2) =
( Z 2Z
(1/2)Z Z

)

. Hence the ring of

definable scalars at P1 is
( Z(2) Z(2)

Z(2) Z(2)

)

and that at P2 is
( Z(2) 2Z(2)

(1/2)Z(2) Z(2)

)

. Notice
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that, as rings, though not as R-algebras, these are isomorphic (by the map
taking

(

a b
c d

)

to
(

a 2b
c/2 d

)

).

One way of regarding this is that we have two epimorphisms from R to the
maximal order M2(Z). The corresponding Ziegler-closed and, one may check,
Zariski-open sets cover ZarR. So LDefR is covered by two (very much) overlap-
ping copies of ‘M2(LDefZ)’.

Lemma 8.4 Let R be a hereditary order. Then the presheaf of definable scalars
over Zar1R is already a sheaf.

Proof. Take an open cover {Ui}i of Zar
1
R, say Ui = Zar1R \ Yi (where Yi is any

finite subset of Zar1R which does not contain the generic Q) and let elements
si ∈ Ri = RUi

be such that on Ui∩Uj = Zar1R\{Yi∪Yj} we have si = sj = s, say,
(we identify all the rings Ri with subrings of the full, simple artinian, quotient
ring of R, so this equality makes sense). We have s ∈ Ri ∩ Rj and this equals
RUi∪Uj

since a prime P satisfies P.Ri ∩Rj = Ri ∩Rj iff both the P -Prüfer and
P -adic modules lie in both Yi and Yj , which is so iff P.RUi∪Uj

= RUi∪Uj
. So

now taking any finite subcover, say U1, . . . , Un, we deduce that s1 = · · · = sn =
s ∈ R = RZar1

R
. Thus s is a global section which restricts on each Ui to si and

is already in the presheaf, as required. 2

Proposition 8.5 Suppose that R is a hereditary order. Let SpecR denote the
space of prime ideals of R with the Zariski topology and let π : Zar1R −→ SpecR
be the map which sends N ∈ Zar1R to P (N), the prime ideal of R associated with
N . Then the direct image, π?LDef1R, of LDef1R is a sheaf on SpecR which sends
an open set U = SpecR \ Y (where Y is a finite subset of maxspecR) to the
localisation, in the sense of [14], of R at U and π?LDef1R may be identified with
LDef1R/α where α is the homeomorphism interchanging corresponding Prüfer
and adic points.

Proof. The direct image of a sheaf is always a sheaf (e.g. [56]) and the descrip-
tion of the sheaf π?LDefR1 and its identification with LDefR1/α follows from
the previous discussion. 2

The underlying space, SpecR, of this sheaf may also be identified with the
space SpecsR (based on the set of simple modules) from [7] (via S 7→ assE(S)).
The sheaf SpecsR in [7] may, therefore be identified with the centre of LDef1R/α.

8.3 The sheaf of locally definable scalars of the Kronecker

algebra

The general tame hereditary case is considered in [43] and is based on the
following result.
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Theorem 8.6 ([54], [7]) Let R be a tame hereditary artin algebra.
(a) Let S be any set of quasisimple modules. Then the universal localisation,

RS , of R at S is a hereditary PI order which is a subring of the simple artinian
ring A obtained by taking S to be the set of all quasisimple modules.

(b) The localisation R −→ RS is an epimorphism of rings, and the image of
the inclusion functor Mod-RS −→ Mod-R is the full subcategory of all modules
M which are orthogonal to S (that is, modules M such that Ext1(S,M) = 0 =
Hom(S,M) for all S ∈ S).

We have from 7.6 that the intersection of Mod-RS with ZgR is the closed
subset U(S) which, if S is finite, is basic Zariski-open, being defined by the
conditions Ext1(S,−) = 0 = Hom(S,−) for S ∈ S, and the ring of definable
scalars for this Zariski-open set is just RS .

Using this, we may deduce the next result.

Proposition 8.7 Let R be a tame hereditary artin algebra. Recall from Section
4.3 that a basis for the Zariski topology on R ∪ Zar1R is the collection of sets
of the form U(S) where S ranges over those finite sets of quasisimple modules
which, without loss of generality, contain all quasisimples from at least one tube,
together with the sets {N} where N ∈ R.

Then the restriction DefR ¹ (R ∪ Zar1R) of the presheaf of definable scalars
is given on this basis by sending U(S) to the localisation R −→ RS and sending
any open subset of U(S) to the ring of definable scalars of the corresponding
subset, regarded as an open subset the rep-Zariski spectrum of the hereditary PI
order (in A) RS (such rings were discussed in the previous section).

In particular, the ring of definable scalars of any member, N , ofR∪Zar1R may
be computed by choosing a set S of quasisimples which contains all quasisimples
from at least one tube and does not contain the associated quasisimple module
S(N), localising R at S to obtain the hereditary order RS (which, by choosing
U to contain all but at most one quasisimple from each inhomogeneous tube,
may be assumed to be a Dedekind prime ring) and then computing the ring of
definable scalars of N , regarded as an RS -module. (In particular the ring of
definable scalars will be a matrix ring over either a uniserial artinian ring or a
non-commutative discrete valuation ring, or is a simple artinian ring.)

Now let R be the Kronecker algebra Ã1(k). We give a more explicit de-
scription of the sheaf LDef1R as a sheaf of hereditary orders (in fact, maximal
orders).

By 8.6, the full quotient ring of Ã1(k) is the ring, M2(k(X)), of 2×2 matrices
over the function field k(X). In order to maintain the symmetry between the
arrows α and β of Ã1(k) we represent k(X) in the form k(X0, X1)0 where the
subscript denotes the 0-grade part of the quotient field of the graded (with the
usual grading) ring k[X0, X1]. Then there is a natural embedding of Ã1(k) into
M2(k(X0, X1)0) which takes e1 to

(

1 0
0 0

)

, e2 to
(

0 0
0 1

)

, α to
(

0 X0
0 0

)

and β to
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(

0 X1
0 0

)

and, under this embedding, the quotient ring A may be identified with
M2(k(X0, X1)0).

Let S0 (respectively S1) be the quasisimple module which satisfies S0X1 = 0
(resp. S1X0 = 0). Let Ri denote the localisation of R at Si (i = 0, 1). Let
Di be the Zariski-open subset of Zar1R, D = Zar1R ∩ [M/MX1−i] ∩ [ann(X1−i)].
Then the localisation map R −→ Ri identifies Di with Zar1Ri

and LDef1R ¹ Di

with LDef1Ri
. Each of R0,R1 is isomorphic as a ring to the polynomial ring

over k in one indeterminate and the localisation R0,1 of R at {S0, S1} (which
corresponds to the intersection D0 ∩ D1) is a ring isomorphic to k[T, T−1]. It
is straightforward to compute these as subalgebras of M2(k(X0, X1)0) and one
obtains:

R0 =
( k[X0X

−1
1 ] kX1⊕X0k[X

−1
1 X0]

X−1
1 k[X0X

−1
1 ] k[X−1

1 X0]

)

;

R1 =
( k[X1X

−1
0 ] kX0⊕X1k[X

−1
0 X1]

X−1
0 k[X1X

−1
0 ] k[X−1

0 X1]

)

;

R0,1 =
( k[X0X

−1
1 ,X1X

−1
0 ] X1k[X

−1
0 X1]⊕X0k[X

−1
1 X0]

X−1
1 k[X0X

−1
1 ]⊕X−1

0 k[X1X
−1
0 ] k[X−1

1 X0,X
−1
0 X1]

)

=
( k(X0,X1)0 k(X0,X1)1
k(X0,X1)−1 k(X0,X1)0

)

(where subscript denotes degree in the graded ring k(X0, X1)).

9 The spectrum of a commutative coherent ring

Throughout this section R will be a commutative ring.

In our re-interpretation of Spec(R) as a topology on the set, injR, of inde-
composable injective R-modules when R is commutative noetherian we used
the noetherian hypothesis in the pairing up of indecomposable injectives with
prime ideals (and also in that we did not have to choose between using finitely
presented or finitely generated modules to define the topology).

In the general commutative case the association P 7→ E(R/P ) gives only an
injection of Spec(R) into inj-R.

The first example (which was pointed out to me by T. Kucera) shows that
Spec(R) −→ inj-R need not be surjective.

Example 9.1 Let R = k[Xn(n ∈ ω)] be a polynomial ring over a field k in
infinitely many commuting indeterminates. It is easily checked that R is coher-
ent. Let I = (Xn+1

n : n ∈ ω). Clearly I is not prime but E = E(R/I) is an
indecomposable injective. To see this, it is enough to show that R/I is uniform
and this may be shown as follows. First note that a polynomial

∑

aνX
ν (each

multi-index ν occurring at most once) is in I iff each of its monomial factors is
in I. Let xi denote the image in R/I of Xi. Let p ∈ R\I. A short inductive (on
the number of monomials) argument shows that there is a multiple of p whose
image in R/I has the form x1x

2
2 . . . x

n
n (which, note, is non-zero) for some n.

Hence any two non-zero elements of R/I have a common multiple of this form
so R/I is uniform and E(R/I) is indecomposable.
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On the other hand, E does not have the form E(R/P ) for any prime P .
This follows from 9.2 below since it is easy to see that P (E), as defined below,
is the maximal ideal (Xn : n ∈ ω) and that E(R/(Xn : n ∈ ω)) has non-zero
socle whereas E(R/I) has zero socle (if p ∈ R\I, say p ∈ k[X0, . . . , Xn], then
(p+ I)Xn+1 generates a non-zero proper submodule of the submodule generated
by p + I). Hence E is not isomorphic to E(R/P (E)) so, by 9.2, E does not
have the form EP for any prime ideal P .

Let E be any indecomposable injective R-module. Set P = P (E) to be the
sum of annihilator ideals of non-zero elements, equivalently submodules, of E.
Since E is uniform the set of annihilator ideals of non-zero elements of E is
closed under finite sum (see the proof below) so the only issue is whether the
sum, P (E), of them all is itself an annihilator ideal.

As before we use the notation EP to denote E(R/P ).

Lemma 9.2 If E ∈ inj-R then P (E) is a prime ideal. The module E has the
form EP for some prime ideal P iff the set of annihilator ideals of non-zero
elements of E has a maximal member, namely P (E), in which case E = EP (E).

Proof. Suppose that rs ∈ P (E). Then, by definition of P (E) there is a ∈ E,
a 6= 0 such that ars = 0. Then either ar = 0, in which case r ∈ P (E), or
ar 6= 0 and hence s ∈ P (E). This shows that P (E) is prime. So, if P (E) is an
annihilator ideal then E = EP (E).

If E = E(R/P ) then P ≤ P (E), by definition of the latter. If there were
r ∈ P (E) \ P let b ∈ E be non-zero with br = 0 and let a ∈ E be such that
annR(a) = P . By uniformity of E there is a non-zero element c ∈ aR ∩ bR, say
c = at with t ∈ R. Since cr = 0 we have atr = 0, hence tr ∈ P and hence t ∈ P
(impossible since c = at 6= 0) or r ∈ P - contradiction. So P = P (E). 2

Remark 9.3 The proof above shows that if P is a prime ideal and if annEP 6= 0
then E = EP .

Before examining the relation between E ∈ inj-R and EP (E) ∈ inj-R we
address the issue of which topology we should be using on inj-R.

Extending our previous notation, if X a subset of R set D(X) = {P ∈
spec(R) : X * P}. Since D(X) =

⋃

r∈X D(r) this is a Zariski-open subset of
Spec(R).

For I an ideal of R let us set Dm(I) = {E ∈ inj-R : (R/I,E) = 0} (“m”
for “morphism”). Since Dm(I) ∩Dm(J) = Dm(I ∩ J) (for the non-immediate
direction, note that any morphism from R/(I∩J) to E extends, by injectivity of
E, to one from R/I ⊕R/J) these form a basis for what we earlier (Section 2.3)
called the fg-ideals topology on inj-R. Note, however, that if I =

∑

λ Iλ then
clearly Dm(I) ⊇

⋃

λ Dm(Iλ) but, as illustrated by Example 9.1, the inclusion
may be proper (take E as there, take I to be P (E) and take the Iλ to be the
annihilators of non-zero elements of E).
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Lemma 9.4 If I is a finitely generated ideal of R and I =
∑n
1 Ii then Dm(I) =

⋃n
1 Dm(Ii).

Proof. Suppose that E /∈
⋃n
1 Dm(Ii). Then for each i there is a non-zero

morphism fi : R/Ii −→ E. The intersection of the images of these morphisms
is non-zero and, since R is commutative, any element in this intersection is
annihilated by each Ii, hence by I, that is, (R/I,E) 6= 0 so E /∈ Dm(I), as
required. 2

In the early part of 2.1 we argued the (noetherian version of the) follow-
ing, though there we could identify Spec(R) and inj-R; here we have only a
containment of the former in the latter.

Corollary 9.5 For any ideal I we have Dm(I) ∩ Spec(R) = D(I).

Therefore the restrictions of both the ideals and the, in general coarser, fg-
ideals topologies on inj-R to spec(R) give the usual Zariski topology. By the
results at the beginning of Section 2.3 the topology induced on inj-R by the
rep-Zariski=dual-Ziegler (5.4) (=induced rep-Zariski, by 2.7) topology is inter-
mediate between these two (it uses just the (right) ideals of the form DF (RR)
and this includes all finitely generated ideals, but not necessarily all ideals). If R
is coherent then this third topology coincides with the fg-ideals one. Of course,
all four spaces; inj-R with its various topologies and spec(R) with the Zariski
topology, coincide if R is noetherian.

In the remainder of this section we will mostly assume that R is coherent and
concentrate on the fg-ideals = (therefore) rep-Zariski and Ziegler topologies.

Recall that for I any right ideal of a ring, R, and r ∈ R we have an isomor-
phism R/(I : r) ' (rR + I)/I, where (I : r) = {s ∈ R : rs ∈ I}, induced by
sending 1 + (I : r) to r + I.

Theorem 9.6 Let R be commutative coherent, let E be an indecomposable in-
jective module and let P (E) be the prime ideal defined before. Then E and
EP (E) are topologically indistinguishable in ZgR and hence also in ZarR.

Proof. Let I be such that E = E(R/I). For each r ∈ R \ I we have, by
the remark just above, that the annihilator of rR + I ∈ E is (I : r) and so,
by definition of P (E), we have (I : r) ≤ P (E). The natural projection (rR +
I)/I ' R/(I : r) −→ R/P (E) extends to a morphism from E to EP (E) which
is non-zero on r + I. Forming the product of these morphisms as r varies over
R \ I, we obtain a morphism from E to a product of copies of EP (E) which
is monic on R/I and hence is monic. Therefore E is a direct summand of a
product of copies of EP (E) and so is in the definable subcategory generated by
EP (E). Therefore E ∈ Zg-cl(EP (E)) (this conclusion required no assumption on
R beyond commutativity).
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For the converse, take a basic Ziegler-open neighbourhood of EP (E): by (the
proof of) 2.7 this has the form (J/I) for a pair, I < J of finitely generated
ideals of R. Now, EP (E) ∈ (J/I) means that there is a non-zero morphism
f : J/I −→ EP (E). Since R/P (E) is essential in EP (E) the image of f has non-
zero intersection with R/P (E) so there is an ideal J ′, without loss of generality
finitely generated, with I < J ′ ≤ J and such that the restriction, f ′, of f
to J ′/I is non-zero (and contained in R/P (E)). Since R/P (E) = lim

−→
R/Iλ,

where Iλ ranges over the annihilators of non-zero elements of E, and J ′/I is
finitely presented, f ′ factorises through one of the maps R/Iλ −→ R/P (E). In
particular, there is a non-zero morphism J ′/I −→ E and hence, by injectivity of
E, an extension to a morphism J/I −→ E, showing that E ∈ (J/I). Therefore
EP (E) ∈ Zg-cl(E), as required. 2

Remark 9.7 If E is not isomorphic to EP (E) then E is not in the closure of
EP (E) with respect to the ideals topology since we have the open neighbourhood
[R/P (E)] of EP (E) which does not contain E. Therefore the ideals topology is
strictly finer than the fg-ideals topology whenever inj-R is strictly larger than
Spec(R).

Example 9.8 Coherence of R is not necessary (nor, as we saw in 9.1, suf-
ficient) for equality of the prime and injective spectra. Take, for instance,
R = k[xi (i ≥ 1) : xixj = 0 (i, j ≥ 1)] where k is a field. The Jacobson radical
J =

∑

i≥1 xiR is the only ∩-irreducible ideal so E = E(R/I) = E(k) is the only
point of inj-R. Since R/I embeds in R but is not finitely presented, R is not
coherent.

Corollary 9.9 Let R be a commutative coherent ring and let P ∈ Spec(R).
Then the closure of EP in the fg-ideals=Zariski topology on inj-R is {E ∈ inj-R :
P (E) ≥ P}.

Proof. We have, for every prime Q, that EQ ∈ Zar-cl(EP ) iff Q ≥ P (9.5) and
so, by 9.6, E ∈ Zar- cl(EP ) iff P (E) ≥ P . 2

If E is an injective module we denote by cog(E) the (hereditary) torsionfree
class cogenerated by E (i.e. all those modules which embed in a power of E). If
E′ is an indecomposable injective in cog(E) then, since it is a direct summand of
a direct product of copies of E, it is in the definable subcategory generated by E
and hence is a member of supp(E) ⊆ ZgR (in particular, if E is indecomposable
then E′ ∈ Zg-cl(E) and hence E ∈ Zar-cl(E ′)). The first half of the proof of 9.6
shows that E ∈ Zg-cl(EP (E)) whether or not R is coherent. It also shows the
following.

Lemma 9.10 If I ≤ J are (right) ideals of R then E(R/I) ∈ cog(E(R/J)).
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Proposition 9.11 Let E be an indecomposable injective module over the com-
mutative coherent ring R. Then the torsion theory cogenerated by E is of finite
type iff E = EP for some prime P .

Proof. (⇐) By 9.5, for I any ideal of R we have EP ∈ Dm(I) iff EP ∈ D(I),
that is, iff (R/I,EP ) = 0 (i.e. R/I is EP -torsion) iff I £ P and the latter is
so iff some finitely generated ideal I ′ ≤ I satisfies I ′ £ P. So each EP -dense
ideal contains a finitely generated EP -dense ideal, which is (well-known to be)
equivalent to the torsion theory cogenerated by E being of finite type.

(⇒) If E cogenerates a torsion theory of finite type then, by the proof of
the second half of 9.6, we have EP (E) ∈ cog(E) (there, taking J = R, it is
shown that if I is a finitely generated ideal with Hom(R/I,E) = 0, (i.e. with
R/I E-torsion) then Hom(R/I,EP (E)) = 0 so, by finite type, EP (E) ∈ cog(E)).
Hence there is an embedding R/P (E) −→ Eκ for some index set κ. It follows
that annEP (E) 6= 0 and hence, by 9.3, E ' EP (E), as required. 2

Thus Spec(R) may be identified within inj-R as those points which cogener-
ate torsion theories of finite type.

Theorem 9.12 If R is any right coherent ring then a subset of inj-R is Ziegler-
closed iff it has the form F ∩ inj-R where F is the torsionfree class for some
torsion theory of finite type.

Proof. A torsionfree class F is a definable subcategory of Mod-R iff the corre-
sponding torsion theory is of finite type ([31], [23]) and so, by 5.2, any subset
of the form given will be Ziegler-closed.

For the converse if X ⊆ ZgR is closed then, by 5.2, it has the form D∩ inj-R
for some definable subcategory, D, of Mod-R. We may replace D by its closure,
D′, under arbitrary submodules which is, note, again a definable subcategory
and also has the same intersection with inj-R as D. The torsionfree class co-
generated by the members of X taken together clearly is contained in D′. This
torsionfree class might not be of finite type but (this is another characterisation
of finite type) its closure under direct limits will be (since R is right coherent,
so direct limits of injectives are injective, this still will be a torsionfree class).
The intersection of this finite type torsionfree class with inj-R, being contained
in the intersection of D′ with inj-R, is X, as required. (We remark that this
finite type torsion theory has been met already as the largest torsion theory of
finite type less than or equal to that cogenerated by the (injective hull of the
direct sum of the) members of X.) 2

Theorem 9.13 Let R be commutative coherent and let X ⊆ inj-R be Ziegler-
closed. Then X is irreducible iff X = cog(EP )∩ inj-R for some prime ideal, P ,
of R.
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Proof. By 9.12 there is a torsionfree class, F , of finite type with F∩ inj-R = X.
Let I be the set of annihilators of non-zero element of members of F . If {Iλ}λ
is a chain of members of I with their union=sum equal to I, say, then, since F
is closed under direct limits (being of finite type), there is M ∈ F and a ∈ M
with a 6= 0 and aI = 0. So by Zorn’s Lemma every I ∈ I is contained in a
maximal member of I. Denote the set of these maximal members by P. The
argument used in 9.2 shows that all ideals in P are prime.

Choose P0 ∈ P and set E0 = EP0
and E′ =

⊕

{EP : P ∈ P, P 6= P0}.
By 9.10 (and comments before that) supp(E0) ∪ supp(E′) = X (because R is
coherent the support of any injective module will consist of injective modules,
see [47, 4.4]). So, by irreducibility of X, either X = supp(E0), which equals
cog(E0) ∩ inj-R by 9.11 and 9.12, as required, or X = supp(E ′). But, in the
latter case we would have E0 ∈ cogE′ and hence there would be an embedding

of the form f : R/P0 −→
∏

{E
κ(P )
P : P ∈ P, P 6= P0} with, say (1 + P0) −→

(eλ)λ. Some eλ would be non-zero and so P0 would be (properly!) contained in
annR(eλ) - contradicting P0 ∈ P. 2

Proposition 9.14 Let R be commutative coherent. A subset V of injR is
Zariski-closed and irreducible iff there is a prime ideal Q of R such that V =
{E : P (E) ≥ Q}.

Proof. This is just the usual description of irreducible closed subsets of Spec(R)
combined with 9.6. 2

Corollary 9.15 Let R be commutative coherent. Then there are bijections be-
tween the following:
(i) the set of irreducible Ziegler-closed subsets of injR;
(ii) the set of irreducible Zariski-closed subsets of Spec(R);
(ii) the points of Spec(R);
(iii) the set of irreducible (Gabriel-/induced rep-)Zariski-closed subsets of injR;
given by {E : P (E) ≤ Q} ∼ {P : P ≥ Q} ∼ Q ∼ {E : P (E) ≥ Q}.

10 Appendix: pp conditions

Many of our references use terminology derived from model theory: here we
explain, briefly, the main item of terminology, namely “pp formula”. In the
context of this paper, it is most convenient to think of this as meaning simply
a subfunctor of the forgetful functor (or of one of its finite powers).

Every finitely generated subfunctor of the n-th power, (Rn,−), of the forget-
ful functor (from the category of R-modules to that of abelian groups) has the
following form. Fix a homogeneous R-linear system of equations with m ≥ n
indeterminates: to every module M we may associate the solution set in M of
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this system - this will be a subgroup of Mm; consider the image of this solution
set under the projection of Mm onto the first n coordinates - this image is a
subgroup of Mn. That’s how the functor works on objects and the action on
morphisms is the obvious one. That’s all. (That is, a pp formula is basically
such a system of equations, together with the specification of projecting on to
(say) the first n coordinates.)

Every finitely presented functor is a quotient, F/F ′, of two such subfunc-
tors of some power of the forgetful functor: the model-theoretic terminology
corresponding to such a quotient is “pp-pair”.

The functorial terminology is better in some regards: a formula is really
a presentation rather than the functor being presented and for theorems (as
opposed to calculations) one does not usually need to refer to presentations.

For more explanation, or for other terms, see the introductions to various of
the references or, e.g. the expository paper [44]. A book, [45] on all this, and
more, is in preparation but, for a fast introduction (as opposed to a comprehen-
sive treatment), the existing literature is better.

We finish by mentioning some relevant papers in connection with derived
and triangulated categories, namely [3] where the rep-Zariski spectrum appears
in connection with the spectrum of the cohomology ring of the group algebra of
a finite group, [26] where the Ziegler spectrum (and hence, implicitly the rep-
Zariski spectrum) for compactly generated triangulated categories is defined and
[12], [13] which continue in these directions.
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