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Optimality of the Paterson–Stockmeyer Method for Evaluating

Matrix Polynomials and Rational Matrix Functions∗

Massimiliano Fasi†

Abstract

Many state-of-the-art algorithms reduce the computation of transcendental matrix
functions to the evaluation of polynomial or rational approximants at a matrix
argument. This task can be accomplished efficiently by resorting to the Paterson–
Stockmeyer method, an evaluation scheme originally developed for matrix polyno-
mials that extends quite naturally to rational functions. An important feature of
this technique is that the number of matrix multiplications required to evaluate an
approximant of order n grows slower than n itself, with the result that different ap-
proximants yield the same asymptotic computational cost. We analyze the number
of matrix multiplications required by the Paterson–Stockmeyer method and by two
widely used generalizations, one for evaluating diagonal Padé approximants of gen-
eral functions and one specifically tailored to those of the exponential. In all three
cases, we identify the approximants of maximum order for any given computational
cost.

Keywords: Paterson–Stockmeyer method, polynomial evaluation, matrix polyno-
mial, matrix rational function, matrix function.
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1 Introduction

Several numerical methods for evaluating matrix functions, including the state-of-the-art
algorithms for computing the exponential [1], [13], [14, Chap. 10], the logarithm [2], [7],
trigonometric [3] and hyperbolic functions, and their inverses [5], rely on rational ap-
proximation. The special case of polynomial approximants is of particular interest, as it
usually yields simpler formulae and often leads to elementary proofs of theoretical results.
In the literature, algorithms based on polynomial approximation have been proposed for
computing the matrix exponential [6], [8], [9], [20], [21], the matrix logarithm [10], and
trigonometric matrix functions [4], [19].

In order to compute fpAq, where f : Cnˆn Ñ Cnˆn and A P Cnˆn, these algorithms
typically perform three main steps. First, a series of transformations is applied to A,
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Nazionale di Alta Matematica, INdAM–GNCS Project 2018. The opinions and views expressed in this
publication are those of the author, and not necessarily those of the funding bodies.
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in order to obtain a matrix B for which a suitable polynomial or rational approximant
to f is guaranteed to deliver a prescribed level of accuracy. This approximant is then
evaluated at the matrix B, and an approximation of fpAq is obtained by exploiting
algebraic properties of f in order to reverse the transformations initially applied to A.

Let us consider the polynomial

ppAq “
k
ÿ

i“0

ciA
i, (1)

where k P N and c0, c1, . . . , ck P C. As a polynomial is nothing but a linear combination of
powers of its argument, one can evaluate ppAq by explicitly computing the first k powers
of A, scaling them by the corresponding coefficients of p, and summing them up. If all the
powers A2, A3, . . . , Ak are computed, this algorithm requires k´1 matrix multiplications,
k matrix scalings, k matrix sums, and one diagonal update of the form AÐ A` αI, for
α P C, which can be performed efficiently without explicitly forming the diagonal matrix
αI. This technique requires at least 2n2 additional elements of storage, as it is necessary
to keep track of the intermediate powers of A and of the accumulated partial sum.

A second evaluation scheme for (1) is the matrix version of Horner’s method. This is
the algorithm of choice for scalar polynomials, as it reduces the number of multiplications
to be performed without affecting that of scalar sums. In order to employ this scheme,
we define the recursion

Pk´1 “ ckA` ck´1I,

Pi “ Pi`1A` ciI, i “ k ´ 2, k ´ 3, . . . , 0,
(2)

and evaluate ppAq “ P0 by computing Pi for i from k´1 down to 0. For dense polynomials,
this method requires k ´ 1 matrix multiplications, but only one matrix scaling and k
diagonal updates, and can be implemented in a memory efficient way that requires only
a half of the additional storage needed by the algorithm that evaluates ppAq by explicitly
computing powers of A.

In order to reduce the number of matrix multiplications needed to form ppAq, Paterson
and Stockmeyer [17] proposed a less straightforward approach, which for k ě 4 yields an
operation count lower than that of the two techniques discussed thus far. By collecting
powers of A in a suitable fashion, for s P N` :“ Nz t0u we obtain

ppAq “
ν
ÿ

i“0

pAsqiB
rps
i pAq, ν “

Z

k

s

^

, (3)

where

B
rps
i pAq “

$

’

’

’

’

’

&

’

’

’

’

’

%

s´1
ÿ

j“0

csi`jA
j, i “ 0, 1, . . . , ν ´ 1,

|k|s
ÿ

j“0

csi`jA
j, i “ ν,

Here |a|b denotes, for two integers a and b, the reminder of the integer division of a by b.
In other words, if |a|b “ δ P N, then a “ γb ` δ for some γ P N. If δ “ 0, that is, if a is
an integer multiple of b, we write b � a.
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The scheme (3) requires k ´ r ` 1 matrix scalings and sums, and r ` 1 diagonal
updates; computing A2, A3, . . . , As requires s ´ 1 matrix multiplications, and, at the
price of storing these s ´ 1 additional matrices, no extra multiplication is needed to
compute B

rps
i pAq, for i “ 0, . . . , ν. By evaluating (3) à la Horner, we obtain the recursion

rPν´1 “

#

ckA
s
`B

rps
ν´1pAq, s � k,

AsBrpsν pAq `B
rps
ν´1pAq, s ffl k,

(4)

rPi “ AsPi`1 `B
rps
i pAq, i “ ν ´ 2, ν ´ 3, . . . , 0,

and computing ppAq “ rP0 requires ν´1 additional matrix multiplications if k is a multiple
of s, and ν if it is not. Therefore, evaluating (1) by means of (3) requires

Cp
s pkq :“ s´ 1`

Z

k

s

^

´ rs � ks (5)

matrix multiplications, where r ¨ s denotes the Iverson bracket, defined, for a proposi-
tion P , by

rPs “

#

1, if P is true,

0, if P is false.

Taking the derivative of (5) with respect to s shows that the continuous relaxation of
Cp
s pkq is minimized by taking

s‹ “
?
k. (6)

As s must be an integer, we can choose either s “ t
?
ku or s “

P
?
k
T

. These two choices,
together with the evaluation scheme (3), give two variants of the Paterson–Stockmeyer
method. Note that this evaluation scheme is not defined for k “ 0. Hargreaves [12,
Thm. 1.7.4] proved that, in fact, these two algorithms have the same cost for any k P N.
In the next section, we provide a new proof of this result, in which we establish the
notation and present techniques we will rely on later on.

It is important to pinpoint that this approach trades off memory for computational
efficiency, since s ` 1 additional matrices need to be stored, for a space complexity of
O
`
?
kn2

˘

. Van Loan [22] showed that, by computing ppAq one column at a time, it is
possible to reduce the storage requirement of the algorithm to 3n2 additional elements, at
the price of pα log2 s´1qn3 additional flops, where α is a small constant that depends only
on s. How to implement the original Paterson–Stockmeyer algorithm and this variant
in a memory and communication efficient way has been recently discussed by Hoffman,
Schwartz, and Toledo [15].

We note that the Paterson–Stockmeyer method is not the fastest known algorithm
for evaluating polynomials of matrices: Paterson and Stockmeyer [17] discuss a technique
that requires fewer matrix multiplications than the algorithm above, and an alternative
approach for reducing the number of matrix multiplications to evaluate polynomials of
matrices has recently been proposed by Sastre [18]. These algorithms evaluate several
appropriately chosen polynomials of lower degree, whose coefficients are obtained from
those of the original polynomial by means of various techniques. This preprocessing stage
may introduce numerical instabilities, thus the new coefficients must be carefully chosen
on a case-by-case basis, as done for example in [20] for the truncated Taylor approximants
to the exponential of order 8, 15, 24, and 30.
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Polynomials of the form (1) often arise when computing matrix functions by relying on
Padé approximation. A rational function rkm “ pkm{qkm, for k,m P N, is the rk{ms Padé
approximant to f at 0 if pkm and qkm are polynomials of degree k and m, respectively,
qkmp0q “ 1, and the first k`m terms in the series expansion of fpxq´rkmpxq at 0 are zero.
In particular, we focus on truncated Taylor series, for which m “ 0, and diagonal Padé
approximants, for which m “ k, since these are the two families of Padé approximants
most commonly encountered in the literature. Subdiagonal Padé approximants are also
considered [11], [16], but the partial fraction form is usually preferred for their evaluation.

The scheme (3) readily generalizes to the evaluation of rational matrix functions:
after computing the first s powers of A, for some s P N`, one can evaluate numerator
and denominator separately, by means of (3), and then solve a multiple right-hand side
linear system. An approximately optimal value for s can be determined by minimizing
the continuous relaxation of the corresponding cost function.

Since the cost of matrix multiplications is asymptotically higher than that of matrix
scalings and matrix sums, we follow the customary practice of measuring the efficiency
of algorithms for evaluating polynomials of matrices by counting the numbers of matrix
multiplications that need to be performed [14, Chap. 4]. The goal of this work is twofold.
On the one hand, we study the optimality of the Paterson–Stockmeyer method amongst
all methods of the form (3); on the other, we give several results that can aid in developing
numerical algorithms for the computation of matrix functions. Now we summarize our
contribution while outlining the structure of the following sections.

It has been observed [14, p. 74] that the Paterson–Stockmeyer method minimizes the
number of matrix multiplications required to evaluate polynomials of degree between 2
and 16 by means of the scheme (3). In section 2.1 we show that this is in fact the case
for polynomials of any degree.

When matrix functions are approximated by means of polynomials, it is customary not
to consider all possible approximants, but only those that maximize the approximation
degree for a given number of matrix multiplications. For example, since Cp

s p11q ě 5 and
Cp
s p12q ě 5 for any s P N`, there is little point in considering an approximant of degree

11 when that of degree 12 is likely to deliver a more accurate approximation at the same
cost. The following definition allows us to make this notion precise and extend it to the
case of rational approximants.

Definition 1 (Optimal orders of an evaluation scheme). Let Cpkq, for k P N, be the
number of matrix multiplications required by a scheme S to evaluate an approximant of
order k. Then k1 P N is an optimal order (or degree, if the approximant is a polynomial)
for S if there exists ζ P N such that

k1 “ maxtk P N : Cpkq “ ζu.

When working with fixed precision arithmetic, the order of the highest approximant
that may be needed to achieve the required accuracy, kmax say, is typically known when
the algorithm is being designed, and only the optimal orders smaller than kmax are needed.
These can be found by inspecting the values of Cpkq for k ď kmax, as was done in [14,
Table 4.1] and [6, Table 1] for polynomial approximants and in [14, Table 10.3] for the
diagonal Padé approximants to the exponential. In arbitrary precision floating-point
environments, however, depending on the working precision and the desired accuracy,
an approximant of arbitrarily high order may be needed, and alternative techniques to
efficiently find all optimal degrees become necessary.
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Figure 1: Number of matrix multiplications required to evaluate a polynomial of degree
k, for k between 1 and 50, by means of the scheme (3) with s “

X
?
k
\

and s “
P
?
k
T

.

Dashed and dotted lines mark the values of k that are integer multiples of
X
?
k
\

and
P
?
k
T

, respectively; the circles mark the number of matrix multiplications required to
evaluate polynomials of optimal degree (in the sense of Definition 1) for the Paterson–
Stockmeyer method.

In section 2.2, we derive a formula for the sequences of optimal degrees for the
Paterson–Stockmeyer method for polynomial evaluation. In section 3, we obtain closed
formulae for the optimal orders of the Paterson–Stockmeyer-like scheme for evaluating
rational functions whose numerator and denominator have same degree, and in section 4
we consider the special case of the diagonal Padé approximants to the exponential.

Finally, in section 5 we summarize our findings and outline possible directions for
future work.

2 Evaluation of matrix polynomials

Figure 1 shows the value of the cost function (5) for the two canonical variants of the
Paterson–Stockmeyer method, which differ only in the direction

?
k is rounded in order

to obtain the parameter s in (3). It is well known that both choices yield the same
computational cost for the evaluation of a polynomial of any degree, and in section 2.1
we show that this is the minimum value for Cp

s pkq among all choices of s P N`. The
values marked with a red circle are discussed in section 2.2.

2.1 Optimality of the Paterson–Stockmeyer method

Most of the results that follow stem from a couple of simple observations. If s “
X
?
k
\

,
then by definition of the floor operator, we have that

s ď
k

s
ă
ps` 1q2

s
“ s` 2`

1

s
, (7)
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where the first inequality holds strictly if
X
?
k
\

‰
P
?
k
T

. It follows that
X

k
s

\

“ s ` t,
where t can only be 0, 1, or 2, and in fact it is convenient to split (7) into the three
subcases

s` t ď
k

s
ă s` t` 1, t “ 0, 1, 2. (8)

Combining (7) and (8) for t “ 2 with the fact that k is an integer, reveals that
X

k
s

\

“ s`2
only if s � k, that is, only if k “ sps` 2q.

Theorem 1 (Hargreaves, [12, Thm. 1.7.4]). Let A P Cnˆn and let p be a polynomial
of degree k P N`. The two methods obtained by setting s in ( 3) to sf “

X
?
k
\

and

sc “
P
?
k
T

require the same number of matrix multiplications to evaluate ppAq.

Proof. We need to prove that Cp
sf
pkq “ Cp

scpkq for any k P N`. If k is a perfect square,
then sf “ sc and the result follows immediately. Otherwise, one has that s :“ sf “ sc´1,
and thus that

∆pkq :“ Cp
sf
pkq ´ Cp

scpkq “

Z

k

s

^

´ rs � ks ´ 1´

Z

k

s` 1

^

` rs` 1 � ks. (9)

If s � k and k ‰ s2, then (7) implies that ν “
X

k
s

\

“ k
s

is either s ` 1 or s ` 2. If
ν “ s ` 1, then k “ sps ` 1q and s ` 1 � k, and substituting into (9) gives ∆pkq “ 0. If
ν “ s` 2, then

k

s` 1
“
sps` 2q

s` 1
“ s` 1´

1

s` 1
,

hence
X

k
s`1

\

“ s and s` 1 ffl k, and once again substituting into (9) shows that ∆pkq “ 0.
When s` 1 � k, multiplying (7) by s

s`1
gives

s´ 1`
1

s` 1
ă

k

s` 1
ă s` 1,

which leads back to the case k “ sps` 1q.
Finally, if s ffl k and s ` 1 ffl k, then

X

k
s

\

“ s ` t, where t is either 0 or 1, and
multiplying (8) by s

s`1
gives

s` t´ 1´
t´ 1

s` 1
ď

k

s` 1
ă s` t´

t

s` 1
,

which implies that
Z

k

s` 1

^

“ s` t´ 1 “

Z

k

s

^

´ 1. (10)

Substituting (10) into (9) concludes the proof.

In view of the result in Theorem 1, we can drop the subscript and adopt the nota-
tion Cppkq to indicate the number of matrix multiplications required by the Paterson–
Stockmeyer method.

Next, we show that the Paterson–Stockmeyer method is the cheapest algorithm that
arises from the evaluation scheme (3). Note that this result is not an obvious consequence
of the optimality of s‹ in (6), since the continuous relaxation of (5) does not take into
account the discontinuities induced by the floor operator in

X

k
s

\

and the non-continuous
term rs � ns.
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Proposition 1. Let A P Cnˆn and let p be a polynomial of degree k P N`. The Paterson–
Stockmeyer method minimizes the number of matrix multiplications required to evaluate
ppAq by means of the evaluation scheme (3).

Proof. Let s “
X
?
k
\

. In view of Theorem 1, it suffices to show that Cp
s``pkq ď Cp

s pkq,
for all ` P Z such that ` ą ´s. The proof is by exhaustion since, by (7), ν can take only
the three values s, s` 1, and s` 2. For t “ 0, 1, or 2, we have that

Cp
s pkq “ 2s` t´ 1´ rs � ks, (11)

and since
k

s` `
ě
sps` tq

s` `
“ s´ `` t` η`t , η`t :“

`p`´ tq

s` `
, (12)

we can conclude that

Cp
s``pkq “ s` `´ 1`

Z

k

s` `

^

´ rs` ` � ks ě 2s` t´ 1`
X

η`t
\

´ rs` ` � ks.

For ν “ s, η`0 is nonnegative, and Cp
s``pkq can be strictly smaller than Cp

s pkq only
if s ` ` � k and

X

η`0
\

“ 0 but s ffl k. By taking the floor of (12), we see that the first
condition is satisfied only if k “ ps` `qps´ `q “ s2´ `2 for some `. However, k cannot be
smaller than s2, thus the only admissible value for ` is 0, in which case Cp

s pkq “ Cp
s``pkq.

For ν “ s ` 1, η`1 is nonnegative, and Cp
s``pkq ă Cp

s pkq only if k “ ps ` `qps ´ ` ` 1q
and s ffl k. Since k must be larger than sps` 1q, the only two admissible values for ` are
0 and 1, but in both cases we have that k “ sps` 1q, and thus that s � k.

Finally, for t “ 2 and k “ sps ` 2q, observe that Cp
s``pkq ě Cp

s pkq unless
X

η`2
\

“ ´1
and s ` ` � k. The former condition is satisfied if and only if ` “ 1, but in this case
s` 1 ffl sps` 2q, since

sps` 2q

s` 1
“ s`

s

s` 1

cannot be integer for s ą 0.

2.2 Optimal degrees for the Paterson–Stockmeyer method

We can characterize the degrees that are optimal for the Paterson–Stockmeyer method
in the sense of Definition 1. In order to accomplish this task, we need to show that the
cost function (5) is non-decreasing in k. Again, this result is not obvious because of the
terms

X

k
s

\

and rs � ks in (5).

Lemma 1. The number of matrix multiplications required by the Paterson–Stockmeyer
method to evaluate a matrix polynomial is non-decreasing in the degree of the polynomial.

Proof. We want to show that, for k P N`,

Cp
pkq ď Cp

pk ` 1q. (13)

As floor and ceiling yield the same operation count, we can restrict ourselves to consid-
ering only s “

X
?
k
\

and s1 “
X?
k ` 1

\

. If s “ s1, then we only need to prove that
X

k
s

\

ď
X

k`1
s

\

. By adding 1
s

to all the terms in (8), we get that that, if
X

k
s

\

“ s` t, then

s` t`
1

s
ď
k ` 1

s
ă s` t` 1`

1

s
,
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and thus that
X

k`1
s

\

is either s`t or s`t`1, and cannot be smaller than
X

k
s

\

. Otherwise,
we must have that s1 “ s` 1.

If s � k, then k “ sps` tq, for t “ 0, 1, or 2, and observing that

k ` 1

s` 1
“
s2 ` st` 1

s` 1
“ s` t´ 1`

2´ t

s` 1
,

we can conclude that
X

k`1
s`1

\

“ s ` t ´ 2. Therefore, if t “ 0 or 1, then s ` 1 ffl k ` 1 and
the inequality (13) holds strictly, whereas if t “ 2, then k` 1 “ ps` 1q2 and the equality
is satisfied.

If s`1 � k`1, then
X?
k ` 1

\

“ s`1 and
X
?
k
\

“ s, which implies that ps`1q2 ď k`1
and k ` 1 ă ps ` 1q2 ` 1, respectively. By dividing both inequalities by s ` 1, we get
that k`1

s`1
“ s ` 1, which can be rewritten as k “ ps ` 1q2 ´ 1, and readily implies that

k
s
“ s` 2. Substituting these values into (13) shows that equality holds in this case.

Finally, when s ffl k and s ` 1 ffl k ` 1, by multiplying all the terms in (8) by s,
incrementing them by one, and dividing them by s` 1, one gets

s` t´ 1`
s

s` 1
ď
k ` 1

s` 1
ă s` t`

1´ t

s` 1
,

which implies that
X

k`1
s`1

\

can be either s ` t ´ 1 or s ` t. Substituting into (13) shows
that the former satisfies the equality and the latter the strict inequality.

Recall that an integer a is a quarter-square, a perfect square, or an oblong number,
if there exists b P N such that a “ tb2{4u, a “ b2, or a “ bpb` 1q, respectively.

Proposition 2. The degree of a polynomial is optimal for the Paterson–Stockmeyer
algorithm if and only if it is a positive quarter-square.

Proof. By Lemma 1, a degree k P N` is optimal if and only if Cppkq ă Cppk` 1q. Since
positive quarter-squares are either positive perfect squares or positive oblong numbers,
we need to prove only that Cppkq ă Cppk`1q if and only if k “ s2 or k “ sps`1q for some
s P N`. We have that

X
?
k
\

“
X?
k ` 1

\

“ s, and it is straightforward to verify that
Cpps2q “ 2s´2 ă 2s´1 “ Cpps2`1q and Cppsps`1qq “ 2s´1 ă 2s “ Cppsps`1q`1q,
and thus that s2 and sps` 1q are optimal degrees for all s P N`.

Conversely, let k P N` be an optimal degree for the Paterson–Stockmeyer method,
and let s “ t

?
ku. Note that if k is not an integer multiple of s, then a polynomial with

s´ pk mod sq more terms can be evaluated with the same number of matrix multiplic-
ations. Therefore, if k is optimal, then s � k and, as a consequence of (7), k must be of
the form sps` tq, where t “ 0, 1, or 2. We already known that if t “ 0 or t “ 1, then k is
optimal, and we need to show only that k1 :“ sps` 2q is not. Since k1 ` 1 “ ps` 1q2, we
have that

?
k1 ` 1 � k1 ` 1, and thus that Cppk1q “ 2s “ Cppk1 ` 1q, which shows that k1

is not optimal.

Therefore, the sequence of optimal degrees for the Paterson–Stockmeyer method is
papi qiPN, where

api “

Z

pi` 2q2

4

^

. (14)

By observing that Cppapi q “ i, we can conclude that the polynomial of highest degree
that can be evaluated with i matrix multiplications is that of degree api .
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Figure 2: Number of matrix multiplications required to evaluate a rational function of
order rk{ks, for k between 1 and 50, by means of the scheme (15), for s “

X
?

2k
\

and

s “
P
?

2k
T

. The dotted and dashed lines mark the values of k that are integer multiples of
X
?

2k
\

and
P
?

2k
T

, respectively; the circles mark the number of matrix multiplications re-
quired to evaluate rational matrix functions of optimal order (in the sense of Definition 1)
for the evaluation scheme (15).

3 Rational matrix functions of order rk{ks

A rational function is the quotient of two polynomials and, in the matrix case, it can
be interpreted as the solution to a multiple right-hand side linear system whose coeffi-
cients and constant term are both matrix polynomials. Therefore, the value of a rational
function at a matrix argument can be computed by relying on a suitable modification of
the scheme (3) capable of minimizing the number of matrix multiplications required to
evaluate at once two polynomials at the same matrix argument.

Since in algorithms for computing matrix functions the evaluation of diagonal approx-
imants is typically needed in this section we focus on the evaluation of rational matrix
functions of order rk{ks. Let us consider the task of evaluating rpAq “ qpAq´1ppAq,
where both p and q are polynomials of degree k P N`. We can rewrite numerator and
denominator of this rational function as polynomials in As, which gives

ppAq “
ν
ÿ

i“0

B
rps
i pAqpA

s
q
i, qpAq “

ν
ÿ

i“0

B
rqs
i pAqpA

s
q
i, ν “

Z

k

s

^

. (15)

If this scheme is used and A2, A3, . . . , As are computed only once, then evaluating rpAq
requires the solution of one multiple right-hand side linear system and

Cr
s pkq :“ s´ 1` 2

Z

k

s

^

´ 2rs � ks (16)

matrix multiplications. The continuous relaxation of (16) is minimized by taking s “
?

2k,
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but, as Figure 2 shows, depending on k, either taking the floor or the ceiling of this quant-
ity may yield the lowest flop count. Therefore, for k P N`, we define use of

srk :“ arg min
!

Cr

t
?
2ku
pkq, Cr

r
?
2ks
pkq

)

. (17)

Figure 2 seems to suggests that if either rounding of
?

2k divides k, then setting s to
it in (15) will give Cr

srk
pkq. In the following we prove that, when that happens, srk in fact

minimizes the cost function Cr
s pkq among all possible choices of s.

Lemma 2. Let A P Cnˆn and let p and q be polynomials of degree k P N`. If t
?

2ku � k or
r
?

2ks � k, then setting s in (15) to t
?

2ku or r
?

2ks, respectively, minimizes the number
of matrix multiplications required to evaluate both ppAq and qpAq by the scheme (15).

Proof. Let s “ t
?

2ku. By definition of the floor operator, s2 ď 2k ă ps` 1q2, and thus

s

2
ď
k

s
ă
s

2
` 1`

1

2s
.

Since s � k, we have that k
s
“ s`t

2
, where t “ 0 or 2 if s is even and t “ 1 if s is odd,

and thus that Cr
s pkq “ 2s ` t ´ 3. In order to determine the number of multiplications

required when setting s ‰ s in (15), note that for ` P N such that ` ą ´s, we have

k

s` `
“
sps` tq

2ps` `q
“

1

2

`

s´ `` t` η`t
˘

, η`t :“
`2 ´ t`

s` `
. (18)

If s` ` � k, then η`t ě ´
1
s`1

ą ´1, thus
X

k
s``

\

ě s´``t
2

and Cr
s``pkq ě 2s` t´ 3 “ Cr

s pkq.

On the other hand, if s` ` ffl k, then
X

k
s``

\

ě s´`´t´1
2

, and Cr
s``pkq ě 2s` t´ 2 ą Cr

s pkq.

The proof for s “ r
?

2ks is rather similar. From ps´ 1q2 ă k ď s2 we have that

s

2
´ 1´

1

2s
ă
k

s
ď
s

2
,

and since s � k, that k
s
“ s`t

2
, for t “ 0, 1, or 2. For ` ą ´s, one has that k

s``
“ 1

2
ps´ `´ t` η`´tq,

and we can argue as above that if s ` ` � k then Cr
s``pkq ě 2s ´ t ´ 3 “ Cr

s pkq, while if
s` ` ffl k, then Cr

s``pkq ě 2s´ t´ 2 ą Cr
s pkq.

In order to characterize the optimal degrees for the scheme (15), we need to define
the cost function Crpkq “ min1ďsďktC

r
s pkqu, which represents the number of matrix

multiplications needed to evaluate a diagonal rational function by means of (15) over
all reasonable choices of s. In analogy with quarter-squares, we say that a P N is an
eight-square if there exists b P N such that a “ tb2{8u.

Proposition 3. The degree of numerator and denominator of a rational function is
optimal for the evaluation scheme (15) if and only if it is a positive eight-square.

Proof. Let r “ p{q, where p and q are polynomials of degree k P N`. Note that when
s ffl k, then adding s´ pk mod sq more terms to p and q does not increase the number of
matrix multiplications required by the scheme (15), thus we only need to consider cases
where k is an integer multiple of s.
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Let us begin by showing that if k is a positive eight-square then it is optimal. Note
that k “ xp2x ` tq, for some x P N`, if k ” t pmod 4q and t “ 0, 1, or 2, and that
k “ p2x ` 1qpx ` 1q for some x P N, if k ” 3 pmod 4q. We consider the four cases
separately. In the following, we always assume that ` P Z is such that ` ą ´s and that
j P N.

If k “ 2x2, then s “
?

2k “ 2x, and since s � k, by Lemma 2 the minimum number
of matrix multiplications required to evaluate rpAq is Cr

s pkq “ 2s´ 3. Since

k ` j

s` `
“

1

2

`

s´ `` η`j
˘

, η`j :“
`2 ` 2j

s` `
,

and η`j ą 0, we have that s ` ` � k ` j only if η`j ě 1, which implies that Cr
s``pk ` jq ě

2s´ 2 ą Cr
s pkq.

If k “ xp2x`1q, then k is an integer multiple of s “ r
?

2ks “ 2x`1, thus Cr
s pkq “ 2s´4

and
k ` j

s` `
“

1

2

`

s´ `´ 1` η`j
˘

, η`j :“
`2 ` `` 2j

s` `
,

Since it is strictly positive, η`j must be at least 1 for s` ` to divide k ` j, which implies
that Cr

s``pk ` jq ě 2s´ 3 ą Cr
s pkq.

If k “ 2xpx` 1q, then s “ t
?

2ku “ 2x, and Cr
s pkq “ 2s´ 1. On the other hand,

k ` j

s` `
“

1

2

`

s´ `` 2` η`j
˘

, η`j :“
`2 ´ 2`` 2j

s` `
,

where as before η`j ą 0. In order to have s ` ` � k ` j, we have that η`j must be at least
1, which in turn gives that Cr

s``pk ` jq “ 2s ą Cr
s pkq.

Finally, if k “ p2x` 1qpx` 1q, then s “ r
?

2ks “ 2x` 1 and Cr
s pkq “ 2s´ 2 Moreover

k ` j

s` `
“

1

2

`

s´ `` 1` η`j
˘

, η`j :“
`2 ´ `` 2j

s` `
,

where η`j ą 0. As before, since s ` ` � k ` j only if η`j ě 1, we have that Cr
s``pk ` jq “

2s´ 1 ą Cr
s pkq.

We have established that all eight-squares are optimal degrees for the evaluation
scheme (15). In order to prove that all optimal degrees are eight-squares, it suffices to
note that for all n P N there exists an eight-square k such that Crpkq “ n. By Definition 1,
optimal orders must be unique, therefore all optimal degrees must be eight-squares.

In view of this result, the sequence of optimal orders for the evaluation scheme (15)
with s “ srk in (17) is pari qiPN, where

ari “

Z

pi` 3q2

8

^

. (19)

Moreover, since Crpari q “ i, the rational function of highest order that can be evaluated
with i matrix multiplications is that of order rari {a

r
i s.

11
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Figure 3: Number of matrix multiplications required to evaluate rk{ks Padé approximant
to the matrix exponential, for k between 1 and 50, by means of the scheme (20), for
s “

X
a

k ´ 1{2
\

and s “
P
a

k ´ 1{2
T

. The dotted and dashed lines mark the values of

k for which k´1
2

is an integer multiple of
X
a

k ´ 1{2
\

and
P
a

k ´ 1{2
T

, respectively; the
circles mark the number of matrix multiplications required to evaluate the diagonal Padé
approximants to the matrix exponential of optimal order (in the sense of Definition 1)
for the evaluation scheme (20).

4 Diagonal Padé approximants to the matrix exponential

Let r “ p{q be the rk{ks diagonal Padé approximant to the exponential. The evaluation of
these rational matrix functions deserves special attention, as the identity qpxq “ pp´xq
allows for a much faster evaluation of r at a matrix argument. Let µek “ tk{2u and
µok “ tpk ´ 1q{2u. By separating the µek ` 1 powers of A of even degree from the µok ` 1
powers of odd degree, we can write

ppAq “
k
ÿ

i“0

ciA
i
“

µek
ÿ

i“0

c2iA
2i
` A

µok
ÿ

i“0

c2i`1A
2i
“: Ue

`

A2
˘

` AUo
`

A2
˘

,

qpAq “ pp´Aq “ Ue
`

A2
˘

´ AUo
`

A2
˘

,

which shows that once Ue pA
2q and AUo pA

2q are available, evaluating ppAq and qpAq
requires no additional matrix multiplication.

As Ue pA
2q and Uo pA

2q are polynomials in A2, they can be evaluated by means of the
scheme

Ue
`

A2
˘

“

νe
ÿ

i“0

B
rUes

i

`

A2
˘ `

A2s
˘i
, Uo

`

A2
˘

“

νo
ÿ

i“0

B
rUos

i

`

A2
˘ `

A2s
˘i
, (20)

where νe “ tµek{su and νo “ tµok{su, and the powers of A2 are computed only once.
Computing A2, A4, . . . , A2s requires s matrix multiplications, evaluating the polynomials

Ue pA
2q and Uo pA

2q require
Y

µek
s

]

´ rs � µeks and
Y

µok
s

]

´ rs � µoks, respectively, and one

12



additional matrix multiplication is needed to compute AUo pA
2q. Therefore evaluating

rpAq requires one matrix inversion and

Ce
s pkq :“ s` 1`

Z

µek
s

^

`

Z

µok
s

^

´ rs � µeks ´ rs � µ
o
ks (21)

matrix multiplications. The continuous relaxation of (21) is approximately minimized by

taking s “
b

k ´ 1
2
, and as in (17) we define

sek :“ arg min

"

Ce
Y?

k´ 1
2

]pkq, Ce
Q?

k´ 1
2

Upkq

*

. (22)

Lemma 3. Let A P Cnˆn, let k P N` be odd, let p and q be the numerator and
denominator of the rk{ks Padé approximant to the exponential, respectively, and let
sf “

X
a

k ´ 1{2
\

and sc “
P
a

k ´ 1{2
T

. If sf �
k´1
2

or sc �
k´1
2

, then setting s to sf
or sc, respectively, minimizes the number of matrix multiplications required to evaluate
both qpAq and ppAq by means of the scheme (20).

Proof. If k is odd, then µek “ µok “
k´1
2

. For sf , we have

k ´ 1

2sf
“
sf ` t

2
, (23)

where t “ 0 or 2, if sf is even, and t “ 1, if sf is odd, and it is easy to see that
Ce
sf
pkq “ 2sf ` t´ 1.

From (23), we have that k ´ 1 “ sf psf ` tq, thus for ` ą ´sf

Ce
sf``

pkq ě

#

sf ` `` 2
X

θ`t
\

´ 1, sf � θ
`
t ,

sf ` `` 2
X

θ`t
\

` 1, sf ffl θ
`
t ,

θ`t :“
sf ´ `` t` η

`
t

2
, η`t :“

`2 ´ t`

sf ` `
.

If sf ` ` � θ`t , then Ce
sf``

pkq ě Ce
sf
pkq if and only if

X

θ`t
\

ě
sf´``t

2
. Note that, for

α, β P R`, we have that tαu ă β if and only if α ă rβs, and since sf ` t is even, sf ´ `` t
has the same parity as `. Therefore, we only need to show that there exists no ` ą ´sf
such that

θ`t ă

R

sf ´ `` t

2

V

“

$

’

&

’

%

sf ´ `` t

2
, ` is even,

sf ´ `` t` 1

2
, ` is odd.

These two conditions are equivalent to η`t being strictly smaller than 0 and 1, respectively.
However, since sf`` � θ

`
t , the quantity η`t must be an integer and have the same parity as

`, and we need to ensure only that there are no values of ` such that η`t ď ´2 or η`t ď ´1.
It is easy to check that for t between 0 and 2, η`t ď ´2 is equivalent to `2`p2´tq`2sf ď 0,
which has no even solutions, whereas η`t ď ´1 is equivalent to `2`p1´ tq` sf ď 0, which
has no odd solutions.

If sf ` ` ffl θ`t , then by the same argument we conclude that we need to prove that
there exists no ` ą ´sf such that

θ`t ă

R

sf ´ `` t´ 2

2

V

“

$

’

&

’

%

sf ´ `` t´ 2

2
, ` is even,

sf ´ `` t´ 1

2
, ` is odd.

13



These two conditions lead to the inequalities η`t ă ´2 and η`t ă ´1, which have no
solution for t between 0 and 2, as discussed above.

The proof for sc is similar. In this case, we have that sc �
k´1
2

if and only if

k ´ 1

2sc
“
sc ´ 1

2
,

and thus that Ce
scpkq “ 2sc ´ 2. It is easy to show that, for ` ą ´sc,

Ce
sc``pkq ě

#

sc ` `` 2
X

θ`
\

´ 1, sc � θ
`,

sc ` `` 2
X

θ`
\

` 1, sc ffl θ
`,

θ` :“
sc ´ `´ 1` η`

2
, η` :“

`2 ` `

sc ` `
.

Therefore, if sc � θ
`, we only have to prove that there exists no ` ą ´sc such that

θ` ă

R

sc ´ `´ 1

2

V

“

$

’

&

’

%

sc ´ `´ 1

2
, ` is even,

sc ´ `

2
, ` is odd,

or, in other words, that η` ă 0 if ` is even, and η` ă ´1 if ` is odd. Both conditions are
trivially satisfied, since η` ě 0 for |`| ě 1. Finally, if sc ffl θ

`, we obtain the conditions
η` ă ´1 if ` is even and η` ă ´2 if ` is odd, both of which clearly satisfy since η` is
nonnegative.

We are now ready to characterize the optimality of the Paterson–Stockmeyer method
for the diagonal Padé approximants to the matrix exponential.

Proposition 4. A degree k P N` is optimal for the evaluation scheme (20) if and only
if k “ 2 or

k “ 2
Qy

4

U

ˆ

y ´ 2

Z

y ´ 1

4

^˙

` 1, (24)

for some y P N.

Proof. First, note that for k to be optimal, both µek and µok must be integer multiples of
s, since otherwise, we could add more terms at no cost until both conditions are satisfied.
This implies that, if either µek or µok is greater than 1, then k must be odd: if it were not,
then s P N` could not divide both µok and µek “ µok ` 1.

It is easy to show that k “ 2 is an optimal degree for the evaluation scheme (20). We
have that s “ 1, µok “ 0, and µek “ 1, which gives Ce

1p2q “ 1, and

2` j

2p1` `q
“

1

2

`

1´ `` η`j
˘

, η`j :“
2`2 ` j ` 1

1` `
.

Since η`j is strictly positive, if 1` ` ffl 2`j
2

, then Ce
1``p2` jq ě 2 ą Ce

1p2q, whereas if 1` ` �
2`j
2

, then η`j must be an integer larger than 2, which again gives Ce
1``p2` jq ě 2 ą Ce

1p2q.
It is convenient to split the expression for k into four cases that allow us to get rid of

the floor and ceiling operators in (24). To that end, we note that if k ” rt pmod 4q, then
k “ 2xp2x` tq ` 1, for some x P N and t “ rt´ 2.
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The three cases |t| ď 1 can be addressed together. We have that s “ 2x ` t or,
equivalently, that x “ s´t

2
, and since k´1

2s
“ x, we can conclude that Ce

s pkq “ 4x` t´ 1.
Now let ` P Z be such that ` ą ´s and let j P N`. We have that

k ` j ´ 1

2ps` `q
“

1

2

ˆ

sps´ tq ` j

s` `

˙

“
1

2

`

s´ `´ t` η`t,j
˘

, η`t,j :“
`2 ´ t`` j

s` `
.

Note that η`t,j ą 0. If s ` ` ffl k`j´1
2

, then Ce
s``pk ` jq ě 4x ` t ` 1 ą Ce

s pkq. On the

other hand, if s` ` � k`k´1
2

, then η`t,j must be a positive integer in order for k`j´1
2ps``q

to be

integer, which gives that Ce
s``pk ` jq “ 4x` t ą Ce

s pkq.
Finally we consider the case t “ 2. From s “ 2x, we get that x “ s

2
and k´1 “ sps`2q,

which gives Ce
s pkq “ 4x` 1. We have that

k ` j ´ 1

2ps` `q
“

1

2

ˆ

sps` 2q ` j

s` `

˙

“
1

2
ps´ `` 2` η`jq, η`j :“

`2 ´ 2`` j

s` `
.

It is easy to see that η`j is nonnegative, and in particular that η`j “ 0 only if j “ 1 and

` “ 1. Thus, if s ` ` ffl k`j´1
2

, then Ce
s``pk ` jq ě 4x ` 3 ą Ce

s pkq. When s ` ` � k`j´1
2

,
on the other hand, since s` 1 ffl k

2
and η`j is positive, in particular η`j must be larger than

1 for k`j´1
2

to be an integer multiple of s ` `. Therefore, we have that Ce
s``pk ` jq ě

4x` 2 ą Ce
s pkq.

The converse follows from the same argument as that used in the proof of the ana-
logous result in Proposition 3.

In view of Proposition 4, the sequence of optimal degrees for the evaluation scheme (20)
is paei qiPN, where

ae0 “ 1,

ae1 “ 2,

aei “ 2

R

i´ 1

4

Vˆ

i´ 3

Z

i´ 1

4

^˙

` 1, i ě 2.

(25)

Moreover, we have that Cepaei q “ i and that the diagonal Padé approximant to the matrix
exponential of highest order that can be evaluated with i matrix multiplications is that
of degree raei {a

e
i s.

5 Conclusion

The scheme (3), which gives rise to the Paterson–Stockmeyer method, and the related
evaluation schemes (15) and (20), are customary tools for evaluating truncated Taylor
series and diagonal Padé approximants. They all feature a parameter, s, which is usually
chosen by approximately solving an optimization problem over the integers. For the
evaluation of matrix polynomials, we showed that the Paterson–Stockmeyer choices s “
X
?
k
\

and s “
P
?
k
T

always minimize the number of matrix multiplications required
to evaluate a polynomial of degree k. For the evaluation of diagonal approximants,
we gave sufficient conditions for the parameter s to minimize the computational cost
of the corresponding evaluation schemes. Tests not reported here suggest that, for all
k P N`, the choices s “ srk in (17) and s “ sek in (22) minimize the number of matrix
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multiplications required by the schemes (15) and (20), respectively, and we believe that
exploring this question further might lead to results similar to that in Proposition 1 for
the Paterson–Stockmeyer method.

When relying on polynomial or rational approximation to evaluate matrix func-
tions, one is usually interested only in approximants whose order is maximal for a
given computational cost. By exploiting the results discussed above, we showed that
the sequences of optimal orders (in the sense of Definition 1) for the three evaluation
schemes (3), (15), and (20), are (14), (19), and (25), respectively. We wonder whether
similar results can be derived for rational functions of any order, and more generally, for
schemes that require the evaluation of three or more polynomials of any degree. This
will be the subject of future work.
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