
Evolving Graphs and Similarity-based Graphs
with Applications

Weijian, Zhang

2018

MIMS EPrint: 2018.34

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

Approved electronically generated cover-page version 1.0

THE UNIVERSITY OF MANCHESTER - APPROVED ELECTRONICALLY

GENERATED THESIS/DISSERTATION COVER-PAGE

Electronic identifier: 26370

Date of electronic submission: 20/11/2018

Thesis format: Alternative format

The University of Manchester makes unrestricted examined electronic theses and

dissertations freely available for download and reading online via Manchester eScholar at

http://www.manchester.ac.uk/escholar.

This print version of my thesis/dissertation is a TRUE and ACCURATE

REPRESENTATION of the electronic version submitted to the University of Manchester's

institutional repository, Manchester eScholar.

EVOLVING GRAPHS AND

SIMILARITY-BASED GRAPHS WITH

APPLICATIONS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2018

Weijian Zhang

School of Mathematics

Contents

Abstract 9

Declaration 10

Copyright Statement 11

Publications 12

Acknowledgements 13

1 Introduction 14

2 Background 20

2.1 Vector Space Models . 20

2.1.1 Word Embeddings . 21

2.1.2 Term Frequency and Inverse Document Frequency 22

2.1.3 Word2Vec . 24

2.2 Euler and Graphs . 26

2.2.1 Evolving Graphs . 27

2.2.2 Evolving Graph Centrality . 28

I Evolving Graph Traversal and Centrality 31

3 Dynamic Network Analysis in Julia 32

3.1 Introduction . 32

3.2 Node-Active Model . 34

3.3 Representing Evolving Graphs . 35

2

3.4 Components . 37

3.5 Katz Centrality . 40

3.6 Examples of Use Cases . 41

3.7 Conclusion . 44

4 The Right Way to Search Evolving Graphs 46

4.1 Introduction . 46

4.2 Breadth-First Search over Evolving Graphs 48

4.2.1 Temporal Paths over Active Nodes 48

4.2.2 Breadth-First Traversal Over Temporal Paths 49

4.2.3 Description of the BFS algorithm 51

4.3 Formulating the Evolving Graph BFS with Linear Algebra 55

4.3.1 The importance of causal edges 55

4.3.2 Defining forward neighbors algebraically 57

4.3.3 Evolving graphs as a blocked adjacency matrix 58

4.3.4 The algebraic formulation of BFS on evolving graphs 61

4.3.5 Computational complexity analysis of the algebraic BFS 63

4.4 Implementation in Julia . 64

4.5 Application to Citation Networks . 65

4.6 Conclusion . 66

5 A Closer Look at Time-Preserving Paths on Evolving Graphs 67

5.1 Introduction . 67

5.2 Motivation: A Closer Look at Katz Centrality on Evolving Graphs . . . 69

5.3 Time-Preserving Walks and Paths . 71

5.4 Centrality Measures . 74

5.4.1 Temporal Katz Centrality . 75

5.4.2 Temporal Closeness Centrality 78

5.4.3 Temporal PageRank . 81

5.5 Experiments . 84

5.5.1 Random Evolving Graphs . 85

5.6 Conclusion . 86

3

II Project Etymo 88

6 Etymo: A New Discovery Engine for AI Research 89

6.1 Introduction . 89

6.2 Related Works . 90

6.3 Architecture Overview . 91

6.4 System Features . 91

6.4.1 Similarity-based Network . 93

6.4.2 Go Beyond List: Relationship Visualisation 94

6.5 Experiments . 95

6.6 Conclusion . 98

7 Evolving Knowledge Graphs for Idea Tracking in Research Literature 99

7.1 Introduction . 99

7.1.1 Motivation . 99

7.1.2 Knowledge Graph . 100

7.1.3 Contributions . 102

7.2 Related Work . 102

7.3 Concepts Evolving Graph . 103

7.4 Content Similarity-Based Graph . 105

7.5 Evolving Knowledge Graph . 106

7.5.1 A Hierarchy of Representations 107

7.6 Data Visualization . 108

7.7 Etymo Architecture Overview . 112

7.8 Experiments . 114

7.9 Other Potential Applications . 118

7.10 Conclusion . 118

III Testing Numerical Linear Algebra Algorithms 120

8 Matrix Depot: A Test Collection 121

8.1 Introduction . 121

8.2 A Taste of Matrix Depot . 123

4

8.3 Package Design and Implementation 130

8.3.1 Exploiting Multiple Dispatch 130

8.3.2 Matrix Representation . 133

8.3.3 Matrix Groups . 134

8.3.4 Adding New Matrix Generators 136

8.3.5 Documentation . 139

8.4 The Matrices . 140

8.4.1 Parametrized Matrices . 140

8.4.2 Matrix Data from External Sources 145

8.5 Concluding Remarks . 150

9 Conclusion 152

Bibliography 154

Word count 51,170

5

List of Tables

3.1 Examples of graph functions implemented in EvolvingGraphs, where g

is an evolving graph. 45

5.1 Temporal Katz centrality ranking and rating on evolving graph g. We

set the weight of all causal edges to zero. 86

5.2 Temporal Katz centrality ranking and rating on evolving graph g. We

set the weight of a causal edge between two active nodes to be their

temporal di↵erence. We use bold font to highlight the di↵erences in

ranking from Table 5.1. 86

5.3 Temporal closeness centrality ranking and rating of evolving graph g.

We set the weight of all causal edges to zero. 87

5.4 Temporal closeness centrality ranking and rating of evolving graph g.

We set the weight of a causal edge between two active nodes to be their

temporal di↵erence. We use bold font to highlight the di↵erences in

ranking from Table 5.3. 87

6.1 Top 5 search results of the search query “t-sne”. The results include a

combination of PageRank and Reverse PageRank ratings. 96

6.2 Top 5 search results of the search query ”t-sne”. The results do not

include any network-based ratings. 97

6.3 Top 5 search results of the search query ”t-sne” in Google Scholar. . . . 97

7.1 The forward and backward neighbours (ignoring corrupted texts) of

concept “deep neural networks” at time stamp 201802. 117

8.1 Predefined groups. 134

6

List of Figures

2.1 A graphical representation of the Königsberg bridge problem. 26

2.2 A simple graph with 4 boxes representing nodes, and 3 arrows repre-

senting edges. 27

2.3 A simple evolving directed graph with 3 time stamps. 28

3.1 An evolving graph with 3 timestamps. 32

3.2 Graph type hierarchy. 35

3.3 The aggregated graph of Figure 4.1. 35

3.4 An evolving graph with 2 time windows. 39

3.5 An evolving graph with 3 time windows. 42

4.1 An evolving directed graph with 3 time stamps t1, t2 and t3. 48

4.2 Path traversal on evolving graphs. 49

4.3 Breadth-first search (BFS) on the evolving graph. 52

4.4 Static graphs corresponding to the evolving graph example of Figure 4.1. 60

4.5 Experimental run time of Algorithm 1 on a collection of random evolving

graphs with 105 active nodes and 10 time stamps. 65

5.1 An evolving directed graph with 3 time stamps 1, 2 and 3. 69

5.2 An evolving directed graph with 3 time stamps 1, 2 and 3. 70

5.3 An evolving directed graph with 3 time stamps 1, 10 and 100. 71

5.4 An evolving directed graph with 3 time stamps 1998, 1999 and 2018. . 72

5.5 A static graph corresponding to the evolving graph example of Figure 5.4. 83

6.1 The dependency graph of Etymo. 92

6.2 The web interface of Etymo. 95

7

7.1 Knowledge graph structure. 107

7.2 A hierarchy of knowledge representations. 108

7.3 Etymo’s web interface for the search query “pattern recognition”. . . . 109

7.4 Etymo’s web interface for search query “deep learning”. 110

7.5 The T-SNE projection of 3500 paper content vectors. 111

7.6 Comparing three cases of paper visualization. 112

7.7 Comparing paper visualization with adjusted paper visualization using

the concept vector. 112

7.8 A high level overview of Etymo’s key components. 113

7.9 The workflow of data analysis in Etymo. 114

7.10 Search results of query “matrix”. 115

7.11 Search results of query “deep learning + 201802” 116

7.12 The connected concepts from research paper “Recommendations with

Negative Feedback via Pairwise Deep Reinforcement Learning”. 117

7.13 The connected concepts from five research papers on deep learning. . . 118

8.1 Documentation for the Wathen matrix 140

8

The University of Manchester
Weijian Zhang
Doctor of Philosophy
Evolving Graphs and Similarity-based Graphs with Applications
October 17, 2018

Abstract

A graph is a mathematical structure for modelling the pairwise relations between
objects. This thesis studies two types of graphs, namely, similarity-based graphs and
evolving graphs.

We look at ways to traverse an evolving graph. In particular, we examine the in-
fluence of temporal information on node centrality. In the process, we develop Evolv-
ingGraphs.jl, a software package for analyzing time-dependent networks.

We develop Etymo, a search system for discovering interesting research papers.
Etymo utilizes both similarity-based graphs and evolving graphs to build a knowledge
graph of research articles in order to help users to track the development of ideas. We
construct content similarity-based graphs using the full text of research papers. And
we extract key concepts from research papers and exploit the temporal information in
research papers to construct a concepts evolving graph.

Thesis Supervisor: Professor Nicholas J. Higham

9

Declaration

No portion of the work referred to in the thesis has been

submitted in support of an application for another degree

or qualification of this or any other university or other

institute of learning.

10

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy

(see http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=487), in any rele-

vant Thesis restriction declarations deposited in the University Library, The Univer-

sity Library’s regulations (see http://www.manchester.ac.uk/library/aboutus/regul-

ations) and in The University’s Policy on Presentation of Theses.

11

Publications

1. The material in Part I is based on the papers:

• Weijian Zhang, Dynamic Network Analysis in Julia. MIMS EPrint, 2015.83,

(2015)

• Jiahao Chen andWeijian Zhang, The Right Way to Search Evolving Graphs.

Proceedings of IPDPS 2016.

• Jiahao Chen and Weijian Zhang, A Closer Look at Time-Preserving Paths

on Evolving Graphs. To include more experiments on social networks and

to be submitted to KDD 2019.

2. The material in Part II is based on the papers:

• Weijian Zhang, Jonathan Deakin, Nicholas J. Higham, and Shuaiqiang

Wang, Etymo: A New Discovery Engine for AI Research. The 2018 Web

Conference Companion, pp. 227-230, April, 2018, Lyon, France. ACM,

New York, NY, USA.

• Weijian Zhang, Jonathan Deakin, Steven Elsworth, Xiaoyi Li, Nicholas

J. Higham, and Shuaiqiang Wang, Evolving Knowledge Graphs for Idea

Tracking in Research Literature. To be submitted to PeerJ Comput. Sci.

3. The material in Part III is based on the paper:

• Weijian Zhang and Nicholas J. Higham, Matrix Depot: An Extensible Test

Matrix Collection for Julia. PeerJ Comput. Sci., 2:e58 (2016).

12

Acknowledgements

I am extremely grateful to my supervisor, Prof. Nicholas Higham for his valuable in-

sight, unwavering support, and trust. Without his e↵orts this thesis would not have

been possible.

I thank Prof. Alan Edelman and Dr. Jiahao Chen for arranging for me a fruitful visit

to MIT CSAIL, where I had the priviledge to work and learn from the core Julia team.

I am grateful to work with Jonathan Deakin, Xiaoyi Li, and Steven Elsworth on

the Etymo project. I also thank Dr. Shuaiqiang Wang and Tak Lo for their insights

and support for the project.

I am grateful to Prof. Françoise Tisseur for getting me interested in PageRank and

network science.

Finally, I am grateful for Jinan and my parents for their love and support. With-

out them I would never have made it this far.

13

Chapter 1

Introduction

The information age is changing all aspects of our lives. First, everything is online.

The internet has made information accessible everywhere at any time. Second, social

networks have made continuous connectivity widely available. We can connect with

people almost anywhere in the world. Third, cloud computing has given everyone

practically infinite computing power and storage [71]. In September 2013, the Turing

prize winning computer scientist John Hopcroft presented an interesting talk at the

Heidelberg Laureates Form on the future of computer science. In the talk, he noted

that in the past 30 years computer science was concerned with making computers

useful. The future is about how computers are being used. He listed some topics for

the future 1. This thesis is concerned with one particular topic from his list: tracking

the flow of ideas in scientific literature.

What is an idea? As we are primarily concerned with scientific literature, we decide

to use keywords and a group of related keywords to represent ideas. We focus on two

things to study: idea relationship and idea representation.

1. We model the connectivity between ideas as a sequence of time-dependent net-

works, also known as evolving graphs. We then use evolving graph traversal to

study the flow of ideas and evolving graph centrality to study trends. We de-

velop our own software package EvolvingGraphs.jl for analysing time-dependent

networks.

2. We use a vector space model to represent ideas as vectors of real numbers. These

1See the SIAM news post on the topic list: https://sinews.siam.org/Details-Page/
the-future-of-computer-science

14

CHAPTER 1. INTRODUCTION 15

vector representations are not static but evolve in time. We build a research

paper discovery system, called Etymo 2 that realises our idea.

Link analysis refers to the technique of exploiting the additional information in-

herent in the Web’s hyperlink structure. This simple idea changed the information

retrieval scene in 1998 [55]. Search engines began exploiting the information inherent

in the hyperlink structure of the Web to improve the quality of search results and web

search improved dramatically. Nowadays, link analysis is the norm in internet search:

nearly all major search engines now combine link analysis scores, like the one used by

Google, with other methods in their system.

The rise of deep learning is transforming all types of business activities and is be-

coming the foundation of many important applications, including web search, speech

recognition, product recommendation. Traditional statistical natural language pro-

cessing such as Hidden Markov Model (HMM) [72], N-gram, and parsing is replaced

by deep learning based methods such as word embedding [16, Chap. 6.1], convolu-

tional neural network (CNN) [16, Chap. 6.2] sequence embedding or recurrent neural

network (RNN) [16, Chap. 6.4] attention mechanism. With vector space models such

as Word2Vec [62] and Doc2Vec [57] we can represent words and documents as vectors

and represent the relationship between these word embeddings as graphs.

We can now more e↵ectively extract the entity relationship and content similarity

just from a big text corpus, things like “King” is a ”Male” and “Good” and “Fine”

are similar words. Linking these words, phrases and documents can give us additional

information to assist information retrieval. Recent years have seen a big increase of

large-scale knowledge bases, including Wikipedia, Freebase, YAGO, Knowledge vault,

Microsoft’s Satori, Google’s Knowledge Graph. We propose an automatic method

for constructing knowledge bases from research articles, focusing primarily on recency

and trends. Another novelty is that we use an evolving graph model to model the

knowledge base, which enables us to track the development of ideas over time.

In scientific research, a research article contains an author’s understanding of a

subject. Even though many concepts and definitions are universally agreed, di↵erent

authors have di↵erent interpretations of how concepts are related. In particular, the

2At the time of writing this thesis, we’ve renamed the search engine as Etymo Scholar. See Etymo
Scholar https://scholar.etymo.io

CHAPTER 1. INTRODUCTION 16

keywords in an article tell us what an author thinks is important in a given subject.

If we extract keywords from an article and link them in a tree structure, for example,

from the more general concepts, things like “data science” or “linear algebra” to more

specific concepts like “recursive neural network (RNN)” or “polar decomposition”, it

becomes a graph that represents an author’s understanding of a subject. We could

then combine these small personal knowledge graphs to make a collective knowledge

graph.

Extracted keywords have two important applications. First, we could give each

unique keyword a Uniform Resource Identifier (URI). These keyword URIs allow users

to get the exact information that is related to the keyword. In our case, a keyword

URI points to a web page that contains all the related papers. This looks a bit like

Wikipedia, but we do it automatically and we constantly update keywords and their

connections. Suppose each paper contains a list of related keywords. A user can

navigate to a new web page of related papers by clicking a keyword. In this way, a

researcher can traverse a collection of related articles by ideas. This is much more

powerful than current scholar engines such as Google Scholar where a user usually

needs to navigate around related articles by following citations. Second, we could use

time-dependent network models to study trends in research. One simple approach is

to use keywords as nodes, their connections as edges, and published dates as time

stamps. We will discuss the construction of Etymo evolving knowledge graph in later

chapters.

This thesis is written in the journal format, which means the main content is a

collection of published and publishable work. We provide background information in

Chapter 2, which covers the key concepts in the vector space model and evolving graph

models. We use Julia [7], an open source high performance high level programming

language, to illustrate the concepts with simple examples. As Julia’s syntax is quite

similar to mathematical notation, using Julia increases readability for our readers.

The rest of the thesis is structured in two main parts.

Part I is about evolving graph traversal and centrality [38]. We model time-

dependent networks as an ordered sequence of networks, each node having a time

stamp label. We develop EvolvingGraphs.jl, a Julia software package for studying

time-dependent networks. We investigate graph traversal and graph centrality for

CHAPTER 1. INTRODUCTION 17

evolving graphs.

Part II is about the applications of evolving graphs. We link similar papers

to form a similarity-based network. We develop a discovery engine called Etymo

(https://etymo.io) for researchers to find interesting research papers and ideas. Et-

ymo constructs and maintains an adaptive similarity-based network of research papers

as an all-purpose knowledge graph for ranking, recommendation, and visualisation

A graph can be represented by an adjacency matrix. Let G = (V,E) be a graph

with N nodes, where V is a set of nodes and E is a set of edges. Then the (i, j) entry

of the N ⇥N adjacency matrix A is equal to 1 if there is an edge from node vi to node

vj and is zero otherwise. Many interesting graph algorithms can be expressed using

the language of numerical linear algebra. For example, matrix-vector multiplication is

equivalent to a step of breadth first search [51].

Part III is about Matrix Depot, a test matrix collection written in Julia. Matrix

Depot was developed as a test bed for exploring (the then very immature) Julia prior

to using it for network analysis. Test matrices are important for exploring the be-

haviour of linear algebra algorithms and for measuring their performance with respect

to accuracy, stability, convergence rate, speed, or robustness. Matrix Depot takes ad-

vantage of many nice Julia features, such as using multiple dispatch to help provide a

simple user interface and to allow matrices to be generated in any of the numeric data

types supported by the language.

For all the papers presented in this thesis, I played a major role in conceiving of

the presented ideas, drafting the papers, carrying out the experiments, and revising

drafts of the papers. Here are the specific contributions each author made:

1. “A New Discovery Engine for AI Research”. I conceived and designed the system,

performed the experiments, analyzed the data, wrote the main part of the paper,

prepared figures and/or tables, performed the computation work, reviewed drafts

of the paper.

Jonathan Deakin conceived the designed the system, analyzed the data, wrote

parts of the paper, reviewed drafts of the paper.

Nicholas J. Higham and Shuaiqiang Wang wrote parts of the paper and reviewed

drafts of the paper.

CHAPTER 1. INTRODUCTION 18

2. “Evolving Knowledge Graphs for Idea Tracking in Research Literature”. I con-

ceived and designed the system, performed the experiments, analyzed the data,

wrote the main part of the paper, prepared figures and/or tables, performed the

computation work, reviewed drafts of the paper.

Jonathan Deakin, Steven Elsworth, and Xiaoyi Li conceived the designed the

system, analyzed the data, wrote parts of the paper, and reviewed drafts of the

paper.

Nicholas J. Higham and Shuaiqiang Wang wrote parts of the paper and reviewed

drafts of the paper.

3. “Dynamic Network Analysis in Julia”. I conceived and designed the software,

performed the experiments, analyzed the data, wrote the paper, prepared fig-

ures and/or tables, performed the computation work, and reviewed drafts of the

paper.

4. “The Right Way to Search Evolving Graphs”. I conceived and designed the

experiments, performed the experiments, analyzed the data, wrote the main

part of the paper, prepared figures and/or tables, performed the computation

work, reviewed drafts of the paper.

Jiahao Chen conceived and designed the experiments, analyzed the data, wrote

parts of the paper, performed the computation work, and reviewed drafts of the

paper.

5. “A Closer Look at Time-Preserving Paths on Evolving Graphs”. I conceived

and designed the experiments, performed the experiments, analyzed the data,

wrote the main part of the paper, prepared figures and/or tables, performed the

computation work, and reviewed drafts of the paper.

Jiahao Chen conceived the experiments and reviewed drafts of the paper.

6. “Matrix Depot: An Extensible Test Matrix Collection for Julia”. I conceived

and designed the experiments, performed the experiments, analyzed the data,

wrote the main part of the paper, prepared figures and/or tables, performed the

computation work, and reviewed drafts of the paper.

CHAPTER 1. INTRODUCTION 19

Nicholas J. Higham conceived the experiments, analyzed the data, wrote parts

of the paper, and reviewed drafts of the paper.

We make the following specific contributions:

1. We develop EvolvingGraphs.jl, the first dynamic network analysis framework

in Julia. To the best of our knowledge, it is one of the earliest attempts to

build a full-feature package for such models and the first such package in the

programming language Julia.

2. We show that naive unfoldings of adjacency matrices miscount the number of

temporal paths between two temporal nodes in an evolving graph. By mapping

an evolving graph to an adjacency matrix of an equivalent static graph, we prove

that our generalisation of the breadth first search algorithm correctly accounts

for paths that traverse both space and time.

3. We study the impact of di↵erent time-preserving paths on node centrality by

varying the edge weights of static and causal edges. We also compare evolving

graph centrality with the aggregated static graph case to gain insight about the

advantage of an evolving graph model.

4. We develop Etymo (https://etymo.io), a discovery engine to facilitate artificial

intelligence research and development. Etymo uses a novel form of search that

can quickly identify relevant and important new papers and displays related

papers in a graphical interface.

5. We introduce a new search interface, which combines traditional item list and

data visualisation, for tracking the development of ideas in scientific literature.

6. We develop a new test matrix collection in Julia called Matrix Depot. Matrix

Depot is extensible by the users to include their own test problems. It amalga-

mates in a single framework two di↵erent types of existing matrix collections,

comprising parametrized test matrices and real-life sparse matrix data.

Chapter 2

Background

We consider representing words and documents as vectors in a vector space and

analysing the relationships between these vectors using time-dependent networks.

Mapping from text in a vocabulary to vectors of real numbers in a vector space is

known as word embedding. We discuss two methods for word embdding: Term Fre-

quency and Inverse Document Frequency (TF-IDF) and Word2Vec. One particular

network model we are considering is evolving graphs, which represent the relationship

between entities as an ordered sequence of networks, each with a time stamp label.

This chapter introduces the basic building blocks that we will use in later chapters.

2.1 Vector Space Models

The vector space model transforms documents of text into numeric vectors of real

values. The technique was developed by Gerard Salton in the early 1960s [69] and is

widely used in information retrieval (IR) problems. Latent Semantic Indexing (LSI)

[25], for example, can uncover the hidden semantic structure in a document collection,

which is a very powerful tool. However, the vector space model is computationally

expense. For IR tasks at query time, we need to compute a similarity score between the

query vector with every document vector in the database. LSI requires singular value

decomposition (SVD) of a large matrix. The computational cost scales quadratically

with the number of documents, which makes it less attractive for a corpus with millions

of words or documents.

20

CHAPTER 2. BACKGROUND 21

Here we consider techniques to build a vector representation of word and docu-

ments.

2.1.1 Word Embeddings

A word vector is a vector of real numbers. The simplest word vector, probably, is the

one-hot vector, which is a |V | dimensional vector with all the 0s and one 1 at the index

of that word in the vocabulary. Here |V | represents the size of the vocabulary V . For

example, suppose our vocabulary has only four words: King, Queen, Man, Woman.

Then the word vectors of the four words are

w(King) =

2

6666664

1

0

0

0

3

7777775
, w(Queen) =

2

6666664

0

1

0

0

3

7777775
, w(Man) =

2

6666664

0

0

1

0

3

7777775
, w(Woman) =

2

6666664

0

0

0

1

3

7777775
.

Such a representation, however, does not directly yield any notion of similarity. In

particular, the dot product between any two word vectors above is zero. For example,

w(King)Tw(Man) = 0.

A better word vector representation is featured representation. Let our features be

female, food, royal. Then we could represent our four words as

0

BBB@

King Queen Man Woman

female 0 1 0 1

food 0 0 0 0

royal 1 1 0 0

1

CCCA

Then we can see, for example, King is more similar to Queen than Woman.

w(King)Tw(Queen) = 1 > 0 = w(King)Tw(Woman)

Recall that for the one-hot vector representation the dimension of a vector is equal

to the size of the vocabulary. In featured representation the dimension of a vector is

equal to the number of features.

CHAPTER 2. BACKGROUND 22

How do we choose features? We could use high frequency words as features such

that a corpus of documents can be represented by a matrix with one row per document

and one column per feature word (term). We only consider the word occurrences while

ignore the relative position information of the words in the document. This term-

document matrix is very sparse in general. This specific strategy is called the bag of

words representation. A di↵erent strategy is to use one feature to represent more than

one meaning, i.e., distribute the meanings in a document among a list of features.

This distributed representation is usually dense and has lower dimension than the bag

of words representation. We will consider both of the these strategies below.

2.1.2 Term Frequency and Inverse Document Frequency

Frequency is an important measure of relevance. In a search engine, a document that

mentions a query term more often is usually more related to that query. However,

the most common words in a language are usually function words, such as “the”, “is”,

“at”, “which”, and “on”. Simply considering frequency can be misleading.

The term frequency of a term t in document d, denoted by tf(t,d), is the number of

occurrences of term t in document d. Using Julia with StatsBase.jl 1, we can compute

the term frequency of all the terms in a document as

> j u l i a using StatsBase

> j u l i a t f (document) = countmap (s p l i t (l owercase (document)))

For example, the term frequency of each term in a short document d1 “The sky is

blue and the sun is bright” is

> j u l i a t f (d1)

Dict {SubStr ing { St r ing } , Int64 } with 7 e n t r i e s :

” b r i gh t ” => 1

” the ” => 2

” i s ” => 2

” sky” => 1

” blue ” => 1

”sun” => 1

”and” => 1

1https://github.com/JuliaStats/StatsBase.jl

CHAPTER 2. BACKGROUND 23

If a term appears in a lot of documents then it is likely to be a function word.

The document frequency of a term t, denoted by df(t), is the number of documents

in the collection that contains term t. Let N be the total number of documents in a

collection. We define the inverse document frequency idf(t) of a term t, to be

idf(t) = log
N

df(t)
.

Let d2 be “The birds are singing and it is beautiful day”. Then the inverse term

frequency of the word “the” in both d1 and d2 is equal to 0 since the document

frequency of “the” is 2 and there are 2 documents in the collection.

In Julia we can write the document frequency as

function df (word , d o c l i s t)

word = lowercase (word)

doc counter = 0

for doc in d o c l i s t

i f haskey (t f (doc) , word)

doc counter +=1

end

end

return doc counter

end

Then the inverse term frequency idf(t) can be written as

function i d f (word , d o c l i s t)

num doc = length (d o c l i s t)

df w = df (word , d o c l i s t)

return l og (num doc/ df w)

end

The tf-idf weighting is a combination of term frequency and inverse document

frequency. A term with high tf-idf score is a term with high term frequency in a

given document and a low document frequency in the whole collection of documents.

Hence tf-idf adjusts for the fact that some common words appear very frequently in

all document. The tf-idf weighting of a term t in document d, denoted by tf-idf(t,d)

is calculated by

tf-idf(t,d) = tf(t,d) ⇥ idf(t).

CHAPTER 2. BACKGROUND 24

We can use high frequency words as features and represent each document in the

collection by the tf-idf weighting of the feature words.

2.1.3 Word2Vec

We consider representing words or documents by low-dimensional real vectors, also

known as distributed representations of words or documents. A distributed vector

representations of words is not a new idea. In fact, we can trace it back to the

1986 paper by David E. Rumelhart, Geo↵rey E. Hinton, and Ronald J. Williams on

learning representations by back-propagating errors [67]. But a recent approach by

Mikolov et al. [62] shows how to reduce the computational complexity of learning such

representations, which makes it practical to learn such vectors on a large dataset.

The key insight is that we could represent a word by means of its neighbours

[28]. One model Mikolov et al. proposed is called the continuous bag of words model

(CBOW). In this model, we predict the centre word (focus word) from its surround-

ing words. Say, for example, we have a piece of text “I like deep neural networks.”

The model will be able to predict the word “deep” from the surrounding words “I”,

“like”, “neural”, “networks”. The training objective is to maximise the conditional

probability of observing the actual centre word from given input surrounding words.

In more detail, we first create two matrices Win 2 Rn⇥|V | and Wout 2 R|V |⇥n, where

n is the size of the embedded vectors and |V | is the size of the vocabulary V . We call

Win the input word matrix and Wout the output word matrix. We also define vi and ui

to be the input and output vector representations of the word i respectively.

For the centre word “deep”, we first generate the one-hot vectors xi, xlike, xneural,

xnetwork for the surrounding words “I”, “like”, “neural”, and “network”.

By multiplying the input word matrix with the one-hot vectors, we get the word

embeddings of these surrounding words. For example, the word embedding of “neural”

is

vneural = Winxneural.

We then take an average of all these input word embeddings

v̂ =
vi + vlike + vneural + vnetwork

4

CHAPTER 2. BACKGROUND 25

An output score vector can be generated by multiplying the output word matrix with

the average v̂

udeep = Woutv̂.

We can convert scores into probabilities using the softmax function

ŷdeep = softmax(udeep).

The softmax function takes a vector of real-valued scores and converts it to a vector

of values between zero and one that sum to one. Here each element of ŷdeep represents

the probability of a word in the vocabulary to be the centre word. In particular, the

element representing the probability of word i is

ŷdeep(i) =
exp(uT

i v̂)P
j2vocabulary exp(u

T
j v̂)

,

We desire the probabilities ŷdeep to match the one hot vector of the word “deep”,

denoted by ydeep. The cross entropy H(ŷdeep, ydeep) between two probability vectors

ŷdeep and ydeep is defined as

H(ŷdeep, ydeep) = �
X

j2vocabulary

ydeep(j) log(ŷdeep(j)).

Since ydeep(i) = 1 if and only if ydeep(i) is the element represents word “deep” and 0

otherwise, we have

H(ŷdeep, ydeep) = � log(ŷdeep(deep)).

Our objective function is to minimize the loss function for all words in the training

dataset, given by

J =
1

|T |
X

w2T

H(ŷw, yw) = � 1

|T |
X

w2T

log(ŷw(w)), (2.1)

where

ŷw(w) =
exp(uT

wv̂)P
j2vocabulary exp(u

T
j v̂)

and T represents the training data set. To solve the optimisation problem, we use

gradient descent to update all word vectors in equation (2.1).

Another approach is to create a model to predict surrounding words I”, “like”,

“neural”, and “network” from the given centre word “deep”. This is known as a

Skip-Gram model.

CHAPTER 2. BACKGROUND 26

Figure 2.1: A graphical representation of the Königsberg bridge problem.

2.2 Euler and Graphs

The story of graphs starts with Leonhard Euler and steven bridges of Königsberg

problem. The city of Königsberg was connected by seven bridges. The problem was to

devise a walk through the city that can cross each of the bridges once and only once.

Figure 2.2 shows a graphical representation of the bridges. Euler’s 1736 paper proved

that the problem has no solution. The insight is to reformulate the network of bridges

in Königsberg as dots connected by lines, since only the connection information is

relevant to the problem: it does not matter whether the lines are straight or curve or

the dots are big or small. In modern language, we call such model a graph, where the

dots are called nodes and the lines connecting them are called edges.

Euler realised that the possibility of a walk on a graph depends on the degrees of

the nodes. The degree of a node is equal to the number of edges connecting it. Euler

showed that a necessary condition for the walk stated in the problem is that the graph

has exactly zero or two nodes of odd degree.

Graphs turn out to have many more applications beyond solving the steven bridges

of Königsberg problem. For example, we could represent the relationship between

Machine Learning and three branches of machine learning: Supervised Learning, Un-

supervised Learning, and Reinforcement Learning as a directed graph shown in Figure

3.5.

Formally, a graph [11] is tuple G = (V,E), where V is the set of nodes in G and

CHAPTER 2. BACKGROUND 27

Machine Learning

Supervised Learning Unsupervised Learning Reinforcement Learning

Figure 2.2: A simple graph with 4 boxes representing nodes, and 3 arrows representing
edges.

E ✓ V ⇥ V is the set of edges. Each edge consists of a pair of nodes. We say two

nodes are adjacent to each other when there is an edge between them. If the edges

have a direction associated with them, we call this graph a directed graph. In Figure

3.5, the node set V is { “Machine Learning”, “Supervised Learning”, “Unsupervised

Learning”, “Reinforcement Learning” } and the edge set E is {(“Supervised Learn-

ing”, “Machine Learning”), (“Unsupervised Learning”, “Machine Learning”), (“Re-

inforcement Learning”, “Machine Learning”)}. “Machine Learning” and “Supervised

Learning” are adjacent.

2.2.1 Evolving Graphs

Much real-world relationship data stores time stamps with the interactions. Let’s

consider a group of users interacting through messaging. We could represent each

message sent from user vi to user vj at time stamp t by an temporal edge from node

vi to node vj at time stamp t, denoted by (vi, vj, t). We could therefore represent the

user interaction network as an ordered sequence of (static) networks, each with a time

stamp label. For example, Figure 5.4 represents an evolving graph with three time

stamps t1, t2, and t3.

In Julia using our package EvolvingGraphs.jl 2, we could generate the evolving

graph in Figure 5.4 as

j u l i a > using EvolvingGraphs

j u l i a > g = EvolvingGraph{Node{ St r ing } , In t } ()

Directed EvolvingGraph 0 nodes , 0 s t a t i c edges , 0 timestamps

2https://github.com/EtymoIO/EvolvingGraphs.jl

CHAPTER 2. BACKGROUND 28

B

C

A

B

C

A

B

C

A

t2t1 t3

Figure 2.3: A simple evolving directed graph with 3 time stamps t1, t2 and t3. At
each time stamp, the evolving graph is represented as a graph. The green filled circles
represent active nodes while the red circles represent inactive nodes. Directed edges
in each time stamp are shown as black arrows.

j u l i a > add edge ! (g , ”A” , ”B” , 1)

Node (A)�1.0�>Node (B) at time 1

j u l i a > add edge ! (g , ”A” , ”C” , 2)

Node (A)�1.0�>Node (C) at time 2

j u l i a > add edge ! (g , ”B” , ”C” , 3)

Node (B)�1.0�>Node (C) at time 3

Here we store an evolving graph as a sequence of temporal edges. We can access

the temporal edges using the edges function

j u l i a > edges (g)

3�element Array{EvolvingGraphs . WeightedTimeEdge { . . . } :

Node (A)�1.0�>Node (B) at time 1

Node (A)�1.0�>Node (C) at time 2

Node (B)�1.0�>Node (C) at time 3

2.2.2 Evolving Graph Centrality

The degree of a node is the number of edges connected to it. If the graph is directed,

we have two kinds of degrees: in-degree, which counts the number of incoming edges

and out-degree, which counts the number of outgoing edges. This simple measure

of node importance is called degree centrality. In essence, a node is important if it

has many neighbours. In general, centrality algorithms answers the question “what

CHAPTER 2. BACKGROUND 29

characterises an important node?”.

Traditional graph centralities can be generalised for evolving graphs. Indeed, one

approach is to use the fact that the elements of the matrix product of adjacency

matrices at di↵erent time stamps can correctly count the number of temporal paths

[38]. A di↵erent approach is to first generalise paths for evolving graphs and then

replace the definition of paths in graph centrality with time-respecting paths [64].

Let G3 = hG[1], G[2], G[3]i be a directed evolving graph such as that in Figure 5.4.

Let A[i] be the adjacency matrix representation of graph G[i]. The Katz centrality on

evolving graphs can be derived by considering a sequence of matrix products

Q = (I � ↵A[1])�1(I � ↵A[2])�1(I � ↵A[3])�1. (2.2)

The ith row and column sums

Cbroadcast
i =

nX

k=1

Qik, Creceive
i =

nX

k=1

Qki

are the broadcast centrality and receive centrality of node i. Here is the implementation

of Katz centrality in EvolvingGraphs.jl.

function katz (g : : AbstractEvolvingGraph , alpha : : Real = 0 . 3)

n = num nodes (g)

ns = nodes (g)

t s = timestamps (g)

v = ones (Float64 , n)

A = spze ro s (Float64 , n , n)

spI = speye (Float64 , n)

for t in t s

A = spar s e ad jacency mat r i x (g , t)

v = (spI � alpha ⇤A)\v

v = v/norm(v)

end

return [(node , v [node . index]) for node in ns]

end

Betweenness centrality is a measure of centrality based on shortest paths. The

betweenness centrality for each node is the number of shortest paths that pass through

the node. We could extend betweenness centrality on evolving graphs by replacing

CHAPTER 2. BACKGROUND 30

shortest paths with temporal shortest paths as follows:

Cbetweenness
i =

X

j2V

X

k2V,k 6=j

↵jk(i)

↵jk
, (2.3)

where ↵jk is the number of temporal shortest paths from node j to node k and ↵jk(i)

is the number of temporal shortest paths from node j to node k that pass through the

node i.

Part I

Evolving Graph Traversal and

Centrality

31

Chapter 3

Dynamic Network Analysis in Julia

3.1 Introduction

We describe EvolvingGraphs 1, a Julia software package for analyzing dynamic net-

works. A dynamic network is network in which the interactions among a set of elements

change over time. Examples of dynamic networks include a network of mobile phone

users interacting through messaging and the spread of diseases in communities. It is

natural to model a dynamic network by an evolving graph G, defined as a sequence of

static graphs {G1, G2, . . . , Gn}, where Gi = (V (i), E(i)) is a snapshot of the evolving

graph G at timestamp i. For example, Figure 4.1 shows an evolving graph with 3

timestamps t1, t2, t3, where a green shaded circle denotes an active node (see Section

3.2) and a pink circle denotes an inactive node.

B

C

A

B

C

A

B

C

A

t2t1 t3

Figure 3.1: An evolving graph with 3 timestamps.

1This paper describes EvolvingGraphs.jl v0.1.0 and was tested on Julia 0.4. https://github.com/
EtymoIO/EvolvingGraphs.jl/tree/v0.1.0. The latest version is v0.2.0. See the documentation at:
https://etymoio.github.io/EvolvingGraphs.jl/latest/

32

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 33

Julia [7] is a high-level, high-performance dynamic programming language for tech-

nical computing. It takes advantage of LLVM-based [56] just-in-time (JIT) compila-

tion to approach the performance of statically-complied languages like C, yet allows

programmers to write clear, high-level code that closely resembles mathematical for-

mulas. EvolvingGraphs makes particular use of Julia’s multiple dispatch combined

with its type system. Since user defined types are first class in Julia, it makes sense

to implement new graph types to design user-friendly interfaces.

EvolvingGraphs is designed to have a similar interface to standard static graph

packages such as Python’s NetworkX2 or Julia’s Graphs 3. To get a taste of Evolving-

Graphs, we may consider representing the evolving graph of Figure 4.1:

> g = evo lv ing graph (Char , S t r ing)

> add edge ! (g , ’A’ , ’B’ , ” t1 ”)

> add edge ! (g , ’A’ , ’C’ , ” t2 ”)

> add edge ! (g , ’B’ , ’C’ , ” t3 ”)

> nodes (g)

3�element Array{Char , 1 } :

’A’

’B’

’C’

> edges (g)

3�element Array{TimeEdge{V,T} , 1} :

TimeEdge (A�>B) at time t1

TimeEdge (A�>C) at time t2

TimeEdge (B�>C) at time t3

where the arguments of evolving graph indicate the node type and timestamp type

respectively.

This paper is organized as follows. In Section 3.2, we introduce a node-active model

for evolving graphs, including the definition of temporal path and temporal distance.

In Section 3.3, we consider the type system of EvolvingGraphs and discuss ways to

represent evolving graphs. The concept of connected components in evolving graphs

is introduced in Section 3.4. A breadth first search (BFS) based implementation for

finding weakly connected components is also discussed. We consider a generalization

2https://networkx.github.io/
3http://graphsjl-docs.readthedocs.org/

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 34

of the Katz centrality in Section 3.5 and provide examples of usage in Section 3.6.

3.2 Node-Active Model

We assume G = {G1, G2, . . . , Gn} is a directed evolving graph, where each edge e is of

the form (vi, vj, tk), indicating a link from node vi to node vj at timestamp tk. Unlike

in most existing models [35] [38] [64] [76], in which the node set is assumed to be

fixed throughout time, in our model (a) nodes are time-dependent and are changing

over time; (b) nodes are present only if they are connected by edges. We say a node

v at timestamp t, denoted by (v, t), is active if v is connected to at least one other

node at timestamp t. For example, in Figure 4.1 the following nodes are active:

(A, t1), (B, t1), (A, t2), (C, t2), (B, t3), (C, t3). We disregard the inactive nodes when we

study and analyze evolving graphs.

Definition 3.2.1 (Temporal path). We define a temporal path p((vi, t1), (vj, tn))

between active nodes (vi, t1) and (vj, tn) to be an ordered sequence of active nodes

(without repetition) {(vi, t1), (vi+1, t2), . . . , (vj, tn)} such that t1  t2  · · ·  tn

and ((vh, tk), (vh+1, tk+1)) is an edge at timestamp tk if tk = tk+1 otherwise we have

vh = vh+1. A shortest temporal path is a temporal path with the least number of unique

nodes.

For example, there are two temporal paths from (A, t1) to (C, t3) in Figure 4.1:

1. (A, t1) ! (A, t2) ! (C, t2) ! (C, t3)

2. (A, t1) ! (B, t1) ! (B, t3) ! (C, t3)

The first one is the shortest temporal path since it passed 2 nodes A and C while the

second one passed 3 nodes.

Definition 3.2.2 (Temporal distance). We define the spatial length of a temporal

path p((vi, t1), (vj, tn)) to be the number of unique nodes in p. The shortest tempo-

ral distance d((vi, t1), (vj, tn)) between (vi, t1) and (vj, tn) is the spatial length of the

shortest temporal path.

For example, the shortest temporal distance between (A, t1) and (C, t3) in Figure

4.1 is 2.

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 35

AbstractGraph

AbstractStaticGraph

TimeGraph AggregatedGraph

AbstractEvolvingGraph

EvolvingGraph MatrixList . . .

Figure 3.2: Graph type hierarchy.

Definition 3.2.3 (Temporal connectedness). If there exists a temporal path from node

(vi, tm) to node (vj, tn), we say (vi, tm) and (vj, tn) are temporally connected. We say

node vi and vj are temporally connected if (vi, tm) and (vj, tn) are temporally connected

for some timestamps tm, tn.

3.3 Representing Evolving Graphs

The graph type hierarchy in EvolvingGraphs is shown in Figure 3.2.

The root of all graph types is AbstractGraph. It has two children: Abstract-

StaticGraph (the abstract type of all static graphs) and AbstractEvolvingGraph (the

abstract type of all evolving graphs). For both static and evolving graphs, we focus

on directed graphs and model undirected graphs using directed graphs with twice as

many edges. There are two kinds of static graphs in EvolvingGraphs: TimeGraph

represents an evolving graph at a specified timestamp; AggregatedGraph represents a

static graph constructed by aggregating an evolving graph, i.e., all the edges between

each pair of nodes are flattened in a single edge. For example, the aggregated graph

of Figure 4.1 is shown in Figure 3.3.

B

C

A

Figure 3.3: The aggregated graph of Figure 4.1.

All static graphs in EvolvignGraphs are represented by adjacency lists. For evolving

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 36

graphs, we consider three types: EvolvingGraph, MatrixList and IntEvolvingGraph,

which are represented by (a) edge lists, (b) adjacency matrices (c) a mixture of adja-

cency lists and edge lists respectively. Other evolving graph types are variants of one

of the three types.

The edge lists representation of G is specified by

1. the number of nodes n;

2. the list of edges in G, given as a sequence of ordered tuples (vi, vj, tn), which

represents an edge from vi to vj at timestamp tn.

The evolving graph of Figure 4.1 can be represented as follows.

1. n = 3;

2. (A,B, t1), (A,C, t2), (B,C, t3).

We can also represent an evolving graph by a list of adjacency matrices {A1, A2, . . . , Am}.

Let V = [iV (i) be the union of all the node sets V (i). Then each Ak is a |V | ⇥ |V |

matrix where the (i, j) entry is equal to 1 if and only if there exists an edge from the

ith element of V to the jth element of V at timestamp k, and 0 otherwise. For the

evolving graph of Figure 4.1, we have V = {A,B,C} and

A1 =

2

6664

0 1 0

0 0 0

0 0 0

3

7775
, A2 =

2

6664

0 0 1

0 0 0

0 0 0

3

7775
, A3 =

2

6664

0 0 0

0 0 1

0 0 0

3

7775
.

Finally, we can represent an evolving graph G as a mixture of adjacency lists and

edge lists:

1. the number of edges e;

2. the list of active nodes, given as a sequence of ordered pairs (vi, tn), which rep-

resents an active node vi at timestamp tn;

3. the list of timestamps;

4. m lists E1, E2, . . . , Em, where Ei contains all the edges at timestamp i;

5. the lists of out-neighbours of each active node.

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 37

Recall that in a static graph the out-neighbours of a node v are all the nodes pointed

by node v. For evolving graphs, we define the out-neighbours of a node v at time t to

be the set of all active nodes pointed by node v at time t and the active node v itself

at time ti, where ti > t. For example, the out-neighbours of (A, t1) in Figure 4.1 are

(B, t1), (A, t2). The evolving graph of Figure 4.1 may be represented as follows:

1. e = 3;

2. (A, t1), (B, t1), (A, t2), (C, t2), (B, t3), (C, t3);

3. t1, t2, t3;

4. E1 : (A,B, t1);E2 : (A,C, t2);E3 : (B,C, t3);

5. (A, t1) : (B, t1), (A, t2);

(B, t1) : (B, t3);

(A, t2) : (C, t2);

(C, t2) : (C, t3);

(B, t3) : (C, t3);

(C, t3) : ?.

Basic graph functions, like checking directedness (is directed) or finding out-neighours

(out neighbors) are defined for both static and evolving graphs. The implementations

of these functions are dispatched based on the type of graph.

3.4 Components

In this section, we discuss an algorithm for computing weakly connected components

in EvolvingGraphs. We start by introducting the notion of weak connectedness.

Definition 3.4.1 (Weak connectedness). We say two nodes (vi, tm) and (vj, tn) are

weakly connected if information can flow from (vi, tm) to (vj, tn), i.e., (vi, tm) and

(vj, tn) are temporally connected.

Note that our notion of connectedness is reflexive and transitive but not symmet-

ric. The order of time breaks the symmetry. In fact, (vi, tm) and (vj, tn) are weakly

connected only if tm  tn. We can think of an edge from vi to vj at timestamp tn

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 38

as information flows from vi to vj at timestamp tn. In modern technology communi-

cation, a message can be received immediately after it is sent. Thus we assume that

the information flow duration is 0, which is di↵erent from models like that in [49].

Given an active node (v, t), we form the information passing tree by collecting all the

temporal paths that start at (v, t).

Definition 3.4.2 (Information source). An information source is a root (an active

node) of the information passing tree. We say an information source (v, t) is a global

information source if (v, t) is an information source and no node is temporally con-

nected to (v, t).

For example, (A, t1) is a global information source in Figure 4.1. Using the no-

tion of weak connectedness and information source, we define the weakly connected

components of an evolving graph G as follows.

Definition 3.4.3 (Weakly connected components). A weakly connected component

associated with a node (vj, tn) is the set of nodes in G which are weakly connected by

the same information source as (vj, tn).

A node vi in an evolving graph can belong to multiple components but the partition

is unique. For example, suppose at timestamp t1, A passed a message to B and C

passed a message to D. At timestamp t2, B passed a message to D (see Figure 3.4).

Then there are two information sources in this evolving graph: (A, t1) and (C, t1) and

the weakly connected components are:

• (A, t1), (B, t1), (B, t2), (D, t2);

• (C, t1), (D, t1), (D, t2).

Note (D, t2) belongs to both components.

To explore an evolving graph, we need to pay attention to the order of time. In

particular, we can not go to a node at a previous timestamp. Recall that the out-

neighbours of a node (v, t) are the active nodes pointed by node v at timestamp t

and the active node v itself at timestamp ti, where ti  t. Using this notion of out-

neighbours, we can extend the BFS algorithm for the case of evolving graphs. Here is

the BFS algorithm in EvolvingGraphs:

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 39

B
D

A

C

B
D

A

C

t2t1

Figure 3.4: An evolving graph with 2 time windows.

function b r e a t h f i r s t v i s i t (

g : : AbstractEvolvingGraph , s : : Tuple)

l e v e l = Dict (s => 0)

i = 1

f r o n t e r = [s]

r eachab l e = [s]

while l ength (f r o n t e r) > 0

next = Tuple []

for u in f r o n t e r

for v in out ne ighbor s (g , u)

i f ! (v in keys (l e v e l))

l e v e l [v] = i

push ! (reachable , v)

push ! (next , v)

end

end

end

f r o n t e r = next

i += 1

end

r eachab l e

end

This algorithm finds all the reachable nodes from a given starting node (s, t1).

Let t1 be the earliest timestamp of G and let Ṽ be the set of all the active nodes

of G and E = [tE(t) be the set of all edges of G. Since the algorithm explores the

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 40

out-neighbours of each (reachable) active node, the computational cost is

O

✓ X

(v,t)2Ṽ

Adj[(v, t)]

◆
= O(|E|).

To determine the weakly connected components of G, we need to find all the global

information sources and then use BFS to find all the reachable nodes from these global

information sources. We may use the function weakly connected components(g) in

EvolvingGraphs to discover the weakly connected components of an evolving graph g.

Let V̄ be the set of global information sources. The computational cost for finding the

weakly connected components is O(|V̄ ||E|+|V̄ |2/2), where calling BFS has complexity

O(|V̄ ||E|) and checking connected components has complexity O(|V̄ |2/2).

3.5 Katz Centrality

Let A be an adjacency matrix of a static graph G. The Katz centrality rating [50] of

a node i is the ith row sum of (I � ↵A)�1, where ↵ < 1/⇢(A), the spectral radius of

A. The Katz centrality vector r can be computed by solving

(I � ↵A)r = 1,

where 1 is a vector of ones. It follows from the analysis on static networks that the

centrality matrix Cn of an evolving network [38] can be formulated as

Cn = (I � ↵A1)
�1(I � ↵A2)

�1 · · · (I � ↵An)
�1, (3.1)

where {A1, A2, . . . , An} are the corresponding adjacency matrix representations of the

evolving graph G = {G1, G2, . . . , Gn} and ↵ < 1/maxk ⇢(Ak). The (i, j) entry of the

matrix Cn gives a weighted count of the number of dynamic walks from node i to node

j. The broadcast and receive communicability vectors are

Cn1 and CT
n 1,

respectively. We can compute the broadcast vector using the following algorithm in

Julia:

function k a t z c e n t r a l i t y (

g : : AbstractEvolvingGraph , alpha : : Real)

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 41

n = num nodes (g)

t s = timestamps (g)

v = ones (Float64 , n)

A = spze ro s (Float64 , n , n)

spI = speye (Float64 , n)

for t in t s

A = spmatrix (g , t)

v = (spI � alpha ⇤A)\v

v = v/norm(v)

end

return v

end

A short list of graph functions implemented in EvolvingGraphs is shown in Table 3.1.

By considering walks that started recently as more important than walks that started

a long time age [37], Grindrod and Higham introduce a time-dependent factor e���tn ,

�tn = tn � t0. A variant of (3.1) is given as

Sn = (I + e���tnSn�1)(I � ↵An)
�1 � I, n = 1, 2, . . . , (3.2)

where S0 = 0, the zero matrix. To see how these two formulae are related, we write

(I � ↵An)
�1 as (I + ↵An + ↵2A2

n + · · ·) and expand the right-hand side of (3.2). The

function katz centrality in EvolvingGraphs has more input options than the above

implementation. In particular, we can specify the following parameters:

• ↵: a real-valued scalar which controls the influence of long distance walks;

• �: a real-valued scalar which controls the influence of old walks;

• – mode = :broadcast (by default) generates the broadcast centrality vector;

– mode = :receive generates the receiving centrality vector;

– mode = :matrix generates the communicability matrix.

3.6 Examples of Use Cases

Suppose we model a network of online social users interacting through messaging by

the evolving graph of Figure 3.5. Each node i represents a user in the network and an

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 42

2

5
4

1

3

6

2

5
4

1

3

6

2

5
4

1

3

6

t2t1 t3

Figure 3.5: An evolving graph with 3 time windows.

edge from node i to node j at timestamp t represents user i sent a message to user j

during timestamp t and t+ 1. Let us first generate this evolving graph:

> g = evo lv ing graph (Int , S t r ing) ;

> add edge ! (g , 1 , 2 , ” t1 ”) ;

> add edge ! (g , 1 , 3 , ” t2 ”) ;

> add edge ! (g , 4 , 5 , ” t2 ”) ;

> add edge ! (g , 2 , 3 , ” t3 ”) ;

> add edge ! (g , 3 , 1 , ” t3 ”) ;

> add edge ! (g , 5 , 6 , ” t3 ”) ;

> g

Directed EvolvingGraph

(6 nodes , 6 edges , 3 timestamps)

Now g is an evolving graph with 6 nodes, 6 edges and 3 timestamps. We can use

the functions nodes, edges and timestamps to have a quick check to see if we have

generated the evolving graph correctly:

> nodes (g)

6�element Array{ Int64 , 1 } :

1

4

2

3

5

6

> edges (g)

6�element Array{TimeEdge{V,T} , 1} :

TimeEdge(1�>2) at time t1

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 43

TimeEdge(1�>3) at time t2

TimeEdge(4�>5) at time t2

TimeEdge(2�>3) at time t3

TimeEdge(3�>1) at time t3

TimeEdge(5�>6) at time t3

> timestamps (g)

3�element Array{Str ing , 1 } :

” t1 ”

” t2 ”

” t3 ”

We use the function weak connected to find out if two users “talked” to each other

between timestamp t1 and t3.

> weak connected (g , 1 , 3)

true

> weak connected (g , 1 , 5)

fa l se

So user 1 talked to user 3 but not to user 5. We can use the function weak connected components

to detect small communities in the network.

> weak connected components (g)

2�element Array{Array{Tuple , 1 } , 1 } :

Tuple [(1 , ” t1 ”) , (2 , ” t1 ”) , (1 , ” t2 ”) ,

(1 , ” t3 ”) , (2 , ” t3 ”) , (3 , ” t2 ”) , (3 , ” t3 ”)]

Tuple [(4 , ” t2 ”) , (5 , ” t2 ”) , (5 , ” t3 ”) ,

(6 , ” t3 ”)]

We see users 1, 2, 3 form a small community and users 4, 5 form another small com-

munity. At each timestamp, g may be represented as an adjacency matrix:

> i n t (matrix (g , ” t2 ”))

6x6 Array{ Int64 , 2 } :

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 44

We can use katz centrality to find out the “important” users in a network. Here users

1 and 4 are the most important users in terms of broadcasting information and users

2 and 3 are the most important users in terms of acting as information receivers.

> k a t z c e n t r a l i t y (g , 0 . 2 , 0 . 3 ,

mode =: broadcast)

(6 , 0 . 0)

(2 ,0 .27241247410068437)

(3 ,0 .27241247410068437)

(5 ,0 .27241247410068437)

(4 ,0 .32591575357149416)

(1 ,1 .5259157535714944)

> k a t z c e n t r a l i t y (g , 0 . 2 , 0 . 3 ,

mode =: r e c e i v e)

(4 , 0 . 0)

(5 ,0 .2715964613095785)

(1 ,0 .32673176636260004)

(6 ,0 .32673176636260004)

(3 ,0 .7440089354102629)

(2 , 1 . 0)

3.7 Conclusion

The software package EvolvingGraphs is written in Julia, a new dynamic program-

ming language for technical computing. We discussed a node-active model for evolving

graph and showed a few algorithms implemented in EvolvingGraphs. EvolvingGraphs

currently performs all computations serially. In the future, we will design and imple-

ment parallel graph algorithms in EvolvingGraphs with the aim of handling extremely

large scale dynamic network problems. EvolvingGraphs.jl is used for modelling evolv-

ing graphs in later chapters. At the time of writing this thesis, EvolvingGraphs.jl has

29 stars on GitHub.

CHAPTER 3. DYNAMIC NETWORK ANALYSIS IN JULIA 45

Function name Description
is directed(g) returns true if g is a directed graph and false

otherwise.
undirected!(g) converts a directed graph to an undirected graph.
num nodes(g) returns the number of nodes in g.
nodes(g) returns a list of nodes of g.
edges(g) returns a list of edges of g.
timestamps(g) returns a list of timestamps of g, in ascending order.
add edge!(g, v1, v2, t) adds an edge from v1 to v2 at timestamp t to g.
add graph!(g, tg) adds a time graph tg to g.
out neighors(g, (v,t)) returns the out-neighbours of node (v,t) in g.
aggregated graph(g) converts g to an aggregated graph.
issorted(g) returns true if the timestamps of g are sorted

and false otherwise.
sorttime!(g) sorts g so that the timestamps of g are in

ascending order.
slice!(g, t min, t max) slices g between the timestamp t min and t max.
matrix(g, t) generates an adjacency matrix representation of g

at timestamp t.
spmatrix(g, t) generates a sparse adjacency matrix representation

of g at timestamp t.
matrix list(g) converts g to a list of adjacency matrices

represented by MatrixList.
shortest temporal path(g, finds the shortest temporal path from (v1, t1)
(v1, t1), (v2, t2)) to (v2, t2).
temporal connected(g, v1, v2) returns true if v1 are v2 are temporally connected

and false otherwise.
weak connected components(g) returns the weakly connected components of g.

Table 3.1: Examples of graph functions implemented in EvolvingGraphs, where g is
an evolving graph.

Chapter 4

The Right Way to Search Evolving

Graphs

4.1 Introduction

Let’s imagine a game played by three people, numbered 1, 2, and 3, each of whom

has a message, labeled a, b, and c respectively. At each turn, one particular player is

allowed to talk to one other player, who must in turn convey all the messages in his

or her possession. The goal of the game is to collect all the messages. Suppose 1 talks

to 2 first, and 2 in turn talks to 3. Then, 3 can collect all the messages even without

talking to 1 directly. However, if 2 talks to 3 before 1 talks to 2, then 3 can never get

a.

We can analyze the spread of information between the players using graph theory.

In this process, the time ordering of events matters, and hence its graph representation

G(t) = (V (t), E(t)) must be time dependent. Such a graph is called an “evolving

graph” [29, 3], “evolving network” [13] or “temporal graph” [76].

Treatments of evolving graphs vary in their generality and focus. Kivelä et al. [52]

treat time dependence as a special case of families of graphs with multiple interre-

lationships. Others like Flajolet et al. [29] use time to index the family of related

graphs, but are not concerned with explicit time-dependent processes. Yet others fo-

cus on incremental updates to large graphs [3]. Here, we describe evolving graphs as

a time-ordered sequence of graphs, similar to the study of metrized graphs by Tang

and coworkers [64, 76, 78, 77] and of community dynamics by Grindrod, Higham and

46

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 47

coworkers [38, 37].

The game described above can be encoded in an evolving graph. The spread of

information to the winner can be described in terms of traversing this graph using

discrete paths that step in both space and time. Traversals of an ordinary (static)

graph may be computed using well known methods such as the breadth-first search

(BFS). An informal description of BFS generalized to evolving graphs can be found

in [76]. However, it turns out that näıve extensions can lead to incorrect descriptions

of the resulting graph traversals by accounting for traversals of edges in space, but

not necessarily in time. A proper treatment requires the notions of node activeness to

describe the set of paths that can only traverse time or edges, which we call temporal

paths, as well as causal edges which connect active nodes with the same identity across

di↵erent times. As a result, our treatment can be applied to any evolving graph, even

those that are highly dynamic with arbitrary changes to the nodes and edges.

It is well known that sparse matrix-vector product is equivalent to a one-step BFS

on the corresponding (static) graph [51, Sec. 1.1]. In this paper, we demonstrate a

correct corresponding result for an evolving graph by constructing a block triangular

matrix representation of the graph that takes into account both static and causal

connections between active nodes. In Section 4.2, we explain how the BFS algorithm

can be applied to an evolving graph to enumerate paths that traverse edges across time

and space. Section 4.2.1 provides an example showing that considering only products

of the time-dependent adjacency matrices fails to enumerate certain temporal paths.

We present and demonstrate the BFS algorithm over evolving graphs in Section 4.2.2,

showing its formal equivalence to BFS over a particular static graph generated by

adding causal edges that connect active nodes. This static graph generates an algebraic

representation of the BFS as power iteration of its adjacency matrix to a starting

search node, as shown in Section 4.3.4. The algebraic formulation also demonstrates

interesting connections between properties of the BFS algorithm and the adjacency

matrix. We describe in Section 4.4 an implementation of the algorithm in Julia.

Finally in Section 4.5, we explain how BFS on evolving graphs may be applied to

study dynamical processes over citation networks.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 48

4.2 Breadth-First Search over Evolving Graphs

4.2.1 Temporal Paths over Active Nodes

2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 4.1: An evolving directed graph with 3 time stamps t1, t2 and t3. At each time
stamp, the evolving graph is represented as a graph. The green filled circles represent
active nodes while the red circles represent inactive nodes. Directed edges are shown
as black arrows.

The key new idea in generalizing BFS to evolving graphs is to be able to compute

paths that evolve forward in time and can only traverse the node space along existing

edges. We call these paths temporal paths.

Figure 4.1 shows a small example of an evolving directed graph, G3 = hG[1], G[2], G[3]i,

consisting of a sequence of three graphs G[i], each bearing a time stamp ti. There are

directed edges 1 ! 2 at time t1, 1 ! 3 at time t2, and 2 ! 3 at time t3. Each

edge exists only at a particular discrete time and the nodes connected by edges are

considered active at that time.

Temporal paths connect only active nodes in ways that respect time ordering. Thus

the sequences h(1, t1), (1, t2), (3, t2), (3, t3)i and h(1, t1), (2, t1), (2, t3), (3, t3)i are both

examples of temporal paths from (1, t1) to (3, t3), which are drawn as dotted lines

with arrowheads in Figure 4.2. However, h(1, t1), (1, t2), (2, t2), (3, t2), (3, t3)i is not a

temporal path because node 2 is inactive at time t2.

The restriction that temporal paths may only traverse active nodes reflects under-

lying causal structure in many real world applications, such as analyzing the influence

of nodes over social networks. We will also show later in Section 4.3.1 that the resulting

structure of allowable temporal paths leads to nontrivial subtleties in the generaliza-

tion of algorithms and concepts from ordinary (static) graphs.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 49

2

3

1

2

3

1

2

3

1

t2t1 t3

2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 4.2: The two temporal paths of length 4 from (1, t1) to (3, t3) on the evolving
graph shown in Figure 4.1, shown in black dashed lines. The paths traverse only active
nodes along edges, and are allowed to advance between the same node if it is active
at di↵erent times.

4.2.2 Breadth-First Traversal Over Temporal Paths

The example presented above in Section 4.2.1 demonstrates how active nodes restrict

the set of temporal paths that need to be considered when traversing an evolving

graph.

We now give a general description of the BFS algorithm over evolving graphs, both

directed and undirected, which correctly takes into account the structure of temporal

paths. Our notation generalizes that for static graphs presented in [27, 51].

Definition 4.2.1. An evolving graph Gn is a sequence of (static) graphs Gn =

hG[1], G[2], . . . , G[n]i with associated time labels t1, t2, . . . , tn respectively. Each G[t] =

(V [t], E [t]) represents a (static) graph labeled by a time t.

Intuitively, an evolving graph is some discretization of the continuous-time family

G(t):

1 2

G[2]

3 5 6

G[6]

n

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 50

We assume no particular relation between the node and edge sets for each static

graph G[t] = (V [t], E [t]). In particular, we allow the node sets to change over time,

so that each V [t] may be di↵erent. Changing node sets happen naturally in citation

networks, where nodes may appear or disappear from the citation network over time.

The addition, removal, or relabeling of nodes can be expressed in terms of a map

⇧[t,t
0
] : V [t] ! V [t

0
] that expresses the appropriate permutations and/or projections.

Definition 4.2.2. A temporal node is a pair (v, t), where v 2 V [t] is a node at a

time t.

Definition 4.2.3. A temporal node (v, t) is an active node if there exists at least

one edge e 2 E [t] that connects v 2 V [t] to another node w 2 V [t], w 6= v.

An inactive node is a temporal node that is not an active node.

In Figure 4.1, the temporal nodes (1, t1) and (2, t2) are active nodes, whereas the

temporal node (3, t1) is an inactive node.

Definition 4.2.4. A temporal path of length m on an evolving graph Gn from tem-

poral node (v1, t1) to temporal node (vm, tm) is a time-ordered sequence of active nodes,

h(v1, t1), (v2, t2), . . . , (vm, tm)i. Here, time ordering means that t1  t2  · · ·  tm and

vi = vj i↵ ti 6= tj.

This definition of a temporal path di↵ers from that of the dynamic walk in [38, 37]

in that causal edges, i.e. sequences of the form h(v, t), (v, t0)i are included explicitly in

temporal paths but are only implicitly included in dynamic walks and are not counted

toward the length of dynamic walks. Our definition implies that if either or both end

points of a temporal path are inactive, then the entire temporal path must be the

empty sequence hi. Keeping track explicitly of the time labels of each temporal node

allows greater generality to cases where the node sets change over time. Furthermore,

we shall show later in Sec. 4.3.1 that the explicit bookkeeping of the time labels is

essential for correctly generalizing the BFS to evolving graphs.

The following definition of forward neighbors generalizes the notion of neighbors

and reachability in static graphs.

Definition 4.2.5. The k-forward neighbors of a temporal node (v, t) are the tem-

poral nodes that are the (k+ 1)st temporal node in some temporal path of length k+ 1

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 51

starting from (v, t). The forward neighbors of a temporal node (v, t) are its 1-

forward neighbors.

In Figure 4.1, the forward neighbors of (1, t1) are (2, t1) and (1, t2) and the only for-

ward neighbor of (2, t1) is (2, t3). The 2-forward neighbors of (1, t1) are (2, t1), (1, t2), (2, t2)

and (3, t2). By construction, time stamp of every forward neighbor of an active node

(v, t) must be no earlier than t.

Definition 4.2.6. The distance from a temporal node (v, t) to a temporal node (w, s)

is the k for which (w, s) is a k-forward neighbor of (v, t).

Our definition of distance, again, di↵ers from the definition of distance in the

formulation of [38, 37] in that we explicitly count causal edges toward the distance. It

also di↵ers from the notion of temporal distance in the work of Tang and coworkers [77],

which is the number of time steps between t and s (inclusive). In this respect, our

formulation of the BFS on evolving graphs di↵ers from these other works by minimizing

a di↵erent notion of distance over an evolving graph.

Note that this notion of distance is not a metric, since the distance from (v, t)

to (w, s) will in general di↵er from the distance of (v, t) from (w, s) owing to time

ordering.

Definition 4.2.7. A temporal node (w, s) is reachable from a temporal node (v, t) if

there exists some finite integer k for which (w, s) is a k-forward neighbor of (v, t).

4.2.3 Description of the BFS algorithm

The BFS on evolving graphs is described in Algorithm 1. Algorithm 1 is identical to

the BFS on static graphs except for line 8, where we visit the forward neighbors of

a given temporal node in both space and time. Given an evolving graph Gn and a

root (v1, t1), Algorithm 1 returns all temporal notes reachable from the root and their

distances from the root. reached is a dictionary from temporal nodes to integers whose

key set represents all visited temporal nodes and whose value set are the corresponding

distances from the root.

The BFS constructs a tree inductively by discovering all k-forward neighbors of

the root before proceeding to all (k + 1)-forward neighbors of the root. Within the

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 52

outermost loop, the algorithm iterates over frontier, a list of all temporal nodes of

distance k from the root. The nextfrontier list is populated with all temporal nodes

that are forward neighbors of any temporal node in the frontier list which have not

yet been reached by the algorithm.

k = 1 2

3

1

2

3

1

2

3

1

t2t1 t3

k = 2 2

3

1

2

3

1

2

3

1

t2t1 t3

k = 3 2

3

1

2

3

1

2

3

1

t2t1 t3

Figure 4.3: Breadth-first search (BFS) on the evolving graph shown in Figure 4.1
starting from the root (1, t2) at iteration k = 1, 2, 3. Note that the time t1 does not
participate in the BFS. Black circles indicate the active nodes forming the frontier
and nextfrontier sets in Algorithm 1, connected by the dotted black lines.

As a simple example, consider the BFS on the example graph in Figure 4.1 starting

from the root (1, t2). The procedure is shown in Figure 4.3. The frontier list is first

initialized to {(1, t2)}. Since the only forward neighbor of (1, t2) is (3, t2), iteration

k = 1 produces reached[(3, t2)] = 1 and nextfrontier = {(3, t2)}. In the next iteration

k = 2, the only forward neighbor of (3, t2) is (3, t3), so reached[(3, t3)] = 2 and

nextfrontier = {(3, t3)}. The algorithm terminates after k = 3 after verifying that

(3, t3) has no forward neighbors.

The preceding example illustrates the fact that G[1] plays no part in the BFS

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 53

traversal of Gn starting from (1, t2). In general, all G[t] with time stamps t < t0

for a starting node (v, t0) are irrelevant to the BFS traversal. Hence without loss of

generality we may assume that BFS is always computed with a root at time t1, the

earliest time stamp in Gn.

function BFS(Gn, (v1, t1))
reached[(v1, t1)] = 0
frontier = {(v1, t1)}
k = 1
while frontier 6= ?

nextfrontier = ?
for (v, t) 2 frontier

for (v0, t0) 2forwardneighbors((v, t))
if (v0, t0) /2 reached

reached[(v0, t0)] = k
nextfrontier = nextfrontier [{(v0, t0)}

frontier = nextfrontier
k = k + 1

return reached
Algorithm 1: Breadth-first search (BFS) on an evolving graph Gn starting from
a root (v1, t1). The return value, reached, is a dictionary mapping all reachable
temporal notes from the root to their distances from the root. At the end of each
iteration k, the frontier set contains all temporal nodes of distance k from the root.

Theorem 4.2.1 (Correctness of the evolving graph BFS). Let Gn be an evolving graph

and (v1, t1) be an active node of Gn. Then Algorithm 1 discovers every active node

that is reachable from the root (v1, t1), and reached[(v, t)] is the distance from (v1, t1)

to (v, t).

Proof. Let’s first consider the case when Gn is directed. Define the set of temporal

nodes Ṽ [t]
L = {(v1, t)|(v1, v2) 2 E [t]}, which consists of the active nodes at time t which

participate on the left side of an edge. Similarly, Ṽ [t]
R = {(v2, t)|(v1, v2) 2 E [t]} contains

the corresponding active nodes on the right side of an edge. Then Ṽ [t] = Ṽ [t]
L [Ṽ [t]

R is

the set of active nodes at time t, and V =
S

t Ṽ
[t] is the set of all active nodes in Gn.

Similarly, define the set of causal edges E 0 = {(us, vt)|us = (u, s) 2 V, vt =

(v, t) 2 V, v = u, s < t}, which consists of temporal nodes that connect active nodes

sharing the same node at di↵erent times. Each edge in E 0 is then in 1-1 correspondence

with a temporal path of length 2, h(v, s), (v, t)i. Define also the set of static edges at

time t, Ẽ [t] = {(e, t)|e 2 E [t]}, which are simply the edge sets in Gn with time labels,

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 54

and the set of static edges Ẽ, being simply the union over all times,
S

t Ẽ
[t]. Then

E = Ẽ [E 0 is the set of all edges representing all allowed temporal paths of length 2.

The node set V and edge set E now define a static directed graph G = (V,E) that

is in 1-1 correspondence with the evolving graph Gn. The node set V of G is in 1-1

correspondence with active nodes of Gn while the edge set E is in 1-1 correspondence

with all temporal paths of length 2 on Gn.

We now establish a similar 1-1 correspondence of forward neighbors of an active

node with a subset of G. By induction, all new nodes populated into the key set of

reached at iteration k are of distance k from the root. By definition, the forward

neighbors of some active node (v, t) 2 Gn are active nodes of either the form (v, t0)

for some t0 > t or (u, t) for some u 6= v. In other words, they are connected either

by a causal edge or a static edge. Clearly, the former are elements of E 0 ✓ E while

the latter are elements of Ẽ ✓ E. Thus each forward neighbor of an active node

(v, t) 2 Gn is in 1-1 correspondence with a node in V that is a neighbor of vt 2 V .

When Gn is undirected, every edge in Ẽ [t] can be represented by two edges in G:

from an active node in Ṽ [t]
L to an active node in Ṽ [t]

R and the reverse. Every edge in

E 0 is in 1-1 correspondence with an edge in G by causality. Therefore, the forward

neighbors of an active node is in 1-1 correspondence with a subset of G and the analysis

above follows.

The correctness of BFS on the evolving graph Gn now follows from the correctness

of BFS on the static graph G, since we have also established a 1-1 correspondence for

every intermediate quantity in Algorithm 1.

As presented, the BFS over evolving graphs makes no assumptions about how the

evolving graph Gn is represented. Suppose it is represented by a collection of adjacency

lists, one for each active node in Gn. Then we have that the asymptotic complexity

of BFS on Gn is the same as that for BFS on G, using the 1-1 construction of G from

Gn.

Theorem 4.2.2 (Computational complexity of the evolving graph BFS). Let Gn be

an evolving graph represented using adjacency lists, (v1, t1) be an active node of Gn,

and G = (V,E) be the static graph constructed from Gn using the 1-1 correspondences

defined in the proof of Theorem 4.2.1. Then the asymptotic computational complexity

of Algorithm 1 is O(|E| + |V |).

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 55

Proof. Any edge in any edge set of Gn can be accessed in constant time in random

access memory. By construction, BFS on Gn is in 1-1 correspondence with BFS on

the static graph G. The number of operations of BFS on G is O(|E| + |V |), and so

the result follows.

Note that in the theorems in this section we construct an equivalent static graph

G corresponding to the evolving graph Gn. However, G contains more edges than the

union of all the static parts of Gn, as we also add causal edges E 0. To our knowledge,

our formulation of the BFS represents the first attempt to include these edges explicitly

in the treatment of evolving graphs.

4.3 Formulating the Evolving Graph BFS with Lin-

ear Algebra

4.3.1 The importance of causal edges

For each static graph G[t] = (V [t], E [t]) that constitutes the evolving graph Gn, define

its corresponding
���V [t]

��� ⇥
���V [t]

��� one-sided adjacency matrix with elements

A[t]
ij =

8
><

>:

1 if (i, j) 2 E [t],

0 otherwise.
(4.1)

We can then representGn using a sequence of adjacency matricesAn = hA[1], A[2], . . . , An]i.

The example in Figure 4.1 can be represented as

*
2

6664

0 1 0

0 0 0

0 0 0

3

7775
,

2

6664

0 0 1

0 0 0

0 0 0

3

7775
,

2

6664

0 0 0

0 0 1

0 0 0

3

7775

+
.

For a static graph G with adjacency matrix A, (Ak)ij counts the number of paths

of length k between node i and node j. Näıvely, one might want to generalize this

result to evolving graphs by postulating that the (i, j)th entry of the discrete path

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 56

sum

S[tn] = A[t1]A[tn] +
X

t1ttn

A[t1]A[t]A[tn] + · · ·

+
X

t1tt
0···tn

A[t1]A[t]A[t
0
] · · ·A[tn] (4.2)

counts the number of temporal paths from (i, t1) to (j, tn). However, this postulate is

incorrect. In the example of Figure 4.1,

(S[t3])13 =
⇣
A[t1]A[t2]A[t3] + A[t1]A[t3]

⌘

13
= 1

even though there are clearly two temporal paths from (1, t1) to (3, t3) as shown in

Figure 4.2.

The first term in the sum S[t3] vanishes since A[t1]A[t2] = 0. Furthermore, the

vanishing of S[t2] = A[t1]A[t2] itself reflects the absence of any temporal path from t1

to t2 that goes through at least one edge at t1. However,

h(1, t1), (1, t2), (3, t2)i (4.3)

is a clearly a valid temporal path as shown in Figure 4.2 which cannot be expressed

by a product of adjacency matrices.

Sums S[t] of the form (4.2) produce an incorrect count of temporal paths be-

cause they do not capture temporal paths with causal edges, i.e. subpaths of the

form h(v, s), (v, t)i, s < t. One might attempt to amend the sums S[t] in (4.2) by

redefining the adjacency matrices to include ones along the diagonal, hence allowing

paths containing the sequence h(i, t1), (i, t2)i. However, the resulting sum is still incor-

rect, as it counts paths with subsequences h(3, t1), (3, t2)i and are hence not temporal

paths. Instead, the temporal path (4.3) is counted by the matrix product M [t1,t2]A[t2],

where

M [t1,t2] =

0

BBB@

1 0 0

0 0 0

0 0 0

1

CCCA
. (4.4)

M [t1,t2] describes the forward time propagation of temporal nodes that are active

at both times t1 and t2, i.e. it counts temporal paths that contain subsequences

h(i, t1), (i, t2)i, and both (i, t1) and (i, t2) are active nodes.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 57

The simple example of Figure 4.1 demonstrates why sums over products of adja-

cency matrices of the form (4.2) do not count temporal paths correctly: they neglect

the combinatorics associated with the causal edge set E 0. In the next section, we show

how to account for these causal edges by introducing a new matrix–vector product �.

4.3.2 Defining forward neighbors algebraically

The algebraic representation of evolving graphs presented in Section 4.3.1 allows us to

exploit a graphical interpretation of matrix–vector products involving the adjacency

matrix [51]. If A is the adjacency matrix of a (static) graph G and ek is the kth

elementary unit vector, then the nonzero entries ofAT ek have indices that are neighbors

of k. The algebraic formulation of BFS on evolving graphs follows similarly, but

requires a new kind of matrix–vector product, �, defined by

AT � b =

8
><

>:

b if AT b 6= 0 or Ab 6= 0,

0 otherwise.

The condition AT b 6= 0 ensures that the product is nonzero in components involving

left active nodes [tṼ
[t]
L , and the condition Ab 6= 0 is the analogue for right active nodes

[tṼ
[t]
R . The forward neighbors of a temporal node (k, t1) in An can then be determined

from the indices and time stamps of the nonzero elements in the sequence

⌦
(A[1])T ek, (A

[2])T � ek, . . . (A
[n])T � ek

↵
. (4.5)

The nonzero entries of the first vector represent forward neighbors that are on the

same time stamp t1, whereas nonzero entries of the other vectors represent forward

neighbors that are advanced in time but remain on the same node k. The quantity

(4.5) therefore encodes a BFS tree of depth 2, as its nonzero entries are labeled by all

temporal nodes of distance 1 from (k, t1).

Referring back to the example of Figure 4.1, the forward neighbors of node (1, t1)

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 58

can be computed by

*
2

6664

0 0 0

1 0 0

0 0 0

3

7775

2

6664

1

0

0

3

7775
,

2

6664

0 0 0

0 0 0

1 0 0

3

7775
�

2

6664

1

0

0

3

7775
,

2

6664

0 0 0

0 0 0

0 1 0

3

7775
�

2

6664

1

0

0

3

7775

+

=

*
2

6664

0

1

0

3

7775
,

2

6664

1

0

0

3

7775
,

2

6664

0

0

0

3

7775

+

From this computation, we can deduce that (2, t1) and (1, t2) are the forward neighbors

of (1, t1).

4.3.3 Evolving graphs as a blocked adjacency matrix

The proof of Theorem 4.2.1 provides a construction for representing an evolving graph

Gn by a static graph G with nodes corresponding to active nodes of Gn. It turns out

that the block structure of G is useful for understanding the nature of the � operation.

Consider the second iteration of BFS on Gn with root (k, t1), which requires com-

puting the sequences

⌦
(A[1])T c1, (A

[2])T � c1, . . . , (A
[n])T � c1

↵
(4.6a)

⌦
(A[2])T c2, . . . , (A

[n])T � c2
↵

(4.6b)

. . . (4.6c)
⌦
(A[n])T cn

↵
(4.6d)

where c1 = (A[1])T ek and ci = (A[i])T � ek for i > 1. Summing resultant vectors that

share the same time stamp, we obtain vectors whose nonzero elements have indexes

labeled by the forward neighbors of the nodes computed at step 1.

Compare this with the matrix

Mn =

2

6666664

A[t1] M [t1,t2] ... M [t1,tn]

0 A[t2] ... M [t2,tn]

...

0 0 ... A[tn]

3

7777775

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 59

where M [ti,tj] is the matrix whose rows are labeled by V [ti] and columns are labeled by

V [tj], and whose entries are

M
[ti,tj]
uv =

8
><

>:

1 if (u, v) 2 E 0,

0 otherwise.

The adjacency matrix blocks A[t] encode the static edge set Ẽ, whereas the o↵-diagonal

blocks M [ti,tj] together encode the causal edge set E 0, which capture temporal paths

with subsequences of the form h(v, ti), (v, tj)i. Then Mn is the adjacency matrix of the

graph ([tV
[t], E), which is the graph G together with all the inactive nodes. From the

definition, Mn has nonzero entries only in rows and columns that correspond to active

nodes V , and so retaining only these rows and columns corresponding to V produces

the adjacency matrix An of G = (V,E).

The o↵-diagonal blocks M [ti,tj] provide an explicit matrix representation for the �

product in that (M [ti,tj])T b = (A[ti])T � b. An example of such an o↵-diagonal block

was already provided in (4.4). These o↵-diagonal blocks represent traversal between

active nodes with the same node space labels but are still separated by time, and

are essential for the correct enumeration of temporal paths. The upper triangular

structure of Mn (and hence An) reflects the causal nature of temporal paths in that

they cannot go backward in time.

The BFS algorithm presented above can therefore be interpreted as computing the

sequence of matrix–vector products b, AT
nb, (A

T
n)

2b, ..., formed by applying successive

monomials of AT
n to the block vector bT = [bT , 0, · · · , 0] where bT encodes the root in

the space of active nodes Ṽ [t1].

For the example of Figure 4.1, we have

V = {(1,t1), (2,t1), (1,t2), (3,t2), (2,t3), (3,t3)},

Ẽ = {((1,t1), (2,t1)), ((1,t2), (3,t2)), ((2,t3), (3,t3))},

E 0 = {((1,t1), (1,t2)), ((2,t2), (2,t3)), ((3,t2), (3,t3))}.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 60

(2, t1)

(3, t1)

(1, t1)

(2, t2)

(3, t2)

(1, t2)

(2, t3)

(3, t3)

(1, t3)

Figure 4.4: Static graphs corresponding to the evolving graph example of Figure 4.1.
The green nodes are active nodes while the red nodes are inactive nodes. The black
lines are edges in the static edge set Ẽ and are encoded algebraically in the diagonal
blocks A[t] of the adjacency matrix A3 or M3. The dotted lines are edges in the
causal edge set E 0 and are encoded algebraically in the o↵-diagonal blocks M [ti,tj].
The static graph G constructed in the proof of Theorem 4.2.1 is formed by retaining
all the edges shown and only the active nodes, and has the adjacency matrix A3. The
graph containing all the edges and temporal nodes shown has adjacency matrix M3.

In the order specified for V , the adjacency matrix of G is then

A3 =

2

6666666666664

0 1 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

3

7777777777775

Starting from the vector b = e1, the sequence of iterates is then

*

2

6666666666664

1

0

0

0

0

0

3

7777777777775

,

2

6666666666664

0

1

1

0

0

0

3

7777777777775

,

2

6666666666664

0

0

0

1

1

0

3

7777777777775

,

2

6666666666664

0

0

0

0

0

2

3

7777777777775

,

2

6666666666664

0

0

0

0

0

0

3

7777777777775

, . . .

+
.

We see that (AT
n)

2 encodes all the products in (4.6a)-(4.6d), including both the

ordinary matrix–vector product and the � product. Furthermore, (AT
3)

3b correctly

counts the two allowed temporal paths from (1, t1) to (3, t3), and that the o↵-diagonal

structure encoded in E 0 and the M [t,t
0
] blocks are critical to obtaining the correct

count.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 61

Finally, we note that some results regarding the BFS on evolving graphs can be

derived easily using properties of the block adjacency matrix An. For example, we

can prove a simple lemma that the block adjacency matrix An is nilpotent whenever

all the subgraphs G[t] of Gn are acyclic.

Lemma 4.3.1 (Acyclicity implies nilpotence). Let Gn = hG[ti]ini=1 be an evolving

directed graph and let all the directed graphs G[t] be acyclic. Then An is nilpotent.

Proof. Recall from the definition of the matrixAn that it is block upper triangular,

reflecting causality. Since each directed graph G[t] is acyclic, we can apply a topological

ordering on the graph such that its corresponding adjacency matrix A[t] is strictly upper

triangular. As a result, An must be upper triangular.

Furthermore, none of the graphs G[t] can have any self-edges, i.e. edges of the form

(u, u), and so all diagonal entries of A[t] must be zero. Therefore all the diagonal

entries of An by construction must be zero also.

We have now proven that An is an upper triangular matrix whose diagonal entries

are all zero. Therefore, An is nilpotent.

Lemma 4.3.1 also holds for acyclic undirected graphs so long as the corresponding

adjacency matrix representation is encoded in an asymmetric fashion akin to (4.1).

The blocked matrix structure of the adjacency matrices presented here provide

interesting relationships between their matrix properties and the algorithmic properties

of BFS, made possible because of the reformulation of BFS as repeated power iterations

of the adjacency matrix in Algorithm 2. Note, however, that these matrices need never

be instantiated for practical computations. Rather, since Algorithm 2 only requires the

matrix–vector product involving the adjacency matrix, the formulation of Algorithm 1

provides an e�cient way to exploit the block structure ofAn. The � operation provides

an e�cient way to compute the action of the o↵-diagonal products. Representing the

diagonal blocks A[t] as sparse matrices further reduces the cost of BFS by exploiting

latent sparsity in graphs that show up in practical applications.

4.3.4 The algebraic formulation of BFS on evolving graphs

The blocked matrix–vector products introduced in the previous section allows us to

write down an elegant algebraic formulation of BFS on evolving graphs, as presented

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 62

in Algorithm 2.

function ABFS(An, (v1, t1))
Form AT

n from An.
bv1 = 1
k = 1
reached[(v1, t1)] = 0
while nonzeros(b) 6= ?

b = AT
nb

for k 2 nonzeros(b)
if activeNodes(k) 2 reached

bk = 0

for node 2activeNodes(b)
reached[node] = k

k = k + 1
return reached

Algorithm 2: An algebraic formulation of BFS on evolving graphs. Given An, the
adjacency matrix representation of Gn and (v1, t1), a node of Gn, returns reached
as defined in Algorithm 1. The function nonzeros(v) returns the nonzero indices
of the vector v, and the function map(b) maps a block vector’s indices to their
corresponding active nodes.

Theorem 4.3.1. Algorithm 2 terminates.

Proof. First, we prove that the BFS terminates in the case of acyclic evolving

graphs. Recall from Lemma 4.3.1 that AT
n is nilpotent, i.e. there exists some positive

integer k for which (AT
n)

k = 0. Hence, after iteration k, b is assigned the value

(AT
n)

kb = 0. Therefore, Algorithm 2 must terminate after iteration k.

For evolving graphs with cycles, lines 9-11 of Algorithm 2 enforce that the BFS

visits each active node at most once. Since the kth block of b is zeroed out if an

active node has already been visited, the subgraph traversed in the BFS cannot have

cycles. Thus all that is required is the previous result that the BFS on an acyclic

graph terminates.

Theorem 4.3.2. Algorithm 1 and Algorithm 2 are equivalent.

Proof. The initialization steps are trivially equivalent. At the beginning of iter-

ation k, the block vector b represents the frontier nodes encoding the frontier set of

Algorithm 1. The matrix–vector product AT
nb encodes the forward neighbors of all the

frontier nodes. Subsequently, active nodes that have already been visited in previous

iterations are zeroed out of the new b.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 63

4.3.5 Computational complexity analysis of the algebraic BFS

The complexity of the algebraic BFS of Algorithm 2 is significantly more complicated

that that of Algorithm 1. While the latter uses the usual adjacency list representation

for graphs, the computational cost of the former depends critically on the actual

representation of the matrices. Furthermore, the average case analysis is complicated

by the expected fill-in of the vector b, which influences the cost of the matrix-vector

product on line 7 and the expected number of iterations of the while loop beginning

on line 6.

While a full complexity analysis is beyond the scope of this paper, it is straight-

forward to present worst-case results for dense and compressed sparse column (CSC)

matrices.

Lemma 4.3.2 (Number of iterations). In the worst case, the number of iterations in

the while loop of Algorithm 2 is k = O(|E|).

Proof. In the worst case, the BFS must traverse every active node, and only one

new active node is discovered in each iteration. The number of active nodes is bounded

above by the cardinality of the full edge set, |E|.

The average case analysis for the number of iterations is considerably more com-

plicated and is beyond the scope of this paper.

Theorem 4.3.3 (Dense matrices). Suppose An is represented as a dense matrix. Then

the computational complexity of Algorithm 2 is O(k|V |2), which in the worst case is

O(|E||V |2).

Proof. SinceAn is a |V |⇥|V | matrix, the matrix-vector productAnb takesO(|V |2)

operations to compute. Thus the cost of Algorithm 2 is O(k|V |2) = O(|E||V |2) in the

worst case.

It is clear that practical implementations of the BFS should never construct the

full matrix An in memory. What happens if we use a sparse blocked representation?

Theorem 4.3.4 (Block diagonal sparse matrices). Suppose An is represented by a

collection of compressed sparse column matrices for each diagonal block A[t]. Then the

computational complexity of Algorithm 2 is O(k(|Ẽ| + |V |)), which in the worst case

is O(|E|(|Ẽ| + |V |)).

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 64

Proof. The gaxpy operation for CSC matrices costs 2nnz flops, where nnz is the

number of stored values in the matrix. The cost of each diagonal subblock calculation

A[t]bt is therefore O(|E [t]|), since A[t] by construction has nonzero entries only when a

static edge exists.

The o↵-diagonal products M [t,t0]bt0 can be computed in O(|V [t]| + |E [t]|) time for

all t0 � t since it can be implemented by the · operation, which constructs either a

zero vector or keeps the same vector. The cost of checking the condition (A[t])T bt0 6= 0

is O(|Et|) in the worst case since all that is required is to check whether or not each

column of A is empty. Similarly, checking the condition A[t]bt0 6= 0 reduces to checking

if each row of A is empty, and thus is of cost O(|V t|).

Thus, the cost of multiplying one block row of AT (for some time t) with b is

O(|V [t]| + |E [t]|). Summing over all times yields the desired result.

We can see that even implementing the BFS algebraically using CSC matrices is

insu�cient to reduce the running time to linear, which can be achieved for the adja-

cency list representation in Algorithm 1. This result strongly suggests that additional

work is needed to produce true algorithmic equivalence at the computational level.

4.4 Implementation in Julia

To study evolving graphs and experiment with various graph types, we have developed

EvolvingGraphs.jl [81], a software package for the creation, manipulation, and study

of evolving graphs written in Julia [7]. It is freely available online at

https://github.com/weijianzhang/EvolvingGraphs.jl

and available with the MIT “Expat” license. The package contains an implementa-

tion of the evolving graph BFS of Algorithm 1. IntEvolvingGraph, a data type in

EvolvingGraphs.jl, represents an evolving graph as adjacency lists.

We now present some simple timing data to show that our implementation of

Algorithm 1 is indeed linear scaling in computational cost.

We generate a sequence of random (directed) IntEvolvingGraphs with 105 active

nodes and 10 time stamps. The first IntEvolvingGraph in the sequence has about 108

static edges. We consecutively add new random static edges to this IntEvolvingGraph.

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 65

For example, the second random IntEvolvingGraph in the sequence has about 1.5⇥108

static edges and the third has 1.8⇥ 108 static edges. Note that in this experiment, we

do not have direct control over the full edge set E, only the static edge set Ẽ. When

we add new static edges, new causal edges may be added as well (if the corresponding

temporal nodes were not active before). However, the number of newly introduced

causal edges for each active node is bounded by the number of time stamps, so it

su�ces to demonstrate linear scaling in |Ẽ|. Figure 4.5 shows the plots of number of

edges against the computation time for running Algorithm 1 in Julia. All experiments

are conducted on a single core of a Linux system with 1TB of RAM and 80 cores

of Intel(R) Xeon(R) E7-8850s running at 2.00 GHz clock speed. The results show

Algorithm 1 can be computed in linear time, which agrees with the result of Theorem

4.2.2.

1 2 3 4 5

|Ẽ| ⇥108

15

20

25

30

35

40

45

50

Ti
m

e
(s

)

Figure 4.5: Experimental run time of Algorithm 1 on a collection of random evolving
graphs with 105 active nodes and 10 time stamps, showing linear scaling in |Ẽ|. The
horizontal axis shows the number of edges (|Ẽ|, including only the static edges) of each
evolving graph, while the vertical axis shows the corresponding computation time.

4.5 Application to Citation Networks

Evolving graphs have found many applications to analyzing networks that change

over time [38, 37]. In this section, we focus specifically on citation networks, and show

that evolving graph formalism presented above can be used to capture the dynamical

structure of citation networks. Consider the evolving graph Gn = hG[t]it such that G[t]

has node set corresponding to authors active at time t and directed edge set E [t] 3 (i, j)

CHAPTER 4. THE RIGHT WAY TO SEARCH EVOLVING GRAPHS 66

representing a citation of author j by author i in a publication at time t.

Then given an author a at time t1, the evolving graph BFS described above can

compute T (a, t1), the set of all the authors that have been influenced by a’s work

at time t1. Define also a community to be a group of researchers that have been

influenced by the same authors. For example, given a paper published by a at time

t, we can determine a’s community by searching backward in time to find T�1(a, t),

the authors that influenced a at time t, and then searching forward to find T (l1, t1) [

T (l2, t2) [· · · [T (lk, tk), where (l1, t1), (l2, t2), . . . , (lk, tk) are the leaves of T�1(a, t).

The backward search in time follows straightforwardly from the forward time traversal

presented above simply by reversing the time labels, e.g. by the transformation t ! �t.

We are currently investigating the use of our evolving graph BFS on citation net-

works.

4.6 Conclusion

The correct generalization of BFS to evolving graphs necessitates a careful enumeration

of temporal paths. The structure associated with causal edges E 0 turns out to be of

vital importance, and cannot be capture simply by products of successive adjacency

matrices, which by construction can only capture the topologies of the static edges

Ẽ. Only by considering both causal edges and static edges can we show that BFS

over any evolving graph Gn computes the correct result for our notion of distance.

The new concepts of activeness, temporal paths, and causal edges make possible a

correct implementation of BFS to evolving graphs and we expect that these ideas will

continue to provide powerful new insights into how similar graphical algorithms may

be generalized correctly.

Furthermore, we show that BFS on evolving graphs admits an algebraic formulation

that easily provides nontrivial results, such as termination of the algorithm. However,

our current understanding tells us that the BFS over evolving graphs is most e�ciently

computed in the adjacency list representation, thus never forming explicit matrix-

vector products. Further work is needed to elucidate more e�cient formulations of the

algebraic BFS for evolving graphs.

Chapter 5

A Closer Look at Time-Preserving

Paths on Evolving Graphs

5.1 Introduction

In the 1985 science-fiction film “Back to the Future”, Marty McFly (played by Michael

J. Fox) travelled back in time and accidentally changed history. However, we cannot

travel back in time or even send a message to the past. To traverse an evolving graph

(a time-dependent graph), one has to consider the order of time stamps. In particular,

a walk on an evolving graph needs to be time-preserving, meaning we can not pass

a message (through an edge) to a node at a earlier time. Time-preversing walks and

paths are very important concepts for network flow on evolving graphs.

We represent an evolving graph as a time-ordered sequences of graphs, similar to

the work of Tang and coworkers [64, 76, 77, 78] and Grindrod, Higham and coworkers

[37, 38]. The idea is to divide the system’s time span into temporal slices and regard

it as a sequence of static graphs G[t], one for each layer. Such a representation arises

naturally in many real-world applications. For example, consider networks of users

interacting through messaging. Each interaction between two users A and B is stored

with a time stamp t. If we represent user A as a node then user A at time stamp t is

represented by a pair (A, t) and a message sent from user A to user B at time stamp

t can be represented as h(A, t), (B, t)i.

In general, a node v on G[t] is represented by a pair (v, t), where t is the time stamp

of the graph G[t]. A sequence of interactions between users form a walk. Suppose A

67

CHAPTER 5. TIME-PRESERVING PATHS 68

sent a message to B at time stamp t1 and then B sent this message to C at time

stamp t2. We can represent this activity as h(A, t1), (B, t1), (B, t2), (C, t2)i, where each

pair of successive nodes has meanings: h(A, t1), (B, t1)i and h(B, t2), (C, t2)i represent

interactions between users A, B, and C and h(B, t1), (B, t2)i represents the fact that

user B holds the message at time stamps t1 and t2.

A time-respecting walk is a sequence of nodes h(v1, t1), (v2, t2), . . . , (vm, tm)i, where

t1  t2  · · ·  tn are the corresponding time stamps. If ti = tj, then h(vi, ti), (vj, tj)i

is an edge where both nodes are on the same temporal slice, otherwise it is an edge

linking nodes from di↵erent temporal slices. We call edges of the first kind static edges

and of the second kind causal edges. Recall that in static graph, a walk of length m is

defined as a sequence of nodes v1, v2, . . . , vm+1 such that for each i = 1, . . . ,m there is

an edge from vi to vi+1. How can we determine the length of a time-respecting walk?

One could define the length of a time-respecting walk as the total number of temporal

slices (see the shortest temporal distance in [76]) or the number of static edges (see the

dynamic walk in [38]). This paper studies the impact of these two di↵erent definitions.

In particular, we study a general definition of temporal distance that takes account of

both temporal slices and static edges.

Researchers have generalised many static graph centrality algorithms for evolving

graphs. One approach is to use the fact that the elements of the matrix product

of adjacency matrices at di↵erent time stamps can correctly count the number of

temporal paths. However, not every centrality algorithm can be generalised in this

way. Another approach is to define evolving graph centrality algorithms using time-

respecting paths. This approach is applicable to algorithms that are defined using

shortest paths.

Borgatti [12] noted that the manner of tra�c flow entails a new way to think about

centrality. In particular, the importance of a node in a network cannot be determined

without reference to how tra�c flows through the network. Inspired by this idea, we

simulate network flows in evolving graphs to measure the centrality scores. The aims of

this paper are as follows. First, to derive important evolving graph centrality from first

principles via network flow. Second, to study the impact of temporal distance between

nodes on centrality. Third, to generalise PageRank on evolving graphs. We carry out

the experiment using the Julia dynamic network analysis package EvolvingGraphs.jl

CHAPTER 5. TIME-PRESERVING PATHS 69

(https://github.com/EtymoIO/EvolvingGraphs.jl). We use the research paper data

gathered from Etymo (https://etymo.io), a visual search engine for data scientists.

5.2 Motivation: A Closer Look at Katz Centrality

on Evolving Graphs

We let Gn = hG[1], G[2], . . . , G[n]i be an evolving graph and A[1], A[2], . . . A[n] be the cor-

responding adjacency matrices. Then the dynamic communicability matrix is defined

as

Q[k] = (I � ↵A[1])�1(I � ↵A[2])�1 · · · (I � ↵A[n])�1, (5.1)

where the parameter ↵ satisfies ↵ < 1/maxk ⇢(A
[k]), the spectral radius of A[k]. The

ith row sum of Q[k] is the broadcast centrality.

Suppose A, B, and C are three co-workers in a large internet company. Figure

5.1 shows how they exchange ideas during three days at work. The directions of the

arrows indicate the direction of the flow of ideas. For example, A shares a new idea

with B on day 1 and B shares a new idea with C on dat 3. As a result, A’s idea can

influence C. Here, and in subsequent figures, green filled circles represent active node

and red circles represent inactive nodes.

B

C

A

B

C

A

B

C

A

1 2 3

Figure 5.1: An evolving directed graph with 3 time stamps 1, 2 and 3. At each time
stamp, the evolving graph is represented as a graph. The green filled circles represent
active nodes while the red circles represent inactive nodes. Directed edges in each time
stamp are shown as black arrows.

We could use EvolvingGraphs.jl to generate the above evolving graph and compute

the Katz centrality.

using EvolvingGraphs

CHAPTER 5. TIME-PRESERVING PATHS 70

using EvolvingGraphs . Cen t r a l i t y

g = EvolvingGraph{Node{ St r ing } , In t } ()

add bunch of edges ! (g , [(”A” , ”B” , 1) , (”A” , ”C” , 2) ,

(”A” , ”B” , 2) , (”C” , ”A” , 2) , (”B” , ”C” , 3)])

The centrality values for each node are

katz (g)

3�element Array{Tuple{EvolvingGraphs . Node{ St r ing } , Float64 } , 1} :

(Node (A) , 0 .742301)

(Node (B) , 0 .42943)

(Node (C) , 0 .514373)

As expected A is the most important node in the network. C is the second most

important node in the network as it influenced A at time stamp 2. If we reverse the

time of communication between day 1 and 3, i.e., B shares a new idea with C on day

1 and A shares a new idea with B on day 3. Then in this case the idea A had on day

3 cannot pass to C. This is illustrated in Figure 5.2. In this case, we have

B

C

A

B

C

A

B

C

A

1 2 3

Figure 5.2: An evolving directed graph with 3 time stamps 1, 2 and 3.

g2 = EvolvingGraph{Node{ St r ing } , In t } ()

add bunch of edges ! (g2 , [(”A” , ”B” , 3) , (”A” , ”C” , 2) ,

(”A” , ”B” , 2) , (”C” , ”A” , 2) , (”B” , ”C” , 1)])

The centrality ratings of the three nodes are

katz (g2)

3�element Array{Tuple{EvolvingGraphs . Node{ St r ing } , Float64 } , 1} :

(Node (A) , 0 .687679)

(Node (B) , 0 .490062)

(Node (C) , 0 .535666)

CHAPTER 5. TIME-PRESERVING PATHS 71

Notice the rating of A decreased as its influence is not as important as in Figure

5.1. If the communication between A, B, and C are not on three consecutive days but

on day 1, day 10, and day 100, as shown in Figure 5.3, we would expect the centrality

scores to change. However, according to (5.1), the scores are unchanged. We notice

that the generalised Katz centrality on evolving graphs only takes account of the edges

at each time stamp but not the communication time between edges at di↵erent time

stamps.

B

C

A

B

C

A

B

C

A

1 10 100

Figure 5.3: An evolving directed graph with 3 time stamps 1, 10 and 100. At each
time stamp, the evolving graph is represented as a graph. The green filled circles
represent active nodes while the red circles represent inactive nodes. Directed edges
in each time stamp are shown as black arrows.

5.3 Time-Preserving Walks and Paths

A walk of length ` is a sequence of nodes v1, v2, . . . , vl, vl+1 such that for each i =

1, 2, . . . , `, there is an edge from vi to vi+1. A path of length ` is a walk of length `

such that all the nodes are di↵erent. Similarly, we define a temporal walk to be a time-

ordered sequence of temporal nodes. A temporal path is a temporal walk such that all

the temporal nodes are di↵erent. The definition of centrality depends on the manner

in which tra�c flows through a network [12]. Time-preserving walks induce temporal

Katz centrality and temporal closeness centrality while time-preserving paths induce

betweenness centrality and closeness centrality.

We now describe evolving graph network flow in more details. We follow the

definition of evolving graph in [15].

Definition 5.3.1. An evolving graph Gn is a sequence of (static) graphs Gn =

hG[1], G[2], . . . , G[n]i with associated time stamps t1  t2  . . .  tn. Each G[t] =

CHAPTER 5. TIME-PRESERVING PATHS 72

(V [t], E [t]) represents a (static) graph labelled by a time t.

Note that the node sets V [t] can change over time, i.e., nodes may appear or

disappear at a particular time stamp. For example, in Figure 5.4, at time stamp

1998, V [1998] = h1, 2i and E [1998] = h(1, 2)i. Each graph G[t] can be represented by

its adjacency matrix A[t]. We can represent Gn by a list of adjacency matrices An =

hA[1], A[2], . . . , A[n]i.

If we only measure the temporal di↵erence in a temporal walk, we have a new

definition of Katz centrality. In the matrix form, the nonzero entries of A[ti]A[ti+1]

counts all the temporal walks of length 1, and A[ti] · · ·A[tj], where i < j counts all the

temporal walks of length j � i. For example, A[1]A[4], A[1]A[1]A[4] and A[1]A[2]A[3]A[4]

count all walks of length 3. In the original Katz centrality, the ‘attenuation’ factor ↵

is imposed on the number of paths, i.e., longer paths has smaller e↵ect to the overall

rating. Hence the final result is the summation of all products of the form

↵kA[i] · · ·A[i+k]

Note this is di↵erent from (5.1) as discussed in Section 5.4.1.

2

3

1

2

3

1

2

3

1
w1

w2

w3

w4

w5

1998 1999 2018

Figure 5.4: An evolving directed graph with 3 time stamps 1998, 1999 and 2018. At
each time stamp, the evolving graph is represented as a graph. Directed edges in each
time stamp are shown as black arrows and directed edges between graphs are shown
as dotted arrows, where w1, w2 . . . w5 are edge weights.

Definition 5.3.2. A temporal node is a pair (v, t), where v 2 V [t] is a node at a

time t.

Definition 5.3.3. A temporal node (v, t) is an active node if there exists at least

CHAPTER 5. TIME-PRESERVING PATHS 73

one edge e 2 E [t] that connects v 2 V [t] to another node w 2 V [t], w 6= v. Otherwise it

is called an inactive node.

In Figure 5.4, the filled green circles are active nodes. For the adjacency matrix

representation, if a node i is active at time stamp t then the ith row or the ith column

of A[t] has at least one none-zero entry.

Definition 5.3.4. A static edge h(vi, t), (vj, t)i is a pair of elements of V [t], i.e.,

vi 2 V [t] and vj 2 V [t]. A causal edge h(v, ti), (v, tj)i is a pair of the same node at

di↵erent time stamps.

For example, in Figure 5.4 h(1, 1998), (2, 1998)i is a static edge at time stamp

1998 and h(3, 1999), (3, 2018)i is a causal edge between time stamp 1999 and time

stamp 2018. The di↵erence between static edges and causal edges was first explicitly

considered in [15].

We can denote a weighted static edge as h(vi, t), (vj, t), wsi and a weighted causal

edge as h(v, ti), (v, tj), wti. Here ws represents the spatial distance between the two

nodes vi and vj; wt represents the temporal distance of v at di↵erent time stamps. In

Figure 5.4, the black arrows represent static edges and the dotted arrows represent

causal edges. Suppose we assign all the static edge weights to 1 and let the causal edge

weight be the number of time stamps between the pair of nodes. Then in Figure 5.4 the

edge weight between (1, 1998) and (2, 1998) is 1 and the edge weight between (2, 1998)

and (2, 2018) is 10. In general, a weighted time-preserving walk can be defined as

follows.

Definition 5.3.5. A weighted time-preserving walk of length m on an evolving

graph Gn is an alternating time-ordered sequence of active nodes and edges, h(v1, t1), e1,

(v2, t2), e2, (v3, t3) . . . , em, (vm, tm)i, where t1  t2  · · ·  tm and vi = vj if and only if

ti 6= tj, and ej = h(vj, tj), (vj+1, tj+1)i can be either a weighted static edge or weighted

causal edge.

It is natural to define the length of a walk on a static graph as the number of

nodes travelled through the walk. For the weighted graph case, the length of a walk is

the total weight of all the edges in the walk. We observe that static edges link nodes

in space while causal edges link nodes in time. Hence we would like to distinguish

CHAPTER 5. TIME-PRESERVING PATHS 74

temporal distance from spatial distance in an evolving graph. For two linked temporal

nodes, we set the length of a static edge between them to be one and the length of a

causal edge to be the temporal distance between them. The following Julia function

measures the temporal distance between two active nodes in an evolving graph.

function t empora l d i s tance (v1 : : TimeNode ,

v2 : : TimeNode , beta : : Real = 1 .)

beta ⇤ abs (node timestamp (v1) � node timestamp (v2))

end

This function defines the temporal distance to be the di↵erence between their time

stamps scaled by a hyper-parameter beta. In the simplest case, the time-respecting

walk h(1, 1998), (2, 1998), (2, 2018), (3, 2018)i in Figure 5.4 has length 22 in total be-

cause two static edges h(1, 1998)(2, 1998)i and h(2, 2018), (3, 2018)i each have length

one, and h(2, 1998)(2, 2018)i traverse 20 time stamps and thus has length 20. A time-

preserving walk (and path) can traverse both causal edges and static edges.

5.4 Centrality Measures

Centrality measures the importance of nodes within a graph. To generalize central-

ity measures for evolving graphs there are two common approaches. First, we could

exploit the fact that matrix product of adjacency matrices at di↵erent time stamps

counts the number of dynamic walks in an evolving graph. Using this idea, we can

generalize walk-based centrality measures such as the Katz centrality [26] and com-

municability betweenness [1]. Second, we could generalize the definition of shortest

paths as shortest temporal paths and replace shortest paths in centrality measures with

shortest temporal paths where possible. This way we can define temporal betweenness

centrality and temporal closeness centrality [64].

We observe both approaches ignore the communication time between edges at

di↵erent time stamps, i.e., the time gap between di↵erent (static) graph slices. We

take account of this communication time by deriving centrality measures from the

original theses of the ideas and show communication time has important impact on

the final node ratings (and rankings). We note that our goal is not to provide e�cient

centrality algorithms, which is out of the scope of this paper.

CHAPTER 5. TIME-PRESERVING PATHS 75

5.4.1 Temporal Katz Centrality

Katz centrality accounts the influence of nearest-neighbours to a give node and the

influence of other nodes separated at a certain distance from it. The kth power of the

adjacency matrix A of a graph G accounts for walk of length k. The expansion

A0 + ↵A+ ↵2A2 + · · · (5.2)

converges to (I � ↵A)�1 when ↵ < 1/⇢(A). The (i, j) entry of (5.2) counts all walks

from i and j with the influence of walks of length k scaled by a factor of ↵k. The Katz

centrality of node i is the ith row sum of (I � ↵A)�1, which is the sum of influence of

all the nodes that node i can reach via a walk. In other words, we start with node i

and each out-neighbour of node i has influence ↵ on node i and the out-neighbour of

out-neighbour of node i has influence ↵2 on node i, and so on.

For evolving graphs, we replace out-neighbours with forward neighbours which

preserve the direction of time. Then the Katz score of a node i at time stamp t,

denoted by (i, t), is the sum of influence of all the active nodes that (i, t) can reach via

a time-preserving walk. Unlike [38], we also consider the temporal distance between

two nodes. For example, the temporal distance between (i, 2001) and (i, 2018) is 17.

With the definition of temporal distance introduced in Section 5.3. We define the

temporal Katz score of node (i, t) by the algorithm given in Listing 5.1.

function tempora l katz (g : : AbstractEvolvingGraph ,

s t a r t : : TimeNode ; alpha = 0 . 2 , max leve l = 10)

s co r e = 0 .

v = s t a r t

f r o n t e r = [v]

l e v e l = 0

while l e v e l < max leve l

next = []

for u in f r o n t e r

for v in f o rward ne ighbor s (g , u)

push ! (next , v)

i f node key (v) != node key (u)

td = tempora l d i s tance (s ta r t , u)

d = td + l e v e l

s c o r e += alpha ˆd

end

CHAPTER 5. TIME-PRESERVING PATHS 76

end

end

f r o n t e r = next

l e v e l += 1

end

return s co r e / num edges (g)

end

Listing 5.1: Temporal Katz Centrality of Single Node

The algorithm temporal katz performs a breadth first search (BFS) on an evolving

graph g that starts at TimeNode v, which represents a node at a specific time stamp.

For each TimeNode v, we accumulate the influence of linked nodes according to their

spatial and temporal distance from v. The spatial distance is recorded in variable

level and the temporal distance is calculated by temporal distance. The algorithm

stops searching when level is larger or equal to max level. We set alpha to be 0.2 and

max level to be 10. Then for Figure 5.2, we find the rating of each active node as

shown below.

TimeNode (A, 2) => 0.466667

TimeNode (A, 3) => 0 .2

TimeNode (B, 2) => 0 .0

TimeNode (B, 3) => 0 .0

TimeNode (B, 1) => 0.202347

TimeNode (C, 1) => 0.0117333

TimeNode (C, 2) => 0.293333

Here, for example, TimeNode(A,2) represents active node (A, 2).

The overall score of a node is the sum of scores of the node at di↵erent time stamps.

We use the overall scores to measure the overall importance of nodes in an evolving

graph. Here are the overall scores of the three nodes.

”A” => 0.666667

”B” => 0.202347

”C” => 0.305067

Notice that A is the most important node in the evolving graph and C is the second

most important node. Thus the ranking agrees with the Katz centrality rankings in

Section 5.2.

For Figure 5.3, we have

CHAPTER 5. TIME-PRESERVING PATHS 77

TimeNode (A, 10) => 0.458333

TimeNode (A, 100) => 0 .2

TimeNode (B, 1) => 0 .2

TimeNode (B, 10) => 0 .0

TimeNode (B, 100) => 0 .0

TimeNode (C, 1) => 2.98666 e�8

TimeNode (C, 10) => 0.291667

The sum of node scores at each time stamp is

”A” => 0.658333

”B” => 0 .2

”C” => 0.291667

We see the scores of all three nodes are decreased when it takes longer to communicate

between di↵erent time stamps. In this case, the overall ranking is not a↵ected but in

general the communication time between time stamps can change the overall ranking.

Temporal Resolvent Betweenness Centrality

Betweenness centrality measures the importance of a node as the ability to facilitate

the communication among other nodes in the network. Commonly it is defined based

on the shortest paths. However, key messages do not necessarily follow the shortest

paths and thus it makes sense to consider walks instead of shortest paths. Recall that

the (i, j) entry of the resolvent matrix (I � ↵A)�1 provides information about the

communication from i to j. By considering the di↵erence in rating with and without

edges linking to node v, we could define the resolvent betweenness for node v as

X

i

X

j

(I � ↵A)�1
i,j � (I � ↵(A � Ev))

�1
i,j

(I � ↵A)�1
i,j

, i 6= j, i 6= v, j 6= v. (5.3)

where Ev has non-zeros only in row and column v, and in the vth row and column

has 1 where A has 1. The matrix A � Ei represents a graph with all edges involving

the node v removed. For (I � ↵A)�1
i,j we could simply modify Listing 5.1 so that it

only accumulates scores when the end node is j. For the (I � ↵(A � Ev))
�1
i,j part,

we can apply the same algorithm on a graph with node v and related edges removed.

Therefore the general temporal resolvent betweenness centrality can be defined by the

algorithm in Listing 5.2.

CHAPTER 5. TIME-PRESERVING PATHS 78

function t empora l r e so lv en t be tweenne s s (g1 , g2 ,

v : : TimeNode ; alpha = 0 . 2 , k = 10)

r = 0 .

ns = ac t i v e node s (g1)

for i in ns

for j in ns

i f i != j && i != v && j != v

sco r e1 = tempora l katz (g1 , i , j ,

a lpha = alpha , k = k)

s co r e2 = tempora l katz (g2 , i , j ,

a lpha = alpha , k = k)

r += score1 == 0.0 ? 0 :

(s co r e1 � s co r e2)/ s co r e1

end

end

end

return r

end

Listing 5.2: Temporal Resolvent Betweenness of Single Node

Here temporal katz only takes account of walks from node i to j. Evolving graph g1

is the original evolving graph and evolving graph g2 is g1 with all the edges related to

v removed.

For example, by removing node (A, 2), i.e., node A at time stamp 2, from Figure

5.2 we find the temporal resolvent betweenness score of node A is 5.0. While the

temporal resolvent betweenness score of node (B, 3) is 4.0. This shows that (A, 2)

is more important than (B, 3). We note that temporal communicability betweenness

centrality can be analysed similarly.

5.4.2 Temporal Closeness Centrality

Let dij be the length of the shortest path from i and j in a static graph. The closeness

centrality of a node i is a measure of importance calculated by considering all the

shortest paths between node i and all other nodes in the graph, that is

Ccloseness
i =

N � 1P
j dij

,

CHAPTER 5. TIME-PRESERVING PATHS 79

where N � 1 is the total number of reachable nodes. The more important a node is,

the closer it is to all other nodes. For evolving graphs, we need to consider the shortest

temporal path from (i, ti) to (j, tj), for any time stamp ti  tj. Depending on how we

define the length of shortest temporal path, the closeness centrality can counts static

edges, causal edges, or both. The key di↵erence between Katz centrality and closeness

centrality is the fact here we only consider shortest temporal path, not every temporal

walk. We could apply BFS to find the shortest temporal path from (v, t) to any other

nodes in the evolving graphs. The algorithm is shown as the algorithm given in Listing

5.3.

function t empo ra l c l o s en e s s (g : : AbstractEvolvingGraph ,

s t a r t : : TimeNode)

v = s t a r t

l e v e l = Dict (v => 0)

i = 1

f r o n t e r = [v]

while l ength (f r o n t e r) > 0

next = []

for u in f r o n t e r

for v in f o rward ne ighbor s (g , u)

i f ! (v in keys (l e v e l))

i f node key (u) != node key (v)

td = tempora l d i s tance (s ta r t , u)

l e v e l [v] = i + td

else

l e v e l [v] = i � 1

end

push ! (next , v)

end

end

end

f r o n t e r = next

i += 1

end

t o t a l s c o r e s = sum(va lue s (l e v e l))

return t o t a l s c o r e s > 0 .0 ?

(l ength (l e v e l) � 1)/ t o t a l s c o r e s : 0 . 0

CHAPTER 5. TIME-PRESERVING PATHS 80

end

Listing 5.3: Temporal Closeness of Single Node

The algorithm starts at node start and explores the forward neighbours and store all

the reached nodes so far in level. If node key(u) == node key(v), we traverse the same

node at di↵erent time stamps. In this case, we consider that we’ve already reached it

at the previous time stamp.

For Figure 5.2 the scores are

TimeNode (A, 2) => 0.666667

TimeNode (A, 3) => 1 .0

TimeNode (B, 1) => 0.346154

TimeNode (B, 2) => 0 .0

TimeNode (B, 3) => 0 .0

TimeNode (C, 1) => 0.315789

TimeNode (C, 2) => 0 .5

and the sum of scores at di↵erent time stamps gives

”A” => 1.66667

”B” => 0.346154

”C” => 0.815789

Note that the ranking is the same as the temporal Katz centrality case. For Figure

5.3, the scores are

TimeNode (A, 10) => 0.0707071

TimeNode (A, 100) => 1 .0

TimeNode (B, 1) => 0.0597015

TimeNode (B, 10) => 0 .0

TimeNode (B, 100) => 0 .0

TimeNode (C, 1) => 0.0390625

TimeNode (C, 10) => 0.0412371

and the sums are

”A” => 1.07071

”B” => 0.0597015

”C” => 0.0802996

Similar to the temporal Katz centrality case, we see a decrease of centrality scores for

all the nodes in the evolving graph. We note that the analysis for temporal betweenness

centrality is similar to above.

CHAPTER 5. TIME-PRESERVING PATHS 81

5.4.3 Temporal PageRank

We see from our analysis for temporal Katz centrality and temporal betweenness cen-

trality that the temporal distance between nodes in an evolving graph can impact the

final centrality scores. We would like to design a temporal PageRank algorithm that

takes account of the temporal distance and the spatial distance. The generalisation is

based on two ideas: reversed temporal walks and block adjacency matrix.

Reversed Temporal Walks

We can not travel back in time. But reversing the direction of temporal flows can help

identify the “hub” nodes or the source of the flows. Recall in the HITS algorithm [53],

the hub score describes the quality of a web page as a link collection of important

related pages. In reverse PageRank we compute PageRank on the graph with reversed

direction, i.e., reverse the direction of each edge (i, j) to (j, i). Fogaras [30, 33] shows

that Reversed Page Rank scores express hub quality.

Recall a time-preserving walk is a time-ordered sequence of active nodes. We

define a reversed temporal walk to be a reversed time-ordered sequence of active nodes

h(v1, t1), (v2, t2), . . . , (vm, tm)i, where t1 � t2 � · · · � tm.

Block Adjacency Matrices

Aggregating edges at each time stamp to form a simple static graph can provide mis-

leading information about the structure of the network. In [15], we derive a block

adjacency matrix representation of an evolving graph and show it is possible to repre-

sent an evolvig graph as a block adjacency matrix. Let E 0 be the set of causal edges

and Ê be the set of static edges. Then an evolving graph can be represented as

Mn =

0

BBBBBB@

A[t1] M [t1,t2] . . . M [t1,tn]

0 A[t2] . . . M [t2,tn]

. . .

0 0 . . . A[tn]

1

CCCCCCA
,

CHAPTER 5. TIME-PRESERVING PATHS 82

where M [ti,tj] is the matrix whose rows are labeled by V [ti] and columns are labeled by

V [tj], and whose entries are

M
[ti,tj]
uv =

8
><

>:

1 if(u, v) 2 E 0

0 otherwise.

The adjacency matrix blocks A[t] encode the static edge set Ê, whereas the o↵-diagonal

blocks M [ti,tj] encode the causal edge set E 0. To take account of the temporal distance

between nodes, we could let

M
[ti,tj]
uv =

8
><

>:

1
|tj�ti|

if(u, v) 2 E 0

0 otherwise.

For Figure 5.4, we have

V = {(1,1998), (2,1998), (1,1999), (3,1999), (2,2018), (3,2018)},

Ẽ = {((1,1998), (2,1998)), ((1,1999), (3,1999)), ((2,2018), (3,2018))},

E 0 = {((1,1998), (1,1999)), ((2,1999), (2,2018)), ((3,1999), (3,2018))}

and corresponding block adjacency matrix is

M3 =

0

BBBBBBBBBBBB@

0 1 1 0 0 0

0 0 0 0 1/9 0

0 0 0 1 0 0

0 0 0 0 0 1/9

0 0 0 0 0 1

0 0 0 0 0 0

1

CCCCCCCCCCCCA

.

The static graph representation of Figure 5.4 is shown in Figure 5.5.

Notice that the lower triangular blocks of matrix Mn are zero. This is because all

the causal edges are time preserving. We consider the transpose of matrix Mn, which

reverse the direction of static edges and causal edges. Let b 2 [0, 1] be a balance scalar.

Then the block matrix

bMn + (1 � b)MT
n

takes account of both the temporal walks and reversed temporal walks. We now derive

the block Google matrix as

CHAPTER 5. TIME-PRESERVING PATHS 83

(2, t1)

(3, t1)

(1, t1)

(2, t2)

(3, t2)

(1, t2)

(2, t3)

(3, t3)

(1, t3)

Figure 5.5: A static graph corresponding to the evolving graph example of Figure 5.4.
The black lines are edges in the static edge set Ẽ and are encoded algebraically in
the diagonal blocks A[t] of the adjacency matrix M3. The dotted lines are edges in
the causal edge set E 0 and are encoded algebraically in the o↵-diagonal blocks M [ti,tj].
The graph containing all the edges and temporal nodes has adjacency matrix M3.

function b lo ck goog l e mat r i x (g ; alpha = 0 .85 , ba lance = 0 . 75)

M = f u l l (b lock ad jacency matr ix (g))

M = balance ⇤ M + (1�balance) ⇤ M’

N, N = s i z e (M)

p = ones (N)/N

dang l ing we ight s = p

dang l ing nodes = f i nd (x�>x==0, sum(M, 2))

for node in dang l ing nodes

M[node , :] = dang l ing we ight s

end

M ./= sum(M, 2)

return alpha ⇤ M .+ (1� alpha) ⇤ p

end

Listing 5.4: Construct a block Google matrix from an evolving graph g.

The function block adjacency matrix converts an evolving graph g to a block ad-

jacency matrix M . Every row sum of the block Google matrix is equal to one. Each

element of the dominant eigenvector of the block Google matrix represents the PageR-

ank rating of a node. The rank of each node can be computed iteratively from the

block Google matrix using the power method. For Figure 5.2, we let alpha be 0.85

and balance be 1.0. Then the PageRank scores are

TimeNode (A, 2) => 0.289123

TimeNode (A, 3) => 0.128054

TimeNode (B, 1) => 0.182477

CHAPTER 5. TIME-PRESERVING PATHS 84

TimeNode (B, 2) => 0.354335

TimeNode (B, 3) => 0.480941

TimeNode (C, 1) => 0.128054

TimeNode (C, 2) => 0.250931

and the sum of node scores at all three time stamps are

”A” => 0.417177

”B” => 1.01775

”C” => 0.378986

We see node B is the most important node in an evolving graph. On the other extreme,

if we set balance to be 0.0, we get the overall scores

”A” => 0.678502

”B” => 0.647353

”C” => 0.527927

Thus A is the most important node in this case.

One potential problem with temporal PageRank is that the computational cost is

expensive for large evolving graphs with many time stamps. The dimension of the

block matrix is |V |⇥ |T |, where |V | represents the number of nodes and |T | represents

the number of time stamps. In practice, we do not need to form or store the dense

Google matrix. The power method can be applied to the extremely sparse block

adjacency matrix M [54].

5.5 Experiments

We conduct the following experiments using graph type IntAdjacencyList from Evolv-

ingGraphs.jl, which represents an evolving graph g with integer nodes and integer

time stamps as adjacency lists. In particular, each active node in g stores its forward

neighbours in a list. We count both static edges and causal edges. The following

experiments study the influence of temporal distance on centrality scores. All exper-

iments are conducted on a MacOS system with 8 GB of RAM running at 2.3 GHz

clock speed.

CHAPTER 5. TIME-PRESERVING PATHS 85

5.5.1 Random Evolving Graphs

We generate a random evolving graph g with 500 nodes and 499183 static edges and

10 time stamps. We focus on studying the changes of rating of the following nodes.

The second element in each tuple is the Katz Centrality rating computed using (5.1).

(459 , 0 .126296)

(147 , 0 .116541)

(326 , 0 .113667)

(183 , 0 .108705)

(469 , 0 .0936847)

(296 , 0 .0925748)

(424 , 0 .0921004)

(377 , 0 .091973)

(313 , 0 .0910352)

(127 , 0 .089123)

For each node in the above list, we compute the node score at each time stamp and

the overall score. Here we set alpha = 0.5 and max level = 3. The results are shown

in Table 5.1 and Table 5.2. Table 5.1 shows the ratings where the causal edges all

have edge weight zero. Table 5.2 shows the ratings where the weights of causal edges

are their temporal di↵erences. For each table we notice that ratings (and rankings)

at the first time stamp t1 are very di↵erent from the overall ratings (and rankings).

Comparing the two tables, we observe that the Katz ratings in general are smaller

when we take account of the temporal information. The rankings, however, are stable.

For rankings at time stamp 1, only the top two nodes 459 and 469 change positions.

The overall rankings stays unchanged.

For the same random evolving graph g, we also compute temporal closeness cen-

trality scores. The results are shown in Table 5.3 and Table 5.4. As before, for both

tables the ratings (and rankings) at the first time stamp t1 are very di↵erent from the

overall ratings (and rankings). However, when we compare the two tables Table 5.3

and 5.4, we notice that for temporal closeness centrality most of rankings are changed

when we take account of the temporal information.

CHAPTER 5. TIME-PRESERVING PATHS 86

Ranking at t1 Rating at t1 Overall ranking Overall rating
469 0.7193 183 5.975
459 0.7180 469 5.932
424 0.7108 326 5.804
296 0.7042 313 5.797
326 0.6853 459 5.788
183 0.6647 147 5.782
377 0.6622 377 5.691
127 0.6316 296 5.681
147 0.6303 424 5.636
313 0.5715 127 5.613

Table 5.1: Temporal Katz centrality ranking and rating on evolving graph g. We set
the weight of all causal edges to zero.

Ranking at t1 Rating at t1 Overall ranking Overall rating
459 0.6290 183 5.576
469 0.6281 469 5.533
424 0.6236 326 5.414
296 0.6167 313 5.409
326 0.5983 459 5.401
183 0.5778 147 5.396
377 0.5775 377 5.311
127 0.5492 296 5.299
147 0.5471 424 5.258
313 0.4916 127 5.237

Table 5.2: Temporal Katz centrality ranking and rating on evolving graph g. We set
the weight of a causal edge between two active nodes to be their temporal di↵erence.
We use bold font to highlight the di↵erences in ranking from Table 5.1.

5.6 Conclusion

When we consider evolving graph centrality, it is very useful to consider the influence

of temporal information. A time-preserving path contains both static edges and causal

edges. We study the influence of causal edges on graph centrality by varying the edge

weights. We derive the centrality algorithms from the view of tra�c flow.

We observe that temporal Katz centrality is stable when we vary the causal edge

weights. However the rankings of nodes computed by temporal closeness centrality

changes a lot in our experiment. Further experiments especially on larger real world

datasets are needed to confirm our observation. We also derive a temporal PageRank

CHAPTER 5. TIME-PRESERVING PATHS 87

Ranking at t1 Rating at t1 Overall ranking Overall rating
296 0.4938 469 5.040
469 0.4933 183 5.030
459 0.4915 313 5.016
424 0.4888 326 5.009
326 0.4879 147 5.008
377 0.4872 459 5.003
183 0.4858 296 4.002
127 0.4831 377 4.996
147 0.4790 127 4.989
313 0.4773 424 4.986

Table 5.3: Temporal closeness centrality ranking and rating of evolving graph g. We
set the weight of all causal edges to zero.

Ranking at t1 Rating at t1 Overall ranking Overall rating
296 0.2540 469 3.562
469 0.2487 147 3.557
377 0.2478 183 3.555
459 0.2475 313 3.548
424 0.2471 377 3.545
326 0.2470 296 3.541
127 0.2445 459 3.540
183 0.2422 127 3.538
313 0.2389 424 3.535
147 0.2373 326 3.533

Table 5.4: Temporal closeness centrality ranking and rating of evolving graph g. We
set the weight of a causal edge between two active nodes to be their temporal di↵erence.
We use bold font to highlight the di↵erences in ranking from Table 5.3.

centrality algorithm by considering reversed temporal walks and block adjacency ma-

trix. It would be interesting to compare the ratings (and rankings) computed by this

temporal PageRank algorithm on an evolving graph with the original PageRank on

the corresponding aggregated static graph.

Part II

Project Etymo

88

Chapter 6

Etymo: A New Discovery Engine

for AI Research

6.1 Introduction

The rapid growth of global scientific output creates new challenges for information

retrieval. The problem is particularly acute in AI (artificial intelligence) research.

ArXiv (https://arxiv.og), for example, gains around 500 new AI-related papers every

week and the number is growing. As a result, it is di�cult for researchers to keep up-

to-date with the latest developments in AI research. We have built a new discovery

engine for scholarly research called Etymo that addresses this challenge.

Citations of scientific papers are generally considered an important indicator of a

paper’s impact [48]. Google Scholar’s ranking algorithm is not publicly known, but

research [5] has shown that citation counts have the highest weighting in its ranking

algorithm. However, recent publications have few or no citations so it is di�cult to

use citations to judge the importance of very recent papers; thus, recent insightful

publications are di�cult to rank. Our idea is to build a similarity-based network and

use this information for information retrieval tasks.

How can we obtain links in a non-hypertext setting? Our approach is to infer links

from the distributed vector representation of the full-text papers, i.e., if the cosine

similarity between the vector representations is large, we link these two papers. It

turns out that inferred links are similar to the citation network because papers talking

about the same subject tend to cite one another. However, the analogy between

89

CHAPTER 6. A NEW DISCOVERY ENGINE 90

hyperlinks and generated links is not perfect. In particular, auto-generated links are

a noisier source of information and much more prone to spam.

He et al. [44] proposed a meta-approach called HICODE (HIdden COmmunity

DEtection) for discovering the hidden community structure in a network. By removing

certain edges from the network (weakening the strength of certain structures), one can

uncover other structures in the network. Similarly, we can strengthen and weaken the

connectivity of the network structure so as to improve our ranking algorithm and filter

out unwanted papers. We do this by exploiting papers’ social media activities (such

as the number of retweets on Twitter) and certain information from user feedback.

The resulting graph is used for ranking, recommendation, and visualisation. Note also

that inferred links can be generated faster than citations (papers may take 1 year to

be cited, but inferred links can be generated almost instantly).

We use a combination of PageRank and Reverse PageRank for ranking papers,

which we find gives better search results than pure PageRank or HITS [53]. In Reverse

PageRank, we compute PageRank on the graph with reversed direction, i.e., reverse

the direction of each edge (i, j) to (j, i). Fogaras [30] shows that Reversed Page Rank

scores express hub quality. We have also designed and implemented a new search

interface where we display search results as a combination of a list and relationship

visualisation. This new interface allows readers to quickly locate relevant and related

papers.

Our Etymo discovery engine provides a way to evaluate new research papers by

exploiting the full-text of research papers. It challenges the traditional list-based

search interface by combining an item list with item relationship visualisation. Etymo

updates its database on a daily basis and is free to use for all (demo available at

https://etymo.io). Registered users can also write notes and receive recommendations.

6.2 Related Works

Recently, researchers have realised that the full text of scientific papers is an important

resource for search and other applications. Indeed, Salatino et al. [68] use the semantic

enhanced topic network (where nodes are topics and edges are their co-occurrences in

a sample of publications) to identify the appearance of new topics. Sateli et al. [70]

CHAPTER 6. A NEW DISCOVERY ENGINE 91

analyze full-text research articles to generate semantic user profiles. Semantic Scholar

(https://www.semanticscholar.org) 1 is a search engine for scholarly research that an-

alyzes and links key information from the full text of research papers for improving

search results. Similarly, Etymo makes use of the full text of papers to generate a

similarity-based network, which is then used for information retrieval tasks.

6.3 Architecture Overview

The dependency graph of Etymo is shown in Figure 6.1. Etymo has several crawlers

for downloading research papers from di↵erent journal websites. For each paper in our

database, we store both the PDF version of the paper and the metadata, including

author name, journal name, paper abstract, and the date of publication.

In the Analysis stage, we convert all the PDFs to text using pdftotext 2. We

then apply Doc2Vec [57] and TF-IDF [60, Chap 6] to represent a document d as

numeric vectors vDoc2V ec(d) and vtf�idf (d) respectively. Both algorithms represent a

paper by a numeric vector such that papers with similar content are close to each other

in the vector space. This content similarity information is then used for building a

similarity-based network of all the papers in the database. We generate two networks

using the two alorithms and find in practice a combination of the two networks can

product better results than just using one of the two. We use t-SNE to find the paper

locations and network centrality algorithms for the paper ranking. We also generate

a lexicon from the TF-IDF’s global term weights, which is later used in search. The

main components of Etymo consist of a search engine and a feed engine. Results from

both engines are displayed as a list and graph visualisation.

6.4 System Features

Etymo has two important features that help it produce useful search results. First,

it uses a document vector representation of the full-text papers to build a similarity-

based network, where papers are nodes and similar papers are linked. This network

1https://techcrunch.com/2016/11/11/scientists-gain-a-versatile-modern-search-engine-with-the-
ai-powered-semantic-scholar/

2https://en.wikipedia.org/wiki/Pdftotext

CHAPTER 6. A NEW DISCOVERY ENGINE 92

Research
PapersSocial Media

Crawler

AnalysisLexicon

Similarity-
based Network

Paper RankingPaper Location

FeedSearch

Figure 6.1: The dependency graph of Etymo. The direction of an arrow indicates the
dependence of the two components connected by it. The red rectangles represent our
data source; the green rectangles are the two main components of Etymo.

CHAPTER 6. A NEW DISCOVERY ENGINE 93

is adaptive because of a user feedback mechanism: users’ stars, clicks and Twitter

mentions are used to reinforce the ‘correct’ connections and weaken the ‘unimportant’

ones. The resulting network is then used for ranking and recommendation. Second, we

have designed and implemented a novel search interface, with results presented both

in a traditional item list and with a visualisation showing paper relationships in order

to help users quickly find related papers and have a general idea of a research area.

6.4.1 Similarity-based Network

To construct the similarity-based network, one first needs to represent documents using

numeric vectors. We use a distributed representation of the documents called Doc2Vec

[57] and a bag of words model called TF-IDF. We then construct the similarity-

based network using the cosine similarity measure. One potential problem with this

similarity-based network approach is that it does not distinguish a high quality pa-

per from a bad one. We argue that we can use user feedback to adjust the network

structure in order to give important papers higher weights.

Adaptive Network and Ranking

Each paper is a node in the network and similar papers are linked together. We

compute the cosine similarity of every pair of paper vectors in the database. If the

cosine similarity score of two papers’ vector representations is larger than a given

threshold, we link these two papers. In other words, if u 2 Rn and v 2 Rn (where

n = 1000 in practice) are the vector representation of two papers pu and pv, we define

cosine similarity(u, v) =

Pn
i=1 uivi

kukkvk ,

where kuk =
�P

i u
2
i

�1/2
. If cosine similarity(u, v) = w > ↵, where ↵ is a threshold,

we link paper pu and pv by an edge with weight w.

Calculating the similarity scores of two papers has a time complexity O(n). Adding

a new paper when there are already m papers in the network therefore costs O(mn),

which is clearly prohibitive for large m. One potential solution is to calculate a new

paper’s similarity on a representative subset of the existing papers, i.e., find top k high

quality papers, where k ⌧ n. Since our graph centrality ranking provides a measure of

CHAPTER 6. A NEW DISCOVERY ENGINE 94

paper quality, we use the top k high ranking papers as a representative subset. Then

for a new paper, we only calculate its similarity with these k papers.

Similarity-based networks are vulnerable to spam. For example, if a paper contains

a large number of important key words in AI research, it may have a high connectivity

on the network hence a high score in the ranking. We use authors’ votes to adjust the

structure of the network in three main ways:

1. We use user stars to increase the edge weights to a node, this increases the

number of edges to that node. In other words, a paper with many user stars

connects to more papers than a paper with few.

2. We use user libraries to infer connectivities: increasing edge weights between the

papers in a user’s library.

3. We weaken the connectivities of a highly ranking paper if it has poor click rates.

Finally, we turn the undirected similarity-based network into a directed network

using the temporal information from the paper published date. As a result, a new

paper on this network ‘recommends’ a old paper if they have similar content or user

data suggests that they are related. Intuitively we attempt to predict the citation

network structure of new research papers when their citations are not available.

6.4.2 Go Beyond List: Relationship Visualisation

A few recent scholar engines incorporate some form of visualisation in displaying their

search results. AMiner (https://aminer.org/)[75] shows similar authors and the ego

network, which consists of a centre node (“ego”) and the nodes to whom the ego

node is directly connected to. AceMap [74] displays the citation relationships between

academic papers on a map, in a similar way to Google Maps. What we do di↵erently is

that we provide a combination of the traditional list of results with a content similarity-

based relationship visualisation. Figure 6.2 shows the web interface of Etymo.

Why do we need a new interface? The most important reason is that it saves our

time in finding interesting research papers. The information we usually need is the

top ten papers from the search results and the papers related to them, but there is no

easy way to access all of that information at once using the traditional list interface.

CHAPTER 6. A NEW DISCOVERY ENGINE 95

Figure 6.2: The web interface of Etymo. The left part is a list of search results ordered
by importance, while the right part is the corresponding visualisation of each paper
in the list. Each paper is represented by a node and related papers are close to each
other. The size of the node represents the importance and colour represents journal.

For example, to see related papers of the current search result in Google Scholar, a

user needs to click on multiple ’related article’ links. In Etymo, a user can check the

top ten rated papers on the list and locate all the related papers on the graph at the

same time.

6.5 Experiments

Etymo has over 36000 papers in the database and we typically add 500 new papers

every week. The Analysis uses an instance of Amazon Elastic Compute Cloud (Amazon

EC2) m4.xlarge, which has 16 vCPUs and 64GB memory.

We update our database on a daily basis. During each update, we need to first

find two sets of vector representations for all the newly added papers using Doc2Vec

and TF-IDF. Training of both models are done on a weekly basis. We then use t-SNE

to find the x,y location of all the papers, i.e., reduce these 1000 dimensional vectors

to 2 dimensional vectors. The computation of T-SNE can be done in O(N logN) and

requires O(N) memory [80], which makes it possible to learn embedding of data sets

CHAPTER 6. A NEW DISCOVERY ENGINE 96

Table 6.1: Top 5 search results of the search query “t-sne”. The results include a
combination of PageRank and Reverse PageRank ratings.

Authors Year Title
Laurens van der Maaten, Ge-
o↵rey Hinton

2008 Visualizing Data using t-SNE

Laurens van der Maaten 2014 Accelerating t-SNE using Tree-
Based Algorithms

Yanshuai Cao, Luyu Wang 2017 Automatic Selection of t-SNE
Perplexity

George C. Linderman, Manas
Rachh, Jeremy G. Hoskins,
Stefan Steinerberger, Yuval
Kluger

2017 E�cient Algorithms for t-
distributed Stochastic Neigh-
borhood Embedding

Yukun Chen, Jianbo Ye, Jia
Li

2017 Aggregated Wasserstein Metric
and State Registration for Hid-
den Markov Models

with millions of objects. The number of nodes in our similarity-based network is equal

to the number of papers in our database. We apply PageRank and Reverse PageRank

on this network. The predominant method for computing the PageRank is the power

method. At each iteration, we do a sparse matrix vector multiplication, which has

complexity O(pN), where p is the average number of non-zero elements on every row

of the matrix and N is the dimension of the matrix. Usually 10 iterations can produce

a good approximate ranking [55, Chap 8.2].

In general, we found that network-based ratings can improve search results by

highlighting historically important papers. For the query “t-sne” (a popular machine

learning algorithm for dimensionality reduction) we show the top 5 search results

in the tables below. Table 6.1 shows the results which include the PageRank and

Reverse PageRank ratings on the similarity-based network, while Table 6.2 does not.

We noticed that the one with network-based ratings gives more weight to important

papers. Note that Maaten and Hinton’s ”Visualizing Data using t-SNE” is the original

t-SNE paper. Comparing with Google Scholar’s search results in Table 6.3, Etymo’s

top search results include more recent publications.

CHAPTER 6. A NEW DISCOVERY ENGINE 97

Table 6.2: Top 5 search results of the search query ”t-sne”. The results do not include
any network-based ratings.

Authors Year Title
Yanshuai Cao, Luyu Wang 2017 Automatic Selection of t-SNE

Perplexity
Laurens van der Maaten 2014 Accelerating t-SNE using Tree-

Based Algorithms
Maaten, Laurens van der,
Hinton, Geo↵rey

2008 Visualizing Data using t-SNE

Richard R. Yang, Mike
Borowczak

2017 Assessing Retail Employee Risk
Through Unsupervised Learning
Techniques

Martin Renqiang Min,
Hongyu Guo, Dinghan Shen

2017 Parametric t-Distributed
Stochastic Exemplar-centered
Embedding

Table 6.3: Top 5 search results of the search query ”t-sne” in Google Scholar.
Authors Year Title
Maaten, Laurens van der,
Hinton, Geo↵rey

2008 Visualizing Data using t-SNE

Laurens van der Maaten 2014 Accelerating t-SNE using Tree-
Based Algorithms

AR Jamieson ML Giger, K
Drukker, H Li

2010 Exploring nonlinear feature
space dimension reduction
and data representation in
breast CADx with Laplacian
eigenmaps and t-SNE

K Bunte, S Hasse, M Biehl, T
Villmann

2012 Stochastic neighbor embedding
(SNE) for dimension reduction
and visualization using arbitrary
divergences

Maaten, Laurens van der,
Hinton, Geo↵rey

2008 [PDF] Visualizing Data using t-
SNE

CHAPTER 6. A NEW DISCOVERY ENGINE 98

6.6 Conclusion

It is hard to quantify new things. In research, the value of a newly published work is

usually unknown until citations become available. The value of this work is to provide

a new approach to improve search results on new papers by exploiting the paper’s

full text content and social media data. We illustrate how we build a similarity-based

network of research papers and how to adjust its structure using social data. We can

foresee similar ideas can be applied in other areas, such as news and fashion. Our

new user interface combines the item list with item relationship visualisation, which

reveals relationships between papers that saves researchers time in finding interesting

research papers.

Chapter 7

Evolving Knowledge Graphs for

Idea Tracking in Research

Literature

7.1 Introduction

With the proliferation of scientific output, we are now far beyond our ability to find

and process all the relevant research literature that is important to us. To solve this

problem we need a digital assistant that can not only extract useful ideas and rela-

tionships from research articles but can also present the findings in a comprehensible

way.

7.1.1 Motivation

New ideas are connected to the knowledge we already possess. As Marvin Minsky, one

of the pioneers of intelligence-based robotics, put it [63]:

“It seems to me that what we call ‘creativity’ is not simply an ability

to generate completely novel conceptions; for a new idea to be useful to us,

we must be able to combine it with the knowledge and skills we already

possess – so it must not be too di↵erent from ideas with which we’re already

familiar.”

99

CHAPTER 7. IDEA TRACKING 100

To conduct research, we must understand existing knowledge. This process can

typically be summarised in three stages:

1. Look for interesting and relevant research papers.

2. Understand ideas from research papers.

3. Track the development of ideas from research papers.

Our key objective is to design a system that can reduce the time needed in all

three stages: we automatically extract concepts from the research literature, link these

concepts in a knowledge graph, and present the results using a combination of item

lists and data visualisation.

7.1.2 Knowledge Graph

Recent years have witnessed a rapid increase of large-scale knowledge bases, both from

academia and industry, including DBpedia [2], Wikipedia, Freebase [10], YAGO [73],

NELL [14], Knowledge Vault [22], DeepDive [65], Microsoft’s Satori, and Google’s

Knowledge Graph. Structured knowledge of entities has become a critical compo-

nent of many applications. For example, in internet search, a knowledge graph can

help users to research a topic faster and in greater depth. In product recommenda-

tion, a knowledge graph can answer questions about products and related products.

The knowledge graphs mentioned above focus mostly on static information. Recently

Gottschalk and Demidova proposed a temporal knowledge graph model called Even-

tKG [34]. EventKG aggregates event-centric information and temporal relations for

historical and contemporary events. Temporal relations are relations valid over a cer-

tain time period.

We propose a concept-centric knowledge graph model, called an evolving knowledge

graph, where a concept at a given time stamp is treated as a unique entity. The key

insight is that concepts are time dependent and it is important to record the change

of relationships throughout history. Our evolving knowledge graph is a combination

of a concepts evolving graph and a content similarity-based graph. Concepts evolving

graphs show us how concepts are connected and content similarity-based graphs show

us how papers are related. Our evolving knowledge graph also tells us how concepts

and papers are connected.

CHAPTER 7. IDEA TRACKING 101

A concepts evolving graph is an ordered sequence of static graphs. Within a given

time interval, a concepts evolving graph records the connections among concepts. We

extract concepts and their relationship from research articles. Each paper can be

viewed as a concept graph of the understanding of the author of a research field.

We use Rapid Automatic Keyword Extraction (RAKE) to extract key concepts from

research articles and use Word2Vec to filter out very similar words, such as “evolving

graph” and “evolving graphs”. We also use inverse document frequency (IDF) to

assign a hierarchy score for each concept. A concept with higher IDF score is a more

general concept. We link two concepts if they are similar according to the Word2Vec

cosine similarity or if the two concepts are separated by very few words, i.e., appear

in the same sentence or paragraph. We then aggregate these individual paper concept

graphs if they are published during the same time interval. A concepts evolving graph

is an ordered sequence of these concept graphs at di↵erent time stamps.

A content similarity-based graph is a graph of research papers, where each research

paper is represented by a vector of real numbers. We use Doc2Vec to compute the

vector representation of papers and cosine similarity to determine if we should link

two research papers. The direction of a link between two papers is determined by the

published date of the two papers: old papers point to new papers as a recommendation.

The content similarity-based graph is also related to how we rate (and rank) research

articles.

New research papers have no citations. Since graph-based ranking algorithm relies

on inward links (as recommendations), we can not use graph-based ranking algorithm

on citation networks to rank new papers. We use a combination of PageRank and

Reverse PageRank on the content similarity-based graph for ranking papers, as we

find that it gives better search results than pure PageRank or HITS [53]. Fogaras

[30] shows that Reversed Page Rank scores express hub quality. Note that reverse

PageRank computes PageRank on the similarity-based graph with reversed direction.

Exploiting online users’ votes (such as Etymo stars, Twitter mentions and retweets and

Facebook posts), one can adjust the structure of the similarity-based graph (change

edge weights) so that rankings computed from similarity-based graph agree with users’

votes. We also use the paper vector representations to find di↵erent versions of the

same paper. If the cosine similarity between two papers is very close to one (> 0.99)

CHAPTER 7. IDEA TRACKING 102

we consider the two papers to be di↵erent versions of the same paper. In practice, this

works very well and is more robust than rule-based methods.

In order to demonstrate the power of our knowledge graph, we have developed

a new search system, called Etymo (https://scholar.etymo.io). Etymo has a novel

search interface, where we display search results as a combination of an item list

and a relationship visualization. This new interface allows fast retrieval of relevant

papers. We compute the relationship visualization at run time using T-SNE on the

pre-computed paper content vectors.

7.1.3 Contributions

We introduce here a new concept-centric knowledge graph model, called an evolving

knowledge graph. We take inspiration from the evolving graph model to model the

change of connectivity of concepts as an evolving graph. Furthermore, we have devel-

oped a full-feature search system to demonstrate the use case of an evolving knowledge

graph. The search system is particularly good at finding interesting new papers and

can enable users to track the development of ideas by following concepts. This is much

more powerful than traditional search system for research papers, where users can only

track ideas by following citations. We’ve made part of our database publicly available

for research purposes. Researchers can find paper metadata and graph data at Etymo

OpenData (https://github.com/EtymoIO/OpenData).

7.2 Related Work

There have been many recent developments in search systems for research articles.

Semantic Scholar (https://www.semanticscholar.org) 1 is a search engine for scholarly

research that analyzes and links key information from the full text of research papers

to improve search results. For a given search query, Semantic Scholar shows a list of

related concepts below the search box. ArXiv-Sanity (https://github.com/karpathy/

arxiv-sanity-preserver) is a search tool for finding AI related papers on ArXiv that

makes use of the full text of research papers for recommending papers and suggesting

1https://techcrunch.com/2016/11/11/scientists-gain-a-versatile-modern-search-engine-with-the-
ai-powered-semantic-scholar/

CHAPTER 7. IDEA TRACKING 103

related papers. A few recent scholar engines incorporate some form of visualisation

in displaying their search results. Web of Science (http://wok.mimas.ac.uk/) provides

a citation map to allow researchers to visualise citation connections. AMiner (https:

//aminer.org/)[75] shows the connections of an author in a social network. For example

https://aminer.org/profile/geo↵rey-hinton show the social graph of Geo↵rey Hinton.

ArXivTimes (https://arxivtimes.herokuapp.com/) uses histograms to display trends

in AI research. AceMap [74] displays the citation relationships between academic

papers on a map, in a similar way to Google Maps.

7.3 Concepts Evolving Graph

A research article contains an author’s understanding of a subject. Even though

many concepts and definitions are universally agreed, di↵erent authors have di↵erent

interpretations of how concepts are connected. In particular, the concepts in an article

tell us what an author thinks is important in a given research topic. This is related to

the observation by Licklider and Taylor [58] that

“Each member of the project brings to such a meeting a somewhat

di↵erent mental model of the common undertaking – its purposes, its goals,

its plans, its progress, and its status. They are strongly influenced by

insight, subjective feelings, and educated guesses.”

If we extract concepts from an article and link them in a graph structure, for ex-

ample, from the more general concepts, things like “data science” or “linear algebra”

to more specific concepts like “recursive neural network (RNN)” or “polar decompo-

sition” and link related concepts, such as link “neural network” and “deep learning”,

we obtain a graph that represents an author’s understanding of a subject. We could

then combine these small personal knowledge graph to make a collective knowledge

graph.

How can we extract and link concepts from a research article? The whole process

can be divided into five steps. Here are the details:

1. IDF scores. We convert a collection of raw documents to a term-frequency

inverse-document-frequency (TFIDF) matrix. The number of words (and terms)

CHAPTER 7. IDEA TRACKING 104

in our vocabulary (also known as feature size) is 10000. Each word in our

vocabulary is assigned a IDF score. The term frequency (TF) of a term t in

document d, denoted by tft,d, is the number of occurrences of term t in document

d. And the inverse document frequency (IDF) of a term t, denoted by idft is

defined as

idft = log
N

dft
,

where N is the number of documents in a collection and dft is the number of

documents that contain a term t. The TFIDF score of a term t in document d

is given by

tf idft,f = tft,d ⇥ idft.

2. Word2Vec vectors. We run Word2vec on all the paper articles to get vector

representations of words (and phrases). Word2Vec goes through each word of

the whole corpus and predicts surrounding words of each word.

3. RAKE algorithm. We apply the RAKE algorithm to find all possible concept

words. In order to use the RAKE algorithm, we need to construct a stop word

data set. Stop words are used to break down sentences into possible concepts. We

build our stop word data set using a combination of generic English stop words

such as “a” and “the” and TFIDF stop words, which are terms that occurred in

too many or too few documents in Step 1. Choosing stop words is an art: too

many stops words will break almost all concepts into words, while too few stops

words will include sentences or half of a sentence in the concepts. We decide the

size of stop word set using a heuristic approach.

4. Similar concept filter. The vector representation of a concept is the sum of its

word Word2Vec representations. We filter out very similar concepts using the

cosine similarity score between a pair of concept vectors. Very similar words

such as “evolving graph” and “evolving graphs” have very high cosine similarity

scores.

5. Concept Links. We link similar concepts in two stages. First, we link similar

concepts according to their vector cosine similarity. Second, we link concepts

CHAPTER 7. IDEA TRACKING 105

that appear in the same sentence or short paragraph. The position of concepts

in text is an important indicator of whether two concepts are related.

We use the method above to find the concept graph of a paper. We then aggregate

all the paper concept graphs published during the same period. In a fast growing field

such as AI research, we aggregate graphs on a monthly basis. Hence at each time

stamp t (a givne month), we have a concept graph G[t]. The concepts evolving graph

is an ordered sequence of all the concept graphs G[t] at di↵erent time stamps.

7.4 Content Similarity-Based Graph

To construct a similarity-based graph, one first needs to represent papers using numeric

vectors. We use a distributed representation of papers called Doc2Vec [57]. Dai

et al. found that Doc2Vec performs better than other methods for research paper

data sets [18]. We link two papers according to the cosine similarity score of the

corresponding vector representations. One potential problem with this similarity-based

graph approach is that it does not distinguish a high quality paper from a bad one.

We argue that we can adaptively change the graph structure by using user feedback

to adjust the connectivity of cetrain nodes. A similarity-based graph has a number

of applications, including ranking papers, finding related papers, and supporting run-

time visualization of paper relationships.

We consider each paper as a node in the similarity-based graph and similar papers

are linked together by edges. We calculate the cosine similarity of every pair of papers

in the database. If the cosine similarity score of two papers’ vector representations

is larger than a given threshold, we link these two papers. In other words, if we let

u 2 Rn and v 2 Rn be the vector representation of two papers pu and pv, we have

cosine similarity(u, v) =

Pn
i=1 uivi

kukkvk ,

where kuk =
�P

i u
2
i

�1/2
. If cosine similarity(u, v) = w > ↵, where ↵ is a threshold, we

link paper pu and pv by an edge with weight w. We turn an undirected similarity-based

graph into a directed graph using the temporal information from the paper published

date: an old paper points to a new paper. Intuitively, it means that an old paper

“recommends” a new paper if they have similar content.

CHAPTER 7. IDEA TRACKING 106

In practice, we update our database on a daily basis as new papers are processed

every day. We need to finish the computation within a few hours (we currently use

AWS EC2 m4.xlarge). Calculating the similarity scores of two papers has a time

complexity O(n). Adding a new paper when there are already m papers in the graph

therefore costs O(mn), which is clearly prohibitive for large m. We calculate a new

paper’s similarity on a representative subset of all the existing papers by finding k

important papers in the similarity-based graph using graph centrality, where k ⌧ n.

Then for a new paper, we only calculate its similarity with these k papers.

Similarity-based graphs are vulnerable to spam. For example, if a paper contains a

large number of important key words in AI research, it may have a high connectivity

on the graph and hence a high score in the ranking. We use users’ votes to adjust the

structure of the graph so that high ranked papers agree with users’ votes. Here is how

we do it:

1. Strengthen connectivity. Recall in practice we only calculate a paper’s similarity

on a representative subset of all the existing papers. For papers with many votes

from users, we recompute its cosine similarity scores with more papers other

than in the subset and hence increase the connectivity of the paper node in the

graph. This increases the PageRank (in-link) and Reverse PageRank (out-link)

scores of highly voted papers.

2. Weaken connectivity. For high ranked papers with poor click rates we randomly

removing links connecting it. Similarly, this decreases the connectivity of the pa-

per node in the graph and hence decreases the PageRank and Reverse PageRank

scores of papers with poor click rates.

7.5 Evolving Knowledge Graph

Knowledge can be represented as a quadruple: (subject, predicate, object, timestamp).

For example, consider the fact that the PageRank algorithm was mentioned by a

paper called “The PageRank Citation Ranking” in 1999. This can be represented as a

quadruple (PageRank, MentionedInPaper, “The PageRank Citation Ranking”, 1999).

Here we see the relationship between a concept and a paper. Formally, we can represent

an evolving knowledge graph as a time-dependent multi-graph Gn{G[1], G[2], . . . , G[n]},

CHAPTER 7. IDEA TRACKING 107

where each G[t] = (V [t], E [t]) is a multi-graph. Here V [t] represents a set of nodes at

time stamp t and E [t] ✓ V [t] ⇥V [t] represents a set of edges at time stamp t. Note that

there may be multiple labelled edges between the same pair of nodes. The fact that

the PageRank algorithm was mentioned by a paper called “The PageRank Citation

Ranking” in 1999 can be represented as an edge from a node representing the concept

“PageRank” to a node representing the paper “The PageRank Citation Ranking” at

time stamp 1999. Note that each paper in an evolving knowledge graph is unique but

the same concept can appear in multiple time stamps as concepts can have di↵erent

meanings at di↵erent time stamps. A evolving knowledge graph takes information from

both the concepts evolving graph and the content similarity-based graph. Currently

our evolving knowledge graph stores the following relationships:

1. the connection between two concepts at the same or di↵erent time stamps,

2. the connection between two distinct papers,

3. the connection between a concept and a paper.

This is illustrated in Figure 7.1.

Papers

Concepts

p1 p2 p3

ct1 ct2

Rp
1

Rp
2

Rcp
1

Rcp
2

Rcp
3

Rcp
4

Rc
1

Figure 7.1: Each circle represents a node on the knowledge graph. The lines labelled
Rp

i , R
c
i , R

cp
i are edges, which represent the connection between two papers, two con-

cepts, and a concept and a paper respectively.

7.5.1 A Hierarchy of Representations

We’ve described several kinds of structures that we could use to represent various types

of knowledge. Now we put everything together. The rudimentary representations are

CHAPTER 7. IDEA TRACKING 108

numerical vectors. We represent papers and words as vectors of the same dimension.

In Section 7.6, we show how we can combine word vectors with paper vectors to get

better visualization.

The concepts evolving graph and the content similarity graph take information from

word vectors and paper vectors to create knowledge about how concepts are connected

at di↵erent time stamps and how papers are connected. Finally, we combine concepts

evolving graphs and content similarity graph to create knowledge about how a concept

and a paper are related. This is illustrated in Figure 7.2.

Paper VectorsWord Vectors

Content Sim-
ilarity Graph

Concepts
evolving
Graphs

Evolving
Knowledge
Graph

Figure 7.2: A hierarchy of knowledge representations. Word vectors and paper vectors
are rudimentary representations. Concepts Evolving Graphs and Content Similarity
Graph are higher level representations. Evolving Knowledge Graph is the highest level
representation of knowledge.

7.6 Data Visualization

In this section, we discuss how we use run-time data visualization to help researchers to

navigate a large collection of research papers. We improve the traditional search inter-

face (item lists) to display search results as a combination of item list and relationship

visualization.

Why do we need a new interface? Most importantly because we need to reduce the

time it takes a user to find relevant research papers and obtain a basic understanding

of a paper before reading it. Usually, the papers we need are the top ten ranked ones

and all their related papers. Current available search interfaces do not provide an easy

way to access this information. In Google Scholar, for example, a user needs to click

‘related articles’ to see related papers of a given paper. To gain a picture of the top

CHAPTER 7. IDEA TRACKING 109

papers and all their related papers, a user needs to click ‘related articles‘ several times

and write down notes simultaneously.

In Etymo, a user can look at the top ten ranked papers on the item list and locate

all the related papers on the knowledge map at the same time. See Figure 7.3 for a

quick look at Etymo’s web interface.

Figure 7.3: Etymo’s web interface for the search query “pattern recognition”. The
right-hand side of the interface shows the visualization of related papers that are
clustered by concepts. Each paper is represented by a node and related papers are
close to each other. The left-hand side is the list view of the search results. The top
part of the list shows related concepts at di↵erent time stamps.

Another advantage of visualization is that it can help reveal interesting structures

within a research field, allowing us to see patterns that would otherwise be invisible.

Figure 7.4 shows the visualization of papers related to the search query “deep learning”.

Each color represents a subject. From the figure, we can get a sense of roughly how

many recent and interesting papers there are in each subject. For example, we see

the majority of papers are about “transfer learning”, which are represented by blue

circles. The locations of di↵erent paper clusters are also interesting. For example, the

three bottom right clusters (dark blue, orange, and yellow) are computer vision, audio

detection, speech recognition respectively. These are the three main applications of

deep learning. Patterns like this are particularly useful for researchers who are new to

the filed.

CHAPTER 7. IDEA TRACKING 110

Figure 7.4: Etymo’s web interface for the search query “deep learning”. Each circle
represents a paper and di↵erent colors represent di↵erent subject. For example, the
circles in pink color are about reinforcement learning; the circles in blue color are about
transfer learning; the circles in green color are about convolutional neural network.

We pre-compute the content vectors for all the papers (or global content vectors).

At run time, when a user searches for a query or selects a paper collection, we run

t-Distributed Stochastic Neighbor Embedding (T-SNE) [59] on the content vectors of

selected papers (or local T-SNE), which projects the high dimensional vectors onto

a two dimensional plane. We found in practice this generates better visualization

than pre-computing T-SNE for all the paper content vectors (or global T-SNE). Since

at run time we are only interested in a small subset of all the papers, the distance

between vectors is not properly scaled (can be too wide or too narrow) for the global

T-SNE case. In Figure 7.5, we highlight the most relevant search results to the search

query “convolution” among 3500 papers. This illustrates the fact that the projected

representations of our queried papers can come from di↵erent clusters in global T-SNE.

Thus global T-SNE will not be able to provide the best visualisation for a subset of

papers. Also we noticed that global content vector followed by local T-SNE and local

CHAPTER 7. IDEA TRACKING 111

content vectors followed by local T-SNE gives very similar visualization. However, the

former is cheaper to run at run time.

Figure 7.5: The T-SNE projection of 3500 paper content vectors. Each circle represents
a paper and similar papers are close to each other. We hightlight the top 40 ranked
papers that are related to search query “convolution” in red. The rest of papers are
shown in green.

We compare the three cases: global content vectors followed by global T-SNE,

global content vectors followed by local T-SNE, and local content vectors followed by

local T-SNE. In our experiment, we use TF-IDF to compute the content vectors for

3500 papers. The results are shown in figure 7.6.

We use the vector representation of key concepts to adjust (or influence) the two

dimensional projection so that papers with similar concepts are close to each other. If

we let vpaper be the paper vector and vconcept be the concept vector, then the adjusted

vector is a convex linear combination of these two vectors

vadjusted = (1 � ↵)vpaper + ↵vconcept,

where ↵ is a scalar between zero and one representing the amount of influence. For

each concept, the vector representation is the sum of Word2Vec vector representations

of all the words in the concept. In Figure 7.7, we show that the adjusted paper

visualization forms better clusters than the one without adjustment.

CHAPTER 7. IDEA TRACKING 112

Figure 7.6: Comparing three cases of paper visualization: global content vectors fol-
lowed by global T-SNE, global content vectors followed by local T-SNE, and local
content vectors followed by local T-SNE. In the first case, the distances between cir-
cles can be too wide or too narrow. The second and third cases show similar results.
But the third case is cheaper to compute at run time.

Figure 7.7: Comparing paper visualization with adjusted paper visualization using the
concept vector. Here the influence scalar ↵ is set to be 0.95.

7.7 Etymo Architecture Overview

In this section, we give a high level overview of how the whole Etymo system works.

There are five main components: data crawler, database, data analysis, application

programming interface (API), and web interface, as illustrated in Figure 7.8. Most of

CHAPTER 7. IDEA TRACKING 113

Etymo is implemented in Python with Numpy and Scipy. Our web app is implemented

in JavaScript and part of our data analysis code is implemented in Julia.

Our crawlers periodically check journal websites and company research pages. If a

paper URL is not in our database, we fetch the paper metedata and paper PDFs (if

permitted) and then send them to the store server. At this stage, we also convert paper

PDFs to text and store the paper full texts as well. Each paper in our database has a

unique paper id. Data analysis interacts with the database and updates the following

information: paper rating scores, related papers for each paper, paper collections,

paper vector representations. The structure of the data analysis part is illustrated

in Figure 7.9. Users can visit the Etymo web interface on the web, mobile, or the

desktop, which connects the database via our API. The web interface uses Angular

[19], a JavaScript framework which allows Etymo to dynamically generate HTML

pages. The graph visualisations are produced by Sigma.js 2.

Research
PapersSocial Media

Crawler
(Python)

Database
(PostgreSQL)

Data Analysis
(Python/Julia)

API (Python)

Web Interface
(Javascript)

Figure 7.8: A high level overview of Etymo’s key components. The direction of an
arrow indicates the flow of data between components in Etymo. The red rectangles
represent our data source.

In the data analysis stage, we apply Doc2Vec [57] and TF-IDF to represent a

document d as numeric vectors vDoc2V ec(d) and vtfidf (d) respectively. This content

similarity information is then used for building a similarity-based graph of all the

2https://github.com/jacomyal/sigma.js

CHAPTER 7. IDEA TRACKING 114

papers in the database. We also extract concepts from research papers and build an

evolving concept graph. The Evolving Knowledge Graph is a combination of similarity-

based graph and evolving concept graph. We use t-SNE, a dimensionality reduction

algorithm, to find the paper locations and network centrality algorithms for the paper

ranking. We also generate a lexicon from the TF-IDF’s global term weights, which

is later used in search. Both our search engine and paper collection engine display

results as a list and/or graph visualization.

Paper Full TextLexicon

Evolving
Knowledge
Graph

Paper RankingPaper Location

CollectionSearch

Figure 7.9: The workflow of data analysis in Etymo. The direction of an arrow
indicates the flow of data. The green rectangles are Etymo APIs. Our evolving
knowledge graph is a combination of a similarity-based graph and an evolving concept
graph.

7.8 Experiments

The most important feature of an evolving knowledge graph is temporal concepts.

We explore how this new feature will a↵ect the way we search research articles on

the internet. While a complete user evaluation is beyond the scope of this paper,

our experiments with Etymo show that the our knowledge graph provide very useful

information to help better track ideas.

When a user enters a search query q in the search box, we first check if q is part

of our knowledge graph. If so, we display all instances of q at di↵erent timestamps.

For example, Figure 7.10 shows the search results of query “matrix”. We display all

CHAPTER 7. IDEA TRACKING 115

instances of “matrix” at timestamp 201806, 201709 and 201802 just below the search

box. Here 201806, for example, means June 2018. When a user clicks an instance

of “matrix” (a node in our knowledge graph), we display all the related concepts at

di↵erent time stamps. (This is equivalent to entering a search query in the form of

query + time stamps, such as “matrix + 201806”.) For example, Figure 7.11 shows

the search results of query “deep learning + 201802”. The temporal information tells

us when a concept has appeared. Using this information, a user can not only find

similar concepts but also track the development of ideas by following concepts over

time. We note that the interface is still immature and further development is needed

to make it more user friendly.

Figure 7.10: Search results of query “matrix”. All instances of “matrix” at di↵erent
time stamps are shown just below the search box.

CHAPTER 7. IDEA TRACKING 116

Figure 7.11: Search results of query “deep learning + 201802”. All related concepts
at time stamp 201802 are shown just below the search box.

To get an idea of how concepts are linked, we construct concept graphs of small

subsets of papers. Figure 7.12 shows the concept graph of a recent KDD (Knowledge

Discovery and Data Mining) paper “Recommendations with Negative Feedback via

Pairwise Deep Reinforcement Learning”. From the figure, we can see that the extracted

concepts are meaningful and similar concepts and nearby concepts are connected.

By aggregating concept graphs from the research papers in the same research area,

we can get a picture of how concepts are related in general. Figure 7.13 illustrates the

aggregated concept graph of five research papers on deep learning. We limit ourselves

to five papers because it is hard to understand the visualization with too many nodes

CHAPTER 7. IDEA TRACKING 117

Figure 7.12: The connected concepts from research paper “Recommendations with
Negative Feedback via Pairwise Deep Reinforcement Learning”. Each red circle rep-
resents a concept. Connected concepts are linked are lines.

Concept name backward neighbours forward neighbours
(deep neural net-
works, 201802)

(low rank, 201802), (network,
201802), (deep learning, 201802),
(machine learning, 201802),
(neural information processing
systems, 201802), (networks,
201802), (convergence rate,
201802), (generalization error,
201802), (machine learning mod-
els, 201802), (speech, 201802)

(networks, 201802), (microsoft
azure machine learning, 201802),
(adversarially trained networks,
201802), (representation sys-
tems, 201802), (generative
model, 201802), (deep learning,
201802), (deep reinforcement
learning, 201802)

Table 7.1: The forward and backward neighbours (ignoring corrupted texts) of concept
“deep neural networks” at time stamp 201802.

and connections.

In Table 7.1, we show the forward neighbours and backward neighbours of con-

cept (“deep neural networks”, 201802) at time stamp 201802. These are the related

concepts shown in Figure 7.11. We notice that some concepts are both backward

neighbours and forward neighbours of (“deep neural networks”, 201802), such as (“net-

works”, 201802) and (“deep learning”, 201802). This is because “networks” and “deep

learning” are similar concepts of “deep neural networks”, and they are connected by

undirected edges.

CHAPTER 7. IDEA TRACKING 118

Figure 7.13: The connected concepts from five research papers on deep learning.

7.9 Other Potential Applications

We note that the same approach can be applied in other time-dependent natural

language applications. For example, news articles share a number of similarities with

research papers: a) mainly text based, b) time-dependent, c) have a central topic.

Recent news in general is more important than old news. Users are interested in

tracing the source and development of news articles and find out how di↵erent news

articles are connected.

7.10 Conclusion

Knowledge graphs are active area of research. In this paper, we present Etymo’s

evolving knowledge graph, a time-dependent concept-centric knowledge graph model.

We construct an evolving knowledge graph using a combination of concepts evolving

graphs and content similarity-based graphs.

Using an evolving knowledge graph, we are able to enrich users’ search experience

to help them track the development of concepts. In particular, when a user searches

CHAPTER 7. IDEA TRACKING 119

for a concept, we display a list of similar concepts in di↵erent time stamps. One can

then click one of them to get all the related papers and other related concepts. In

experiments, this turns out to provide richer and useful content for researchers. The

intuition behind an evolving knowledge graph is that concepts are time dependent. For

example, the concept “artificial intelligence” in 2000 is di↵erent from “deep learning”

today.

We are still at the early stage of building a large-scale evolving knowledge graph.

The number of concepts in our evolving knowledge graphs are still small (around

3000). In the future, we will include more concepts and incorporate knowledge graph

data from other sources (such as Wikipeda) to provide more information about each

concept. We will also improve the user interface so that it is easy for users to navigate

the website.

Part III

Testing Numerical Linear Algebra

Algorithms

120

Chapter 8

Matrix Depot: A Test Collection

8.1 Introduction

In 1969 Gregory and Karney published a book of test matrices [36]. They stated that

“In order to test the accuracy of computer programs for solving numerical problems,

one needs numerical examples with known solutions. The aim of this monograph is

to provide the reader with suitable examples for testing algorithms for finding the

inverses, eigenvalues, and eigenvectors of matrix.” At that time it was common for

journal papers to be devoted to introducing and analyzing a particular test matrix or

class of matrices, examples being the papers of Clement [17] (in the first issue of SIAM

Review), Pei [66] (occupying just a quarter of a page), and Gear [32].

Today, test matrices remain of great interest, but not for the same reasons as fifty

years ago. Testing accuracy using problems with known solutions is less common

because a reference solution correct to machine precision can usually be computed at

higher precision without di�culty. The main uses of test matrices nowadays are for

exploring the behavior of mathematical quantities (such as eigenvalue bounds) and

for measuring the performance of one or more algorithms with respect to accuracy,

stability, convergence rate, speed, or robustness.

Various collections of matrices have been made available in software. As well

as giving easy access to matrices these collections have the advantage of facilitating

reproducibility of experiments [23], whether by the same researcher months later or

by di↵erent researchers.

An early collection of parametrizable matrices was given by Higham [45] and made

121

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 122

available in MATLAB form. The collection was later extended and distributed as

a MATLAB toolbox [46]. Many of the matrices in the toolbox were subsequently

incorporated into the MATLAB gallery function. Marques, Vömel, Demmel, and Par-

lett [61] present test matrices for tridiagonal eigenvalue problems (already recognized

as important by Gregory and Karney, who devoted the last chapter of their book to

such matrices). The Harwell–Boeing collection of sparse matrices [24] has been widely

used, and is incorporated in the University of Florida Sparse Matrix Collection [20],

[21], which contains over 2700 matrices from practical applications, including standard

and generalized eigenvalue problems from [4]. Among other MATLAB toolboxes we

mention the CONTEST toolbox [79], which produces adjacency matrices describing

random networks, and the NLEVP collection of nonlinear eigenvalue problems [6].

The purpose of this work is to provide a test matrix collection for Julia [7], a

new dynamic programming language for technical computing. The collection, called

Matrix Depot 1, exploits Julia’s multiple dispatch features to enable all matrices to be

accessed by one simple interface. Moreover, Matrix Depot is extensible. Users can add

matrices from the University of Florida Sparse Matrix Collection 2 and Matrix Market;

they can code new matrix generators and incorporate them into Matrix Depot; and

they can define new groups of matrices that give easy access to subsets of matrices.

The parametrized matrices can be generated in any appropriate numeric data type,

such as

• floating-point types Float16 (half precision: 16 bits), Float32 (single precision:

32 bits), and Float64 (double precision: 64 bits);

• integer types Int32 (signed 32-bit integers), UInt32 (unsigned 32-bit integers),

Int64 (signed 64-bit integers), and UInt64 (unsigned 32-bit integers);

• Complex, where the real and imaginary parts are of any Real type (the same for

both);

• Rational (ratio of integers); and

1 This paper describes Matrix Depot v0.5.5 and it was tested on Julia 0.4. https://github.com/
JuliaMatrices/MatrixDepot.jl/tree/v0.5.5 The latest version is Matrix Depot v0.7.0.

2The University of Florida Sparse Matrix Collection has been renamed as The SuiteSparse Matrix
Collection.

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 123

• arbitrary precision type BigFloat (with default precision 256 bits), which uses

the GNU MPFR Library [31].

This paper is organized as follows. We start by giving a brief demonstration of

Matrix Depot in Section 8.2. Then we explain the design and implementation of

Matrix Depot in Section 8.3, giving details on how multiple dispatch is exploited, how

the collection is stored, accessed, and documented, and how it can be extended. In

Section 8.4 we describe the two classes of matrices in Matrix Depot: parametrized test

matrices and real-life sparse matrix data. Concluding remarks are given in Section 8.5.

8.2 A Taste of Matrix Depot

To download Matrix Depot, in a Julia REPL (read-eval-print loop) run the command

> Pkg . add (”MatrixDepot”)

Then import Matrix Depot into the local scope.

> using MatrixDepot

Now the package is ready to be used. First, we find out what matrices are in Matrix

Depot.

> matrixdepot ()

Matr ices :

1) baart 2) b inomial 3) b lur 4) cauchy

5) chebspec 6) chow 7) c i r c u l 8) clement

9) companion 10) der iv2 11) dingdong 12) f i e d l e r

13) f o r s y th e 14) foxgood 15) f rank 16) golub

17) g rav i ty 18) grca r 19) hadamard 20) hankel

21) heat 22) h i l b 23) i n vh i l b 24) i nvo l

25) kahan 26) kms 27) lehmer 28) l o t k i n

29) magic 30) min i j 31) moler 32) neumann

33) o s c i l l a t e 34) pa r a l l a x 35) par t e r 36) pasca l

37) pe i 38) p h i l l i p s 39) po i s son 40) p r o l a t e

41) randcorr 42) rando 43) randsvd 44) rohe s s

45) r o s s e r 46) sampling 47) shaw 48) sp i k e s

49) t o e p l i t z 50) t r i d i a g 51) t r iw 52) u r s e l l

53) vand 54) wathen 55) w i l k in son 56) wing

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 124

Groups :

a l l data e i gen i l l �cond

i nv e r s e pos�de f random regprob

spar s e symmetric

All the matrices and groups in the collection are shown. It is also possible to obtain

just the list of matrix names.

> matrixdepot (” a l l ”)

56�element Array{ASCIIString , 1 } :

” baart ”

” binomial ”

” b lur ”

”cauchy”

” chebspec ”

”chow”

” c i r c u l ”

” clement ”

”companion”

” der iv2 ”

. . .

” s p i k e s ”

” t o e p l i t z ”

” t r i d i a g ”

” t r iw ”

” u r s e l l ”

”vand”

”wathen”

” wi lk in son ”

”wing”

Here, “...” denotes that we have omitted some of the output in order to save space.

Next, we check the input options of the Hilbert matrix hilb.

> matrixdepot (” h i l b ”)

H i l b e r t matrix

================

The H i l b e r t matrix has (i , j) e lement 1/(i+j �1). I t i s no to r i ou s

for being i l l cond i t i oned . I t i s symmetric p o s i t i v e d e f i n i t e and

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 125

t o t a l l y p o s i t i v e .

Input opt ions :

⇤ [type ,] dim : the dimension o f the matrix .

⇤ [type ,] row dim , co l d im : the row and column dimensions .

Groups : [” i nv e r s e ” , ” i l l �cond” , ” symmetric ” , ”pos�de f ”]

Re fe r ences :

M. D. Choi , Tr icks or t r e a t s with the H i l b e r t matrix , Amer . Math .

Monthly , 90 (1983) , pp . 301�312.

N. J . Higham , Accuracy and S t a b i l i t y o f Numerical Algorithms ,

second ed i t i on , Soc i e ty for I n du s t r i a l and Applied Mathematics ,

Ph i lade lph ia , PA, USA, 2002 ; s e c . 2 8 . 1 .

Note that an optional first argument type can be given; it defaults to Float64.

The string of equals signs on the third line in the output above is Markdown notation

for a header. Julia interprets Markdown within documentation, though as we are

using typewriter font for code examples here, we display the uninterpreted source. We

generate a 4⇥6 Hilbert matrix with elements in the default double precision type and

then in Rational type.

> matrixdepot (” h i l b ” , 4 , 6)

4x6 Array{Float64 , 2 } :

1 . 0 0 . 5 0 .333333 0 .25 0 .2 0 .166667

0 .5 0 .333333 0 .25 0 .2 0 .166667 0.142857

0.333333 0 .25 0 .2 0 .166667 0.142857 0 .125

0 .25 0 .2 0 .166667 0.142857 0 .125 0.111111

> matrixdepot (” h i l b ” , Rational , 4 , 6)

4x6 Array{ Rat iona l {T<: I n t e g e r } , 2} :

1//1 1//2 1//3 1//4 1//5 1//6

1//2 1//3 1//4 1//5 1//6 1//7

1//3 1//4 1//5 1//6 1//7 1//8

1//4 1//5 1//6 1//7 1//8 1//9

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 126

A list of all the symmetric matrices in the collection is readily obtained.

> matrixdepot (” symmetric ”)

21�element Array{ASCIIString , 1 } :

” cauchy”

” c i r c u l ”

” clement ”

”dingdong”

” f i e d l e r ”

” hankel ”

” h i l b ”

” i nvh i l b ”

”kms”

” lehmer”

” min i j ”

”moler ”

” o s c i l l a t e ”

” pasca l ”

” pe i ”

” po i s son ”

” p ro l a t e ”

” randcorr ”

” t r i d i a g ”

”wathen”

” wi lk in son ”

Here, symmetric is one of several predefined groups, and multiple groups can be

intersected. For example, the for loop below prints the smallest and largest eigenvalues

of all the 4 ⇥ 4 matrices in Matrix Depot that are symmetric positive definite and

(potentially) ill conditioned.

> for name in matrixdepot (” symmetric ” , ”pos�de f ” , ” i l l �cond”)

A = f u l l (matrixdepot (name , 4))

@pr int f ”%9s : sma l l e s t e i g v a l = %0.3e , l a r g e s t e i g v a l = %0.3e\n”

name eigmin (A) eigmax (A)

end

cauchy : sma l l e s t e i g v a l = 2.131 e�05, l a r g e s t e i g v a l = 9.776 e�01

h i l b : sma l l e s t e i g v a l = 9.670 e�05, l a r g e s t e i g v a l = 1.500 e+00

i nvh i l b : sma l l e s t e i g v a l = 6.666 e�01, l a r g e s t e i g v a l = 1.034 e+04

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 127

kms : sma l l e s t e i g v a l = 3.750 e�01, l a r g e s t e i g v a l = 2.086 e+00

moler : sma l l e s t e i g v a l = 3.336 e�02, l a r g e s t e i g v a l = 5.122 e+00

o s c i l l a t e : sma l l e s t e i g v a l = 1.490 e�08, l a r g e s t e i g v a l = 1.000 e+00

pasca l : sma l l e s t e i g v a l = 3.802 e�02, l a r g e s t e i g v a l = 2.630 e+01

pe i : sma l l e s t e i g v a l = 1.000 e+00, l a r g e s t e i g v a l = 5.000 e+00

t r i d i a g : sma l l e s t e i g v a l = 3.820 e�01, l a r g e s t e i g v a l = 3.618 e+00

Matrices can also be accessed by number within the alphabetical list of matrix

names.

> matrixdepot (2)

” binomial ”

> matrixdepot (2 : 5)

4�element Array{ AbstractStr ing , 1 } :

” b inomial ”

” b lur ”

”cauchy”

” chebspec ”

> matrixdepot (15 : 20 , 5 , 6 , 1 : 3)

11�element Array{ AbstractStr ing , 1 } :

” f rank ”

” golub”

” g rav i ty ”

” grcar ”

”hadamard”

”hankel ”

” chebspec ”

”chow”

”baart ”

” binomial ”

” b lur ”

Access by number provides a convenient way to run a test on subsets of matrices in

the collection. However, the number assigned to a matrix may change if we include

new matrices in the collection. In order to run tests in a way that is repeatable in

the future it is best to group matrices into subsets using the macro @addgroup, which

stores them by name. For example, the following command will group test matrices

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 128

frank, golub, gravity, grcar, hadamard, hankel, chebspec, chow, baart, binomial, and

blur into test1.

> @addgroup t e s t 1 = matrixdepot (15 : 20 , 5 , 6 , 1 : 3)

After reloading the package, we can run tests on these matrices using group test1. Here

we compute the 2-norms. Since blur (an image deblurring test problem) generates a

sparse matrix and the matrix 2-norm is currently not implemented for sparse matrices

in Julia, we use full to convert the matrix to dense format.

> for name in matrixdepot (” t e s t 1 ”)

A = f u l l (matrixdepot (name , 4))

@pr int f ”%9s has 2�norm %0.3e \n” name norm(A)

end

baart has 2�norm 3.192 e+00

binomial has 2�norm 4.576 e+00

b lur has 2�norm 8.298 e�01

chebspec has 2�norm 6.474 e+00

chow has 2�norm 3.414 e+00

frank has 2�norm 7.624 e+00

golub has 2�norm 2.050 e+02

g rav i ty has 2�norm 6.656 e+00

grcar has 2�norm 2.562 e+00

hadamard has 2�norm 2.000 e+00

hankel has 2�norm 1.160 e+01

To download the test matrix SNAP/web-Google from the University of Florida

sparse matrix collection (see Section 8.4.2 for more details), we first download the

data with

> matrixdepot (”SNAP/web�Google” , : get)

and then generate the matrix with

> matrixdepot (”SNAP/web�Google” , : r)

916428 x916428 spar s e matrix with 5105039 Float64 e n t r i e s :

[11343 , 1] = 1 .0

[11928 , 1] = 1 .0

[15902 , 1] = 1 .0

[29547 , 1] = 1 .0

[30282 , 1] = 1 .0

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 129

[31301 , 1] = 1 .0

[38717 , 1] = 1 .0

. . .

[720325 , 916427] = 1 .0

[772226 , 916427] = 1 .0

[785097 , 916427] = 1 .0

[788476 , 916427] = 1 .0

[822938 , 916427] = 1 .0

[833616 , 916427] = 1 .0

[417498 , 916428] = 1 .0

[843845 , 916428] = 1 .0

Note that the omission marked “...” was in this case automatically done by Julia based

on the height of the terminal window. Matrices loaded in this way are inserted into the

list of available matrices, and assigned a number. After downloading further matrices

HB/1138˙bus, HB/494˙bus, and Bova/rma10 the list of matrices is as follows.

j u l i a > matrixdepot ()

Matr ices :

1) baart 2) b inomial 3) b lur 4) cauchy

5) chebspec 6) chow 7) c i r c u l 8) clement

9) companion 10) der iv2 11) dingdong 12) f i e d l e r

13) f o r s y th e 14) foxgood 15) f rank 16) golub

17) g rav i ty 18) grca r 19) hadamard 20) hankel

21) heat 22) h i l b 23) i n vh i l b 24) i nvo l

25) kahan 26) kms 27) lehmer 28) l o t k i n

29) magic 30) min i j 31) moler 32) neumann

33) o s c i l l a t e 34) pa r a l l a x 35) par t e r 36) pasca l

37) pe i 38) p h i l l i p s 39) po i s son 40) p r o l a t e

41) randcorr 42) rando 43) randsvd 44) rohe s s

45) r o s s e r 46) sampling 47) shaw 48) sp i k e s

49) t o e p l i t z 50) t r i d i a g 51) t r iw 52) u r s e l l

53) vand 54) wathen 55) w i l k in son 56) wing

57) Bova/rma10 58) HB/1138 bus 59) HB/494 bus 60) SNAP/web�Google

Groups :

a l l data e i gen i l l �cond

i nv e r s e pos�de f random regprob

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 130

spar s e symmetric t e s t 1

8.3 Package Design and Implementation

In this section we describe the design and implementation of Matrix Depot, focusing

particularly on the novel aspects of exploitation of multiple dispatch, extensibility of

the collection, and user-definable grouping of matrices.

8.3.1 Exploiting Multiple Dispatch

Matrix Depot makes use of multiple dispatch in Julia, an object-oriented paradigm in

which the selection of a function implementation is based on the types of each argument

of the function. The generic function matrixdepot has eight di↵erent methods, where

each method itself is a function that handles a specific case. This is neater and

more convenient than writing eight “case” statements, as is necessary in many other

languages.

> methods (matrixdepot)

8 methods f o r gener i c f unc t i on ”matr ixdepot ” :

matrixdepot () . . .

matrixdepot (name : : Abst rac tSt r ing) . . .

matrixdepot (name : : AbstractStr ing , method : : Symbol) . . .

matrixdepot (props : : Abst rac tSt r ing . . .) . . .

matrixdepot (name : : AbstractStr ing , args . . .) . . .

matrixdepot (num : : I n t eg e r) . . .

matrixdepot (ur : : UnitRange{T<:Real }) . . .

matrixdepot (vs : : Union{ Integer , UnitRange{T<:Real } } . . .) . . .

For example, the following two functions are used for accessing matrices by number

and range respectively, where matrix name list() returns a list of matrix names. The

second function calls the first function in the inner loop.

function matrixdepot (num : : I n t eg e r)

ma t r i x s t r i ng s = mat r i x name l i s t ()

n = length (mat r i x s t r i ng s)

i f num > n

e r r o r (”There are $(n) parameter ized matr ices ,

but you asked f o r the $(num)�th . ”)

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 131

end

return mat r i x s t r i ng s [num]

end

function matrixdepot (ur : : UnitRange)

matr ixnamel i s t = Abst rac tSt r ing []

for i in ur

push ! (matr ixnamel i st , matrixdepot (i))

end

return matr ixnamel i s t

end

As a result, matrixdepot is a versatile function that can be used for a variety of

purposes, including returning matrix information and generating matrices from various

input parameters.

In the following example we see how multiple dispatch handles di↵erent numbers

and types of arguments for the Cauchy matrix.

> matrixdepot (”cauchy”)

Cauchy matrix

=============

Given two vec to r s x and y , the (i , j) entry o f the Cauchy matrix i s

1/(x [i]+y [j]) .

Input opt ions :

⇤ [type ,] x , y : two ve c to r s .

⇤ [type ,] x : a vec to r . y d e f a u l t s to x .

⇤ [type ,] dim : the dimension o f the matrix . x and y de f au l t

to [1 : dim ;] .

Groups : [” i nv e r s e ” , ” i l l �cond” , ” symmetric ” , ”pos�de f ”]

Re fe r ences :

N. J . Higham , Accuracy and S t a b i l i t y o f Numerical Algorithms ,

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 132

second ed i t i on , Soc i e ty for I n du s t r i a l and Applied Mathematics ,

Ph i lade lph ia , PA, USA, 2002 ; s e c . 28 .1

> matrixdepot (”cauchy” , [1 , 2 , 3] , [4 , 5 , 6])

3x3 Array{Float64 , 2 } :

0 . 2 0 .166667 0.142857

0.166667 0.142857 0 .125

0.142857 0 .125 0.111111

> matrixdepot (”cauchy” , [0 . 2 , 0 . 3 , 0 . 4])

3x3 Array{Float64 , 2 } :

2 . 5 2 . 0 1 .66667

2 .0 1 .66667 1.42857

1.66667 1.42857 1 .25

> matrixdepot (”cauchy” , 3)

3x3 Array{Float64 , 2 } :

0 . 5 0 .333333 0 .25

0.333333 0 .25 0 .2

0 .25 0 .2 0 .166667

> matrixdepot (”cauchy” , Float32 , 3)

3x3 Array{Float32 , 2 } :

0 . 5 0 .333333 0 .25

0.333333 0 .25 0 .2

0 .25 0 .2 0 .166667

Multiple dispatch is also exploited in programming the matrices. For example, the

Hilbert matrix is implemented as

function hilb–T˝(::Type–T˝, m::Integer, n::Integer)

H = zeros(T, m, n)

for j = 1:n, i = 1:m

@inbounds H[i,j] = one(T)/ (i + j - one(T))

end

return H

end

hilb–T˝(::Type–T˝, n::Integer) = hilb(T, n, n)

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 133

hilb(args...) = hilb(Float64, args...)

The function hilb has three methods, which enable one to request, for example,

hilb(4,2) for a 4 ⇥ 2 Hilbert matrix of type Float64, or simply (thanks to the final

two lines) hilb(4) for a 4⇥ 4 Hilbert matrix of type Float64. The keyword @inbounds

tells Julia to turn o↵ bounds checking in the following expression, in order to speed

up execution. Note that in Julia it is not necessary to vectorize code to achieve good

performance [7].

All the matrices in Matrix Depot can be generated using the function call

matrixdepot(”matrix˙name”, p1, p2, ...),

where matrix˙name is the name of the test matrix, and p1, p2, . . . , are input arguments

depending on matrix˙name. The help comments for each matrix can be viewed by

calling function matrixdepot(”matrix˙name”). We can access the list of matrix names

by number, range, or a mixture of numbers and range.

1. matrixdepot(i) returns the name of the ith matrix;

2. matrixdepot(i:j) returns the names of the ith to jth matrices, where i < j;

3. matrixdepot(i:j, k, m) returns the names of the ith, (i+ 1)st, . . ., jth, kth, and

mth matrices.

8.3.2 Matrix Representation

Matrix names in Matrix Depot are represented by Julia strings. For example, the

Cauchy matrix is represented by ”cauchy”. Matrix names and matrix groups are

stored as hash tables (Dict). In particular, there is a hash table matrixdict that maps

each matrix name to its underlying function and a hash table matrixclass that maps

each group to its members.

The majority of parametrized matrices are dense matrices of type Array–T,2˝,

where T is the element type of the matrix. Variables of the Array type are stored in

column-major order. A few matrices are stored as sparse matrices (see also matrixdepot(”sparse”)),

in the Compressed Sparse Column (CSC) format; these include neumann (a singular

matrix from the discrete Neumann problem) and poisson (a block tridiagonal matrix

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 134

Table 8.1: Predefined groups.

Group Description
all All the matrices in the collection.

data The matrix has been downloaded from the University of
Florida Sparse Collection or the Matrix Market Collection.

eigen Part of the eigensystem of the matrix is explicitly known.
ill-cond The matrix is ill-conditioned for some parameter values.
inverse The inverse of the matrix is known explicitly.
pos-def The matrix is positive definite for some parameter values.
random The matrix has random entries.
regprob The output is a test problem for regularization methods.
sparse The matrix is sparse.

symmetric The matrix is symmetric for some parameter values.

from Poisson’s equation). Tridiagonal matrices are stored in the built-in Julia type

Tridiagonal which is defined as follows.

immutable Tr id iagona l {T} <: AbstractMatrix {T}

dl : : Vector{T} # sub�d iagona l

d : : Vector{T} # diagona l

du : : Vector{T} # sup�d iagona l

du2 : : Vector{T} # supsup�d iagona l f o r p i v o t i n g

end

8.3.3 Matrix Groups

A group is a subset of matrices in Matrix Depot. There are ten predefined groups,

described in Table 8.1, most of which identify matrices with particular properties.

Each group is represented by a string. For example, the group of random matrices is

represented by ”random”. Matrices can be accessed by group names, as was illustrated

in Section 8.1.

The macro @addgroup is used to add a new group of matrices to Matrix Depot

and the macro @rmgroup removes an added group. All the predefined matrix groups

are stored in the hash table matrixclass. The macro @addgroup essentially adds a new

key-value combination to the hash table usermatrixclass. Using a separate hash table

prevents the user from contaminating the predefined matrix groups.

Being able to create groups is a useful feature for reproducible research [23]. For

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 135

example, if we have implemented algorithm alg01 and we used circul, minij, and grcar

as test matrices for alg01, we could type

> @addgroup a lg01 group = [” c i r c u l ” , ” min i j ” , ” g rca r ”]

This adds a new group to Matrix Depot (we need to reload the package to see the

changes).

j u l i a > matrixdepot ()

Matr ices :

1) baart 2) b inomial 3) b lur 4) cauchy

5) chebspec 6) chow 7) c i r c u l 8) clement

9) companion 10) der iv2 11) dingdong 12) f i e d l e r

13) f o r s y th e 14) foxgood 15) f rank 16) golub

17) g rav i ty 18) grca r 19) hadamard 20) hankel

21) heat 22) h i l b 23) i n vh i l b 24) i nvo l

25) kahan 26) kms 27) lehmer 28) l o t k i n

29) magic 30) min i j 31) moler 32) neumann

33) o s c i l l a t e 34) pa r a l l a x 35) par t e r 36) pasca l

37) pe i 38) p h i l l i p s 39) po i s son 40) p r o l a t e

41) randcorr 42) rando 43) randsvd 44) rohe s s

45) r o s s e r 46) sampling 47) shaw 48) sp i k e s

49) t o e p l i t z 50) t r i d i a g 51) t r iw 52) u r s e l l

53) vand 54) wathen 55) w i l k in son 56) wing

Groups :

a l l data e i gen i l l �cond

i nv e r s e pos�de f random regprob

spar s e symmetric a lg01 group

We can then run alg01 on the test matrices by

> for name in matrixdepot (a lg01 group)

A = matrixdepot (name , n) # n i s the dimension o f the matrix .

@print f ”Test r e s u l t f o r %9s i s %0.3e” name alg01 (A)

end

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 136

8.3.4 Adding New Matrix Generators

Generators are Julia functions that generate test matrices. When Matrix Depot is

first loaded, a directory myMatrixDepot is created. It contains two files, group.jl

and generator.jl, where group.jl is used for storing all the user defined groups (see

Section 8.3.3) and generator.jl is used for storing generator declarations.

Julia packages are simply Git repositories3. The directory myMatrixDepot is

untracked by Git, so any local changes to files in myMatrixDepot do not make the

MatrixDepot package “dirty”. In particular, all the newly defined groups or matrix

generators will not be a↵ected when we upgrade to a new version of Matrix Depot.

Matrix Depot automatically loads all Julia files in myMatrixDepot. This feature allows

a user to simply drop generator files into myMatrixDepot without worrying about how

to link them to Matrix Depot.

A new generator is declared using the syntax include generator(FunctionName,

”fname”, f). This adds the new mapping ”fname” ! f to the hash table matrixdict,

which we recall maps each matrix name to its underlying function. Matrix Depot will

refer to function f using string ”fname” so that we can call function f by matrixdepot(”fname”...).

The user is free to define new data types and return values of those types. Moreover,

as with any Julia function, multiple values can be returned by listing them after the

return statement.

For example, suppose we have the following Julia file rand.jl, which contains two

generators randsym and randorth and we want to use them from Matrix Depot. The

triple quotes in the file delimit the documentation for the functions.

”””

random symmetric matrix

=======================

Input opt ions :

⇤ n : the dimension o f the matrix

”””

function randsym (n)

A = ze ro s (n , n)

3Git is a free and open source distributed version control system.

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 137

for j = 1 : n

for i = 1 : j

A[i , j] = randn ()

i f i != j ; A[j , i] = A[i , j] end

end

end

return A

end

”””

random orthogona l matrix

========================

Input opt ions :

⇤ n : the dimension o f the matrix

”””

randorth (n) = qr (randn (n , n)) [1]

We can copy the file rand.jl to the directory myMatrixDepot and add the following

two lines to generator.jl.

i n c l ud e g en e r a t o r (FunctionName , ”randsym” , randsym)

i n c l ud e g en e r a t o r (FunctionName , ” randorth ” , randorth)

This includes the functions randsym and randorth in Matrix Depot, as we can see by

looking at the matrix list (the new entries are numbered 43 and 45).

j u l i a > matrixdepot ()

Matr ices :

1) baart 2) b inomial 3) b lur 4) cauchy

5) chebspec 6) chow 7) c i r c u l 8) clement

9) companion 10) der iv2 11) dingdong 12) f i e d l e r

13) f o r s y th e 14) foxgood 15) f rank 16) golub

17) g rav i ty 18) grca r 19) hadamard 20) hankel

21) heat 22) h i l b 23) i n vh i l b 24) i nvo l

25) kahan 26) kms 27) lehmer 28) l o t k i n

29) magic 30) min i j 31) moler 32) neumann

33) o s c i l l a t e 34) pa r a l l a x 35) par t e r 36) pasca l

37) pe i 38) p h i l l i p s 39) po i s son 40) p r o l a t e

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 138

41) randcorr 42) rando 43) randorth 44) randsvd

45) randsym 46) rohe s s 47) r o s s e r 48) sampling

49) shaw 50) sp i k e s 51) t o e p l i t z 52) t r i d i a g

53) t r iw 54) u r s e l l 55) vand 56) wathen

57) w i lk in son 58) wing

Groups :

a l l data e i gen i l l �cond

i nv e r s e pos�de f random regprob

spar s e symmetric

The new generators can be used just like the built-in ones.

> matrixdepot (”randsym”)

random symmetric matrix

=======================

Input opt ions :

⇤ n : the dimension o f the matrix

> matrixdepot (”randsym” , 4)

4x4 Array{Float64 , 2 } :

�0.00992523 0.174531 �1.73322 �0.765096

0.174531 1.69308 0.269062 0.594058

�1.73322 0.269062 �0.824277 �0.541458

�0.765096 0.594058 �0.541458 �0.480428

> matrixdepot (” randorth ”)

random orthogona l matrix

========================

Input opt ions :

⇤ n : the dimension o f the matrix

> A = matrixdepot (” randorth ” , 4)

4x4 Array{Float64 , 2 } :

�0.233943 0.179893 0.563926 �0.771295

�0.769649 �0.141938 �0.5807 �0.224235

0.247165 0.832118 �0.449941 �0.20986

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 139

�0.540204 0.505046 0.377263 0.557477

> A’⇤A � eye (4 , 4)

4x4 Array{Float64 , 2 } :

�2.22045e�16 1.66533 e�16 �2.77556e�17 �1.66533e�16

1.66533 e�16 �1.11022e�16 �3.05311e�16 1.66533 e�16

�2.77556e�17 �3.05311e�16 �1.11022e�16 1.94289 e�16

�1.66533e�16 1.66533 e�16 1.94289 e�16 0 .0

We can also add group information with the function include generator. The following

lines are put in generator.jl.

i n c l ud e g en e r a t o r (Group , ”random” , randsym)

i n c l ud e g en e r a t o r (Group , ”random” , randorth)

This adds the functions randsym and randorth to the group random, as we can see

with the following query (after reloading the package).

> matrixdepot (”random”)

10�element Array{ASCIIString , 1 } :

” golub ”

” o s c i l l a t e ”

” randcorr ”

” rando”

” randorth ”

” randsvd”

”randsym”

” rohe s s ”

” r o s s e r ”

”wathen”

8.3.5 Documentation

The Matrix Depot documentation is created using the documentation generator Sphinx4

and is hosted at Read the Docs5. Its primary goals are to provide examples of usage of

Matrix Depot and to give a brief summary of each matrix in the collection. Matrices

are listed alphabetically with hyperlinks to the documentation for each matrix. Most

parametrized matrices are presented with heat map plots, which are produced using the

4http://sphinx-doc.org/
5http://matrixdepotjl.readthedocs.org

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 140

Figure 8.1: Documentation for the Wathen matrix

Winston package6, with the color range determined by the smallest and largest entries

of the matrix. For example, Figure 8.1 shows how the Wathen matrix is documented

in Matrix Depot.

8.4 The Matrices

We now describe the matrices that are provided with, or can be downloaded into,

Matrix Depot.

8.4.1 Parametrized Matrices

In Matrix Depot v0.5.5, there are 58 parametrized matrices (including the regularization

problems described in the next section), most of which originate from the Test Matrix

Toolbox [46]. All these matrices can be generated as matrixdepot(”matrix˙name”, n),

where n is the dimension of the matrix.

Many matrices can have more than one input parameter, and multiple dispatch

6https://github.com/nolta/Winston.jl

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 141

provides a convenient mechanism for taking di↵erent actions for di↵erent argument

types. For example, the tridiag function generates a tridiagonal matrix from vector

arguments giving the subdiagonal, diagonal, and superdiagonal vectors, but a tridiagonal

Toeplitz matrix can be obtained by supplying scalar arguments that specify the dimension

of the matrix, the subdiagonal, the diagonal, and the superdiagonal. If a single, scalar

argument n is supplied then an n-by-n tridiagonal Toeplitz matrix with subdiagonal

and superdiagonal �1 and diagonal 2 is constructed. This matrix arises in applying

central di↵erences to a second derivative operator, and the inverse and the condition

number are known explicitly [47, sec. 28.5].

Here is an example of the di↵erent usages of tridiag.

> matrixdepot (” t r i d i a g ”)

Tr id iagona l Matrix

====================

Construct a t r i d i a g o n a l matrix o f type Tr id iagona l .

Input opt ions :

⇤ [type ,] v1 , v2 , v3 : v1 and v3 are ve c t o r s o f subdiagona l and

superd iagona l elements , r e s p e c t i v e l y , and v2 i s a vec to r o f

d iagona l e lements .

⇤ [type ,] dim , x , y , z : dim i s the dimension o f the matrix ,

x , y , z are s c a l a r s . x and z are the subdiagona l and

superd iagona l elements , r e s p e c t i v e l y , and y i s the d iagona l

e lements .

⇤ [type ,] dim : x = �1, y = 2 , z = �1. This matrix i s a l s o known

as the second d i f f e r e n c e matrix .

Groups : [” i nv e r s e ” , ” i l l �cond” , ”pos�de f ” , ” e i gen ”]

Re fe r ences :

J . Todd , Bas ic Numerical Mathematics , Vol . 2 : Numerical Algebra ,

Birkhauser , Basel , and Academic Press , New York , 1977 , p . 155 .

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 142

> matrixdepot (” t r i d i a g ” , [2 , 5 , 6 ;] , ones (4) , [3 , 4 , 1 ;])

4x4 Tr id iagona l {Float64 } :

1 . 0 3 . 0 0 . 0 0 . 0

2 . 0 1 . 0 4 . 0 0 . 0

0 . 0 5 . 0 1 . 0 1 . 0

0 . 0 0 . 0 6 . 0 1 . 0

> matrixdepot (” t r i d i a g ” , 4 , 5 , 3 , 1)

4x4 Tr id iagona l {Float64 } :

3 . 0 1 . 0 0 . 0 0 . 0

5 . 0 3 . 0 1 . 0 0 . 0

0 . 0 5 . 0 3 . 0 1 . 0

0 . 0 0 . 0 5 . 0 3 . 0

> matrixdepot (” t r i d i a g ” , Int , 4)

4x4 Tr id iagona l { Int64 } :

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

Test Problems for Regularization Methods

A mathematical problem is ill-posed if the solution is not unique or if an arbitrarily

small perturbation of the data can cause an arbitrarily large change in the solution.

Regularization methods are an important class of methods for dealing with such

problems [40], [43]. One means of generating test problems for regularization methods

is to discretize a given ill-posed problem.

Matrix Depot contains a group of regularization test problems derived from Hansen’s

MATLAB Regularization Tools [39], [41], [42] that are mostly discretizations of Fredholm

integral equations of the first kind:

Z 1

0

K(s, t)f(t) dt = g(s), 0  s  1.

The regularization test problems form the group regprob.

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 143

> matrixdepot (” regprob ”)

12�element Array{ASCIIString , 1 } :

” baart ”

” b lur ”

” der iv2 ”

” foxgood”

” g rav i ty ”

”heat ”

” pa ra l l ax ”

” p h i l l i p s ”

”shaw”

” sp i k e s ”

” u r s e l l ”

”wing”

Each problem is a linear system Ax = b where the matrix A and vectors x and b are

obtained by discretization (using quadrature or the Galerkin method) of K, f , and g.

By default, we generate only A, which is an ill-conditioned matrix. The whole test

problem will be generated if the parameter matrixonly is set to false, and in this case

the output has type RegProb, which is defined as

immutable RegProb–T˝

A::AbstractMatrix–T˝ # matrix of interest

b::AbstractVector–T˝ # right-hand side

x::AbstractVector–T˝ # the solution to Ax = b

end

If r is a generated test problem, then r.A, r.b, and r.x are the matrix A and vector x

and b respectively. If the solution is not provided by the problem, the output is stored

as type RegProbNoSolution, which is defined as

immutable RegProbNoSolution–T˝

A::AbstractMatrix–T˝ # matrix of interest

b::AbstractVector–T˝ # right-hand side

end

For example, the test problem wing can be generated as follows.

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 144

> matrixdepot (”wing”)

A Problem with a Discont inuous So lu t i on

=======================================

Input opt ions :

⇤ [type ,] dim , t1 , t2 , [matr ixonly] : the dimension o f matrix

i s dim . t1 and t2 are two r e a l s c a l a r s such that

0 < t1 < t2 < 1 .

I f matr ixonly = false , the matrix A and vec to r s b and x in

the l i n e a r system Ax = b w i l l be generated (matr ixonly = true

by de f au l t) .

⇤ [type ,] n , [matr ixonly] : t1 = 1/3 and t2 = 2/3 .

Groups : [” regprob ”]

Re fe r ences :

G. M. Wing , A Primer on I n t e g r a l Equations o f the F i r s t Kind ,

Soc i e ty for I n du s t r i a l and Applied Mathematics , 1991 , p . 109 .

> A = matrixdepot (”wing” , 4)

4x4 Array{Float64 , 2 } :

0 .031189 0.0921165 0.148804 0.198786

0.0310674 0.0889342 0.134959 0.164156

0.0309463 0.085862 0.122403 0.13556

0.0308257 0.0828958 0.111014 0.111945

> r = matrixdepot (”wing” , 4 , fa l se)

Test problems for Regu l a r i z a t i on Methods

A:

4x4 Array{Float64 , 2 } :

0 .031189 0.0921165 0.148804 0.198786

0.0310674 0.0889342 0.134959 0.164156

0.0309463 0.085862 0.122403 0.13556

0.0308257 0.0828958 0.111014 0.111945

b :

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 145

4�element Array{Float64 , 1 } :

0 .0804953

0.0751385

0.0701787

0.0655842

x :

4�element Array{Float64 , 1 } :

0 . 0

0 . 5

0 . 5

0 . 0

> r . x

4�element Array{Float64 , 1 } :

0 . 0

0 . 5

0 . 5

0 . 0

8.4.2 Matrix Data from External Sources

Matrix Depot provides access to matrices from Matrix Market [8] and the University of

Florida Sparse Matrix Collection [20], [21], both of which contain many matrices taken

from applications. In particular, these sources contain many large, sparse matrices.

Matrix Market and the University of Florida Sparse Matrix Collection both categorize

matrices by application domain and the problem source and both provide matrices in

Matrix Market Format [9]. These similarities allow us to design a generic interface

for both collections. The symbol :get (or :g) is used for downloading matrices from

both collections and the symbol :read (or :r) is used for reading in matrices already

downloaded. Downloaded matrix data is stored on disk in the Matrix Market format

and when read into Julia is stored in the type SparseMatrixCSC.

MatrixDepot.update() downloads the matrix name data files from the two web

servers.

> MatrixDepot . update ()

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 146

100 1887k 0 1887k 0 0 97337 0 ��:��:�� 0 : 0 0 : 1 9 ��:��:��

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 41552 0 41552 0 0 4421 0 ��:��:�� 0 : 0 0 : 0 9 ��:��:��

The University of Florida Sparse Matrix Collection is divided into matrix groups

and the group of a matrix forms part of the full name of the matrix [21]. For example,

the full name of the matrix 1138 bus in the Harwell-Boeing Collection is HB/1138 bus.

> matrixdepot (”HB/1138 bus ” , : get)

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 19829 100 19829 0 0 2320 0 0 : 0 0 : 0 8 0 : 0 0 : 0 8 ��:��:��

> matrixdepot (”HB/1138 bus ” , : read)

1138 x1138 Symmetric{Float64 , SparseMatrixCSC{Float64 , Int64 }} :

1474 .78 0 .0 0 . 0 . . . 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 9 .13665 0 .0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 69 .6147 0 .0 0 .0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

�9.01713 0 .0 0 .0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 . . . 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 �3.40599 0 .0 0 .0 0 . 0 0 . 0 0 . 0

.

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 . . . 0 . 0 �24.3902 0 .0 0 .0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 26 .5639 0 .0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 . . . 0 . 0 46 .1767 0 .0 0 .0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 10000.0 0 . 0

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 0 . 0 117.647

Matrices from the University of Florida Sparse Matrix Collection are stored in MatrixDepot/data/uf

and they are stored by group (to avoid duplicate names), i.e., one directory per group.

Similarly, matrices from Matrix Market are stored in MatrixDepot/data/mm. Both

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 147

directories are untracked by Git. Many matrices in the University of Florida Sparse

Matrix Collection contain problem-specific metadata, all of which is downloaded. The

metadata is accessed by setting the keyword argument meta to true. Then instead of

returning the matrix, Matrix Depot will return the metadata (including the matrix)

as a dictionary. For example, the IMDB movie database Pajek/IMDB has metadata

related to actors and movies. The following command stores all the metadata of

Pajek/IMDB in a variable r, where r[”IMDB”] is the test matrix.

> r = matrixdepot (”Pajek/IMDB” , : r , meta = true)

Dict { AbstractStr ing ,Any} with 8 e n t r i e s :

”IMDB colname” => ” ’La Tata ’ Castro , Maria Tereza\n ’ La Veneno ’ . . .

”IMDB MovieBacon” => 428440x1 Array{Float64 ,2}

”IMDB code” => ”Drama\nShort\nDocumentary\nComedy

\nWestern\nFamily . . .

”IMDB KevinBacon” => 1x1 Array{Float64 ,2}

”IMDB ActorBacon” => 896308x1 Array{Float64 ,2}

”IMDB category” => 428440x1 Array{Float64 ,2}

”IMDB” => 428440 x896308 spar s e matrix with 3782463 Float64 . . .

”IMDB year” => 428440x1 Array{Float64 ,2}

We can download a whole group of matrices from the University of Florida sparse

matrix collection using the command matrixdepot(”group name/*”, :get). The next

example downloads all 67 matrices in the Gset group of matrices from random graphs

(contributed by Y. Ye) then displays all the matrices in Matrix Depot, including the

newly downloaded matrices.

> matrixdepot (”Gset /⇤” , : get)

Downloading a l l matr i ce s in group Gset . . .

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 48083 100 48083 0 0 95388 0 ��:��:�� ��:��:�� ��:��:��

download : / home/ we i j i an / . j u l i a /v0 .4/ MatrixDepot/ s r c / . . / data/ uf /Gset/

G1 . ta r . gz G1/G1 . mtx

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 55180 100 55180 0 0 75318 0 ��:��:�� ��:��:�� ��:��:��

download : / home/ we i j i an / . j u l i a /v0 .4/ MatrixDepot/ s r c / . . / data/ uf /Gset/

G10 . ta r . gz G10/G10 . mtx

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 148

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 5926 100 5926 0 0 23126 0 ��:��:�� ��:��:�� ��:��:��

download : / home/ we i j i an / . j u l i a /v0 .4/ MatrixDepot/ s r c / . . / data/ uf /Gset/

G11 . ta r . gz G11/G11 . mtx

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 6349 100 6349 0 0 24223 0 ��:��:�� ��:��:�� ��:��:��

. . .

> matrixdepot ()

Matr ices :

1) baart 2) b inomial 3) b lur 4) cauchy

5) chebspec 6) chow 7) c i r c u l 8) clement

9) companion 10) der iv2 11) dingdong 12) f i e d l e r

13) f o r s y th e 14) foxgood 15) f rank 16) golub

17) g rav i ty 18) grca r 19) hadamard 20) hankel

21) heat 22) h i l b 23) i n vh i l b 24) i nvo l

25) kahan 26) kms 27) lehmer 28) l o t k i n

29) magic 30) min i j 31) moler 32) neumann

33) o s c i l l a t e 34) pa r a l l a x 35) par t e r 36) pasca l

37) pe i 38) p h i l l i p s 39) po i s son 40) p r o l a t e

41) randcorr 42) rando 43) randsvd 44) rohe s s

45) r o s s e r 46) sampling 47) shaw 48) sp i k e s

49) t o e p l i t z 50) t r i d i a g 51) t r iw 52) u r s e l l

53) vand 54) wathen 55) w i l k in son 56) wing

57) Gset/G1 58) Gset/G10 59) Gset/G11 60) Gset/G12

61) Gset/G13 62) Gset/G14 63) Gset/G15 64) Gset/G16

65) Gset/G17 66) Gset/G18 67) Gset/G19 68) Gset/G2

69) Gset/G20 70) Gset/G21 71) Gset/G22 72) Gset/G23

73) Gset/G24 74) Gset/G25 75) Gset/G26 76) Gset/G27

77) Gset/G28 78) Gset/G29 79) Gset/G3 80) Gset/G30

81) Gset/G31 82) Gset/G32 83) Gset/G33 84) Gset/G34

85) Gset/G35 86) Gset/G36 87) Gset/G37 88) Gset/G38

89) Gset/G39 90) Gset/G4 91) Gset/G40 92) Gset/G41

93) Gset/G42 94) Gset/G43 95) Gset/G44 96) Gset/G45

97) Gset/G46 98) Gset/G47 99) Gset/G48 100) Gset/G49

101) Gset/G5 102) Gset/G50 103) Gset/G51 104) Gset/G52

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 149

105) Gset/G53 106) Gset/G54 107) Gset/G55 108) Gset/G56

109) Gset/G57 110) Gset/G58 111) Gset/G59 112) Gset/G6

113) Gset/G60 114) Gset/G61 115) Gset/G62 116) Gset/G63

117) Gset/G64 118) Gset/G65 119) Gset/G66 120) Gset/G67

121) Gset/G7 122) Gset/G8 123) Gset/G9

Groups :

a l l data e i gen i l l �cond

i nv e r s e pos�de f random regprob

spar s e symmetric

The full name of a matrix in Matrix Market comprises three parts: the collection

name, the set name, and the matrix name. For example, the full name of the

matrix BCSSTK14 in the set BCSSTRUC2 from the Harwell-Boeing Collection is

Harwell-Boeing/bcsstruc2/bcsstk14. Note that both set name and matrix name are

in lower case.

> matrixdepot (”Harwell�Boeing/ bc s s t ruc2 / bcss tk14 ” , : get)

% Total % Received % Xferd Average Speed Time Time Time

Dload Upload Total Spent Le f t

100 292k 100 292k 0 0 22635 0 0 : 0 0 : 1 3 0 : 0 0 : 1 3 ��:��:��

download : / home/ we i j i an / . j u l i a /v0 .4/ MatrixDepot/data/mm/Harwell�Boeing/

bc s s t ruc2 / bcss tk14 . mtx . gz

> matrixdepot (”Harwell�Boeing/ bc s s t ruc2 / bcss tk14 ” , : read)

1806 x1806 Symmetric{Float64 , SparseMatrixCSC{Float64 , Int64 }} :

1 .93161 e6 0 .0 �1.02166 e5 . . . 0 . 0 0 . 0

0 . 0 1 . 0 0 . 0 0 . 0 0 . 0

�1.02166 e5 0 .0 1 .93147 e6 0 .0 0 . 0

�35568.9 0 . 0 1 .65787 e5 0 .0 0 .0

�1.06959 e5 0 .0 �1.06959 e5 0 .0 0 . 0

�1.65835 e5 0 .0 35568.9 . . . 0 . 0 0 . 0

�717.845 0 .0 0 .0 0 . 0 0 . 0

0 . 0 0 . 0 88998.5 0 . 0 0 . 0

0 . 0 0 . 0 �1.82865 e6 0 .0 0 . 0

0 . 0 0 . 0 1 .24988 e5 0 .0 0 . 0

.

0 . 0 0 . 0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 1 .06103 e7 �5.25151 e5

0 .0 0 .0 0 . 0 �5.25151 e5 �53434.0

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 150

0 .0 0 .0 0 . 0 . . . 1 .06959 e5 �1.65835 e5

0 .0 0 .0 0 . 0 0 . 0 0 . 0

0 . 0 0 . 0 0 . 0 1 .06959 e5 35568.9

0 .0 0 . 0 0 . 0 �816518.0 1 .21311 e7

0 .0 0 .0 0 . 0 4 .55624 e7 8.15266 e5

0 .0 0 .0 0 . 0 . . . 8 .15266 e5 5.27942 e8

We recommend downloading matrices from the University of Florida sparse matrix

collection when there is a choice, because almost every matrix from Matrix Market is

included in it.

8.5 Concluding Remarks

Matrix Depot follows in the footsteps of earlier collections of matrices. Its novelty

is threefold. First, it is extensible by the user, and so can be adapted to the user’s

needs. In doing so it facilitates experimentation, and in particular makes it easier to

do reproducible research. Second, it combines several existing test matrix collections,

namely Higham’s Test Matrix Toolbox, Hansen’s regularization problems, and the

University of Florida sparse matrix collection, in order to provide both parametrized

test matrices and real-life sparse matrix data in a single framework. Third, it fully

exploits the Julia language. It uses multiple dispatch to help provide a simple interface

and, in particular, to allow matrices to be generated in any of the numeric data types

supported by the language. Matrix Depot therefore anticipates the development of

intrinsic support in Julia for computations with BigFloat and other data types.

Matrix Depot has been in development since 2014. It is an open source project7

hosted on GitHub and is available under the MIT License. A first release was announced

in December 2014. Matrix Depot v0.5.5 is the latest o�cial release and consists of

around 3, 000 lines of source code, with test coverage of 98.91% according to Codecov8.

From GitHub tra�c analytics, we learn that Matrix Depot has 40 to 70 unique

downloads (unique cloners) every month. Matrix Depot also benefits the development

of other Julia packages. LightGraphs9, an optimized graph package for Julia, for

example, has embedded Matrix Depot as its database.

7https://github.com/weijianzhang/MatrixDepot.jl
8https://codecov.io/
9https://github.com/JuliaGraphs/LightGraphs.jl

CHAPTER 8. MATRIX DEPOT: A TEST COLLECTION 151

We built Matrix Depot to facilitate the development and testing of matrix (and

other) algorithms in Julia. and we will continue to develop Matrix Depot by introducing

new test matrices and integrating other test collections. Contributors from around

the world have helped us maintain the package. Notable contributors include Joshua

Adelman 10, Andreas Noack 11, and Klaus Crusius 12. At the time of writing this thesis,

Matrix Depot has 30 stars and 12 pull requests (11 merged requests) on GitHub.

10https://github.com/synapticarbors
11https://github.com/andreasnoack
12https://github.com/KlausC

Chapter 9

Conclusion

In this chapter, we provide a summary of previous chapters and identify some questions

for future work (more detailed conclusions can be found at the end of each chapter).

We present a software package, called EvolvingGraphs.jl, in Chapter 3. Using

EvolvingGraphs.jl, one can easily create an evolving graph object and use the algorithms

and functions in the package for graph analysis. All evolving graph algorithms discussed

in the thesis are implemented in EvolvingGraphs.jl. It performs all the computation

works serially. In the future, we will develop parallel evolving graph algorithms for

large scale network problems.

In Chapter 4, we generalize the breadth first search (BFS) algorithm for evolving

graphs. We observe that the structure associated with causal edges cannot be captured

by products of successive adjacency matrices. For our notion of temporal distance, we

show that BFS over an evolving graph computes the correct result only if we consider

both causal edges and static edges. We note that future work is needed to derive

formulations of the algebraic BFS for evolving graphs.

By considering both causal edges and static edges in a time-preserving path, we

study the influence of causal edges on graph centrality by varying the causal edge

weights in Chapter 5. We derive new centrality algorithms from the view of tra�c

flow and observe that the rankings of nodes computed by temporal Katz centrality are

stable when we change causal edge weights. Further experiments are needed to verify

this observation on large real world datasets.

We describe a new discovery engine Etymo for finding interesting research literature

in Chapter 6. We present a new approach to improve search results on new papers

152

CHAPTER 9. CONCLUSION 153

by building a similarity-based network using the papers’ full text content and social

media data. In experiments, we find Etymo provides higher quality search results to

users. We also describe Etymo’s user interface, which combines the item list with item

relationship. This reveals relationships between papers.

In Chapter 7, we further improve the search experience using an evolving knowledge

graph, which is constructed using a combination of concepts evolving graphs and

content similarity-based graphs. We use an evolving graph to help users track the

development of ideas. Since concepts are time-dependent in an evolving graph, we can

also examine the change of a concept over time. We note that the number of concepts

in our current evolving knowledge graph are still small and future work is needed to

include more concepts and other knowledge graph data.

Finally, in Chapter 8 we present a new test matrix collection in Julia called Matrix

Depot. Matrix Depot follows in the footsteps of earlier collections of matrices and

has several novel features. First, it is extensible by the user, and users can add

new matrices and new matrix groups easily. Second, it combines many existing test

matrix collections, including Higham’s Test Matrix Toolbox, Hansen’s regularization

problems, and the University of Florida sparse matrix collection. Third, it uses

multiple dispatch to help provide a simple interface and to allow matrices to be

generated in any numeric data types supported by Julia. We will continue to develop

Matrix Depot by introducing new test matrices and integrating other test collections.

Bibliography

[1] Ahmad Alsayed and Desmond J. Higham. Betweenness in time dependent

networks. Chaos, Solitons & Fractals, 72:35–48, 2015.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic

web, pages 722–735. Springer, 2007.

[3] Bahman Bahmani, Ravi Kumar, Mohammad Mahdian, and Eli Upfal. PageRank

on an evolving graph. In Proceedings of the 18th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 24–32. ACM, 2012.

[4] Zhaojun Bai, David Day, James Demmel, and Jack Dongarra. A test matrix

collection for non-Hermitian eigenvalue problems (release 1.0). Technical Report

CS-97-355, Department of Computer Science, University of Tennessee, Knoxville,

TN, USA, March 1997. LAPACK Working Note 123.

[5] Jöran Beel and Bela Gipp. Google Scholar’s ranking algorithm: An introductory

overview. In Proceedings of the 12th International Conference on Scientometrics

and Informetrics (ISSI’09), volume 1, pages 230–241, Rio de Janeiro (Brazil),

2009. ISSI.

[6] Timo Betcke, Nicholas J. Higham, Volker Mehrmann, Christian Schröder, and

Françoise Tisseur. NLEVP: A collection of nonlinear eigenvalue problems. ACM

Trans. Math. Software, 39(2):7:1–7:28, February 2013.

[7] Je↵ Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A

fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

154

BIBLIOGRAPHY 155

[8] Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F. Barrett, and

Jack J. Dongarra. Matrix Market: A Web resource for test matrix collections.

In Ronald F. Boisvert, editor, Quality of Numerical Software: Assessment and

Enhancement, pages 125–136. Chapman and Hall, London, 1997.

[9] Ronald F. Boisvert, Roldan Pozo, and Karin A. Remington. The Matrix Market

exchange formats: Initial design. Technical Report NISTIR 5935, National

Institute of Standards and Technology, Gaithersburg, MD 20899, USA, 1996.

[10] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

Freebase: a collaboratively created graph database for structuring human

knowledge. In Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, pages 1247–1250. AcM, 2008.

[11] Béla Bollobás. Modern graph theory, volume 184. Springer Science & Business

Media, 2013.

[12] Stephen P. Borgatti. Centrality and network flow. Social networks, 27(1):55–71,

2005.

[13] Pierre Borgnat, Eric Fleury, Jean-Loup Guillaume, Clémence Magnien, Céline

Robardet, and Antoine Scherrer. Evolving networks. NATO ASI on Mining

Massive Data Sets for Security, NATO Science for Peace and Security Series D:

Information and Communication Security, pages 198–204, 2008.

[14] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R.

Hruschka Jr, and Tom M. Mitchell. Toward an architecture for never-ending

language learning. In AAAI, volume 5, page 3. Atlanta, 2010.

[15] Jiahao Chen and Weijian Zhang. The right way to search evolving graphs. In

Parallel and Distributed Processing Symposium Workshops, 2016 IEEE Interna-

tional, pages 867–876, New York City, 2016. IEEE.

[16] Francois Chollet. Deep learning with Python. Manning Publications Co., 2017.

[17] Paul A. Clement. A class of triple-diagonal matrices for test purposes. SIAM

Rev., 1(1):50–52, 1959.

BIBLIOGRAPHY 156

[18] Andrew M. Dai, Christopher Olah, and Quoc V. Le. Document embedding with

paragraph vectors. arXiv preprint arXiv:1507.07998, 2015.

[19] Peter Bacon Darwin and Pawel Kozlowski. AngularJS web application develop-

ment. Packt Publ., 2013.

[20] Timothy A. Davis. University of Florida sparse matrix collection. http://www.

cise.ufl.edu/research/sparse/matrices.

[21] Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix

collection. ACM Trans. Math. Software, 38(1):1:1–1:25, 2011.

[22] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin

Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault:

A web-scale approach to probabilistic knowledge fusion. In Proceedings of the

20th ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 601–610. ACM, 2014.

[23] David L. Donoho and Victoria Stodden. Reproducible research in the

mathematical sciences. In Nicholas J. Higham, Mark R. Dennis, Paul Glendinning,

Paul A. Martin, Fadil Santosa, and Jared Tanner, editors, The Princeton Com-

panion to Applied Mathematics, pages 916–925. Princeton University Press,

Princeton, NJ, USA, 2015.

[24] Iain S. Du↵, Roger G. Grimes, and John G. Lewis. Sparse matrix test problems.

ACM Trans. Math. Software, 15(1):1–14, 1989.

[25] Susan T. Dumais. Improving the retrieval of information from external sources.

Behavior Research Methods, Instruments, & Computers, 23(2):229–236, 1991.

[26] Ernesto Estrada, Desmond J. Higham, and Naomichi Hatano. Communicability

betweenness in complex networks. Physica A: Statistical Mechanics and its Ap-

plications, 388(5):764–774, 2009.

[27] Shimon Even and Guy Even. Graph algorithms. Cambridge University Press,

Cambridge, UK, 2nd edition, 2012.

BIBLIOGRAPHY 157

[28] John R. Firth. A synopsis of linguistic theory, 1930-1955. Studies in linguistic

analysis, 1957.

[29] Philippe Flajolet, Donald E. Knuth, and Boris Pittel. The first cycles in an

evolving graph. Annals of Discrete Mathematics, 43:167–215, 1989.

[30] Dániel Fogaras. Where to start browsing the web? In International Workshop

on Innovative Internet Community Systems, pages 65–79. Springer, 2003.

[31] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul

Zimmermann. MPFR: A multiple-precision binary floating-point library with

correct rounding. ACM Trans. Math. Software, 33(2):13:1–13:15, 2007.

[32] C. W. Gear. A simple set of test matrices for eigenvalue programs. Math. Comp.,

23(105):119–125, 1969.

[33] David F. Gleich. Pagerank beyond the web. SIAM Review, 57(3):321–363, 2015.

[34] Simon Gottschalk and Elena Demidova. Eventkg: A multilingual event-centric

temporal knowledge graph. In European Semantic Web Conference, pages

272–287. Springer, 2018.

[35] Danica Vukadinović Greetham, Zhivko Stoyanov, and Peter Grindrod. On the

radius of centrality in evolving communication networks. Journal of Combinato-

rial Optimization, 28(3):540–560, 2014.

[36] Robert T. Gregory and David L. Karney. A Collection of Matrices for Testing

Computational Algorithms. Wiley, New York, 1969. Reprinted with corrections

by Robert E. Krieger, Huntington, New York, 1978.

[37] Peter Grindrod and Desmond J. Higham. A matrix iteration for dynamic network

summaries. SIAM Review, 55(1):118–128, 2013.

[38] Peter Grindrod, Mark C. Parsons, Desmond J. Higham, and Ernesto Estrada.

Communicability across evolving networks. Physical Review E, 83(4):046120,

2011.

[39] Per Christian Hansen. Regularization Tools: A Matlab package for analysis and

solution of discrete ill-posed problems. Numer. Algorithms, 6(1):1–35, 1994.

BIBLIOGRAPHY 158

[40] Per Christian Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numeri-

cal Aspects of Linear Inversion. Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 1998.

[41] Per Christian Hansen. Regularization Tools version 4.0 for Matlab 7.3. Numer.

Algorithms, 46(2):189–194, 2007.

[42] Per Christian Hansen. Regularization tools. A Matlab package for analysis and

solution of discrete ill-posed problems. Version 4.1 for Matlab 7.3. Report,

Information and Mathematics Modelling, Technical University of Denmark,

DK-2800 Lyngby, Denmark, March 2008.

[43] Per Christian Hansen. Discrete Inverse Problems: Insight and Algorithms. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2010.

[44] Kun He, Yingru Li, Sucheta Soundarajan, and John E. Hopcroft. Hidden

community detection in social networks, February 2017. ArXiv preprint

arXiv:1702.07462.

[45] Nicholas J. Higham. Algorithm 694: A collection of test matrices in MATLAB.

ACM Trans. Math. Software, 17(3):289–305, September 1991.

[46] Nicholas J. Higham. The Test Matrix Toolbox for MATLAB (version 3.0).

Numerical Analysis Report No. 276, Manchester Centre for Computational

Mathematics, Manchester, England, September 1995.

[47] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society

for Industrial and Applied Mathematics, Philadelphia, PA, USA, second edition,

2002.

[48] Jorge E. Hirsch. An index to quantify an individual’s scientific research output.

Proceedings of the National Academy of Sciences of the United States of America,

102(46):16569, 2005.

[49] Silu Huang, Ada Wai-Chee Fu, and Ruifeng Liu. Minimum spanning trees in

temporal graphs. In Proceedings of the 2015 ACM SIGMOD International Con-

ference on Management of Data, pages 419–430. ACM, 2015.

BIBLIOGRAPHY 159

[50] Leo Katz. A new status index derived from sociometric analysis. Psychometrika,

18(1):39–43, 1953.

[51] Jeremy Kepner and John Gilbert, editors. Graph Algorithms in the Language of

Linear Algebra. Software, Environments, Tools. SIAM, Philadelphia, PA, 2011.

[52] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P. Gleeson, Yamir Moreno,

and Mason A. Porter. Multilayer networks. Journal of Complex Networks,

2(3):203–271, 2014.

[53] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. Assoc.

Comput. Mach., 46(5):604–632, September 1999.

[54] Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathe-

matics, 1(3):335–380, 2004.

[55] Amy N. Langville and Carl D. Meyer. Google’s PageRank and beyond: The science

of search engine rankings. Princeton University Press, 2011.

[56] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong

program analysis & transformation. In Proceedings of the international symposium

on Code generation and optimization: feedback-directed and runtime optimization,

page 75. IEEE Computer Society, 2004.

[57] Quoc Le and Tomas Mikolov. Distributed representations of sentences and

documents. In Proceedings of the 31st International Conference on Machine

Learning (ICML-14), pages 1188–1196, 2014.

[58] Joseph CR. Licklider and Robert W. Taylor. The computer as a communication

device. Science and technology, 76(2):1–3, 1968.

[59] Laurens van der Maaten and Geo↵rey Hinton. Visualizing data using t-sne. Jour-

nal of Machine Learning Research, 9(Nov):2579–2605, 2008.

[60] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schutze. Introduction

to Information Retrieval. Cambridge University Press, Cambridge, 2008.

BIBLIOGRAPHY 160

[61] Osni A. Marques, Christof Vömel, James W. Demmel, and Beresford N. Parlett.

Algorithm 880: A testing infrastructure for symmetric tridiagonal eigensolvers.

ACM Trans. Math. Software, 35(1), 2008. Article 8, 13 pages.

[62] Tomas Mikolov, Kai Chen, Greg Corrado, and Je↵rey Dean. E�cient estimation

of word representations in vector space. ICLR Workshop, 2013.

[63] Marvin Minsky. The emotion machine: Commonsense thinking, artificial intelli-

gence, and the future of the human mind. Simon and Schuster, 2006.

[64] Vincenzo Nicosia, John Tang, Cecilia Mascolo, Mirco Musolesi, Giovanni Russo,

and Vito Latora. Graph metrics for temporal networks. In Temporal Networks,

pages 15–40. Springer, 2013.

[65] Feng Niu, Ce Zhang, Christopher Ré, and Jude W. Shavlik. Deepdive: Web-scale

knowledge-base construction using statistical learning and inference. VLDS,

12:25–28, 2012.

[66] M. L. Pei. A test matrix for inversion procedures. Comm. ACM, 5(10):508, 1962.

[67] David E. Rumelhart, Geo↵rey E. Hinton, and Ronald J. Williams. Learning

representations by back-propagating errors. nature, 323(6088):533, 1986.

[68] Angelo Antonio Salatino and Enrico Motta. Detection of embryonic research

topics by analysing semantic topic networks. In International Workshop on Se-

mantic, Analytics, Visualization, pages 131–146. Springer, 2016.

[69] Gerard Salton and Chris Buckley. Introduction to modern information retrieval.

McGraw-Hill, New York, 1983.

[70] Bahar Sateli, Felicitas Lö✏er, Birgitta König-Ries, and René Witte. Scholarlens:

Extracting competences from research publications for the automatic generation

of semantic user profiles. PeerJ Computer Science, 3:e121, July 2017.

[71] Eric Schmidt and Jonathan Rosenberg. How google works. Hachette UK, 2014.

[72] R. L. Stratonovich. Conditional markov processes. Theory of Probability & Its

Applications, 5(2):156–178, 1960.

BIBLIOGRAPHY 161

[73] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of

semantic knowledge. In Proceedings of the 16th international conference on World

Wide Web, pages 697–706. ACM, 2007.

[74] Zhaowei Tan, Changfeng Liu, Yuning Mao, Yunqi Guo, Jiaming Shen, and

Xinbing Wang. Acemap: A novel approach towards displaying relationship among

academic literatures. In Proceedings of the 25th International Conference Com-

panion on World Wide Web, WWW ’16 Companion, pages 437–442, Republic and

Canton of Geneva, Switzerland, 2016. International World Wide Web Conferences

Steering Committee.

[75] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:

extraction and mining of academic social networks. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 990–998. ACM, 2008.

[76] John Tang, Mirco Musolesi, Cecilia Mascolo, and Vito Latora. Temporal distance

metrics for social network analysis. In Proceedings of the 2nd ACM workshop on

Online social networks, pages 31–36. ACM, 2009.

[77] John Tang, Mirco Musolesi, Cecilia Mascolo, Vito Latora, and Vincenzo Nicosia.

Analysing information flows and key mediators through temporal centrality

metrics. In Proceedings of the 3rd Workshop on Social Network Systems, page 3.

ACM, 2010.

[78] John Tang, Salvatore Scellato, Mirco Musolesi, Cecilia Mascolo, and Vito Latora.

Small-world behavior in time-varying graphs. Physical Review E, 81(5):055101(R),

2010.

[79] Alan Taylor and Desmond J. Higham. CONTEST: A controllable test matrix

toolbox for MATLAB. ACM Trans. Math. Software, 35(4):26:1–26:17, 2009.

[80] Laurens Van Der Maaten. Accelerating t-sne using tree-based algorithms. Journal

of machine learning research, 15(1):3221–3245, 2014.

[81] Weijian Zhang. Dynamic network analysis in Julia. Technical Report 2015.83,

BIBLIOGRAPHY 162

Manchester Institute for Mathematical Sciences, The University of Manchester,

UK, September 2015.

