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1. Introduction

The instrumentation and measurement fields are associated 
to measure, detect, record and monitor a certain phenomenon 
(i.e. a measurand) in applications that usually involve uncer-
tainty and/or probability distributions. Some measurands are 

invisible like the electromagnetic field, and others are visible 
like the light reflection on a surface.

In order to measure signals in the visible light spectrum, 
imaging sensors (i.e. cameras) are commonly used to record 
images or videos which tend to present higher resolutions 
due to the technological advancement. In such recorded data, 
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Abstract
Geodesic distance is a natural dissimilarity measure between probability distributions of 
a specific type, and can be used to discriminate texture in image-based measurements. 
Furthermore, since there is no known closed-form solution for the geodesic distance between 
general multivariate normal distributions, we propose two efficient approximations to be used 
as texture dissimilarity metrics in the context of face recognition. A novel face recognition 
approach based on texture discrimination in high-resolution color face images is proposed, 
unlike the typical appearance-based approach that relies on low-resolution grayscale face 
images. In our face recognition approach, sparse facial features are extracted using predefined 
landmark topologies, that identify discriminative image locations on the face images. Given 
this landmark topology, the dissimilarity between distinct face images are scored in terms of 
the dissimilarities between their corresponding face landmarks, and the texture in each one 
of these landmarks is represented by multivariate normal distributions, expressing the color 
distribution in the vicinity of each landmark location. The classification of new face image 
samples occurs by determining the face image sample in the training set which minimizes the 
dissimilarity score, using the nearest neighbor rule. The proposed face recognition method 
was compared to methods representative of the state-of-the-art, using color or grayscale face 
images, and presented higher recognition rates. Moreover, the proposed texture dissimilarity 
metric also is efficient in general texture discrimination (e.g. texture recognition of material 
images), as our experiments suggest.
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colors are usually represented as basic color intensity combi-
nations (i.e. red, green and blue), leading to an inherent high-
dimensional multivariate feature representation.

Moreover, the image processing and computer vision fields 
may be used to help to extract reliable features for several 
instrumentation-related applications which use texture infor-
mation, such as face recognition [1–4], brain image recogni-
tion [5, 6], texture recognition of material images [7], food 
image recognition [8, 9], character recognition [10, 11], 
yawning detection [12], etc. In this work, we are mainly 
interested in face recognition by using efficient texture dis-
similarity metrics based on geodesic distance approximations 
between probability distributions.

Face recognition is an instrumentation-related application 
which uses computer vision and pattern recognition tech-
niques to identify individuals. Moreover, there are several 
emerging applications based in face recognition in augmented 
reality, gaming, security, and so on [3, 4, 13, 14]. Face recog-
nition is also studied by neuroscientists and psychologists to 
provide useful insights in how the human brain works [15]. In 
such applications, features extracted from images or videos 
present high dimensionality and the sample availability for 
machine learning is scarce, potentially leading to the known 
curse of dimensionality [16].

In order to obtain compact face features while preserving 
the global data structure, the Eigenfaces method [17] uses prin-
cipal component analysis (PCA) [18] to create a linear orthog-
onal projection into a lower dimensional space, where new 
face samples are recognized. The Laplacianfaces method [19] 
provides a more efficient approach that tries to preserve the 
local data structure by creating a locality graph, from which a 
linear lower dimensional projection is obtained. Furthermore, 
the orthogonal locality preserving projections method (OLPP) 
[20] extends the Laplacianfaces method by ensuring that the 
final linear projection is orthogonal. Similarly, the orthogonal 
neighborhood preserving projections method (ONPP) [21] 
tries to preserve the local and the global face data geometry 
by learning a neighborhood graph, which leads to the determi-
nation of the final orthogonal linear transformation.

However, preserving the face data structure in the lower 
dimensional space not always leads to a good face class sepa-
ration. On the other hand, if the class labels of each training 
sample are previously known, it is possible to preserve better 
the class structure by using supervised dimensionality reduc-
tion approaches like linear discriminant analysis (LDA) [22], 
which determines a linear projection ( Fisherfaces) that moves 
samples from different classes away while approximates sam-
ples in the same classes in the lower dimensional space.

There are methods based on LDA, like the multi-view 
discriminant analysis (MvDA) [23] method, that create pro-
jections of input face features using different perspectives, 
and combine them to obtain the final linear transformation. 
However, the typical LDA-based supervised approach may 
present inaccuracies for non-linear separation problems. 
Therefore, Kernel functions were proposed to map feature 
data to a higher dimensional separable space [24–27]. For 
instance, the spectral regression Kernel discriminant analysis 
method (SRKDA) provides an efficient computation of the 

kernel LDA using large datasets [26], obtaining as result a 
linear projection that tends to preserve the original non-linear 
class structure.

Other methods try to learn non-linear transformations in 
order to preserve better the non-linear data structure of high 
dimensional data, and that is the case of the Isomap method 
[28], which creates a neighborhood graph in which the data 
manifold is approximated by calculating approximations for 
geodesic distances by determining the shortest path between 
samples. The final low dimensional representation of the 
original samples is obtained by the typical multidimensional 
scaling algorithm (MDS) [29].

The non-linear dimensionality reduction method called 
locally linear embedding (LLE) [30] tries to model data sam-
ples as linear combinations of its neighboring samples and 
uses this information to determine the lower dimensional rep-
resentation of the original samples, preserving the local data 
geometry existing in the original high dimensional space.

Although there are available in the literature several tech-
niques to reduce efficiently the face data dimensionality and 
preserve the underlying face class structure, there are common 
issues which affect face representation such as variations of 
illumination, changes in the head pose, change of appearance, 
and others, demanding a high availability of distinct training 
samples in order properly to represent the face variability 
for machine learning as in the appearance-based approach 
methods [17, 19–21]. Since these methods concatenate all 
image pixels to create representative feature vectors, they 
need to downsample grayscale face images to reduce the com-
putational complexity. The obtained face feature representa-
tion still presents high dimensionality and suffers from the 
aforementioned issues.

On the other hand, it is possible to extract sparse face 
features directly from high-resolution color face images by 
using face representations based in landmarks associated 
to key points on face images at important and discrimina-
tive locations, leading to an enhanced face representation  
[3, 31]. Landmarks can be automatically determined by using 
approaches like active shape models (ASMs) [32] and several 
methods have been proposed to extract sparse features from 
face images using trained ASMs [33, 34].

However, it is possible to rank landmarks in color high-
resolution face images according to their discrimination capa-
bility by using mutual information, as in the enhanced ASM 
method [31]. In this method, face features are represented by 
Gaussian mixtures and new face samples are recognized by 
maximizing the class likelihood. However, this classification 
scheme can be adversely affected by outliers and noisy data.

Another method that extracts features from vicinities of 
landmark locations is the customized OLPP (COLPP) [3], in 
which landmark topologies are used to mark important and 
discriminative information on face images. The pixels in the 
landmark vicinities are concatenated to form high dimen-
sional feature vectors which are mapped into a lower dimen-
sional space where the class structure of the original features 
is preserved. In this discriminative linear space, classifica-
tion occurs by employing a linear soft margin support vector 
machine (SVM) [35].
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Most aforementioned methods usually extract high-dimen-
sional feature vectors from whole face images [19–21] or 
from landmark vicinities [3, 31], and may be subject to under-
sampling because usually few training samples are available 
(i.e. face images). On other hand, face features represented 
as probability distributions demand fewer face samples for 
training and can be learnt from the texture in the landmark 
vicinities in high-resolution color face images, leading to 
more accurate and lower dimensional features representations 
[31]. In this case, relevant features are extracted from key 
points on the face images (e.g. the eyes, eyebrows and nose). 
As a consequence, texture dissimilarities can be obtained as 
geodesic distances between probability distributions [4, 13].

In information geometry [36], the geodesic distance is 
defined as the length of the shortest path between probability 
distributions lying on a Riemannian manifold induced by 
the Fisher information metric applied to a parametric family 
of probability distributions [36, 37]. As result, the geodesic 
distance is a natural dissimilarity metric between probability 
distributions, and is used to discriminate texture in several 
image-based-applications, e.g. face recognition [4]. Moreover, 
the normal distribution is widely used in several applications, 
however, there is no known closed-form solution for the geo-
desic distance between general multivariate normal distribu-
tions. Therefore, we propose two efficient approximations to 
be used as texture dissimilarity measures in the context of face 
recognition.

Moreover, we propose a novel approach for face recogni-
tion which uses information geometry techniques [36, 37] to 
discriminate face textures, in which sparse facial features are 
extracted from high-resolution color face images by using 
predefined landmark topologies, unlike the appearance-based 
approach, in which low-resolution grayscale face images are 
used to reduce the computational complexity [17, 19–21]. 
By adopting a common landmark topology, the dissimilarity 
between distinct face images can be scored in terms of the dis-
similarities (obtained using the proposed texture dissimilarity 
measures) between their corresponding landmarks repre-
sented by multivariate normal distributions, which express the 
color distribution in the vicinities of each landmark location.

The classification of new face samples is based on the 
nearest neighbor rule. Therefore, a new sample is classified by 
determining the face image sample in the training set which 
minimizes the dissimilarity score against the new sample. Our 
new face recognition method was compared to methods rep-
resentative of the state-of-the-art using color or grayscale face 
images, and provided higher recognition rates, reinforcing 
a belief that color information is relevant for face recogni-
tion [3, 31]. Moreover, our new texture dissimilarity metrics 
applied to face recognition also are efficient in general texture 
discrimination (e.g. texture recognition of material images), 
according to an additional set of experiments that we pro-
vide in texture recognition, also overcoming state-of-the-art 
methods.

This paper is organized as follows. Section 2 proposes geo-
desic distance approximations between multivariate normal 
distributions to be used as a texture dissimilarity metric in face 
recognition. Section 3 presents the proposed face recognition 

method, where section 3.1 discusses how sparse features and 
probability distributions are obtained from face images, and 
section 3.2 presents how dissimilarities between distinct face 
images are scored in terms of the dissimilarities between 
textures in their corresponding landmark vicinities by using 
the proposed geodesic distance approximations. The exper-
imental results are presented and discussed in section 4 and 
the final conclusions and ideas for future works are presented 
in section 5.

2. Geodesic distance approximations between  
multivariate normal distributions

In many face recognition methods, face features are repre-
sented as vectors [3, 17, 19–21]. However, those feature rep-
resentations are highly affected by natural image issues such 
as variations in illumination, pose and scale. Moreover, usu-
ally there are not enough samples (face images) properly to 
sample such high-dimensional feature spaces.

On the other hand, multivariate probability distributions of 
color image pixels tend to preserve the original image charac-
teristics in a lower dimensionality representation, which are 
useful for texture discrimination. Moreover, such feature rep-
resentations are robust to scale and pose variations. Therefore, 
we choose to represent image features as multivariate normal 
distributions which are defined as follows:

F(x|µ,Σ) =
e−

1
2 (x−µ)TΣ−1(x−µ)

√
(2π)C|Σ|

, (1)

where x is a C-dimensional vector, μ is the C-dimensional 
mean and Σ is the C × C covariance matrix, for images with 
C color channels.

Since geodesic distances are the natural distance measure 
for families of probability distributions [36], and assuming 
that the texture in the landmark vicinities is normally distrib-
uted, we use geodesic distances between normal distributions 
in order to measure dissimilarities between the textures of 
corre sponding landmarks of distinct face images.

Considering the case when there are two univariate normal 
distributions F1(x|µ1,σ1) and F2(x|µ2,σ2), the geodesic dis-
tance Ge(F1, F2) between both distributions is given in a 
closed-form [37] by:

Ge(F1, F2) =
√

2 ln
1 + δ

1 − δ
= 2

√
2 tanh−1 δ, (2)

where

δ ≡

[
(µ1 − µ2)

2
+ 2(σ1 − σ2)

2

(µ1 − µ2)
2
+ 2(σ1 + σ2)

2

]1/2

. (3)

However, for the proposed method, a univariate normal 
distribution is not suitable since it supports only monochro-
matic images (i.e. grayscale images). Instead, we use color-
based feature representations since color features tend to 
improve image class discrimination [3, 31]. Therefore, mul-
tivariate normal distributions are more adequate to represent 
face image features.
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One special case of multivariate normal distribution is 
when the covariance matrix Σ = diag(σ2

1,σ2
2, ...,σ2

C) is a diag-
onal matrix (i.e. the color channels are independent features). 
Therefore, the geodesic distance Gf (F1, F2) between multivar-
iate normal distributions F1(x|µ1,Σ1) and F2(x|µ2,Σ2) given 
by [38] for diagonal covariance matrices can be used as a dis-
similarity metric:

Gf (F1, F2) =

√√√√ C∑
c=1

Ge(Fc
1, Fc

2)
2, (4)

where Fc
1 = F1(x(c)|µ1(c),Σ1(c, c)) represents the cth inde-

pendent univariate normal distribution with mean µ1(c) and 
variance Σ1(c, c), belonging to the multivariate distribution 
F1(x|µ1,Σ1).

However, image color channels are usually not statistically 
independent, and using multivariate normal distributions with 
diagonal covariance matrices may discard relevant and dis-
criminative texture information which should be accounted 
for geodesic distances. Moreover, such distributions are not 
generally adequate for texture discrimination since they ignore 
the natural covariances between color channels inherent in the 
color images.

Therefore, in order to obtain more accurate geodesic dis-
tances, we can consider using geodesics for general multivar-
iate normal distributions, where the covariances between color 
channels are also accounted. Unfortunately, there is no known 
closed-form solution for this case, but closed-form solutions 
for two specific multivariate normal distribution subcases are 
known [37, 38]:

 (i)  µ1 �= µ2,Σ1 = Σ2 :

Gµ(F1, F2) =

√
(µ1 − µ2)

T
(Σ1)

−1
(µ1 − µ2), (5)

 (ii)  µ1 = µ2,Σ1 �= Σ2 :

GΣ(F1, F2) =

√√√√1
2

C∑
j=1

log2(λj), (6)

with {λj} = Eig((Σ1)
−1/2

Σ2(Σ1)
−1/2

), (7)

where Eig is a function that returns the eigenvalues of a given 
matrix and λj indicates the jth eigenvalue.

We intend to approximate the geodesic distance for the 
case of general multivariate normal distributions based on 
equations  (5) and (6), however some adaptations are neces-
sary due to the fact that distinct images often present different 
means and covariance matrices. As equation (6) does not con-
sider means (µ1 and µ2), we can use it without changes since 
it is independent of the means. However, equation (5) requires 
a common covariance matrix Σ1, but we have two different 
covariance matrices Σ1 and Σ2. Therefore, we propose the fol-
lowing two alternatives for computing Gµ for general multi-
variate normal distributions:

Gg
µ(F1, F2) = 0.5

√
(µ1 − µ2)

T
(Σ1)

−1
(µ1 − µ2)

+ 0.5
√

(µ1 − µ2)
T
(Σ2)

−1
(µ1 − µ2),

 

(8)
and,

Gh
µ(F1, F2) =

√
(µ1 − µ2)

T
(
Σ1 +Σ2

2

)−1

(µ1 − µ2), (9)

leading to two distinct ways to approximate the geodesic dis-
tance for general multivariate normal distributions:

Gg(F1, F2) =
Gg

µ(F1, F2) + GΣ(F1, F2)

2
, or (10)

Gh(F1, F2) =
Gh

µ(F1, F2) + GΣ(F1, F2)

2
. (11)

Considering that the color channels of face images are 
statistically independent, we fall into the multivariate case 
with diagonal covariance matrix (Gf). Otherwise, the general 
multivariate case provides a more accurate geodesic distance 
approximation between multivariate normal distributions  
(Gg or Gh).

Moreover, based on information geometry concepts  
[36, 37], the proposed geodesic distance approximations for 
multivariate normal distributions (Gf, Gg and Gh) can be con-
sidered as Riemannian metrics on the parameter space of the 
multivariate normal distributions given by the C-dimensional 
mean vectors (μ) and the C × C-dimensional positive semi-
definite symmetric matrices, i.e. covariance matrices (Σ). As a 
consequence, our proposed geodesic distance approximations 
can be used as efficient dissimilarity metrics for the statistical 
discrimination of texture representations.

Next, we present the proposed approach for face recog-
nition, which is based on the proposed geodesic distance 
approximations as a texture dissimilarity metric.

3. Face representation and recognition

Next, we present our proposed approach for face representa-
tion and classification.

3.1. Sparse face feature extraction

Typical appearance-based methods [17, 19–21] exploit the 
face data variability for machine learning. However, in order 
to reduce the computational complexity, these methods use 
low-resolution grayscale face images which are converted to 
the form of high-dimensional feature vectors. On the other 
hand, more discriminative features tend to be obtained from 
high-resolution color face images by extracting information 
from the texture in the vicinities of key points on the face 
images (i.e. landmarks) [3]. Therefore, we propose a feature 
extraction method based on the sparse approach, since this 
feature representation can be approached as a multivariate 
classification problem [3, 31].

Meas. Sci. Technol. 29 (2018) 114001
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Assuming a point distribution model to represent color 
face images, a predefined topology with Q landmarks can be 
used to represent the facial features at Q face image locations. 
These Q landmarks may be manually annotated or automati-
cally identified in the face images. However, there is uncer-
tainty about the correct location of manually annotated or 
automatically identified landmarks due to image artifacts (e.g. 
head pose, noise, illumination change, etc). Therefore, given a 
landmark topology, we can introduce interpolated landmarks 
between each pair of consecutive landmarks on a face image, 
improving the reliability of the biometric information. The 
final landmark topology contains a set of L identified and 
interpolated landmarks, with L  >  Q. Moreover, a known land-
mark topology was used in our work [3, 4], where the land-
marks are positioned at key facial points (e.g. chin, mouth, 
nose, eyes, eyebrows and forehead), helping in the extraction 
of relevant features for face recognition.

Therefore, given a landmark topology with L landmarks, 
the texture in the squared vicinities with size w × w cen-
tered in each landmark l is extracted from each face image 
(i.e. head pose) b of face class a, considering that the face 
images have C color channels. For a landmark l, Ia,b,l(m, n) is 
the C-dimensional color vector representing the pixel (m, n) in 
the vicinity of l, with m, n = 1, 2, ..., w.

Next, statistical feature descriptors of each landmark are 
obtained. First, the C-dimensional color means µa,b,l in the 
landmark vicinities are obtained as follows:

µa,b,l = E[Ia,b,l] =
1

w2

w∑
m,n=1

Ia,b,l(m, n), (12)

that are associated with their respective (C × C)-dimensional 
covariance matrices Σa,b,l, which are obtained as follows:

Σa,b,l = E[(Ia,b,l − µa,b,l)(Ia,b,l − µa,b,l)
T ]

=
1

w2

w∑
m,n=1

(Ia,b,l(m, n)− µa,b,l)(Ia,b,l(m, n)− µa,b,l)
T .

 

(13)

For instance, considering color (RGB) face images, µa,b,l 
will be a 3-dimensional vector, but for grayscale face images 
µa,b,l will be a 1-dimensional vector. As result, each landmark 
l in the face image b of class a is represented by the mean µa,b,l 
and the covariance matrix Σa,b,l computed from the vicinity of 
the same landmark.

Since the landmarks represent discriminative information 
on the face images, we propose to calculate dissimilarities 
between distinct face images in terms of the dissimilarities 
between the texture in their corresponding landmark vicini-
ties by adopting a common landmark topology (i.e. the land-
mark topology discussed in section 3.1) as will be described 
in section 3.2.

3.2. Face classification

Since geodesic distances are a natural dissimilarity metric for 
statistical distributions, we propose to calculate dissimilari-
ties between distinct face images by summing dissimilarities 
between the texture of their corresponding landmarks which 

are given as geodesic distances approximations between 
multivariate normal distributions as presented in section  2. 
Considering L, the total number of landmarks in a landmark 
topology, a geodesic distance approximation between multi-
variate normal distributions can be adopted, i.e. Gf (equation 
(4)), Gg (equation (10)) or Gh (equation (11)).

Considering color (RGB) face images, the texture in 
the vicinity of each landmark can be considered as a multi-
variate normal distribution, since each pixel can be treated 
as a 3-dimensional sample within the landmark vicinity. 
Considering that the color channels are independent for each 
landmark, the geodesic distance approximation Gf for multi-
variate normal distributions with diagonal covariance matrices 
provides a suitable geodesic distance metric. In this case, the 

dissimilarity Sf
a′,b′

a,b  between the face image (i.e. head pose) b 

of face class a with the face image b′ of face class a′ can be 
scored by using Gf as follows:

Sf
a′,b′

a,b =

L∑
l=1

Gf (Fa,b,l, Fa′,b′,l), (14)

where Fa,b,l represents a multivariate normal distribution 
with null covariances for the landmark l in the face image 
b of face class a with the C-dimensional mean µa,b,l and the 
(C × C)-dimensional covariance matrix Σa,b,l. On the other 
hand, if the multivariate face data present relevant covariances 
between color channels, one of the proposed geodesic distance 
approximations for general multivariate normal distributions 
(Gg or Gh) should be more adequate for the score calculation:

Sg
a′,b′

a,b =

L∑
l=1

Gg(Fa,b,l, Fa′,b′,l), (15)

or

Sh
a′,b′
a,b =

L∑
l=1

Gh(Fa,b,l, Fa′,b′,l). (16)

As result, small scores indicate similar face images (which 
is the case of a sum of small dissimilarities between land-
marks), and, similarly, bigger scores indicate dissimilar face 
images. Based on the nearest neighbor classification rule, 
the classification of a new face sample image Ia′,b′ occurs by 
determining the face image Ia,b in the training set which is less 
dissimilar to Ia′,b′ by minimizing one of the three proposed 

score functions: Sf
a′,b′

a,b , Sg
a′,b′

a,b  or Sh
a′,b′
a,b .

Moreover, in the score calculation in practice, some land-
marks may be influenced by issues that commonly affect 
the face representation, such as variations of illumination, 
changes in the head pose and change of appearance, including 
also landmark positioning inaccuracies or texture non-Gaussi-
anity. Such inaccurately positioned landmarks are expected to 
have some effect on the proposed dissimilarity score functions 
calculations. However, the impact of such landmarks is atten-
uated by the addition of more landmarks, which are interpo-
lated and tend to increase the overall feature quality of the face 
image representation, diluting the impact of any inaccurately 
positioned landmarks on the proposed scores calculations, 
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since landmark interpolation increases the overall feature 
quality as discussed in section 3.1.

Next, we compare experimentally the proposed method 
with methods that are representative of the state-of-the-art 
under adverse image conditions found in practice.

4. Experimental results

Experiments were conducted to compare the proposed face 
recognition method presented in section  3 (which uses the 
geodesic distance approximations presented in section 2 to 
discriminate texture in the vicinities of the landmarks) to 
methods representative of the state-of-the-art using a face 
database commonly used in face recognition (i.e. the FERET 
face database [39]). This face database was created with the 
objective of providing credible data for the development of 
new techniques, technology, and algorithms for the automatic 
recognition of human faces. The database is used to develop, 
test, and evaluate face recognition algorithms. It presents 
color face images in high-resolution (512 × 768 pixels), 
organized in several subsets with specific head pose, expres-
sion, age, and illumination conditions. Experiments were 
performed with the color face images of the first 200 face 
classes of the subsets fa, fb, hl, hr, rb and rc, including all 6 
head poses, totaling 1200 images (6 images for each class), 
as details in [4].

In all experiments with the proposed method, the feature 
extraction and representation method proposed in section 3.1 
was applied to the face images in the database to extract 
statistical feature descriptors (i.e. mean vectors and covari-
ance matrices) from the landmark vicinities of size w × w 
(w = 11) centered at each landmark location, using (12) and 
(13). In order to select consistent features from the landmarks 
vicinities, only faces with no landmark occlusions were used. 
A known landmark topology was used in all experiments in 
table 1, as is discussed in section 3.1, which allows to extract 
important and discriminative features from distinct face image 

locations (e.g. chin, mouth, nose, eyes, eyebrows and fore-
head) [3, 4].

The methods used for comparison in the table  1 are the 
Customized OLPP method (COLPP) [3], Enhanced ASM 
method [31], support vector machines (SVM) [40], spectral 
regression kernel discriminant analysis (SRKDA) [26], multi-
view discriminant analysis (MvDA) [23], Eigenfaces [17], 
Fisherfaces [22], Laplacianfaces [19], orthogonal locality 
preserving projection (OLPP) [20], locally linear embed-
ding (LLE) [30] and Isomap [28]. The proposed method is 
compared using three distinct score functions (Sf, Sg and Sh) 
defined in section 3.2.

A set of experiments involving the proposed method and 
the aforementioned methods was conducted on the FERET 
face database, and 6 runs were executed on the entire test 
subset. In each run, a leave-one-out test strategy was adopted, 
and 5 head poses per class were randomly selected for 
training, and 1 head pose per class was randomly selected 
for testing. Table 1 shows the average face recognition rates 
for the proposed method and methods representative of the 
state-of-the-art. All methods in table 1 use the same selection 
of face images, in color (RGB) or in grayscale (color images 
were converted to grayscale).

For each method listed in table 1, the parameters obtaining 
the best experimental results were chosen by testing each 
method with several parameters configurations until the max-
imum recognition rate was reached. The parameter d used in 
Eigenfaces, Laplacianfaces and other methods is the dimen-
sionality of the subspace, assuming k neighbors, and r is the 
PCA ratio [17, 19, 20], which also is used by the Fisherfaces 
and the MvDA methods. The adopted SVM implementation 
was the LIBSVM [41]. In SRKDA, the Gaussian kernel with 
standard deviation σ was used. In the iterative Boosting LDA 
method [42], 10 iterations were performed in each experiment, 
using half of the training samples for training and the other 
half for validation, and the Euclidean distance was used as the 
distance measure. In table 1, the method MvDA was trained to 
use head poses as views. In the Enhanced ASM method [31], 
the parameter α was set to 1 giving more importance to meas-
urements in the local vicinity of the landmarks.

As shown in table 1, experiments with color images pre-
sented higher recognition rates than the experiments with the 
same images but converted to grayscale, confirming a trend 
that color face features tend to improve face class discrimina-
tion [3, 31]. Moreover, the proposed face recognition method 
with the score functions Sh or Sg presented higher recogni-
tion rates than with the score function Sf, pointing out that the 
covariance information between color channels is important to 
accommodate effects of lighting variation and to approximate 
better the geodesic distances between multivariate normal 
distributions. Finally, the proposed face recognition method 
potentially can present higher recognition rates than compa-
rable methods in the state-of-the-art.

The obtained execution time is relevant for practical face 
recognition applications, which commonly require real-time 
processing. The average execution time per color image 
for each method in the experiments reported in table  1 are 

Table 1. Face recognition rates obtained for the FERET face 
database.

Methods
RGB 
(%)

Grayscale 
(%)

Proposed method with score Sh 95.3 82.3
Proposed method with score Sg 95.4 83.2
Proposed method with score Sf 83.1 78.6
COLPP (d  =  54, k  =  6, t  =  500, r  =  0.78) 93.8 79.5
Enhanced ASM 72.5 53.8
SVM 85.2 76.4
SRKDA (σ = 20 000) 64.9 59.7
MvDA (d  =  100) 76.1 71.4

Eigenfaces (d  =  51) 69.6 64.1

Fisherfaces (r  =  0.8) 67.1 65.7

LPP (d  =  50, k  =  1, t  =  500, r  =  0.34) 67.1 65.5

OLPP (d  =  54, k  =  1, t  =  500, r  =  0.34) 69.0 66.2
LLE 54.2 46.2
Isomap 69.1 64.8
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mentioned in table 2, for training and for testing. The short 
execution times found for the proposed method are due to its 
low computational complexity, since only small mean vectors 
and covariance matrices are extracted from the face images. 
As a result, the proposed method has potential for real real-
time applications. The experiments reported in table 2 were 
performed in a computer with an Intel i5 processor, third gen-
eration, with 8 Gb RAM.

The results obtained in table  1 show that the proposed 
metrics to discriminate texture are efficient in face recogni-
tion (Gg in (10) and Gh in (11)). Moreover, we provide an 
additional set of experiments in general texture discrimina-
tion (e.g. texture recognition of material images) in order to 
evaluate the potential of the proposed texture discrimination 
metrics shown in section 2 to be applied in typical texture dis-
crimination problems (i.e. represented here by the KTH-TIPS 
texture database [43] and the KTH-TIPS-2b texture database 
[44]). In these experiments, statistical feature descriptors (i.e. 
mean vectors and covariance matrices) were extracted using 
(12) and (13) from the entire texture images, assuming that 
the texture features in each texture image are normally dis-
tributed. This is supported by the fact that the human face pre-
sents a recognizable structure which helps face recognition  
[3, 31]. However, texture images often contain stochastic vari-
ations, and may vary with the pose and scale, so textures are 
described statistically.

As mentioned before, in order to evaluate the potential of 
the proposed method for texture recognition, additional tests 
were performed on the KTH-TIPS texture database [43] and 
on the KTH-TIPS-2b database [44]. The KTH-TIPS texture 
database [43] provides images of textured materials in color 
with size 200 × 200 organized in 10 texture classes, and each 
class consists of 81 samples which are captured under nine 
scales, three different poses and three distinct illumination 
directions. Experiments were run by partitioning the data-
base samples in 50 partitions of training and testing sets, in 
which half of the samples per class are randomly selected for 
training and the remaining half for testing [7]. Table 3 shows 
the average texture recognition rates for the proposed method 
and methods representative of the state-of-the-art.

The methods presented in table 3 used for comparison in the 
KTH-TIPS database are the sorted random projections (SRP) 
[7], pattern lacunarity spectrum (PLS) [45], scale-selective 
local binary pattern (SSLBP) [46], locally encoded transform 
feature histogram (LETRIST) [47] and dense microblock dif-
ference (DMD) [48]. The proposed method was compared 
using three distinct score functions (Sf, Sg and Sh) defined in 
section 3.2.

Another challenging database used in texture recognition 
is the KTH-TIPS-2b database [44] which provides material 
images in color with size 200 × 200 organized in 11 texture 
classes, and each class consists of 432 samples which are cap-
tured under nine scales, three different poses and four distinct 
illuminants, as exemplified in [44]. Fifty experiments were 
run partitioning the database samples in a ten-fold test strategy 
[49], in which 11 samples per class are randomly selected for 
testing and the remaining samples were selected for training 
in each experiment. Table 4 shows the average texture recog-
nition rates for the proposed method and methods representa-
tive of the state-of-the-art.

The methods presented in table  4 used for comparison 
in the KTH-TIPS-2b database are the local binary pattern 
(LBP) [50], improved LBP (ILBP) [51], shift LBP (SLBP) 
[52], local ternary pattern (LTP) [53], α-local binary pattern 
(αLBP) [49], and Improved αLBP (IαLBP) [49]. The pro-
posed method was compared using three distinct score func-
tions (Sf, Sg and Sh) defined in section 3.2.

In the experimental results presented in tables 3 and 4, the 
proposed texture dissimilarity metric (i.e. geodesic distance 
approximations) applied to texture recognition with the score 
functions Sh or Sg presented higher recognition rates than with 
the score function Sf, also pointing out that the covariance 

Table 2. Elapsed execution times by image for training and testing 
in the face recognition experiments with the FERET face database.

Methods Training (s) Test (s)

Proposed method with score Sh 0.04 0.04
Proposed method with score Sg 0.04 0.04
Proposed method with score Sf 0.04 0.04
COLPP 0.06 0.05
Enhanced ASM 0.47 0.05
SVM 0.14 0.06
SRKDA 0.06 0.05
MvDA 0.07 0.04
Eigenfaces 0.06 0.04
Fisherfaces 0.06 0.05
LPP 0.08 0.06
OLPP 0.06 0.05
LLE 0.81 1.19
Isomap 0.12 0.44

Table 3. Texture recognition rates obtained for the KTH-TIPS 
texture database.

Methods Recognition rates (%)

Proposed method with score Sh 99.76
Proposed method with score Sg 99.76
Proposed method with score Sf 66.80
SRP [7] 99.29
PLS [45] 98.50
SSLBP [46] 99.39
LETRIST [47] 99.00
DMD [48] 97.96

Table 4. Texture recognition rates obtained for the KTH-TIPS-2b 
texture database.

Methods Recognition rates (%)

Proposed method with score Sh 99.24
Proposed method with score Sg 99.23
Proposed method with score Sf 93.70
LBP [50] 92.53
ILBP [51] 95.88
SLBP [52] 95.54
LTP [53] 96.61
αLBP [49] 96.04

IαLBP [49] 97.25
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information between color channels is important to approxi-
mate better the geodesic distance between multivariate normal 
distributions. Finally, our new method applied to texture rec-
ognition presented higher recognition rates than comparable 
methods in the state-of-the-art, also pointing out that this dis-
crimination metric is efficient not only for face textures, but 
also for typical textures, such as those occurring in material 
images.

5. Conclusions

In this work, geodesic distance approximations for multi-
variate normal distributions were proposed as texture dis-
similarity measures applied to face recognition. Also, a novel 
face recognition method based on information geometry 
techniques [36] is proposed. In the proposed approach, the 
textural dissimilarities in the vicinities of corresponding land-
marks in distinct high-resolution color face images are scored 
in terms of these geodesic approximations, i.e. using the pro-
posed geodesic distance approximations between multivariate 
normal distributions representing the color distributions in 
the vicinity of each landmark location. Besides, a specific 
landmark topology is utilized to extract and compare the face 
landmarks.

Our proposed face recognition method tends to handle 
better common issues in face recognition, such as variations 
in illumination, changes in the head pose, change of appear-
ance, and other issues, since the extracted pixel distributions 
sampled in the vicinities of the face landmarks tend to be sim-
ilar across different expressions and head poses. Moreover, 
the new method takes advantage of the natural redundancy 
that exists in high-resolution color face images, so it more 
accurately evaluates the dissimilarities between textures in the 
vicinities of corresponding landmarks.

Our method was compared to methods that are repre-
sentatives of the state-of-the-art using color and also gray-
scale face images, and it tends to obtain higher recognition 
rates. Moreover, the experimental results also support a 
trend in which color information is relevant on face recog-
nition [3, 31].

Additionally, our texture dissimilarity measures applied in 
face recognition potentially can be efficient in general texture 
discrimination (e.g. texture recognition of material images); 
an additional set of experiments in texture recognition showed 
that our method improved on state-of-the-art methods. 
Furthermore, using different covariance matrices was found 
to be relevant for texture discrimination.

Future work will deal with issues such as the identifica-
tion of the best landmark topology for face recognition. Also, 
we intend to investigate texture feature representations for 
binary patterns applied to face recognition. Further study 
will be of alternative techniques to obtain other geodesic dis-
tance approximations for multivariate normal distributions, 
including Gaussian mixture models.
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