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Abstract—Low-precision floating-point arithmetic is a pow-
erful tool for accelerating scientific computing applications,
especially those in artificial intelligence. Here, we present an
investigation showing that other high-performance computing
(HPC) applications can also harness this power. Specifically, we
use the general HPC problem, Ax = b, where A is a large dense
matrix, and a double precision (FP64) solution is needed for ac-
curacy. Our approach is based on mixed-precision (FP16→FP64)
iterative refinement, and we generalize and extend prior advances
into a framework, for which we develop architecture-specific
algorithms and highly tuned implementations. These new meth-
ods show how using half-precision Tensor Cores (FP16-TC) for
the arithmetic can provide up to 4× speedup. This is due to
the performance boost that the FP16-TC provide as well as to
the improved accuracy over the classical FP16 arithmetic that
is obtained because the GEMM accumulation occurs in FP32
arithmetic.

Index Terms—FP16 Arithmetic, Half Precision, Mixed Preci-
sion Solvers, Iterative Refinement Computation, GPU Comput-
ing, Linear Algebra

I. INTRODUCTION

To take advantage of new processor designs, algorithms
must also be redesigned. This is especially true and chal-
lenging in the area of dense linear algebra, where many
algorithms are expected to run at close to the machine’s peak
performance. For example, LINPACK was redesigned to move
away from using vector algorithms that were useful on the
vector machines of the 1970s, leading to the new Linear
Algebra PACKage (LAPACK) that uses blocked algorithms on
cache-based processors. LAPACK itself had to be redesigned
for multi-core and heterogeneous many-core architectures,
which resulted in the Matrix Algebra on GPU and Multicore
Architectures (MAGMA) library [15], [26].

This paper discusses the redesign of a mixed-precision iter-
ative refinement technique to harness the fast FP16-TC arith-
metic available in the latest NVIDIA GPUs. Modern archi-
tectures are trending toward multiple floating-point arithmetic
precisions being supported in the hardware, and lower preci-
sions are often much faster than higher precisions. For exam-
ple, single-precision, 32-bit floating-point arithmetic (FP32) is
usually twice as fast as double-precision, 64-bit floating-point

arithmetic (FP64). Recently, various machine learning and
artificial intelligence neural network applications increased the
need for FP16 arithmetic (see Figure 1), and vendors started to
accelerate it in hardware. Currently, the NVIDIA V100 TCs
can execute FP16 at up to 112 teraFLOP/s (85 teraFLOP/s
when the matrix A and B are in FP32) —vs. 7 teraFLOP/s for
FP64 and 14 teraFLOP/s for FP32 on a V100 through PCIe.
Developing algorithms to use this hardware efficiently will be
highly beneficial in high-performance computing (HPC).

Fig. 1. IEEE 754 FP16 format. This representation has 3.311 decimal digits
of accuracy and a maximum representable value of 65,504.

Mixed-precision iterative refinement is used to accelerate
Ax = b solvers, where A is a dense matrix. The main idea is
to compute the LU factorization of A in low precision and
use the factorization in a refinement loop, with the residual
possibly computed in higher precision. These methods have
been studied in the past, as discussed in Section II. A per-
sistent challenge has been to redesign the techniques for new
architectures and to develop highly tuned implementations that
resolve computational issues like inefficient parallelization,
scaling, and use of mixed-precision calculations. A lot of
the theoretical work with numerical experiments on small
problems has been restricted on MATLAB or reference im-
plementations, which are prone to overlook computational
issues when achieving acceleration using highly tuned standard
solvers. To address this problem on GPU Tensor Cores, we
leverage building blocks from the MAGMA library, which
provides state-of-the-art, high-performance algorithms such
as LU factorization—including a set of highly tuned mixed-
precision iterative refinement algorithms for FP32 →FP64
arithmetic [27].
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II. RELATED WORK

Iterative refinement is a well-established technique that
dates back to Wilkinson in the 1940s. The idea is to im-
prove the computed solution of a linear system by solving
a correction equation and adding the correction to the orig-
inal solution; see Wilkinson [28], Moler [19], Stewart [25],
Demmel [7]) and, for a comprehensive treatment, Higham [14,
Chap. 12]. In iterative refinement, the three tasks (original
solve/factorization, residual computation, and correction equa-
tion solve) can be done in the same precision (fixed precision)
or in different precisions (mixed precision). Fixed precision
iterative refinement was analyzed by Skeel [24] for an LU
solver and extended by Higham [12], [13] for a general solver.
In the 2000s, motivated by processors equipped with FP32
speed 2× that of FP64, mixed precision iterative refinement—
with the LU factorization done in FP32 and everything else
done in FP64—was explored in [3], [17].

Replacing the direct triangular solves of the correction
equation with an iterative method, as suggested in [4] in a
mixed precision context, leads to “nesting” of two iterative
methods, which in general are called “inner–outer” iterations,
the latter having been studied both theoretically and compu-
tationally [9], [21], [23], including in mixed-precision com-
putation scenarios [2]. Recently, Carson and Higham [4], [5]
analyzed the convergence property of a three precision iterative
refinement scheme (factorization precision, working precision,
residual precision) and concluded that if the condition number
of A is not too large, κ∞(A) = ‖A‖∞‖A−1‖∞ < 104, then using
FP16 for the O(n3) portion (the LU factorization) and (FP32,
FP64) or (FP64, FP128) as the (working, residual) precision
for the O(n2) portion (refinement loop), one can expect to
achieve forward error and backward error on the order of 10−8

and 10−16 respectively. We note that, if x̂ is the solution of
Ax = b the forward error is defined by ‖x̂−x‖∞/‖x‖∞ and the
backward error is defined by ‖r‖2/‖A‖2‖x̂‖2 where r = b−Ax̂.
The same study also showed that when using the general-
ized minimal residual (GMRES) method preconditioned by
the FP16 LU factorization as the refinement procedure, the
constraint on the condition number can be relaxed to be
κ∞(A)< 108 when the (working, residual) precision is (FP32,
FP64) and to 1012 when the (working, residual) precision is
(FP64, FP128).

An investigation of similar iterative refinement methods
on earlier generations of GPUs can be found in [11]. With
the announcement of NVIDIA’s V100 Tensor Cores. which
improve numerical precision and speed for FP16, it is our
intention to comprehensively investigate how the V100 opens
a new world of opportunities in matrix computations.

III. CONTRIBUTIONS

Compared to our previous work in [11], the primary
contribution of this paper is to propose and implement a
high-performance framework for the mixed-precision iterative
refinement solvers that makes use for the first time of GPU
Tensor Core-accelerated FP16-TC. To this end, we will:

• introduce a new class of multi-precision dense matrix
factorization algorithms; and here we mean that the fac-
torization itself is implemented in multi-precision despite
the fact the iterative refinement is mixed precision.

• develop a framework for exploiting GPU TCs in
mixed-precision (FP16-FP32/FP64) iterative refine-
ment solvers and describe the path to develop high-
performance, Tensor Cores-enabled dense linear algebra
building blocks kernels that can be used to exploit the
FP16-TC in HPC applications;

• present a study on algorithmic variants of IR techniques;
• include performance model study that allow

users/developers to understand the effect of the number
of iterations and to predict performance gain;

• illustrate that a number of problems can be accelerated
up to 4× through the mixed-precision solvers using fast
FP16-TC, 3× using the basic FP16 mixed-precision
solver, or 2× using the FP32 arithmetic;

• provide an analysis of the numerical behavior of the
proposed mixed-precision, TC-accelerated solvers on dif-
ferent types of matrices; and

• quantify—in practice—the performance and limitations
of this approach on V100 GPUs using TC;

• we also provide experiments on dense and sparse matrices
arising from real applications (see Table III);

The developments will be released through the open-source
MAGMA library [15] to make these experiments indepen-
dently reproducible and to allow the scientific community
build and study different type of research on the top of this
work. We also would like to point readers who are interested
in energy efficiency and power measurement to our work
presented in [10] and which investigate the energy gain that
can be brought by the iterative refinement techniques from a
power consumption point of view.

IV. METHODS

We consider two methods to extract higher precision so-
lutions from low-precision factorizations. The first method
is standard iterative refinement (IR) as implemented in LA-
PACK, and the second method is iterative refinement using
preconditioned GMRES for solving the correction equation,
which we denote by IRGM. The IR method is a well-
established technique, while IRGM is more recent and holds
more promise for exploiting low precision in factorizations.

A. Background

Below we expound on the IR and IRGM methods.
1) The LU factorization: An LU factorization represents A

as the product of a lower triangular matrix L and and an upper
triangular matrix U , so that solving Ax = b reduces to solving
two triangular systems:

Ax = b⇒ LUx = b : solve Ly = b then solve Ux = y.

Algorithmically, as illustrated in Figure 2, the LU factorization
can be viewed as a sequence of steps with two distinct phases
per step: 1) a panel factorization that affects the data depicted



by the orange portion of Figure 2, and 2) a trailing matrix
update that updates data represented by the magenta and
green colors in Figure 2. From a software point of view,
we know that PanelFactorize is a memory-bound step
performed through the Xgetf2 routine and occupies a small
portion of the total time, while TrailingMatrixUpdate
is compute-bound and is performed using the BLAS-3 routines
(Basic Linear Algebra Subprograms) Xtrmm and Xgemm
and occupies the greatest portion of the time spent in the
factorization. Thus one might expect the performance of the
LU factorization to be asymptotically similar to the BLAS-3
Xgemm routine.

Fig. 2. Two-phase implementation of a one-sided factorization.

2) Iterative Refinement: The IR technique improves the
accuracy of a computed solution, x̂, for a linear system of
equations, Ax = b. Here, we let the initial solution be x0 = 0,
and the iterative refinement is a series of iterations:

1) Residual: Compute the residual r = b−Axi.
2) Correction: Solve Ac = r (e.g., using an initial LU

factorization).
3) Update: Correct the current solution xi+1 = xi + c.

If all three steps can be computed exactly, then the IR
algorithm completes in one iteration. However, in floating-
point arithmetic the above iterations must be repeated.
IR is usually carried out with LU factorization with partial

pivoting. In this context, the correction equation is solved
using the LU factors. Denote by uuu the precision in which steps
1 and 3 are carried out. Step 2 is performed in the precision uuu fff
which is the precision of the LU factorization, because it uses
the “L” and “U” factors to solve the correction equation Ac= r
and then it casts the solution “c” to the working precision
uuu. If the LU factorization is also computed in the precision
uuu, the method is called fixed-precision IR, otherwise if the
LU factorization is performed at lower precision uuu f , it is
called mixed-precision IR. Fixed-precision IR can be used
to improve the backward error of an LU factorization without
a strong stabilizing pivoting strategy [1], [8], [18], [24]. On
the other hand, mixed-precision IR also improves the forward
error to the working precision—if the condition number of A
is not too large: uuu f κ∞(A)≤ 1.

The economics of mixed-precision IR using low-precision
LU factorization compared with directly solving with a higher
precision LU factorization depend on the relative speed of
low-precision arithmetic and on the cost of the refinement
process. It is therefore a function of the executing hardware,
the IR configuration, and also of the properties of the matrix
A (notably, its condition number). In the specific case of the
V100 GPU, the practical speed of FP16-TC is about 12×
faster than FP64 for square Xgemm and is about 6× faster for

the rank-k update Xgemm that is used by the LU factorization
(see Figure 3a) which pushes the balance in favor of mixed-
precision IR.

3) Iterative Refinement with Preconditioned GMRES: GM-
RES [22] is a popular Krylov subspace iteration for solving
a general linear system of equations. Following Carson and
Higham [4] we will consider another variant of iterative refine-
ment by using preconditioned GMRES to solve the correction
equation Ac = r in step 2 of the classical IR algorithm
described above. GMRES will be preconditioned by the low
precision LU factors. The idea is that the GMRES solver will
provide a better and more stable solution to Ac = r than the
basic triangular solve, which is directly affected by the quality
of the low precision LU factors. Using GMRES we can still
guarantee that the solution of the correction equation Ac = r
has residual at the level of the convergence tolerance requested
by the algorithm. The convergence tolerance is chosen of the
order of the unit roundoff of the low precision arithmetic used
during the factorization (e.g., we use 10−4 or 10−8 for when
the LU is in FP16 or FP32 respectively). Since this paper
focuses on practical usage and possible performance gains
rather than error analysis, we point the reader to [4], [5] for
detailed error analysis of the IR and IRGM techniques.

We describe both the IR and IRGM methods in Algorithm 1
in a unified framework, where the difference between them
is in the correction equation solver (LU or preconditioned
GMRES).

Data: An n×n matrix A, and size n vector b.
Result: A solution vector x(i) approximating x in

Ax = b, and an LU factorization of A = LU .
(FP16) Solve Ax(1) = b using FP16 LU factorization

and triangular solve;
i← 1;
repeat

(FP64) Compute residual r(i)← Ax(i)−b;
(Low Precision) Solve Ac = r(i) using

IR: FP16 triangular solve using the LU
factors, casting c to FP64, or
IRGM: FP64 GMRES preconditioned by
M = LU ;

(FP64) Update x(i+1) = x(i)− c;
i← i+1;

until x(i) is accurate enough;
Algorithm 1: IR: mixed-precision iterative refinement
using triangular solve. IRGM: mixed-precision iterative
refinement with GMRES to solve correction equation.

B. Algorithmic Advancements

A recent study by Carson and Higham [4] provides an anal-
ysis of using three precisions for the IR iterations, which we
can take as FP32 for the working precision, FP16 for the LU
factorization, and FP64 for the residual computation (Table I).
For a matrix with a condition number of κ∞(A) < 104, IR
converges to FP32 accuracy. However, when the correction
equation is solved by GMRES preconditioned by the LU



TABLE I
IEEE PRECISIONS AND NUMERICAL PROPERTIES.

Type Range Unit Roundoff
FP16 10±5 5×10−4

FP32 10±38 6×10−8

FP64 10±308 1×10−16

factors and the matrix–vector products are computed in FP64,
the restriction on the condition number can be relaxed to
κ∞(A) < 108. However, it remains unclear how fast GMRES
converges. Inspired by the analysis of the aforementioned
study and the performance potential of FP16 on the NVIDIA
V100 GPUs, we have developed a practical implementation
of a similar IR variant with GMRES denoted by IRGM in
the MAGMA library [15]. The implementation is different
from [4] in that:
• 1) we only use two precisions—FP16 for the LU fac-

torization O(n3) work and FP64 for the high precision
for everything else; This decision is driven by the work
done by [3], [17] which studied and showed the feasibility
of the two precisions iterative schema and by the com-
plexity required to implement three precision algorithm
in particular the quad precision.

• 2) we propose a multi-precision factorization algorithm.
Our LU algorithm uses both FP16 and FP32 preci-
sion during its progress. We only use FP16 matrix
multiplication (hgemm) in the LU factorization, while
everything else is in FP32—effectively making our LU
multi-precision. This decision is driven by the idea to
compute the most numerically sensitive portions (e.g.,
the panel factorization and the trsm) of the algorithm
in higher precision to avoid underflow and overflow that
can easily occur when operating in full FP16.

C. Half-Precision LU using V100 Tensor Cores

Driven primarily by the need for training in deep learning,
the latest offering from NVIDIA—the Tesla V100 GPU based
on the Volta architecture—provides specific programmable
matrix multiply–accumulate units that are said to deliver a
theoretical peak performance of 110 teraFLOP/s in FP16-TC.
The V100 has 8 Tensor Cores per streaming processor for
a total of 640 Tensor Cores. A Tensor Core can compute
D = A∗B+C per clock cycle, where all matrices are 4×4 in
size (i.e., 64 floating point FMA mixed-precision operations
per clock cycle). A and B must be in FP16, but C and D
can be in either FP16 or FP32. The multiplication occurs
in FP16 and is accumulated in FP32 with other products.
In our experiment, FP16-TC denotes the use of the Tensor
Core FP16 routine. We expect significant improvements in
numerical behavior over the basic FP16 arithmetic, where all
calculations are rounded and accumulated in FP16. The Ten-
sor Core caters primarily to deep learning applications, where
lower precision is tolerable, and is not straightforward for use
in more numerically demanding applications (e.g., numerical
simulations and linear solvers in particular). Since TC provides

a large speedup for matrix-multiplication, it can be expected
to accelerate FP16 dense matrix factorizations, which are
rich in matrix multiplication operations. The challenge lies in
how to use the low-precision factorization results to achieve
FP32/FP64 level accuracy effectively and efficiently.

D. Convergence Consideration

This subsection discusses the convergence rate of the IR
and IRGM methods in Algorithm 1 Analysis for mixed
precision iterative refinement can be found in [4], [5]. It
yields the sufficient condition κ∞(A) < 104 for linear con-
vergence of IR. It would provide the sufficient condition
for convergence κ∞(A) < 1012 for IRGM if quadruple preci-
sion were used in computing the residuals and applying the
preconditioned matrix. However, it can be shown that our
implementation of IRGM guarantees convergence as long as
κ∞(U−1L−1A)κ∞(A)< 1016, which holds if κ∞(A)< 108 (the
rounding error analysis leading to these conclusions will be
reported elsewhere).

For IRGM, the number of GMRES iterations required per
refinement step is difficult to predict, and the low accuracy
FP16 preconditioner means we have little knowledge about
the preconditioned matrix. In general, for a normal matrix,
A, GMRES converges more slowly as the condition number
of A increases. For a non-normal matrix, the convergence rate
cannot be predicted by the condition number alone. In practice,
the convergence rate depends on the matrix type, the condition
number, and the matrix size. Therefore, in the next section we
study our two proposed algorithms by trying matrices with
different spectrum, sizes, and types.

V. ANALYSIS AND EXPECTED PERFORMANCE

The primary motivation for using FP16 arithmetic is its
unprecedented high performance compared with higher pre-
cisions. This performance is quantified for the V100 GPU
in Figure 3. The PCIe V100 has a practical peak of 6.8
teraFLOP/s in FP64, 14 teraFLOP/s in FP32, 28 teraFLOP/s
in FP16, and a remarkable 85 teraFLOP/s in FP16-TC
(Tensor Cores). The performance of the LU factorization relies
mostly on the performance of the Schur update (or rank-k
Xgemm update), which is a tall-skinny matrix multiplication
that occurs during each step of the LU algorithm. For that,
to understand/model how the LU factorization could benefit
from the FP16 arithmetic, we first study the performance of
the Xgemm routine. This is shown in Figure 3a for the four
available precisions (FP64, FP32, FP16, and FP16-TC). We
consider FP16-TC as a separate precision, since it consists
of a mixed-precision Xgemm, where the multiplication is
performed in FP16, while the accumulation is in FP32.
Thus, FP16-TC is more accurate than a homogeneous FP16
computation. We also note that, in addition to being more
accurate, the FP16-TC is also much faster due to the use of
Tensor Cores.

As shown in Figure 3a, the FP16-TC hgemm-TC operating
on square matrices is about 12× faster than its FP64 dgemm
counterpart. Furthermore, and as expected, the FP16 hgemm



is 2× faster than the FP32 sgemm and about 4× faster than
the FP64 dgemm. Figure 3a also depicts the performance
of the Xgemm for a rank-k update (dashed lines). This is
the type of operation needed by the LU and thus it gives
us an indicator of the performance ceiling/bound of any LU
implementation. The rank-k update hgemm-TC is slower than
the square hgemm-TC due to the fact that the time to read
the data of A and B is comparable to the computational time
for the rank-k update in half precision TC while it is a lot
smaller for the square case or for higher precision, but it still
carries an attractive speedup compared to the dgemm. The
rank-k hgemm-TC achieves about 35 teraFLOP/s, compared
to about 25 teraFLOP/s for the rank-k hgemm, 13 teraFLOP/s
for the rank-k sgemm, and around 6 teraFLOP/s for the rank-k
dgemm.

We also developed a multi-precision LU factorization in
FP16, where we performed the numerically sensitive portion
of the code (e.g., the panel factorization and the trsm) in
FP32—only the GEMMs are in FP16 or FP16-TC, and any
value that exceeds the FP16 range is rounded to the nearest
finite floating-point number. The idea here is to provide a better
stable LU factorization than the fully FP16 implementation
without loss of performance. Figure 3b shows the performance
for the four precisions. As expected, our LU implementation
follows roughly the same trend as the Xgemm kernel for large
n, which proves that our implementation is very well optimized
and is able to attain the theoretical upper bound. Our hgetrf
and hgetrf-TC solvers achieve a speedup from 4× to 5×
over dgetrf respectively and a 2× speedup over sgetrf.

This section is dedicated to the theoretical performance
analysis of the mixed precision (MP) algorithms for linear
solvers. The idea is to understand and predict when iterative
refinement techniques can be used in a beneficial fashion.
From a performance point of view, an algorithm is beneficial
when it reaches the solution in a time faster than the reference
one (which is the FP64 dgesv routine in our case). The
iterative refinement solvers consist of an LU factorization in
low precision εFPXX < εFP64 followed by an iterative loop
based on either classical IR or GMRES (as described above)
to improve the solution to εFP64. Thus, let us define

time for FP64 =
2n3

3Pdgetr f
+

2n2

Pdtrsv
(1)

time for MP =
2n3

3PXgetr f
+ k

(
2n2

Pdgemv
+

2n2

PXtrsv
+ξ

)
(2)

where P denotes the performance of the corresponding routine;
k denotes the number of iterations required by the MP solver
to achieve the double precision solutions, including the inner
GMRES iterations in the case of the IRGM solver; and ξ refers
to the other work required by the iterative refinement such
as norm computation, residual calculation, pivoting, synchro-
nizations. In our experiments we found that ξ is negligible
compared with the cost of the dgemv and the Xtrsv.

Based on the LU performance results provided in Figure 3b
and on the benchmark of the dgemv and Xtrsv routine,

we illustrate in Figure V the expected speedup of our three
MP routines (e.g., dhgesv-TC, dhgesv, dsgesv) as a
function of the number of iterations k, where we can see
how the performance varies with the increases of k. Usually,
a small number of iterations is advantageous and can bring
the highest performance, while a large number of iterations
affects performance.

VI. NUMERICAL BEHAVIOR DISCUSSION

Our experiments were performed on a system with two
10-core Intel(R) Xeon(R) E5-2650 v3 CPUs (20 cores total)
running at 2.30 GHz and one NVIDIA V100 PCIe GPU. To
study the proposed methods and to highlight their practical
use, we performed a large set of experiments on 21 types
of matrices, with each type featuring different properties that
represent a wide range of problems. We found that we could
classify the 21 types of matrices using 6 representative cases.
We first study the numerical behavior of our iterative refine-
ment algorithms (e.g., dsgesv, dhgesv, and dhgesv-TC)
each using either the IR or the IRGM solver, and show the
convergence history of each technique for the different types
of matrices.

This study aims to provide an analysis of each method’s
sensitivity relative to the matrix type as well as to provide
insight into the performance expected from the iterative refine-
ment methods. For example, if an iterative refinement method
requires a large number of iterations to achieve FP64 solution
accuracy for a certain matrix type, then we can expect that its
performance will degrade relative to the standard dgesv and
it may be even slower. We note that the number of iterations
that we report is the total number of iterations—including the
inner GMRES iterations in the case of the IRGM solver. This
means that, in both cases, the number of iterations is a precise
indicator of the time spent in the refinement loop.

Table II describes the different matrix types and sizes used
in our experiments.

TABLE II
DESCRIPTION OF THE TEST MATRICES, WHERE COND IS κ(A).

Type Description
1 - Random numbers with diagonal modified to be dominant
2 λ > 0 Random σ in [ 1

cond ,1] such that their logarithms are uniformly
3 λ > 0 Clustered σ σ = [1, · · · ,1, 1

cond ]
4 - Clustered σ σ = [1, · · · ,1, 1

cond ]

5 λ > 0 Arithmetically distributed σ σi = 1− ( i−1
n−1 )(1−

1
cond ), i = 1..n

6 - Arithmetically distributed σ σi = 1− ( i−1
n−1 )(1−

1
cond ), i = 1..n

Figure 5 show the convergence history of the six proposed
solvers (the three precision implementations each using either
IR or IRGM). They are labeled as FPXX→FP64 YY, where
“XX” corresponds to the algorithm used for the LU factor-
ization (FP16-TC, FP16, or FP32), and “YY” represents
the iterative refinement solver (IR or IRGM) used to attain
FP64 solution accuracy. In Figure 5a, we display the most
numerically favorable type of matrix to solve—the diagonally
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Fig. 3. Performance of the three arithmetic precisions obtained on a Nvidia V100 GPU.

Fig. 4. Expected speedup of the three MP routines over the dgesv routine
as function of the number of iterations and the matrix size.

dominant matrix. Here, we can see that all six variants
converge in 3–5 iterations. For this type of matrix, since the
number of iterations is small we can expect a large speedup
over the FP64 routine.

We believe that the FP32 routine will achieve a 2× speedup
and that both of the FP16 routines will achieve about 3×–
4× speedup while delivering a solution at FP64 accuracy.
More details about the performance are provided in the next
section. Figure 5b represents a matrix type that has positive
eigenvalues and singular values for which the logarithms are
uniformly distributed between 1 and 1

cond . This is slightly more
difficult than the diagonally dominant type. We observe that
the convergence of the FP32 remains stable at 3 iterations,
while the FP16 slightly increases to about 7–8 iterations.
Interestingly, the FP16-TC converges faster than the FP16
and slightly slower than the FP32. This is because the
accumulation in the FP16-TC rank-k update is in FP32
arithmetic and thus produces a better result than the FP16.
This behavior can be seen on all graphs in Figure 5.

Figure 5c shows a more difficult type of matrix with

clustered singular values and a positive eigenvalue. The FP32
method using either IR or IRGM converges as expected in 3
iterations. The FP16 IR variant converges very slowly and
needs more than 400 iterations to drive the solution to 10−9

accuracy. However, the IRGM solver (FP16 IRGM) achieves
the FP64 solution accuracy in about 14 iterations. This reveals
the sensitivity of the FP16 IR variant and highlights the
importance of using the preconditioned GMRES solver inside
the iterative refinement process. We note that GMRES delivers
a more stable solution to Ac = r inside the refinement process,
which allows the IRGM method to converge faster than IR. We
also note that the diamond marker in the blue dashed line—
the curve that represents FP16 IRGM—shows the number of
outer iterations (refinements) in the IRGM solver. We can see
that the number of outer iterations is about 4, which also
proves the theory that the solution of Ac = r delivered by
GMRES is good enough to make the refinement loop converge
in 4 iterations. More details about using GMRES inside
the refinement process can be found in [4]. The FP16-TC
variants using either IR or IRGM converge in 4 iterations. This
underlines the importance of the FP32 accumulation done in
the hgemm-TC routine used in the FP16-TC variant. The
FP16-TC variant works well for this type of matrix, and we
can expect about a 4× speedup.

Figure 5d shows results on matrices with the same singular
value distribution as in Figure 5c but with complex eigenvalues
and of different positive and negative sign. When comparing
the two figures, we notice the effect of having positive eigen-
values. We also note that the FP32 routine is not affected
and converges in 4 iterations. The convergence of FP16-TC
decreases slightly, requiring ≈ 13 iterations. The FP16 IR
variant diverges, which highlights the problem with using trsv
in the classical iterative refinement to compute the correction,
as it becomes unstable when the LU factorization is performed
in FP16 and cannot bring the solution down to an acceptable
accuracy. While using GMRES, the FP16 IRGM can bring
the solution down to the FP64 accuracy in ≈ 63 iterations.



# iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP32-->FP64 IR
FP32-->FP64 IRGM

# iterations
0 1 2 3 4 5 6

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP16-->FP64 IR
FP16-->FP64 IRGM

# iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =4.0 E+00

FP16-TC-->FP64 IR       (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(a) Matrix of type 1: diagonally dominant.
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(b) Matrix of type 2: positive λ , where σi is a random number between 1
cond , and 1 such that their logarithms are uniformly

distributed.

# iterations
0 1 2 3 4

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP32-->FP64 IR
FP32-->FP64 IRGM

# iterations
0  40 80 120 160 200 240 280 320 360 400 440

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP16-->FP64 IR
FP16-->FP64 IRGM

# iterations
0 1 2 3 4 5

re
si

d
u

al

10-20

10-15

10-10

10-5

100

convergence history for matrix with 51(A) =1.4 E+03

FP16-TC-->FP64 IR       (Tensor Cores)
FP16-TC-->FP64 IRGM (Tensor Cores)

(c) Matrix of type 3: positive λ with clustered singular values, σi=(1, · · · , 1, 1
cond ).
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(d) Matrix of type 4: clustered singular values, σi=(1, · · · , 1, 1
cond ).
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(e) Matrix of type 5: positive eigenvalues and arithmetic distribution of its singular values σi = 1− ( i−1
n−1 )(1−

1
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Fig. 5. Convergence history of the two proposed iterative refinement algorithms (IR and IRGM) for the three precisions studied (FP16-TC, FP16, and
FP32) and for different types of matrices—all of size 22,000 × 22,000, and having κ∞(A) varying between 101 and 105.



Figure 5e shows results on matrices where all methods
behave well. Convergence was achieved in 3 iterations for
FP32, 4 iterations for FP16-TC, and 7 iterations for FP16.
Figure 5f has the same singular value distribution as Figure 5e
but not necessarily positive eigenvalues. This type is the most
difficult, and the FP16 variants using either IR or IRGM do
not converge. Note that the FP16 IRGM can converge when
allowing more than 2,000 iterations, but for our experiment we
limited the max iterations to 400, since we have seen a large
performance drop when iterations are around 200—where the
iterative refinement becomes a drawback. The FP32 variants
are not influenced by the matrix type and always converge in
about 3–4 iterations. In contrast to the behavior for FP16, IR
and IRGM converge in about 18 iterations for FP16-TC.
Lesson: For the matrices considered, the FP16-TC variant
is the most robust and fastest in convergence of the two
FP16 methods. The FP32 refinement variants show a
consistent behavior regardless of the matrix types. This
observation suggests the surprising effectiveness of the
FP16-TC arithmetic, which might be robust enough to
be used in HPC dense linear system solvers.

VII. EXPERIMENTAL RESULTS DISCUSSION

This section presents the performance results of our three
iterative refinement methods—dhgesv-TC, dhgesv, and
dsgesv—using IRGM, compared to the reference dgesv
solver. We also depict the number of iterations required by
each method to reach FP64 accuracy. The teraFLOP/s are
computed based on the same formula (P = 2n3

3 time ), which
means performance reflects the time to solution (e.g., if a
method has 2× higher performance, it is 2× faster). The
performance results are presented in Figures 6 and 7 for the
six representative types of matrices studied in Section VI.
In each figure, there are four performance curves that refer
to the reference dgesv and to the three iterative refinement
algorithms, dhgesv-TC, dhgesv, and dsgesv.

In Figure 6a, the matrix is diagonally dominant, and—
as shown in Section VI—all variants require three to four
iterations to converge. Thus, one can expect that the low
precision iterative refinement algorithms will bring a large
speedup compared to dgesv. Since the number of iterations
is small, we imagine that the speedup ratio will be similar
to the one observed in Figure 3b for the LU factorization.
We confirm our expectation by looking at Figure 6a. The
FP16-TC dhgesv-TC routine delivers a solution 4× faster
than its FP64 dgesv counterpart. Similarly, the dhgesv
variant shows a ≈3× speedup over the dgesv, and the
dsgesv variant shows a ≈1.8× speedup over the dgesv.
This is example illustrates the importance of using the low
FP16-TC precision in HPC.

Figure 6b shows the performance of our methods for
matrices with positive eigenvalue and logarithmic uniform
distribution of their singular values. As shown in the figure,
and similar to the previous graph in Figure 6a, the number of
iterations remains constant when the matrix size increases for
all algorithms. This type of matrix is marginally more difficult

for the FP16 variant than the diagonally dominant matrix
type—about 7 iterations vs. 3 iterations (Figure 6a). The
FP16-TC and FP32 variants require two to three iterations
for both examples. Thus, one can expect the performance gain
to be roughly similar to the diagonal dominant example. The
dhgesv-TC (FP16 →FP64) variant results in a speedup of
4× over dgesv. The dhgesv (FP16 →FP64) achieves the
same solution as the dgesv and is about 3× faster, while the
dsgesv (FP32 →FP64) is about 1.7× faster.

Figure 7a supports our findings that low precision tech-
niques can be used to speedup a linear solver by a large
factor. The performance results depicted here are similar to
the previous two examples, where dhgesv-TC, dhgesv, and
dsgesv outperform dgesv and provide around 4×, 2.6× and
1.7× speedups, respectively. In contrast to Figure 7a, Figure 7b
shows the performance and the number of iterations for
matrices that have similar clustered singular value distribution,
but their eigenvalues are not necessarily positive and can be
even complex. The observation made here is interesting. The
behavior of the dsgesv (FP32 →FP64) variant remains the
same as in the previous experiments, requiring two to three
iterations independent of the matrix size or matrix type. Thus,
we will always see a 1.7× speedup. For the dhgesv-TC,
the number of iterations increases compared to the previous
examples (10–14 iterations vs. 3 iterations). We also see that
the iteration count increases slightly with matrix size. Thus,
one can expect the performance of the dhgesv-TC here to be
slightly lower than in the previous example (while still being
about 3× faster).

For the dhgesv, the number of iterations increases dramat-
ically with the matrix size and is larger than what was depicted
in Figure 7a. In this case, the rounding error of the FP16
method—and possibly the range of the representative numbers
for FP16 arithmetic—disturb the LU factorization. As a result,
the convergence rate decreases dramatically, which then affects
the performance. In this case, we can see that dhgesv is
not beneficial at all and can be slower than FP64. For such
matrix types, the best practice is to use either the Tensor Core
version dhgesv-TC, which provides a 3× speedup, or to use
dsgesv, which yields a 1.7× speedup.

Figure 7c shows results for matrices with positive eigen-
values and an arithmetic distribution of their singular values.
The dsgesv behavior stays the same as the one shown in the
previous graph and requires about 2 iterations, resulting in a
1.7× speedup over dgesv. We also note that the dhgesv-TC
routine acts similarly to dsgesv and converges in about 3
iterations, thereby making it an attractive routine to use in such
cases, where it offers a speedup of around 4×. The dhgesv
behavior is comparable to the other problem types with
positive eigenvalues, requiring about 7 iterations, regardless
of the matrix size. Thus, we obtain a speedup of around 3×.
The results in Figure 7d are similar to those in Figure 7c but
without the constraint of positive eigenvalues. Here, we note
that dsgesv still converges in about 3–4 iterations for any
matrix size, leading to the observed 1.7× speedup, while the
dhgesv fails to converge within 400 iterations for most of
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Fig. 6. Performance in teraFLOP/s of the four proposed linear solvers (one standard solver and three iterative refinement solvers, respectively) for different
matrix sizes and different matrix types: 1) the FP64 standard dgesv solver (orange color with “×”), 2) the FP32 solver dsgesv (purple color with “4”),
3) the FP16 solver dhgesv (blue color with “�”), and 4) the FP16-TC solver dhgesv-TC (cyan color with “◦”). For the iterative refinement solvers, we
also depict the required number of iterations to achieve the FP64 arithmetic solution, and we note that “nc” mean no convergence after 200 iterations. Note
that the right “y” axis shows the condition number, κ∞(A), corresponding to the gray dotted line.

the large matrices, thereby making dhgesv useless in this
case and validating our discussion of Figure 5f in Section VI.
The attractive revelation is the FP16-TC implementation. The
V100 GPU’s FP16-TC feature does accumulation in FP32
arithmetic and is able to fix the issue of the FP16; in doing
so, it converges in about 10–20 iterations, netting a speedup
of around 3×. The goal of this paper is to show that the
proposed IR solver can be of great benefit for a wide range
of matrices with different characteristics. In practice, the real
world matrices tend to be easier to deal with than our specially
constructed ones. To illustrate this, we show results for real
world matrices arising from different problems. We show in
Table III the results from experiments obtained when running
the four proposed linear solvers (one standard solver and
three iterative refinement solvers, respectively) for different
real world matrices from the SuiteSparse Matrix Collection
(previously called the University of Florida Sparse Matrix Col-
lection) [6] and dense matrices arising from electromagnetism
radar design. As can be seen, the behavior of the proposed
IR solver is similar to that for the synthetics matrices. The
dhgesv-TC routine can provide about 4× speedup for a wide
range of real world matrices while the dhgesv brings around
3× speedup and the dsgesv show about 1.7× speedup.
Lesson: The speedups presented in Figures 6 and 7 confirm
our numerical analysis from Section VI, where we noted
that iterative refinement algorithms are advantageous and
exhibit very good speedups. The dhgesv-TC (FP16-TC
→FP64) routine can be used for all matrix types and
for any matrix size to provide speedups of about 3×–
4×, and the dsgesv (FP32 →FP64) routine can be used
for all matrix types and for any matrix size to provide
speedups of about 1.7×. The number of iterations is
constant for all matrix types and matrix sizes for dsgesv.

It is also constant for dhgesv-TC for matrices with
positive eigenvalues and only slightly increases for other
cases. The dhgesv routine (FP16 →FP64) is acceptable
and provides a speedup of around 2.6× when the matrix
has good properties (e.g., diagonal dominance) or when
eigenvalues are always positive.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

We have developed a framework of algorithms and their
high-performance implementations for exploiting GPU Ten-
sor Cores in mixed-precision FP16–FP32/FP64 iterative
refinement solvers. We demonstrated for the first time how
to use the Tensor Core to provide an additional FP16-TC
performance boost to solvers in high FP64 accuracy. We
provided results and analysis for a number of algorithms on
different types of matrices. Specifically, we showed practical
cases where even a highly optimized FP64-precision solver,
running at 6 teraFLOP/s, can be accelerated up to 4×. The new
developments introduce a new class of mixed-precision dense
matrix factorization algorithms that can be used as building
blocks in other mixed-precision algorithms.

The developments open up opportunities for future work
directions, including further optimizations, development of a
full set of mixed-precision factorization routines, and release
as open-source software through MAGMA [15]. We also
would like to mention that the aim of this paper is to show
that mixed precision techniques are of great interest for linear
solver in many engineering areas. Such methods can be easily
ported to distributed or multi-GPU environments. Based on our
record of track developing distributed libraries, we believe,
that the speedup of the lower precision versus the double
precision solver observed for these experiment on one node
will remain the same for distributed environment because it



Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0 

2 

4 

6 

8 

10

12

14

16

18

20

22

24

2
5
3

2
6
3

2
6
3

2
7
2

2
7

3 2

7

3

2

8
3

2

8
3

2

8

3

2

8

3

2

8

3

2

8

3

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

(a) Matrix of type 3: positive λ with clustered singular values, σi=(1, · · · , 1,
1

cond ).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0 

2 

4 

6 

8 

10

12

14

16

18

20

211

7
2
158 3

179 3
20
9 324

10
3

32

10
3

36

11
3

42

12

3

59

12

3

88

13

3

154

14

3

330

14
FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

(b) Matrix of type 4: clustered singular values, σi=(1, · · · , 1, 1
cond ).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0 

2 

4 

6 

8 

10

12

14

16

18

20

22

24

2
5
3

2
63 2

6
3

2
6
3

2
6

3 2

6
3

2

6
3

2

6

3

2

6

3

2

7

3

2

7

3

2

6

3

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

(c) Matrix of type 5: positive eigenvalues and arithmetic distribution of its
singular values, σi = 1− ( i−1

n−1 )(1−
1

cond ).

Matrix size
2k 4k 6k 8k10k 14k 18k 22k 26k 30k 34k

T
fl

o
p

/s

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10
11
12
13
14
15
16
17
18

221
8 342

9 3
73

10 3

116

11 3

199

12

3

nc

13 3

nc

14
3

nc

15

3

nc

17

3

nc

18

3

nc

20

3

nc

21

FP16-TC->64 dhgesv
FP16->64 dhgesv
FP32->64 dsgesv
FP64 dgesv

5
1

(A
)

100

101

102

103

104

105

106

(d) Matrix of type 6: arithmetic distribution of its singular values, σi = 1−
( i−1

n−1 )(1−
1

cond ).

Fig. 7. Performance in teraFLOP/s of the four proposed linear solvers (one standard solver and three iterative refinement solvers, respectively) for different
matrix sizes and matrix types: 1) the FP64 standard dgesv solver (orange color with “×”), 2) the FP32 solver dsgesv (purple color with “4”), 3) the
FP16 solver dhgesv (blue color with “�”), and 4) the FP16-TC solver dhgesv-TC (cyan color with “◦”). For the iterative refinement solvers, we also
depict the required number of iterations to achieve the FP64 arithmetic solution, and we note that “nc” mean no convergence after 200 iterations. Note that
the right “y” axis shows the condition number, κ∞(A).

TABLE III
PERFORMANCE FOR REAL-LIFE MATRICES FROM THE SUITESPARSE COLLECTION [6] AND FROM DENSE MATRIX ARISING FROM RADAR DESIGN

name Description size κ∞(A) dgesv dsgesv dhgesv dhgesv-TC
time(s) # iter time (s) # iter time (s) # iter time (s)

em192 radar design 26896 106 5.70 3 3.11 40 5.21 10 2.05
appu NASA app benchmark 14000 104 0.43 2 0.27 7 0.24 4 0.19

ns3Da 3D Navier Stokes 20414 7.6 103 1.12 2 0.69 6 0.54 4 0.43
nd6k ND problem set 18000 3.5 102 0.81 2 0.45 4 0.36 3 0.30

nd12k ND problem set 36000 4.3 102 5.36 2 2.75 3 1.76 3 1.31

is mostly related to the speed of the operations (e.g., lower
versus double) and because most of the optimized distributed
LU solver hides the communication by what we call lookahead
techniques. For that, we emphasize to observe the same trend
of speedup in distributed and multi-GPU environment.Also of
interest is investigating the energy efficiency of the approach
compared to working precision implementations and other

architectures. One can expect that a 4× speedup will at least
bring 4× energy improvement. Indeed, in our experiments [10]
we measured both the power of the CPU (package+DRAM),
using the Performance Application Programming Interface
(PAPI) [16]), and the power of the GPU (using the NVIDIA
Management Library (NVML) [20]) and we observed about
5× energy efficiency improvement.
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