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Abstract
This is the first of two companion papers. The joint aim is to study a generalization to higher dimension
of the point vortex systems familiar in 2-D. In this paper we classify the momentum polytopes for the
action of the Lie group SU(3) on products of copies of complex projective 4-space. For 2 copies, the
momentum polytope is simply a line segment, which can sit in the positive Weyl chamber in a number of
ways. For a product of 3 copies there are 8 different types of generic momentum polytope for the product
of 3 copies, and numerous transition polytopes, all of which are classified here. The different polytopes
depend on the weights of the symplectic form on each copy of projective space. In the second paper we
use reduction techniques to study the possible dynamics of interacting point vortices.

The results are also applied to determine the inequalities satisfied by the sum of up to three 3x3
Hermitian matrices with double eigenvalues.
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1 Introduction

The now famous convexity theorem of Atiyah, Guillemin and Sternberg and finally Kirwan for
the momentum polytope has an interesting history.

In the 1920s, Schur [13] proved that the diagonal elements (δ1, . . . , δn) of an n×n Hermi-
tian matrix a satisfy a system of linear inequalities involving the eigenvalues (λ1, . . . , λn). In
geometric terms, regarding δ and λ as points in Rn and allowing the symmetric group Sn to act
by permutation of coordinates, this result takes the form: δ lies in the convex hull of the orbit
Sn.λ.

The converse was proved in the 1950s by Horn [5], and thus this convex hull is exactly the
set of diagonals of the set of all Hermitian matrices with given eigenvalues (λ1, . . . , λn).

Kostant generalised these results to any compact Lie group G in the following manner [8].
Consider the coadjoint action of G on the dual g∗ of its Lie algebra g. Let T ⊆ G be a maximal
torus, with Lie algebra t. Restriction to t defines a projection g∗ → t∗. The Weyl group W acts
on t and t∗. Kostant’s convexity theorem states,
Let O ⊆ g∗ be a coadjoint orbit under G. Then the projection of O on t∗ is the convex hull of a
Weyl group orbit.

The Schur-Horn theorem is the particular case where G is the unitary group U(n) and T is
the subgroup of diagonal matrices. Then g is the Lie algebra of skew-Hermitian matrices. The
dual g∗ can be identified with the set of Hermitian matrices via the pairing 〈A,B〉 := Im tr(AB),
for a Hermitian and b skew-Hermitian. Then the projection of A ∈ g∗ on t∗ is given by the
diagonal part of a.

This convexity theorem was widely generalised (Atiyah [1], Guillemin-Sternberg [3], Kir-
wan [6], etc.). The general relevant framework is that of a symplectic manifoldM with a Hamil-
tonian action of a Lie group G. The projectionO → t∗ is a particular case of a momentum map,
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M → g∗. The most general of these theorems, due to Kirwan, states that the intersection of
the image of the momentum map with a positive Weyl chamber in t∗ is a convex polytope, the
momentum polytope.

In the vein of the Schur-Horn theorem, this non-Abelian convexity theorem shows for exam-
ple that if a and b are Hermitian matrices with given eigenvalues, then the eigenvalues of their
sum A + B are bounded by a set of linear inequalities involving the given eigenvalues of a and
b. See [7] for a description of these ideas.

In this paper we consider an extended example based on the natural action of SU(3) on
CP2: given g ∈ SU(3) and [v] ∈ CP2 then A[v] = [Av]. On CP2 there is an SU(3)-invariant
symplectic form, the Fubini-Study form, and in fact any invariant symplectic form is a scalar
multiple of this particular one. We consider the compact manifold M given by the product
of 2 or 3 copies of CP2, with the diagonal action of SU(3), and on each copy we choose an
invariant symplectic form, with scalars (weights) Γj (for j = 1, 2, 3). The action of SU(3) on M
is Hamiltonian and the momentum map depends on the choice of weights Γj. The aim of this
work is to classify all possible momentum polytopes, depending on the weights. Note that we
use the term ‘weights’ both for the coefficients Γj and for the weights of a representation: we
hope it is clear from the context which one is meant.

The paper is organized as follows. After introducing the necessary background in Section 2,
Section 3 is dedicated to determining the possible momentum polytopes for the actions of SU(3)
on CP2 × CP2, showing there are generically 2 different possible ‘shapes’; these are just line
segments in the positive Weyl chamber (there are also 2 others that are reflections of the first
two). In Section 4 we consider the more interesting case of CP2 × CP2 × CP2. We show
that, depending on the vortex strengths Γj, there are generically 8 distinct types of momentum
polytope as well as their reflections under the ∗-involution; there are also numerous transition
shapes as the vortex strengths vary.

This is the first of two companion papers; the second [10] uses the results of this paper
to study the (reduced) dynamics of a system of generalized point vortices on CP2, which has
symmetry SU(3), acting on a phase space which is the product of copies of CP2. In that paper
we discuss the reduced spaces and consider the resulting reduced dynamics and in particular the
reduced and relative equilibria and their stability.

This work forms part of the PhD thesis [14], where further details and alternatives for some
of the calculations may be found.

Eigenvalues of Hermitian matrices. Following the line of argument of the non-Abelian
version of the Schur-Horn theorem mentioned above, one application of our results is to esti-
mating the eigenvalues of the sum of up to three 3 × 3 Hermitian matrices, each with a double
eigenvalue.

Let A,B,C be three trace-zero 3 × 3 Hermitian matrices each with a double eigenvalue,
and let X = A + B + C (if they are not trace zero then replace a by its trace-free part A0 =
A − 1

3 tr(A) I3, and similarly for b and C). Denote the eigenvalues of a by λA, λA,−2λA, and
similarly for b and C.

Theorem 1.1 (1). If C = 0, then the (unordered) eigenvalues λj of X = A + B, satisfy
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λ1 + λ2 + λ3 = 0 and

λ1 = λA + λB, λ2 ∈

{
[λA − 2λB, λA + λB] if λB > 0,
[λA + λB, λA − 2λB] if λB < 0.

(2). More generally (with A,B,C 6= 0), the spectrum of X = A + B + C lies in one of the
convex polytopes shown in the figures of Section 4 or its image under the involution ∗,
according to the eigenvalues of A,B,C.

For example, in part (2), if λC = λB = λA > 0 then the eigenvalues λj of X satisfy the
inequalities (deduced from Figure 4.9b and equations (4.1)),

λj ≤ 3λA, j = 1, 2, 3

and tr(X) = 0.
Part (1) of this theorem is proved at the end of Section 3; the proof of part (2) is entirely

analogous and is left to the reader.

2 Hamiltonian action of SU(3) on products of projective spaces

In this section we provide the background required, regarding SU(3), symplectic actions and the
resulting momentum maps.

2.1 Background

Recall that if a Lie group acts on a symplectic manifold (M,Ω) then a momentum map is a map
J : M → g∗, where g is the Lie algebra and g∗ its dual vector space, satisfying the differential
condition,

〈DJx(v), ξ〉 = Ω(ξM(x), v), (2.1)

where ξM is the vector field onM associated to ξ ∈ g.
A Lie group G acts naturally on its Lie algebra g by the adjoint action and on the dual

space g∗ by the contragredient representation, the coadjoint action. An orbit in g∗ is called a
coadjoint orbit. If, as is our case, the group is compact then the adjoint and coadjoint actions are
isomorphic. If, as we suppose, G is compact and there exists a momentum map, then one can be
chosen so that it is equivariant with respect to the given action onM and the coadjoint action on
g∗.

If V is a symplectic representation of G, then the momentum map is given by

〈J(v), ξ〉 = 1
2 [ξv, v], (ξ ∈ g).

where [−,−] is the symplectic form. An important example is a the momentum map for a
complex representation V of a torus T. Then V is a direct sum of 1-dimensional irreducible
representations, of weights βj, j = 1, . . . , n (where dimC V = n, with possible repeats among
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the βj, and possible zeros). Recall that given a complex representation V of T, the form β ∈ t∗

is a weight if the weight-space Vβ is non-zero, where

Vβ = {v ∈ V | ξv = iβ(ξ)v, ∀ξ ∈ t}.

IF we identify V with Cn, with each coordinate axis being an irreducible representation, then
the symplectic form can be written as [u, v] =

∑
j Im(uv̄). Then

J(v) = 1
2

∑
j

|vj|
2βj ∈ t∗.

If instead the symplectic form is altered to [u, v] =
∑
j Γj Im(ujvj), then the momentum map

becomes
J(v) = 1

2

∑
j

Γj|vj|
2βj ∈ t∗. (2.2)

Coadjoint orbits carry a natural symplectic structure, the Kirillov-Kostant-Souriau, or KKS
2-form, defined by

ωKKS(µ)(ξ · µ, η · µ) := 〈µ, [ξ, η]〉 ,

for µ ∈ g∗ and ξ, η ∈ g. If O is such a coadjoint orbit with its KKS-form then the coadjoint
action of G is Hamiltonian and the momentum map J : O → g∗ is simply given by the inclusion
of O into g∗ (see for example [4]).

An important property of momentum maps, often called the bifurcation lemma, and that we
will make considerable use of is that, for eachm ∈M,

image(DJm) = g◦m, (2.3)

where gm is the Lie algebra of the stabilizer of the point m, and g◦m its annihilator in g∗. This
follows readily from (2.1).

Given a point µ ∈ g∗ its stabilizer subgroup for the coadjoint action is denoted Gµ. Any
maximal torus T of Gµ is also a maximal torus of G. At the level of Lie algebras, gµ = zµ× g ′µ,
where zµ is the centre of gµ. Dualizing, we can write

g∗ = z∗µ × (g ′µ)
∗. (2.4)

It follows that z∗µ = Fix(Gµg∗), and similarly we may identify g∗µ as the subspace of g∗ given by
g∗µ := Fix(zµ, g∗).

One particular case is the Cartan subalgebra t and its dual t∗ = Fix(T, g∗). The Weyl group
acts on t∗, and we denote a closed fundamental domain by t∗+. For SU(3), see Figure 2.1.

Conventions. For future computations, especially in Section 4, we use the following nota-
tion/choices. For a basis of the Cartan subalgebra of SU(3) consisting of diagonal matrices:

ξ1 = diag[0, i, −i], ξ2 = diag[−i, 0, i]. (2.5)
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t∗+

wα1

wα2

wα3

−α1 α1

−α2

α2 −α3

α3

t∗+

λ1 = λ2

λ2 = λ3 λ3 = λ1

Figure 2.1: On the left the roots for SU(3) and the area shaded in pink is the positive
Weyl chamber t∗+. The ±αi are the roots. On the right are shown two orbits of the
Weyl group, the black dots show a generic orbit, the blue ones a degenerate orbit.

Here and in what follows, diag[a, b, c] refers to the matrix with diagonal entries a, b, c and 0s
elsewhere. The positive roots in su(3)∗ are chosen to be α1,−α2 and α3, where

α1 = diag[0, 1,−1], α2 = diag[−1, 0, 1], α3 = diag[1,−1, 0] (2.6)

(letting α2 be a negative root renders some later expressions more symmetric). See Figure 2.1.
Recall that the paring between Hermitian matrices in su(3)∗ and skew-Hermitian matrices in
su(3) is defined in (2.14). Using this, one finds,

α1(ξ1) = 2, α2(ξ1) = −1, α3(ξ1) = −1
α1(ξ2) = −1, α2(ξ2) = 2, α3(ξ2) = −1.

(2.7)

Witt-Artin decomposition. Consider a symplecticG-manifold (M,Ω), withG-equivariant
momentum map J :M→ g∗, and letm ∈M, and µ = J(m). ThenH = Gm acts symplectically
on the tangent space TmM. We recall the Witt-Artin decomposition of TmM, see [12] for details.

Let T = g ·m. It follows from (2.1) that Tω = ker(DJm). Consider the four spaces:

T0 = T ∩ Tω = gµ.m , T1 = T/T0 ' g/gµ ,

N1 = Tω/T0 , N0 = TmM/(T + Tω).
(2.8)

The spaces T0 and T1 give a decomposition of the tangent space T to the group orbit G·m at m
while N0 and N1 decompose its (or a) normal space. N1 is the symplectic slice atm.

By simple linear algebra, the group action and symplectic form define isomorphisms (of
representations of Gm),

T0 ' gµ/gm, T1 ' g/gµ, N0 ' T∗0 ,
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and there is a Gm-equivariant identification

TmM ' T0 ⊕ T1 ⊕N1 ⊕N0. (2.9)

In particular, we make a choice for N0 (modulo T1) by requiring DJm(N0) ⊂ g∗µ, which is
possible since DJm(T + Tω) = DJm(T1) = g◦µ. With this choice of N0 it follows that

DJm(N0) = g∗µ ∩ g◦m. (2.10)

since Im(DJm) = g◦m.
If v ∈ TmMwe write its decomposition with respect to this identification as v = (w, x, y, z),

or
v = w+ x+ y+ z ∈ T0 ⊕ T1 ⊕N1 ⊕N0. (2.11)

Finally,N1 and T1 are symplectic whileN0 and T0 are isotropic (and paired by the symplectic
form). More specifically, given any basis of T0 there is a basis of N0 such that the matrix of ω
atm has the form

[ω] =


0 0 0 −I
0 ωT1 0 0

0 0 ωN1
0

I 0 0 0

 .
HereωT1 is the Kostant-Kirillov-Souriau symplectic form on the coadjoint orbit, andωN1

is the
natural symplectic form on the symplectic slice. For details see [12].

MGS normal form. For an action of a compact group G on a manifold M, let m ∈ M and
let S be a slice to the orbit (which can be identified with a neighbourhood of 0 in the normal
space N to the orbit). Then there is a tubular neighbourhood U of G ·m which is equivariantly
diffeomorphic to U ' G×H S, where H = Gm.

In the symplectic/Hamiltonian setting, this is refined by the Marle-Guillemin-Sternberg nor-
mal form, defined as follows, see for example [12, 15] and references therein for details. The
ingredients for this local model are, µ ∈ t∗+, a closed subgroup H of the stabilizer Gµ and a
symplectic representation V of H. From this one forms a symplectic manifold

Y = Y(µ,H, V) = G×H (n⊕ V),

where n = gµ/h. The momentum map is given by

J([g, σ, v]) = g(µ+ σ+ JV(v))g
−1, (2.12)

where JV is the homogeneous quadratic momentum map for the representation V ,

〈JV(v), ξ〉 = 1
2 ωV(ξv, v).

The momentum polytope for Y(µ,H, V) is

∆(µ,H, V) = J(Y) ∩ t∗+.
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Marle and independently Guillemin and Sternberg prove that, given m ∈ M, there is a
G-invariant neighbourhood U of m and a G-invariant neighbourhood U ′ of G ×H (0 × 0) in
Y(J(m), Gm, N1) such that U and U ′ are equivalent as Hamiltonian G-spaces. Consequently,
following Sjamaar [15] one makes the following definition:

Definition 2.1 Letm ∈M and let µ = J(m). The local momentum cone ∆m is defined to be

∆m := ∆(µ,Gm, N1)

where N1 is the symplectic slice at m. Moreover, let δm be the germ at µ of the set ∆m, which
we call the infinitesimal momentum cone.

Sjamaar proceeds to prove the following theorem.

Theorem 2.2 (Sjamaar [15]) Let M be a compact symplectic manifold with a Hamiltonian
action of a compact Lie group G, and momentum map J :M→ g∗.

(1). If J(m1) = J(m2) then ∆m1
= ∆m2

(and hence δm1
= δm2

).

(2). The momentum polytope ofM is the intersection of all the local momentum cones:

∆(M) =
⋂

m∈Φ−1(t∗+)

∆m.

Moreover, for eachm, δm coincides with the germ at µ of ∆(M).

(3). If the point µ is a vertex of the momentum polytope, then, for anym ∈ J−1(µ),

g◦m ∩ z∗µ = 0.

Part (3) is stated in a different form by Sjamaar; this equivalent form is proved in [9]. In
particular, from (3) it follows that a point in the interior of the positive Weyl chamber is a vertex
then Gm = T.

The statements regarding the infinitesimal momentum cones are not made by Sjamaar, though
they are straightforward: by the Marle-Guillemin-Sternberg normal form theorem, there is an
invariant neighbourhood of m whose image under the momentum map coincides with a neigh-
bourhood of µ in∆m. Since the momentum map is locallyG-open onto its image [11], it follows
that any sufficiently small representative of the germ δm is a neighbourhood of µ in ∆(M).

From (1) we can replace ∆m by ∆µ for µ = J(m). It is not always straightforward to find
the local momentum cone, although there are 2 cases where it is clear:

• Firstly, ifm ∈ J−1(µ) satisfies gm = 0 then DJm is surjective, and ∆µ = t∗+.

• Secondly, if µ lies in the interior of the positive Weyl chamber, then Gµ = T and Gm is a
sub-torus. Then DJm(N0) = g◦m ∩ t∗, and moreover, since Gm is a torus, the symplectic
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representation N1 is a sum of 2-dimensional (symplectic) representations of Gm with
weights β1, . . . , βr ∈ g∗m ⊂ t∗ say. Then (see (2.2))

JN1
(v1, . . . , vr) =

1
2

∑
j

Γj|vj|
2βj ∈ g∗m,

where the coefficients Γj depend on the symplectic form, and it follows that ∆µ is the
translation to µ of the Cartesian product of g◦m ∩ t∗ and Im(JN1

) ⊂ g∗m inside t∗+.

2.2 Momentum map for the SU(3) action on products of CP2

We turn our attention to the example of interest, namely G = SU(3) acting on CP2. Now CP2
has a particular SU(3)-invariant symplectic form known as the Fubini-Study form (obtained
from the unit sphere S5 ⊂ C3 by reduction by U(1)) and denoted ωFS. All other invariant 2-
forms on CP2 are scalar multiples of this basic one. The momentum map for the Fubini-Study
form on CP2 is

K : CP2 −→ su(3)∗

Z 7−→ Z⊗ Z− 1
3I3.

(2.13)

Here Z = [z1 : z2 : z3] ∈ CP2. Since we are viewing CP2 as the reduction of S5, it follows
that
∑

|zj|
2 = 1, and the term Z ⊗ Z is the Hermitian matrix (ziz̄j), whose trace is 1 whence

the subtraction of the constant term involving the 3 × 3 identity matrix I3. Note that Z ⊗
Z is a Hermitian matrix, while the elements of su(3) are skew-Hermitian matrices. This is
not a problem, as the sets of Hermitian and skew-Hermitian matrices are related simply by
multiplication by i, and to be specific we define the pairing of µ Hermitian (in su(3)∗) and ξ
skew-Hermitian (in su(3)) by

µ(ξ) ≡ 〈µ, ξ〉 = Im(tr(µξ)). (2.14)

It is clear that the expression K is equivariant, in that for g ∈ SU(3),

K(gZ) = gK(Z)g−1. (2.15)

In particular, the image ofK consists of all 3×3Hermitian matrices with eigenvalues 23 , −
1
3 , −

1
3 .

The phase space M we are interested in is the Cartesian product of N copies of CP2, where
the jth copy of CP2 is endowed with an invariant symplectic form ΓjωFS. More formally, with
πj :M→ CP2 given by πj(Z1, . . . , ZN) = Zj, then the symplectic form onM is

Ω :=
∑
j

Γj π
∗
jωFS.

We refer to this as the weighted symplectic form onM, with weights Γ1, . . . , ΓN. The momentum
map J :M→ su(3)∗ for the SU(3)-action on (M,Ω) is then given by

J : (Z1, . . . , ZN)→ N∑
j=1

Γj K(ZJ), Zj ∈ CP2. (2.16)
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If is clear from (2.15) that this map is also equivariant for the diagonal action onM.
Since it is equivariant, J descends to a map between orbit spaces we call the orbit momentum

map and denote J , according to the following diagram,

M su(3)∗

M/G g∗/G

J

J

(2.17)

where the vertical maps are the quotient maps. Since every coadjoint orbit in g∗ intersects t∗

in a Weyl group orbit, one can identify g∗/G with a positive Weyl chamber t∗+. By the Atiyah-
Guillemin-Sternberg-Kirwan convexity theorem, the image J(M)/G = J (M/G) is a convex
polytope in t∗+, called the momentum polytope. For a given number of copies N of CP2, the
shape of this polytope will depend on the weights Γj.

Remark 2.3 While we can identify g∗/G with t∗+ as described, one needs to be aware that
this identification is a homeomorphism but not a diffeomorphism. Indeed there are many (eg
linear) functions on t∗+ which are not the restriction of a smooth invariant function on g∗ (nor
Weyl group invariant on t∗). See below for a further remark on this point.

Remark 2.4 There is an important involution defined on t∗+, usually denoted ∗, and is defined
as

∗µ = w(−µ)

wherew is the (usually unique) element of the Weyl group that brings −µ back into the positive
Weyl chamber. In the case of SU(3) and the positive Weyl chamber shown in Figure 2.1, we
have w = w2. Thus ∗µ = −w2µ; in Figure 2.2 this is the reflection in the line λ2 = 0. The
importance for us is that if one changes Γ = (Γ1, Γ2, Γ3) to −Γ , then

∆Γ (M) = ∗∆−Γ (M).

For this reason it is sufficient to consider
∑
Γj ≥ 0.

2.3 Coadjoint orbits

We have chosen to represent elements of su(3)∗ as 3× 3 Hermitian matrices of trace zero. The
coadjoint action is by conjugation:

g ·A = gAg†

where g† = g−1 is the conjugate transpose of g ∈ SU(3). As is well-known from linear
algebra courses, two Hermitian matrices are conjugate if and only if they have the same spectrum
(including multiplicities). Write this spectrum as σ(A) = {λ1, λ2, λ3}, allowing for multiplicities
in the set (sometimes called a multiset).

It follows that the coadjoint orbits correspond to a triple of real numbers summing to zero,
and they can be ordered so that λ1 ≥ λ2 ≥ λ3; see Figure 2.2. Since the λj sum to 0, and each
is non-zero, it follows that in the preferred ordering, λ1 > 0 and λ3 < 0, while the sign of λ2 is
variable. In the figure, the coordinate λ2 increases as the point moves up or to the left.
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λ2 = λ3

λ1 = λ2 λ3 = λ1

λ2 = 0

λ1 = 0

λ3 = 0

Figure 2.2: This shows the plane parametrized by three real numbers λ1, λ2, λ3 which
sum to zero. The orientation is such that λ1 increases to the top of the diagram. Trans-
positions of the three numbers correspond to reflections in the blue lines. The pink
region is where λ1 ≥ λ2 ≥ λ3. These numbers will be the eigenvalues of a trace zero
Hermitian matrix. (Cf. the roots shown in Figure 2.1

Remark 2.5 Continuing Remark 2.3 above, we note here that the quotient map

su(3)∗ −→ su(3)∗/SU(3)

can be written as the map A 7→ (χ2(A), χ3(A)) — the coefficients of the characteristic polyno-
mial of a, which is a smooth and G-invariant map. However the map

su(3)∗ −→ t∗+

which maps a to its three eigenvalues, is not smooth but involves extracting roots of the charac-
teristic polynomial.

2.4 Action of SU(3) on products of CP2

Let Z = [z1 : z2 : z3] ∈ CP2, then A ∈ SU(3) acts in a natural way on this point: if Z ′ = AZ

then z ′j =
∑
kAjkzk. Given any Z ∈ CP2, the stabilizer GZ ' U(2) is as follows. Consider for

example Z = [1 : 0 : 0], then AZ = Z if and only if a has the block form

A =

(
a 0

0 A1

)
(2.18)

where A1 ∈ U(2) and a = det(A1)−1. Since SU(3) acts transitively on CP2 the stabilizer of
any other point will be conjugate to this U(2) subgroup.

Now consider the diagonal action on M = CP2 × CP2, and let m = (Z1, Z2) ∈M. Let us
suppose that Z1 = e1 = [1 : 0 : 0]. For Z2 there are 3 cases to consider: first if Z1 = Z2 ( that
is, m is a point on the diagonal) then Gm is again U(2). Next, if Z2 and Z1 are perpendicular,
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then we may take Z2 = e2 = [0 : 1 : 0] and the stabilizer is the (maximal) torus T2 consisting of
diagonal matrices:

T2 =
{

diag[eiθ, eiφ, eiψ] | θ+ φ+ψ = 0 mod 2π
}
.

Finally, if Z1, Z2 are in general position (neither equal nor perpendicular) then the stabilizer is
just a copy of S1. For example if Z2 = [1 : 1 : 0] then the stabilizer of (e1, Z2) is the subgroup
of T2 consisting of matrices of the form{

diag
[
eiθ, eiθ, e−2iθ

]}
' U(1).

We summarize these possibilities in the following table,

geometry ofm stabilizer
on diagonal U(2)
(u, u⊥) T2

general position U(1)

(2.19)

where u and u⊥ are any pair of orthogonal points in CP2.
For a product of three copies of CP2 the analysis is similar. We have:

geometry stabilizer
on diagonal U(2)
(u, u, v) T2
(u, v,w) T2
(u, u ′, v) U(1)

spanning a plane U(1)
general position 1

(2.20)

Here u, v and w are pairwise orthogonal, while u, u ′ are distinct but not orthogonal, and v is
orthogonal to both u and u ′.

The following lemma will be useful when computing local momentum cones in Section 4.
Recall that e1 = [1 : 0 : 0] ∈ CP2 etc.. Recall also that given a complex representation V of T,
the form α ∈ t∗ is a weight if the weight-space Vα is non-zero, where

Vα = {v ∈ V | ξv = iα(ξ)v, ∀ξ ∈ t}.

Lemma 2.6 On TeiCP
2, the representation of T2 has the following weights:

Te1CP
2 = −α3 ⊕ α2, Te2CP

2 = −α1 ⊕ α3, Te3CP
2 = −α2 ⊕ α1.

See (2.6) for the definition of the αj; the choice of ±-signs is determined by the natural
complex structure on TejCP

2, which is compatible with the symplectic structure if Γj > 0.
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Proof. For Te1CP
2, the tangent vectors are of the form x = (0, v,w)T (with v,w ∈ C), and the

action of ξ1 on this is ξ1.(0, v,w)T = (0, iv,−iw)T , and ξ2.(0, v,w)T = (0, iv, 2iw)T . Note
that the action of ξ2 has to be adjusted to ensure it fixes e1; the matrix diag[0, i, 2i] acts the same
as the one given in (2.5), and this one manifestly fixes e1 and hence acts on Te1CP

2 by simple
multiplication. Thus, (0, v, 0)T has weight satisfying α(ξ1) = α(ξ2) = 1, hence its weight is
−α3, while (0, 0,w)T has weight satisfying α(ξ1) = −1 and α(ξ2) = 2, giving the weight α2.
The other cases are similar.

3 Momentum polytopes for SU(3) action on CP2 × CP2

To determine these polytopes one can apply a far simpler argument than for the product of 3
copies, as we shall see. This example has been considered before by Bedulli and Gori [2].

The action of SU(3) on M = CP2 × CP2 is not transitive, and it is not hard to see that
(Z1, Z2) and (Z ′1, Z

′
2) lie in the same orbit if and only if the distance between Z1 and Z2 is

equal to that between Z ′1 and Z ′2. It follows that the orbit space M/SU(3) is a compact line
segment, parametrized by this distance. The image of the orbit momentum map J is therefore
1-dimensional, and by the convexity theorem it must be a line segment (or a point). A line
segment has two ends, and it suffices to find these two end points, which will necessarily be the
images of the end-points ofM/SU(3).

Theorem 3.1 The momentum polytopes ∆(M) of the SU(3) action onM = CP2 ×CP2 with
weighted symplectic form Γ1ωFS ⊕ Γ2ωFS with Γi 6= 0 fall into four different types for which
Γ1 6= ±Γ2, and three transitional ones where Γ1 = ±Γ2; these are shown in Figures 3.1 and 3.2
respectively.

Remark 3.2 We have not defined what we mean by the type of a momentum polytope. With-
out giving a formal definition, the type is a combination of ‘geometry’ and ‘combinatorics’
within the positive Weyl chamber. For example in Figure 3.1, (a) and (b) have the same ‘combi-
natorics’ (indeed all 4 figures do), but their geometry relative to the Weyl chamber is different.

Proof. First let us find the images of the momentum map for the points in M at extrema of the
distance. It suffices to choose representatives: for minimal distance we have m = (e1, e1) with
e1 = [1 : 0 : 0] and for maximal distance we chose points that are perpendicular, for example
(e1, e2), with e2 = [0 : 1 : 0]. From (2.13) and (2.16) one finds,

J(e1, e2) =
1
3Γ1

2 0 0

0 −1 0

0 0 −1

+ 1
3Γ2

−1 0 0

0 2 0

0 0 −1

 .
From this and a similar calculation for J(e1, e1) we obtain the spectra,

σ(J(e1, e1)) =
{
2(Γ1+Γ2)

3 ,
−(Γ1+Γ2)

3 ,
−(Γ1+Γ2)

3

}
,

σ(J(e1, e2)) =
{

(2Γ1−Γ2)
3 ,

(2Γ2−Γ1)
3 ,

−(Γ1+Γ2)
3

}
.
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a

b

(a) Γ1, Γ2 > 0,
Γ1 6= Γ2

a

b

(b) Γ1 > 0 > Γ2,
Γ1 + Γ2 > 0

a

b

(c) Γ1 > 0 > Γ2,
Γ1 + Γ2 < 0

a

b

(d) Γ1, Γ2 < 0,
Γ1 6= Γ2

Figure 3.1: The four generic polytopes for the action of SU(3) on CP2 × CP2. In
each case a corresponds to the points of the form (u, u), and b to the points of the
form (u, u⊥). Notice that all these poytope-segments are parallel to one of the roots
(equivalently, orthogonal to one of the walls of the Weyl chamber). Notice that figures
(a) and (d) are related by the involution ∗ of Remark 2.4, as are figures (b) and (c).

a

b

(d) Γ1 = Γ2 > 0

a

b

(e) Γ1 + Γ2 = 0

a

b

(f) Γ1 = Γ2 < 0

Figure 3.2: The three transitional polytopes for the action of SU(3) on CP2×CP2. See
the caption of Figure 3.1 for explanations of notation, and Remark 3.3 for discussion.

Notice that the first of these spectra has two equal eigenvalues so lies on a line of reflection.
When ordered by decreasing value, this point is marked a in each diagram. All three are equal
if and only if Γ1 + Γ2 = 0, and in that case a lies at the origin. The other point b = J(e1, e2)
generically has 3 distinct elements, so does not lie on a line of reflection. Repeated eigenvalues
occur if and only if Γ1 = Γ2, as is readily checked (or if one of the Γj vanishes, which we are
excluding), and the corresponding point is marked b in the two figures.

There remains to show that the points a, b are indeed the endpoints of the segment ∆(M)
as claimed. Clearly, since a lies on a wall of the Weyl chamber, it must be an endpoint of the
segment. Now any endpoint is a vertex of the polytope so corresponds either to a point in the
wall or a fixed point for the torus action, but a and b are the only images of fixed points.

Remark 3.3 As (Γ1, Γ2) varies in the plane there are transitions that occur at the points de-
scribed in the theorem. For example, as Γ1 + Γ2 goes from being positive to negative, the transi-
tion form Figure 3.1b to 3.1c is seen clearly through Figure 3.2e. When Γ1 + Γ2 = 0 one of the
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eigenvalues vanishes for both points a and b so the segment lies along the line λ2 = 0.
The transition between Figures 3.1a and 3.1b occur as Γ2 changes sign. As Γ2 → 0, the

segment in Figure 3.1a or 3.1b becomes shorter, and in the limit becomes just the point a (when
the symplectic form is degenerate, the momentum map does not ‘see’ the second factor in the
product M, and the momentum polytope reduces to that of CP2 which is just a single point).
The transition between Figures 3.1c and 3.1d is similar.

Finally, the transitional figures shown in Figures 3.2d and 3.2f occur when Γ1 = Γ2 and
J(e1, e2) has a double eigenvalue. As say, Γ1 decreases through the value Γ2 from Γ1 > Γ2 > 0 to
Γ2 > Γ1 > 0, the segment in Figure 3.1a extends until it hits the right-hand wall (as in Fig. 3.2d)
and then retreats back to look like the segment in Figure 3.1a.

Proof of Theorem 1.1 (Part 1). Consider M = CP2 × CP2, with Γ1 = −3λA and Γ2 = −3λB.
The two extremes of the segment have spectra given above

σ(J(e1, e1)) = {λA + λB, λA + λB, −2(λA + λB)} ,

σ(J(e1, e2)) = {λA + λB, λA − 2λB, λB − 2λA} .

Then λ1 = λA + λB, while λ2 lies between λA + λB and λA − 2λB as stated in the theorem.

4 Momentum polytopes for SU(3) action on CP2 × CP2 × CP2

Now let M = CP2 × CP2 × CP2. Recall from Section 2.2, the momentum map for the SU(3)
action on the manifoldM is

J : (Z1, Z2, Z3) 7−→ 3∑
j=1

Γj Zj ⊗ Zj − 1
3

 3∑
j=1

Γj

 I3
with Z1, Z2, Z3 ∈ CP2, see (2.13).

Theorem 4.1 The momentum polytopes of the SU(3) action on CP2 × CP2 × CP2 with
weighted symplectic form Ω = Γ1ωFS ⊕ Γ2ωFS ⊕ Γ3ωFS (with Γj 6= 0) fall into eight differ-
ent types for which Γi − Γj − Γk 6= 0, Γi ± Γj 6= 0, where i, j, k = 1, 2, 3, and Γ1 + Γ2 + Γ3 > 0.
Examples are shown in Figures 4.2 and 4.3, while the 8 different regions of Γ -space are illus-
trated in Figure 4.1.

Remark 4.2 There are another 8 types of generic momentum polytope with Γ1 + Γ2 + Γ3 < 0.
Note from the expression for J above, if the signs of all three Γj are changed, then the sign of J
changes. This implies that the original polytope and the new one are related by the involution ∗
described in Remark 2.4. The cases with Γ1 + Γ2 + Γ3 = 0 are transitional and described further
below—see Figure 4.4.

The remainder of this section consists of a proof of this theorem. See Remark 3.2 for a
discussion of the word ‘type’.

Recall from Sjamaar’s theorem 2.2 that if a point µ in the interior of the positive Weyl
chamber is a vertex of the momentum polytope then there is an m ∈ M with J(m) = µ and
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A
B C

D

E

F

G

H

Γ2 = 0

Γ
3
=
0

Γ 1
=
0

Γ1
=
Γ2

Γ
2 =

Γ
3

Γ 1
=
Γ 3

Γ1 + Γ3 = 0

Γ 2
+
Γ 3

=
0

Γ
1
+
Γ
2
=
0

Γ2 = Γ1 + Γ3

Γ 1
=
Γ 2
+
Γ 3

Γ
3
=
Γ
1
+
Γ
2

Figure 4.1: This shows the parameter plane Γ1 + Γ2 + Γ3 = const with const > 0.
Within the central black triangle all 3 weights are positive. The value of Γ2 is constant
on horizontal lines and increases vertically upwards; variations of the other variables
can be deduced from this. The blue lines indicate where the polytope type changes, see
Table 4.1. The sector between the red lines is chosen with Γ1 ≥ Γ2 ≥ Γ3. The generic
polytope types are labelled A,B, . . . , H, and in the text the respective transitions are
labelled AB etc.
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stabilizer equal to a maximal torus. We begin therefore with an analysis of the points with
stabilizer equal to a maximal torus, which we choose to be the subgroup T of diagonal matrices.

The fixed points of T are the 27 points (ei, ej, ek) ∈ M, where each e` ∈ {e1, e2, e3} and
e1 = [1 : 0 : 0], e2 = [0 : 1 : 0] and e3 = [0, 0, 1]. The images in t∗+ of these points are given by
the spectra of the corresponding Hermitian matrix. Extending the notation for CP2 × CP2, let

a = σ
(
J(e1, e1, e1)

)
, b = σ

(
J(e1, e2, e3)

)
,

c1 = σ
(
J(e2, e1, e1)

)
, c2 = σ

(
J(e1, e2, e1)

)
, c3 = σ

(
J(e1, e1, e2)

)
.

Here some caution is required: for example (e1, e1, e1) and (e2, e2, e2) and (e3, e3, e3) lie on the
same SU(3)-orbit in M, and hence their values under J lie on the same Weyl group orbit in t∗.
Only one of these will lie in the positive Weyl chamber (we denote this value a). On the other
hand, their (unordered) spectra coincide, and so we consider spectra as sets. The same applies to
say (e1, e2, e1)—permuting the indices to, for example, (e2, e3, e2) will give points in the same
orbit (but not the same orbit as (e2, e1, e1)), so their unordered spectra are equal (but in general
different to that of (e2, e1, e1)).

One finds

a =
{
2
3 (Γ1 + Γ2 + Γ3) ,−

1
3 (Γ1 + Γ2 + Γ3) ,−

1
3 (Γ1 + Γ2 + Γ3)

}
,

b =
{
1
3 (2Γ1 − Γ2 − Γ3) ,

1
3 (−Γ1 + 2Γ2 − Γ3) ,

1
3 (−Γ1 − Γ2 + 2Γ3)

}
,

c1 =
{
1
3 (2Γ1 − Γ2 − Γ3) ,

1
3 (−Γ1 + 2Γ2 + 2Γ3) ,−

1
3 (Γ1 + Γ2 + Γ3)

}
,

c2 =
{
1
3 (−Γ1 + 2Γ2 − Γ3) ,

1
3 (2Γ1 − Γ2 + 2Γ3) ,−

1
3 (Γ1 + Γ2 + Γ3)

}
,

c3 =
{
1
3 (−Γ1 − Γ2 + 2Γ3) ,

1
3 (2Γ1 + 2Γ2 − Γ3) ,−

1
3 (Γ1 + Γ2 + Γ3)

}
.

(4.1)

In order to depict them in the positive Weyl chamber, each of these sets should be ordered
by λ1 ≥ λ2 ≥ λ3. Note that point a always lies on a wall of the Weyl chamber as two of
the eigenvalues are equal. The other points do not lie on a wall in general (the 3 eigenvalues
are distinct), however for some values of the weights the points can lie on the wall and these
determine the transition cases.

For example, b lies on a wall if two of the weights coincide, while c1 lies on a wall if
Γ1 = Γ2 + Γ3 or Γ2 + Γ3 = 0 (or the degenerate the case Γ1 = 0). Similar possibilities occur for
c2 and c3 with the indices of the Γj permuted accordingly. The set of possible degeneracies are
listed in Table 4.1.

For some values of the weights Γj, the convex hull of these 5 points is equal to the momen-
tum polytope. But for others we need to determine the ‘local momentum cones’, which are
determined by the local images of the orbit momentum map near these points.

There are two procedures that can be used for drawing the different momentum polytopes.
One is starting with one we know (eg for 2 copies of CP2) and then varying the weights and
following the possible polytope, and the other is looking at the local momentum cones for each
vertex. In this paper we use mostly the weights and local momentum cones, with some continuity
arguments, while in the thesis [14] the former approach is used more.
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condition degeneracy
Γ1 = 0 a = c1, b = c2 = c3
Γ1 = Γ2 b ∈Wall, c2 = c3

Γ1 + Γ2 = 0 a = c3 (∈Wall)
Γ1 = Γ2 + Γ3 c1 ∈Wall

Γ1 + Γ2 + Γ3 = 0 a = 0

Table 4.1: Transition values of Γj; similar transitions occur permuting the indices.
‘x ∈Wall’ means that x belongs to a wall of the Weyl chamber. See Figure 4.1.

4.1 Generic polytopes

We now proceed to calculate the local momentum cones at each of the 5 vertices a, b, c1, c2 and
c3. To do this we need to calculate JN1

for each. At each of the T-fixed points m = (ei, ej, ek)
the tangent space atm is given by

TmM = TeiCP
2 × TejCP

2 × TekCP
2,

and this (symplectic) decomposition is invariant under the action of the maximal torus; see
Lemma 2.6 for the weights of this action.

Vertex b: Consider the weights at b = J(m) form = (e1, e2, e3). If we put,

x =

 0

v1
w1

 ,
u20
w2

 ,
u3v3
0

 ∈ TmM,
then,

DJm(x) = Γ1

 0 v̄1 w̄1
v1 0 0

w1 0 0

+ Γ2

 0 u2 0

ū2 0 w̄2
0 w2 0

+ Γ3

 0 0 u3
0 0 v3
ū3 v̄3 0


Thus kerDJm consists of those x satisfying

Γ1v̄1 + Γ2u2 = 0, Γ2w̄2 + Γ3v3 = 0, Γ1w1 + Γ3ū3 = 0.

This defines a subspace of dimension 6. For this section, we assume b is not contained in a wall
of the Weyl chamber, and then this is in fact the symplectic slice: whenever Gm = Gµ one has
T0 = 0 = N0, and thus N1 = kerDJm.

To find JN1
is simple: since N1 is the sum of 3 distinct representations, with weights α1, α2

and α3 respectively, the momentum map is a sum of three terms (see (2.2)). Thus, using
w1, u2, v3 to parametrize N1 (with v1 = −(Γ2/Γ1)ū2 etc.)

JN1
(w1, u2, v3) =

Γ3
Γ2
(Γ2 − Γ3)|v3|

2α1 +
Γ1
Γ3
(Γ3 − Γ1)|w1|

2α2 +
Γ2
Γ1
(Γ1 − Γ2)|u2|

2α3. (4.2)
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a

b

c3

c2

c1

(a) Polytope A

a

c3

c2

c1
b

(b) Polytope B

a

c3

b

c2

c1

(c) Polytope C

a

c2

c3

c1
b

(d) Polytope D

Figure 4.2: Polytopes of types A . . . D

This determines the momentum cone at b depending on the signs of the coefficients; it turns
out that provided the three weights are distinct, this is always a 120◦ cone (if 2 of the weights
coincide it becomes a 60◦ cone, but in that case b is contained in a wall of the Weyl chamber—
see further below for this case). For example, if Γ1 = 4, Γ2 = 2, Γ3 = −1 (which lies in region C
in Figure 4.1) then b = (7, 1,−8) ∈ t∗+ and

JN1
(u2, v3, w1) = −3

2 |v3|
2α1 + 20|w1|

2α2 + |u2|
2α3,

whose image is precisely the cone at b shown in Figure 4.2c (see Figure 2.1 for the definition of
the αj).

This expression is only the local momentum cone at b provided J(m) ∈ t∗+ ; if that is not the
case then the calculation needs repeating for which ever of the 6 equivalent points does map to b.
For example, if the weights Γj are such that b = J(m) for m = (e2, e1, e3) then the expression
for the local momentum cone (i.e., for JN1

) is like the one above, but with the roots permuted by
the appropriate element of the Weyl group; thus, in that case,

JN1
(w1, v2, u3) =

Γ1
Γ3
(Γ1 − Γ3)|w1|

2α1 +
Γ3
Γ2
(Γ3 − Γ2)|u3|

2α2 +
Γ2
Γ1
(Γ2 − Γ1)|v2|

2α3.
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a

c3

b

c2

c1

(e) Polytope E

a

c3

b

c2

c1

(f) Polytope F

a

c2

c1

c3

b

(g) Polytope G

a

c3

bc1

c2

(h) Polytope H

Figure 4.3: The generic polygons of types E . . . H

Vertices cj: The calculations for c1, c2 and c3 are very similar. For example, withm = (e1, e1, e2)
one has

x ∈ kerDJm ⇐⇒ w1 = (Γ2w2 + Γ3w3) = (Γ1v1 + Γ2u2 + Γ3u3) = 0

(using a hopefully obvious notation). One obtains the following expressions for the slice mo-
mentum map.
• For c1 usingm = (e1, e2, e2),

JN1
= −

Γ2
Γ3
(Γ2+Γ3)|w2|

2α1+

(
Γ1
Γ2
(Γ1 − Γ2)|v1|

2 +
Γ1Γ3
Γ2

(u3v1 + u3v1) +
Γ3
Γ2
(Γ3 + Γ2)|u3|

2

)
α3.

Lemma 4.3 below shows that the coefficient of α3 is definite if and only if

Γ1Γ2Γ3(Γ1 − Γ2 − Γ3) > 0.

If this expression is negative, then c1 lies on an edge of the polytope (parallel to α3), not at an
extreme vertex. The inequality is satisfied only in regions B and D.
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a

b
c1

c2

c3

(a) Polytope D0

with
∑
Γj = 0

a

b
c1

c2 = c3

(b) Polytope DD0

with
∑
Γj = 0

a

bc1

c2

c3

(c) Polytope G0

with
∑
Γj = 0

Figure 4.4: Polytopes arising for Γ1+Γ2+Γ3 = 0. Notice that D0 and G0 are related by
a reflection in the centre line of the Weyl chamber; this is because reversing the signs
of the Γj converts region G0 to D0, via the involution ∗ described in Remark 2.4.

• For c2 usingm = (e2, e1, e2), one obtains

JN1
= −

Γ3
Γ1
(Γ1+Γ3)|w3|

2α1+

(
Γ2
Γ3
(Γ2 − Γ3)|v2|

2 +
Γ1Γ2
Γ3

(u1v2 + u1v2) +
Γ1
Γ3
(Γ1 + Γ3)|u1|

2

)
α3.

• Finally, for c3 usingm = (e2, e2, e1),

JN1
= −

Γ1
Γ2
(Γ1+Γ2)|w1|

2α1+

(
Γ3
Γ1
(Γ3 − Γ1)|v3|

2 +
Γ2Γ3
Γ1

(u2v3 + u2v3) +
Γ2
Γ1
(Γ1 + Γ2)|u2|

2

)
α3.

Similar conditions on the Γj based on Lemma 4.3 ensure these are definite or not. As with b,
if J(m) fails to belong to the positive Weyl chamber, then the appropriate element of the Weyl
group should be applied to the roots. Notice that while JN1

for b has all 3 roots appearing,
for c1, c2 and c3 it only has two distinct roots, corresponding to 2 lines (or half-lines) passing
through those points in the figures.

Lemma 4.3 The quadratic form q : C2 → R given by

q(u, v) = A|u|2 + B(uv+ uv) + C|v|2

is definite if and only if AC > B2.

The proof is a simple calculation.

Vertex a: There remains to consider the point a. Let m be a point on the diagonal, and to be
specific we takem = (e1, e1, e1). The stabilizer ofm is now

Gm =

{(
(detA)−1 0

0 A

)
| A ∈ U(2)

}
' U(2).
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a

c2

c3

c1
b

(a) Weights for polytope D
(weights at c3 are translations of c2)

a

c1

c2

c3

b

α1

α2

α3

(b) Weights for polytope G
(weights at c2 are translations of c1)

Figure 4.5: Examples showing weights at the fixed points

We assume
∑
j Γj 6= 0, in which case a = J(m) 6= 0 (see (4.1)); the other case is discussed

further below. We now have JN1
: N1 → u(2)∗ ⊂ su(3)∗.

Since again Gµ = Gm, it follows that T0 = N0 = 0 and N1 = kerDJm. Here

x ∈ N1 ⇐⇒∑ Γjvj =
∑

Γjwj = 0.

Before solving for v3 and w3 one finds

JN1
=

−
∑
j Γj(|vj|

2 + |wj|
2) 0 0

0
∑
j Γj|vj|

2
∑
j Γjvjwj

0
∑
j Γjvjwj

∑
j Γj|wj|

2

 .
With the usual Cartan subalgebra of diagonal matrices, there are two types of weight vector
for the T2 action on TmM, vectors with wj = 0 (of weight −α3) and those with vj = 0 (of
weight α2). Now N1 consists of 4-dimension’s worth of each. Eliminating v3 and w3 from the
expression above, one finds, on the α3-weight space,

JN1
(v1, v2, 0, 0) =

(
Γ1
Γ3
(Γ1 + Γ3)|v1|

2 +
Γ1Γ2
Γ3

(v1v2 + v1v2) +
Γ2
Γ3
(Γ2 + Γ3)|v2|

2

)
(−α3), (4.3)

and on the α2-weight space,

JN1
(0, 0,w1, w2) =

(
Γ1
Γ3
(Γ1 + Γ3)|w1|

2 +
Γ1Γ2
Γ3

(w1w2 +w1w2) +
Γ2
Γ3
(Γ2 + Γ3)|w2|

2

)
α2.

(4.4)
For both, using the notation of Lemma 4.3, one finds

AC− B2 =
Γ1Γ2
Γ3

(Γ1 + Γ2 + Γ3). (D)
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This expression (D) is positive in regions A, B and D only. Consider the different cases:

(D) < 0 : In this case the quadratic coefficients in (4.3) and (4.4) are indefinite, and the image
of the momentum map at a contains lines in the root directions ±α2,±α3, and in the positive
Weyl chamber this gives lines in the directions −α2 and −α3. See for example Figure 4.5b. The
convexity theorem implies that the infinitesimal momentum cone at a in this case contains the
region between these two directions, but does not tell us if it is equal to it (see further below).

(D) > 0 : Here there are two possibilities: the quadratic coefficients in (4.3) and (4.4) are either
positive or negative definite. Suppose they are positive definite; then the image of JN1

contains
the directions α2 and −α3. However, from a, the direction α2 does not lie in the positive Weyl
chamber, and applying the Weyl-group reflection fixing a sends α2 to −α3. Thus all we know
is that the image of J in a neighbourhood of a contains a line in the direction of −α3 (see
Figures 4.2a and 4.2b). Similarly, if they are negative definite, the image contains a line in the
direction of −α2 (as in Figure 4.2d).

Conclusion & construction of generic polytopes: For Γ = (Γ1, Γ2, Γ3) in each of the regions
A,B,. . . ,H of the diagram in Figure 4.1, one plots the five points a (on the wall) and b, c1, c2, c3
in the interior of the positive Weyl chamber. From each point, one can plot the local momentum
cone. The theorem of Sjamaar (see Theorem 2.2(2) above) states,

∆(M) =
⋂

m∈Φ−1(t∗+)

∆m

where ∆m is the local momentum cone at Φ(m) (independent of m in the fibre), as defined
above. As can be seen from the figures, the points a, b and the cj only account for some of
the vertices (there may be others on the boundary of the Weyl chamber). However, if we put
V = {a, b, c1, c2, c3}, it follows from Sjamaar’s theorem that

∆(M) ⊂
⋂
µ∈V

∆µ. (4.5)

In each region except G, the information from b, c1, c2, c3 suffices. For example, for Γ in region
D, refer to the weights shown in Figure 4.5a. Starting from the point c1, the weights dictate a
line from c1 to b, and from c1 to c3 to c2 and thence to a. From b the weight in the direction α2
leads to the wall. The convex hull of this set is the unique set satisfying the inclusion (4.5) and
in addition containing the infinitesimal momentum cones (see Definition 2.1 and Theorem 2.2).

Region G: The argument above suffices for all the generic polytopes except those of region G;
the three diagrams in Figure 4.6 are all compatible with the data at vertices b, c1, c2, c3, and we
need to consider in greater detail the local momentum cone at a. This region G is defined by the
inequalities −Γ3 > Γ1 > Γ2 > Γ3 and Γ1+ Γ2+ Γ3 > 0 (see Figure 4.1), and hence expression (D)
is negative. We need to determine in particular whether, at a point g of the line in the direction
−α3 (see Figure 4.6a), the infinitesimal momentum cone is the germ of a half space (above and
to the right of the line, as in Figure 4.6a) or of the full space (as in Figures 4.6b, 4.6c).

To accomplish this, consider the pointm ′ with v1 = 1, v2 = w1 = w2 = 0 in the symplectic
slice N1 at m = (e1, e1, e1); we have JN1

(m ′) = A(−α3), and put g = a + JN1
(m ′). Here
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a

g

(a)

a
g

(b)

a

0

g

(c)
Figure 4.6: Three possibilites for the lower part of polytope G compatible with local
information at vertices b, c1, c2, c3—version (a) is the correct one

A = Γ1(Γ1 + Γ3)/Γ3 < 0 in region G. (One could replace v1 = 1 with v1 = ε to ensure g
is in the positive Weyl chamber, but the calculation is identical save for a factor of ε2). Let us
calculate the infinitesimal momentum cone δ ′ at this point. For the U(2) action onN1, the point
m ′ has stabilizer U(1) generated by diag[i, i,−2i] ∈ α◦3 (cf. Lemma 2.3). Moreover Gg = T2.
Considering the U(2)-action on N1 gives rise to a Witt-Artin decomposition atm ′ given by

Tm ′(N1) = T
′
0 ⊕ T ′1 ⊕N ′1 ⊕N ′0

with dim T ′0 = dimN ′0 = 1, dim T ′1 = 2 leaving dimN ′1 = 4. Now, a local calculation shows
that

N ′1 = {(v1, v2, w1, w2) ∈ N1 | Av1 + Bv2 = Aw1 + Bw2 = 0},

where A,B are as before the coefficients in (4.3) above. This space can be parametrized by
v1 = v,w1 = w and hence v2 = −(A/B)v, w2 = −(A/B)w. The image of N ′0 under the
momentum map is the line along the root direction ±α3. Moreover so is the image of (v, 0).
Indeed, the U(2)-momentum map on N ′1 is

JN ′1(v,w) =
A

B2
(AC− B2)

−|v|2 − |w|2 0 0

0 |v|2 vw

0 vw |w|2

 .
This lies in t∗ if and only if vw = 0. The case (v, 0) has been mentioned, leaving the case
(0,w):

JN ′1(0,w) =
A

B2
(AC− B2)|w|2 diag[−1, 0, 1] =

A

B2
(AC− B2)|w|2α2.

Now, in region G, the coefficient (A/B2)(AC−B2) < 0, and since the infinitesimal momentum
cone δ ′ is independent of the point in the fibre (Theorem 2.2), this shows that the infinitesimal
momentum cone is indeed the half space as claimed.

With this the proof of Theorem 4.1 is concluded. 2

4.2 Transition polytopes

The 8 regions of the Γ -plane (Figure 4.1) are separated by ‘transition cases’, such as occur when
Γ1 = Γ2 or Γ1 = Γ2+ Γ3. There are also the possibilities of Γj = 0, but this we are excluding from
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a

c3
c2

c1
b

(a) Polytope B

a

b c1

c2

c3

(b) Polytope AB

a

b

c3

c2
c1

(c) Polytope A

Figure 4.7: This shows the transition B→ AB→ A, involving vertex c1 moving to the
boundary of the Weyl chamber and getting reflected back but leaving an edge "stuck"
to the boundary.

consideration as the polytope coincides with that of the 2 point polytopes described in Section 3.
At each of these transitions, one of the vertices of the polytope hits a wall of the Weyl chamber,
and a different analysis of the weights is required; indeed the dimension of the symplectic slice
is no longer the same. It can also happen that two of the vertices coincide (such as c2 = c3
in the transition denoted BB), but this has less effect on the weight calculations. The transition
polytopes are illustrated in Figures 4.9 and 4.10; the notation for the different transition cases
can be found in Figure 4.8.

However, rather than repeating the weight calculations, it is sufficient to use a continuity ar-
gument. SinceM (and henceM/G) is compact, and the momentum map depends continuously
on Γ , it follows that the image of the orbit momentum map J also depends continuously on Γ .

It suffices therefore to follow the movement of the vertices as one approaches the boundary
of any particular region to conclude the shape of each of the transition momentum polytopes.
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AA

AAA AB

AAB

AA

BB

CEFH

CE

FGH

FH

GG

HH

DD

CH EF

FG

DD0

D0

Figure 4.8: This shows the labels of all 19 transition polytopes with Γj 6= 0. Compare
with Fig. 4.1. The transitions denoted D0 and DD0 arise ‘at infinity’ in this diagram,
and refer to points with Γ1 + Γ2 + Γ3 = 0; they are shown in Figure 4.4.

a

b

c1 = c2

c3

(a) Polytope AA
with Γ1 = Γ2

a

b

c1 = c2 = c3

(b) Polytope AAA with
Γ1 = Γ2 = Γ3 > 0

a

b

c1

c2 = c3

(c) Polytope AA
with Γ2 = Γ3

Figure 4.9: The transition polytopes with repeated weights around region A.
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a

b c1

c2 = c3

(a) Polytope AAB

a

b c1

c2 = c3

(b) Polytope BB

a

b c1

c2 = c3

(c) Polytope DD

a

bc1 = c2

c3

(d) Polytope GG

a = c1
= c2 b

c3

(e) Polytope FGH

a = c1 b

c2

c3

(f) Polytope FH

a

bc1

c2

c3

(g) Polytope CH

a = c1 b

c2

c3

(h) Polytope CEFH

a
b

c1

c2

c3

(i) Polytope EF

a

b
c1 = c2

c3

(j) Polytope HH

a = c1 b

c2

c3

(k) Polytope CE

a = c2
bc1

c3

(l) Polytope FG

Figure 4.10: The remaining transition polytopes
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