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Abstract

In this paper the notion of an irreducible cuspidal character for finite
groups of Lie type is generalized to any finite group. All the irreducible
cuspidal characters for the finite sporadic simple groups are then deter-
mined.

1 Introduction

For a finite group G, its complex irreducible character table encodes a diverse
range of details relating to the structure and properties of G. For example the
structure constants may be extracted from the character table (see [7, Theo-
rem 4.2.12]). While there are results connecting character values with the orders
of various subgroups of G (see [7, Theorems 4.2.8 and 4.2.11]). Since the birth
and rapid development of character theory by Frobenius, Schur and Burnside
([B]), there has been a fruitful interplay between characters and finite groups.
A particular jewel in the crown being Frobenius’s theorem ([7, Theorem 5.1]),
for which no proof without characters is known. This has resulted in extensive
efforts to calculate character tables of “interesting” finite groups. Tables for all
the sporadic simple groups are to be found in the ubiquitous ATLAS [4]. While
the case when G is a Lie type group is the subject of the mammoth text by
Carter [3], and continues to be a very active area of research.

When G is a group of Lie type, a particular type of irreducible character,
called a cuspidal character, plays an important role. This is because of the fact
that every irreducible character of G is a constituent of the induced character
ngJ for some cuspidal character ¢ of some P;, where P; is a proper parabolic
subgroup of G (see [3, Chapter 9] for more details). The aim of the present paper
is to generalize the notion of a cuspidal character to an arbitrary finite group,
and then to determine all irreducible characters for the sporadic simple groups.
Since the complex irreducible character tables are known for all the sporadic
simple groups, this begs the question as to whether this is a worthwhile enter-
prise. Unlike the situation of groups of Lie type where the cuspidal characters
are being used to determine further irreducible characters, our motivation here
is to better understand the sporadic simple groups in a wider context. We shall
return to this issue shortly.

The generalization of cuspidal characters is set against the following back-
drop.



Definition 1.1. Suppose that G is a finite group, X a subgroup of G and I an
index set with |I| = n. Then an X-parabolic system of rank n is a set of pairs
of subgroups of G, (Py,Q), indexed by subsets J of I such that

(i) for each J CI, X < P;, Q; < Py;
(ii) for K CJ CI, Qs < Qk;
(iii) Pr =G and Qr =1; and
(iv) X = P,.

We shall write X = {(Py,Qs)|J C I} and note that by part of Defini-
tion all @ are subgroups of @y and that Qy I Py = X. We allow the
possibility that (P;,Qs) = (Pk,Qk) with J # K, but this will not arise in
most of the cases that follow. If our index set is I = {1,2,...,n} for some
n > 1, then given a subset {iy,is,...,4,} C I with 4; < 4,4, for all j, we
will often denote the subgroups Py, i,...i,3 and Qi 4,5y bY Pijiy..i, and
Qiyiy--i, respectively. Given an X-parabolic system X = {(P;,Q)|J C I} of a
finite group G and J C I, we set Py := P;/Q ;. Furthermore, for any subgroup
Qs <Y < Py, we use the standard bar notation Y := Y/Q;. We may use X
to form an X-parabolic system, X, of rank |.J| for P given by

We now describe a particular type of X-parabolic system of interest here. Sup-
pose that G is a finite group, p a prime and S € Syl,(G). Set B = Ng(95).
A subgroup P of G is called p-minimal (with respect to B) if B is a proper
subgroup of P and B is contained in a unique maximal subgroup of P. We
recall that for H a finite group, O,(H) is the largest normal p-subgroup of H,
and we shall refer to O,(H) as the p-core of H. Defining

A (G, B) = {P|P is a p-minimal subgroup of G (with respect to B)},
then a set
My ={P;|P; € #(G,B),icl}

is called a minimal parabolic system of characteristic p for G or a p-minimal
parabolic system of G, if G = (Pi|i € I) and G # (P;|j € I \ {i}) for any i € I.
The rank of A is |I|. We call .4, a geometric p-minimal parabolic system if for
all J, K C I we have P;nxg = P; N Pg. Otherwise .# is called non-geometric.
Provided B # G, we always have G = (.# (G, B)) and so there is always at least
one minimal parabolic system of characteristic p for G.

Now suppose that O,(G) = 1. For a minimal parabolic system .#, =
{P|P; € # (G, B),i € I} of G we define a B-parabolic system X = {(P;,Q)|J C I}
by

P — (PjljeJ)y if0#JCI; and
T8 if J =0,



and Qy = Op(Py) for all J C I. Should G be a simple group of Lie type of
characteristic p, then B would be the Borel subgroup of G and {P;|J C I} the
parabolic subgroups of G (containing B). Further, @ ; would be the unipotent
radical of Py for J C I. Turning to the sporadic simple groups, the p-minimal
parabolic systems were catalogued by Ronan and Stroth [I4] for groups whose
Sylow p-subgroups are non-cyclic. (We note that in [14] they require their p-
minimal subgroups to have a non-trivial p-core, which we do not need to assume
here.)

For G a finite group, Irr(G) will denote the set of complex irreducible char-
acters of G. We now give the promised generalization of cuspidal characters.

Definition 1.2. Let X be an X-parabolic system of G where X < G, and let
X € Irr(G). Then x is called X-cuspidal if for all (P;, Q) € X with Q; # 1 we
have

> x(g) =0 (1)

geQy

The condition will be known as the cuspidal condition on @QQ; and is
equivalent to (xg,,1lg,) = 0. In an abuse of terminology, we will also some-
times refer to the cuspidal relation holding for P; when occurs. Clearly,
when the index set I = (), we have G = Py = X and Qp = 1, and hence every
irreducible character is vacuously X-cuspidal. When X is a B-parabolic system
associated to a p-minimal parabolic system of GG, then any X-cuspidal character
will also be called a p-cuspidal character of G. Consulting [3, Proposition 9.1.1]
we see that this generalizes the situation when G is a simple Lie type group of
characteristic p.

Our main theorem is as follows — in its statement the names for the sporadic
simple groups and their irreducible characters are as they appear in [4].

Theorem 1.3. Suppose that G is a finite sporadic simple group with X an X -
parabolic system of G given by one of the p-minimal parabolic systems of G. Let
x € Irr(G). Then x is X-cuspidal for the following pairs (G, {x;})-

(i) p=2. (Mi1,{x3,Xx4}), (Ma2,{x3,X4}), (Ma3,{x3,X4}), (Mas, {x3,X4}),
(Coz2,{x3,X10, X11, X12, X13, X16, X31, X32} ), (Co1, {x2, x8, X11}), (Ru, {x2, x3}),
(Th,x2), (Ja, {x2: x3})-

(ii) p = 3. (M11,{X6,X7}); (M12»{X47X5}); (Fi227{x2})7 (Th, {Xz})'

(ii1) p > 5. (J2,{xe}), (HN,{xa}), (Th,{x2}), (Ly,{x2,x3}) (p = 5); (He, {x2, x3})
(p=17); (M1, {x2, X3, xa}) (p = 11); (Ma3z,{x2}) (p = 23).

We direct the reader to Tables and [3] for which X-parabolic systems
arise in Theorem as well as the degrees of the various irreducible X-cuspidal
characters. Note that in these tables we have used the same notation for the
p-minimal subgroups as in [I4] when the Sylow p-subgroup of G is non-cyclic.

We now return to the question of motivation for this study. As we note
shortly, the existence of a number of the X-cuspidal irreducible characters for
the sporadic simple groups coincides with interesting and exceptional behaviour.



For example, when p = 3 and G = Th, we have that xo is an irreducible 3-
cuspidal character of degree 248. This representation was instrumental in the
original construction of Th in which Th was shown to be a subgroup of Fg(3),
but not a subgroup of Eg(q) for any other prime g # 3 (see [16], [I7]). In [I1I,
Margolin looked at a geometry for the Mathieu group Msy4. Margolin’s interest
stemmed from the two 1333-dimensional irreducible GF(2).Js-representations.
Since 21 : My, is a maximal subgroup of J4, Margolin considered the restric-
tion of these representations to 2'' : My, namely as a faithful 1288-dimensional
representation and a 45-dimensional representation having kernel 2!, Hence
Margolin sought to find a simple explanation for this 45-dimensional represen-
tation and this resulted in the construction of a geometry. We note that both
1333-dimensional Jy-characters are 2-cuspidal, as are both of the resulting ir-
reducible Ms4-characters of degree 45, along with their irreducible restrictions
to Mss and Mss. So the work presented here, may further highlight certain
characters and/or X-parabolic systems (and associated geometries) where one
might prospect for interesting nuggets.

The sporadic simple groups are something of an unruly bunch, so we can not
expect the light cuspidal characters shines on them to reveal all their secrets.
Indeed, looking at Theorem [1.3[i) we see that though ML (and to a lesser
extent F'ipg) has more minimal parabolic systems than you can shake a stick
at, it (and Figg) fail to have any cuspidal characters. Moreover, the minimal
parabolic systems for My and He (with p = 2) have the same diagram (see [14])
yet May has 2-cuspidal characters, but He does not. For the tuples (G, p) given
by (Mi1,11) and (Ma3,23), it is unlikely that the p-cuspidal characters of G
will give rise to any interesting geometries. Indeed, in both cases a Sylow p-
subgroup of G is cyclic of order p, and the resulting p-cuspidal characters have
degree p— 1. Similarly, when (G, p) is (M1, 3) or (T'h,5), there is a unique class
of elements of order p, and a Sylow p-subgroup has exponent p. Hence it is im-
probable that the resulting p-cuspidal characters lead to interesting geometries.
As an aside, we mention that representation theory and minimal parabolic sys-
tems have interacted in the modular case (see [I3]). Finally we note that Co;
and Cos are the proud owners of many irreducible cuspidal characters for p = 2,
and these are definitely worthy of further scrutiny.

This paper is organized as follows. Section 2 consists of some general results
on cuspidal characters. Theorem[2.3]and Proposition[2.5]are the exact analogues
of [3, 9.1.3] and [3] 9.1.2] respectively. But other results do not generalize from
the Lie type group case (see Example. The last two results of this section are
useful for our later calculations. Sections 3] [4] [ and [6] determine the p-cuspidal
characters for the sporadic groups in the cases where, respectively, p = 2, p = 3,
p=>5andp > 5.
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2 Elementary Properties of X-Cuspidal Charac-
ters

We recall the notion of the intertwining number of two modules.

Definition 2.1. [10/ Let F be a field of characteristic 0, with algebraic closure
F, let G be a finite group and let V and W be FG-modules. The intertwining
number, denoted i(V, W), is defined by

i(V,W) := dimp Homg (V, W)

The intertwining number of modules will be of importance due to its con-
nection with the inner product of the associated characters.

Theorem 2.2. [10, Chapter 3, Theorem 1.1] Let F be an arbitrary field of
characteristic 0 and let A and p be arbitrary characters of G afforded by FG-
modules V and W respectively. Then

(Ap) = (V. W)

We may use Theorem [2.2] to prove an analogue of Proposition 9.1.3 of [3],
the proof of which is almost identical to that used in Carter’s Proposition.

Theorem 2.3. Let X be an X-parabolic system of G and x € Trr(G). Then
there exists (Py,Qy) € X and an X j-cuspidal character ¢ of Py = P;/Qy such
that (x, %) # 0.

Proof. Let S = {J C I|(xq,,1lq,) # 0}. Note that S # 0 as Q; = 1. Let J be
a minimal element of S and let V be an irreducible CG-module that affords x.
Define

Vi={veVv-u=vforalueQ,}.

By Theorem as (xg,,1o,) # 0, there exists a non-zero CQ) j-homomorphism
from the trivial CQ j-module to V', and hence V' is non-empty.

Clearly V' is a linear subspace of V, and given g € P; and u € Q; we have
that

(vg)u = vgug~'g = vy,

as Q7 < Pj. Hence V' is a CPy-module.

Consider V' as a CP j-module, having associated character ¢ =", ¢; (with
the ¢; irreducible CP j-characters). So V' affords ¢p, = >_,(¢;)p, and V affords
the character xp,. Now V' is a CP;-submodule of V, hence each (¢;)p, is a
component of xp,. Consequently

(((bi)G’X) = ((¢i)PJ7XPJ) # 0,

and y is a component of (¢;)¢. Thus it remains to prove that ¢; is a cuspidal
character.

If ¢; is not cuspidal, then ((¢i)gg,1lgx) # 0 for some K C J. It follows
that dimc Homeg, (1,V) # 0 and hence (xqgx,lgx) # 0. Hence K € S,
contradicting the minimality of J. Thus the result holds true. O



We illustrate this behaviour with an example.

Example 2.4. G = Alt(7) has a 2-minimal parabolic system of rank 2 given

by {P1, P} (C #(G,B)) with B = Dih(8), P, = Dih(8) : C5 and Py =
Sym(4). Take B = ((1,2)(3,4),(1,3)(5,6)), P, = (B,(5,6,7)) and Py =
(B,(1,2,5)(3,4,6)). Let X be the B-parabolic system given by {(Py,Qs)|J C {1,2}}
where Py = B. SoQp = B, Q1 = {((1,2)(3,4), (1,3)(2,4)), Q2 = {((1,3)(5,6), (2,4)(5,6))
and Q1,2y = 1. It follows using [{|] that for i = 1,2 we have

D x(9) = x(1) +3x(24) #£0

geEQ:

for any x € Irr(G). Thus G has no X-cuspidal characters.

For P; = P;/Q; = Sym(3) we have that Qy = Cy. It follows that there is
one X;-cuspidal character, namely the sign character. We denote this character
by ¢; and also think of it as a P;-character. Using the notation from [J], calcu-
lations show that the constituent characters of ¢ are x3,X4, X7, Xo- Meanwhile
the constituent characters of ¢S are X3, X4, X5, X7> X85 X9-

For Py = 1 we note that trivial character will be Xy-cuspidal, and it lifts
to the trivial character 1. We have that the constituent characters of 1§
are X1, X2, X5, X6s X75 X8, X9- Thus we observe - not very surprisingly - that
Proposition 9.1.5 of [3] does not extend to our more general situation, since

(67, 05) = 5, whilst ¢ # ¢ .

Although by definition, to determine whether or not a character is cuspidal
we must check the cuspidal condition for every subgroup in the X-parabolic
system, we shall shortly see that this is not actually necessary. First we give
the analogue of [3 Proposition 9.1.2].

Proposition 2.5. Let G be a group, X < G and x € Irr(G). If X is an X-
parabolic system of G of rank n having underlying indexing set I, then the
following are equivalent:

(i) x is a X-cuspidal character of G.

(it) (xq,,1q,) =0 for all J C I such that Qy # 1.

(iii) (x,1§,) =0 for all J C I such that Qs # 1.

() 3 peq, X(xg) =0 for all J C I such that Q; # 1 and all g € G.
(v) Y weq, X(gx) =0 for all J C I such that Q; # 1 and all g € G.

Proof. (i) = (ii). Assume that x is a ¥-cuspidal character of G. Thus for each
pair of subgroups (Py, Q) for J C I we have that either Q; =1 or

> x(@) =0.
z€Q
In particular

> x(@)lg,(@) =0

TEQS



and hence (xq,,1g,) =0 for all J C I such that Qs # 1.

(13) = (iv) Let Qs be such that Q; # 1 (if no such @ exists, the result
is vacuously true). Let p be an irreducible representation corresponding to x,
let p’ be an irreducible constituent of p|g, and let d denote the degree of p.
The module corresponding to p’ has basis {ey,...,eqs} and hence we may define
coeflicient functions pgj fori,j=1,...,d by

d
€ig = Z p;j (9)e;-
j=1

By the orthogonality relations for the coefficient functions (as given in [3 Sec-
tion 6.1]), it follows that

(nga (1(;),])11) =0

forall 4,5 =1,...,d, as 1g, is not an irreducible constituent of xg,. Thus
Z P;j(x) =0
T€Q

for all 7, j and hence
> A@)=0
T€Q

for all 7, j. Since this holds for all irreducible components p’ of x¢, we deduce
that

S o) =0, )
TEQ

Now let g € G be given. Multiplying (2)) on the right by p(g) gives

> plxg)={ > plx) | plg) =0.

TEQ z€Q

Consequently, taking traces we obtain

> xlxzg) =0.

T€EQy

(iv) = (7) Taking g = 1 we see that x is a X-cuspidal character of G.
(#1) = (v) = (i) This follows analogously by multiplying on the left by p(g)

in .

(#4) < (4i1) This follows by Frobenius reciprocity. O

Proposition 2.5 infers that we only have to check that the cuspidal condi-
tion holds for certain “maximal” subgroups of a parabolic system to ascertain
whether a character is cuspidal.

10



Corollary 2.6. Let G be a group, X < G, I ={1,...,n} andlet X = {(P;,Q)|J C I}
be an X -parabolic system of G. Define

D :={JCIQ;#1andif JC K CI, then Qx =1}.
Then x € Irr(G) is cuspidal precisely when
> x(@) =0
zE€EQ
for all Qy such that J € %).

Proof. The condition is clearly necessary. To see that it is sufficient, let J' C I
be such that Q) # 1. We shall show that

> x(@) =0,
T€EQ 5

Since Q- # 1, we see that J C I and there exists some J € 9) such that J' C J.
Consequently Q7 < @ ;. By assumption

> x(@) =0,
z€Q
and so (x|g,,1g,) = 0. The proof of Proposition [2.5| asserts that
> x(zg) =0
T€Q s

for all g € G.
Let T denote a right transversal of 0y in Q) ;. Then

dox@=>_[ D xtat)| =0

T€EQ 5/ teT \z€Qg
as required. O
The final result that we will use in classifying the p-cuspidal characters of
the sporadic simple groups concerns irreducible characters of odd degree.

Lemma 2.7. Let G be a finite group and p an odd prime such that |G| = p®m
for some a > 1 with (p, m) = 1. Assume that G has a p-minimal parabolic
system containing a parabolic subgroup with non-trivial p-core. If for each G-
conjugacy class, C, of elements of order p® for b < a and all g € C we have
that

gn{geG|lgl=p"}cC, (3)

then every p-cuspidal character of G has even degree.

Proof. Assume that condition holds for all non-trivial powers of p. Then
a non-trivial p-core, @, of a parabolic subgroup will intersect every conjugacy
class of p-elements in a set of even order. Thus if the degree of x € Irr(G) is
odd, then the same is true of

> x(9),

geQ

and hence y is not a p-cuspidal character of G. O
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3 2-Cuspidal Characters

We now work systematically through the sporadic simple groups, determining
for each group G and each 2-minimal parabolic system of GG, which characters
X € Irr(G) are 2-cuspidal. A summary of our results is given in Tables [1] and
Throughout, the notation x; € Irr(G) is the same as that used in [4]. We shall
also use the standard notation from [4] for the conjugacy classes of G.

3.1 The Mathieu Groups
Mll

There are three 2-minimal parabolic subgroups of M7, namely
Py ~ 22 Sym(3), Py~3%.SDjs, and P;~ Alt(6).2,

(where SDjg is the semidihedral group of order 16) and these give rise to three
2-minimal parabolic systems, each of rank 2. Since O3(Ps) = O2(P3) = 1, we
must consider a Sylow 2-subgroup of M;j;. Such a subgroup will intersect the
Mi;-conjugacy classes 14, 2A, 4A, 8A and 8B in 1, 5, 6, 2 and 2 elements
respectively. It follows that the cuspidal relation for a Sylow 2-subgroup holds
for x3,x4 € Irr(My1) (both of degree 10). Consequently, x3 and x4 are 2-
cuspidal characters of the minimal parabolic system { P, Ps}. Finally, as Oq(P;)
contains 1, 1 and 6 elements from the classes 14, 24 and 4A respectively and

Xi(1A) + xi(24) +6 - x;(4A) =8

for i = 3,4, we see that the minimal parabolic systems containing P; admit no
2-cuspidal characters.

Mo

There are no 2-cuspidal characters for the unique 2-minimal parabolic system
of Mis given by

{P ~4%2.Sym(3), P> ~ 2}7*.Sym(3)} .

To see this, we observe that Oo(P;) intersects the Mjs-conjugacy classes 14,
24, 2B, 4A and 4B in 1, 4, 15, 6 and 6 elements respectively, whilst Og(P)
intersects these classes in 1, 12, 7, 6 and 6 elements respectively. Consequently
the only character satisfying the cuspidal relation for O3 (Py) is x13 (of degree
120). However

X13(1A4) + 12 x13(24) + 7+ x13(2B) + 6 - x13(44) + 6 - x13(4B) = 64.

Mo

There is a unique 2-minimal parabolic system for Mso, namely

{P ~2'2.Sym(3), P, ~ 2*.Sym(5)} .

12



Parabolic 9 core Order of intersection with Moyy-class
Subgroup 1A | 2A 2B | 4A 4B

Py 26 1 | 45 18 0 0

Pi3 26+2 1 57 54 | 72 72

Pss 24+3 1 29 42 | 56 0

Table 4: The 2-cores of maximal parabolic subgroups of May.

The 2-cores O2(P;) and Oa(Py) intersect the Mas-conjugacy classes 14, 24, 4A
and 4B in 1, 27, 12, 24 and 1, 15, 0 and 0 elements respectively. The only
elements x € Irr(Maz) satisfying

X(1A) +27 - x(24) + 12 - x(4A) + 24 - x(4B) = x(1A) + 15- x(24) =0

are the two characters of degree 45, x3 and y4.

M3

The group Ms3 has seven conjugacy classes of 2-minimal parabolic subgroups,
six of which feature in 2-minimal parabolic systems of Ms3. Using the notation
of [I4], these subgroups are

Py~ 24%2.Sym(3), Py ~2*72.Sym(3), P; ~ 2472 Sym(3)
Py ~ 24%2.Sym(3), Ps ~ 2% Sym(5), P; ~ 2%, Sym(5).

The 2-minimal parabolic systems are given by { Py, Ps, Pr}, {Ps, Py, P;}, { P2, Ps, Pr},
{Pl,PG’P7}7 {PQ,P6,P7}, {P37P6,P7} and {P4,P6,P7}.

Considering the maximal 2-parabolic subgroups of these systems, we see that
the maximal 2-parabolic subgroups involving Ps and P; have trivial 2-cores.
Thus we need to check sub-maximal parabolics in order to apply Corollary
The 2-cores Oo(FP;) for i = 1,2,3,4 intersect the Mag-classes 14, 24 and 44
in 1, 27 and 36 elements respectively. The remaining sub-maximal parabolics,
namely Ps, P;, P13 and P34, have rank 4 elementary abelian 2-groups for their
2-cores. Thus the non-trivial elements of their 2-cores lie in the Mas-class 2A.
For each sub-maximal parabolic, the only irreducible Mss-characters satisfying
the cuspidal relation are x3 and y4. Hence for each of the 2-minimal parabolic
systems, the characters x3 and x4 of degree 45 are 2-cuspidal characters.

Moy

The Mathieu group Ms4 has a unique 2-minimal parabolic system given by
{Py ~2°73.Sym(3), P, ~ 2°7%.Sym(3), Py ~ 2073, Sym(3) } .

The maximal parabolic subgroups Pi3, P13 and Ps3 all have non-trivial 2-cores,
and their intersections with the Ms4-conjugacy classes are summarised in Ta-
ble @ It follows that the characters xs, x4, X12, X13, X15 and x1¢ satisfy the
cuspidal relation for P127 as do X35 X4, X55 X65 X125 X135, X15 and X16 for P13 and
X3, X4, X5, X6 and xg for Po3. We conclude that y3 and x4 - both of degree 45
- are the only 2-cuspidal characters of Myy.
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Conjugacy Class | 1A | 24 2B 2C | 4A 4B 4C 4D 4F 4F
Pio3 1 | 1095 1344 4984 | 336 22512 18816 38976 0 43008
Py 1 11095 576 6264 | 720 13680 17280 25920 0 0
P34 1 759 0 1288 | 0 0 0 0 0 0
Pasy 1 551 0 2520 | 240 15120 896 13440 O 0

Table 5: The intersections of the 2-cores of the maximal 2-parabolic subgroups
of C'o; with the Co;j-conjugacy classes.

3.2 The Leech Lattice and Conway Groups
HS

The Higman-Sims group has a unique 2-minimal parabolic system of the form
{P ~4.2*.Sym(5), P, ~ 4%.2%.Sym(3)} .

Considering O3 (P;), we see that it intersects the HS-conjugacy classes 14, 24,
2B, 4A, 4B and 4C' in 1, 31, 0, 2, 30 and 0 elements respectively. Consequently,
there are no 2-cuspidal characters of HS, as the cuspidal relation does not hold
for Pj.

Jo

There is a unique 2-minimal parabolic system of J, given by
{Py ~22".3.8ym(3), P> ~ 2171 Lo(4)} .

The intersections of Oy (P;) with the Jo-classes 14, 2A, 2B and 4A have orders
1, 3, 24 and 36 respectively. Consequently, the cuspidal relation on P; holds for
the irreducible characters x4, X5, x14 and x15. Meanwhile, the 2-core Oz (P)
intersects the given Js-classes in 1, 11, 0 and 20 elements respectively, meaning
that the cuspidal relation holds on P, for the characters xs, xo and x15. We
conclude that J, admits no 2-cuspidal characters.

COl

The largest Conway group, C'o1, admits a unique 2-minimal parabolic system,
having rank 4. Its minimal parabolic subgroups are given by P; ~ [22°]. Sym(3)
for ¢ = 1,...,4 and the corresponding 2-maximal parabolic subgroups have
the form P123 ~ 22+12+3.(Sym(3) X L3(2)), P124 ~ 24+12.(Sym(3) X 3Sp4(2)),
Pigq ~ 2. Myy and Po3y ~ 214846 [,(2). The orders of the intersections of
the 2-cores of the maximal parabolic subgroups with the C'o;-conjugacy classes
are given in Table 5} A summary of the elements of Irr(Co;) which satisfy the
cuspidal relation for each of the maximal parabolics is given in Table [f] We
conclude that Co; admits three 2-cuspidal characters, namely x2, xs and x11.

COQ

The group C'os has a 2-minimal parabolic system of the form { Py, P», Ps}, where
Py ~ [21%].Sym(5) and P; ~ [2!7]. Sym(3) for i = 2,3. This system has maximal
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Parabolic Characters satisfying the cuspidal relation
Subgroup (character degrees)
Pios X2 (276), x4 (1771), x5 (8855), xs (37674), x11 (94875), x13 (345345),
X15 (483000), x21 (1434510), x23 (1771000), xo7 (2464749), x5 (2464749)
P124 X2 (276), X8 (37674), X11 (94875), X21 (1434510), X27 (2464749), X28 (2464749)
P34 X2 (276), x4 (1771), x5 (8855), xs (37674), x11 (94875), x13 (345345),
X15 (483000), x21 (1434510), x23 (1771000), xo7 (2464749), x28 (2464749)
P34 X2 (276), xa (1771), xs (37674), xo (44275), x11 (94875), x13 (345345)

Table 6: The elements of Irr(Co;) satisfying the cuspidal relation for each max-
imal 2-parabolic subgroup of Co;.

9 core Order of intersection with C'og-conjugacy class
1A | 2A 2B 2C | 4A 4B 4C 4D 4F 4F 4G | 8A
O2(P2) | 1 | 125 490 2328 | 240 1440 2400 1680 1920 5760 0O 0
O2(Pi3) | 1 77 330 616 0 0 0 0 0 0 0 0
O2(Py3) | 1 | 141 634 1848 | 240 3808 2464 336 8064 8064 0O | 7168

Table 7: The 2-cores of the maximal parabolic subgroups of Cos.

parabolic subgroups Pia ~ 2419 (Sym(3) x Sym(5)), P13 ~ 210.M5;.2 and

Poz ~ 2178%6. 15(2).

The orders of the intersections of the 2-cores of these

maximal parabolics with the relevant Cos-conjugacy classes are given in Table[7}
It follows that the cuspidal relation holds on P;5 for the characters xs, X3, X10,
X11, X12, X13, X16, X21, X225 X23, X31, X32 and X3z, it holds on P13 for x3, xs,
X9, X105 X11, X12, X13, X16, X25, X31 and x32, and the cuspidal relation holds on
Py3 for the irreducible characters x2, X3, X5, X7, X8, X9, X10, X11, X12, X13> X16
X205 X21, X22, X23, X25; X31, X32, X36, X37 and x40. Consequently, Cos admits
eight 2-cuspidal characters namely x3 (of degree 253), x10 (9625), x11 (9625),
Y12 (10395), x13 (10395), y16 (31625), xa1 (239085) and s (239085).

COg

There is a unique 2-minimal parabolic system of Cogz given by

{Py ~ 2841 Sym(3), Py ~ 2' T4t Sym(3), Py ~ 2*T4F1 . Sym(3)},

which has maximal parabolic subgroups Pa ~ 2276.3.(Sym(3) x Sym(3)), P13 ~
43.2.L3(2) and Pa3 ~ 4.2%.5p4(2). We have that Oy(Pa3) intersects the Cos-
conjugacy classes 14, 2A, 2B, 4A and 4B in 1, 31, 0, 2 and 30 elements respec-
tively, and hence the cuspidal condition does not hold for Py3. Thus Coz admits
no 2-cuspidal characters.

ML

The McLaughlin group has a multitude of 2-minimal parabolic systems compris-
ing of the 2-minimal parabolic subgroups P; and P{ for i =1,...,5, where o is
a non-trivial outer automorphism of ML of order 2. Here Py = Ps, P{ = Py,
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P; ~ 24%2 Sym(3) for i = 1,2,3,4 and P5 ~ 2% Sym(5). These subgroups give
rise to the minimal parabolic systems

{P17P5’P5U}’ {PIU7P5’P56}’ {P27P57P5U}7 {P207P57P5?}7
{Ps, P5, P}, {P,DPg,Pg}y, {P{, PP}, {P,Ps P9},
{P1(T7P37P5}a {P17P27Pg}a {Plg’PQ[fvPE)}a {PlanaPS}v
{P17P107PE(>7}7 {P17P107P2}ﬂ {PlypruPZU}ﬂ {Pl,Pf,P3,P4}.

Since the 2-cores of Ps and PY are elementary abelian of rank 4, we see that
any minimal parabolic system containing either of these minimal parabolics will
not admit a 2-cuspidal character. Conversely, any 2-minimal parabolic system
not containing these subgroups will contain the parabolic subgroup Pjjo :=
(Py, P7). Since Oz(P11-) intersects the M¢L-conjugacy classes 14, 24 and 4A
in 1, 19 and 12 elements respectively, we see that the cuspidal relation does not
hold for P;1- and hence none of the 2-minimal parabolic systems of M°L admit
a 2-cuspidal character.

Suz

The group Suz has a unique 2-minimal parabolic system, which has rank 3. Its
minimal parabolic subgroups satisfy P; ~ 24461 [5(4), Py ~ 2476+2 (3x L5(2))
and Py ~ 2674+2 (3 x L5(2)). The maximal parabolic subgroups are given by
P12 ~ 21+6.U4(2), P13 ~ 22+8(Sym(3) X L2(4)) and P23 ~ 24+6.3.Sp4(2)l. The
2-core Oz (P12) intersects the Suz-conjugacy classes 14, 24 and 44 in 1, 55 and
72 elements respectively. We deduce that there are no 2-cuspidal characters of
Suz.

3.3 The Monster Group and its Subquotients
He

There are four 2-minimal parabolic subgroups of He given by P; & P, ~
2043 Sym(3) and P, = P3 ~ 2673.Sym(3). These give rise to the 2-minimal
parabolic systems { Py, P, P,} and { Py, P3, P,}. Considering the maximal parabolic
subgroups P4 and Pi3 & Py, we see that Oo(Py4) intersects the He-conjugacy
classes 14, 2A, 2B, 4A, 4B and 4C in 1, 18, 45, 0, 0 and 0 elements respec-
tively, whilst O2(Py3) intersects the respective conjugacy classes in 1, 42, 29, 0,

56 and 0 elements. It follows that the cuspidal relation for P;4 holds for the
characters x7,xs € Irr(He), whilst for Pj3 & Py the cuspidal relation holds
for x4, x5 € Irr(He). Since each 2-minimal parabolic system contains P4 and
either P35 or Pyy, we conclude that there are no 2-cuspidal characters of He.

HN
There is a unique 2-minimal parabolic system of HN given by
{Py ~ 2T Alt(5) 1 Zo, Py ~ 2°F310F2.3 Sym(3)} .

We consider the minimal parabolic subgroup P;, whose character table is given
in [8, TABLE IV], and we adopt the notation given in [8] for the P;-conjugacy
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classes. We have that each Pj-class is either contained in, or is disjoint from
O5(Py). Tt follows that

O2(P1) =1; U2, U25 U253 U4y,

Considering the centralizer orders of 11, 21, 25, 23 and 47 in P, and the orders
of the centralizers of 2-elements in HN, we see that the Pj-classes 27 and 25
are contained in the H N-class 2B, the Pj-class 23 lies in either H N-class 2A
or 2B, and the Pj-class 4; is contained in the HN-class 4A. It follows that
|02(P1> N 2A| = 0or 120, ‘OQ(P]_) N 2B| = 151 or 271 and |02(P1) N 4A| ==
240. It follows that the cuspidal relation on P; does not hold for any x €
Irr(HN), and hence there are no 2-cuspidal characters of HN.

Th

The 2-minimal parabolic system
{Py ~ 28 ALt(9), Py ~ 2°T0F2F1 Sym(3)}

of Th is unique. Considering fusion within the maximal subgroup 2°.L5(2) > P,
we find that O2(P2) intersects the Th-conjugacy classes 14, 24, 44, 4B, 8A
and 8B in 1, 687, 656, 7104, 4864 and 3072 elements respectively. It follows that
the cuspidal relation holds on P» for xo, x¢ € Irr(Th). Considering the normal
subgroups of a Sylow 2-subgroup of 2°.L5(2) having order 2° and exponent 4,
we see that for each such subgroup the only element of Irr(7h) for which the
cuspidal relation holds is x2 of degree 248. Thus 2 is the unique 2-cuspidal
character of Th.

Figg

There is a unique 2-minimal parabolic system of Fiss given by {Pj, Ps, P3}
where P; ~ [2!6].Sym(3) for i = 1,2 and P3 ~ [2'4].Sym(5). This system
has maximal parabolic subgroups Pjs ~ 29¥4+2(Sym(3) x Sym(3)), Pi3 ~
22+8.U4(2).2 and P23 ~ 210.M22. The 2-core 02(P13) intersects the Fi22—
conjugacy classes 14, 2A, 2B, 2C, 4A, 4B, 4C, 4D and 4F in 1, 2, 271, 270,
480, 0, 0, 0 and 0 elements respectively. We see that the cuspidal relation does
not hold on P;3 and hence F'iso admits no 2-cuspidal characters.

Fi23

The group F'is3 has eight 2-minimal parabolic subgroups, seven of which feature
in 2-minimal parabolic systems. Using the notation of [14] these have the form
P, ~ [2Y7].Sym(3) for i = 1,...,5 and P; ~ [2'°].Sym(5) for i = 7,8. These
give rise to the geometric 2-minimal parabolic systems {Py, Ps, P5, Ps} and
{P1, Py, Ps, Ps} and the non-geometric systems { P, P, Ps, Ps} and { Py, Pr, Ps}.
The maximal parabolic subgroups of these systems are

P125 ~ 210+4.(Sym(3) X Alt(’?)), P128 = P138 = P148 ~ 22 X 21+8.(3 X U4(2))2,

P135 ~ [214](Sym(3) X L3(2)), P145 ~ [214](Sym(3) X L3(2)),
Pi5g ~ 2.Figg, Py ~ [2%].(Sym(3) x Sym(5)),
Pig ~ [211].U4(2).2, Pasg = Pasg = Pysg ~ 211 Mg,

Prg ~ 211.M21.2.
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It is easy to check that the cuspidal relation does not hold for Pj5g, and hence
the three 2-minimal parabolic systems of rank 4 do not admit any 2-cuspidal
characters.

Finally, we consider the maximal parabolic subgroup Pig < Pi53. We see
that the 2-core O5(Pig) intersects the Figs-conjugacy classes 14, 2A, 2B, 2C,
4A, 4B, 4C and 4D in 1, 3, 273, 811, 0, 960, 0 and O elements respectively.
Consequently, the cuspidal relation does not hold for Pig, and hence there are
no 2-cuspidal characters of Fiss.

-/
Fis,

There is a unique 2-minimal parabolic system of Fij,, which has rank 4. The
maximal parabolic subgroups are P, ~ 21%12.(3.U4(3).2), P, ~ 23+12+2 (Sym(3) x
Spa(2)), P. ~ 28+6%3 (L3(2) x Sym(3)) and Py ~ 2. Myy. Since Oz(Py) is ele-
mentary abelian, we consider the minimum value that each x € Irr(Fib,) takes
on elements of order 2. We immediately deduce that the only possible 2-cuspidal
character of F'i5, is x2 of degree 8671. For x5 to be 2-cuspidal, we would require
an integer solution to

Yo (LA) 47 - x2(24) + (2" — 5 — 1) - x2(2B) = 0.

Since no such solution exists, we conclude that there are no 2-cuspidal characters
of Fiy,.

B

The baby monster has five conjugacy classes of 2-minimal parabolic subgroups
having representatives P; ~ [240]. Sym(3) fori = 1,...,4 and P5 ~ [2%]. Sym(5).
These give rise to a unique 2-minimal parabolic system {Py, Py, P3, P5s}. The
maximal parabolic subgroups of this system are given by Pjog ~ 29716+6+4 1, (2),
P125 ~ 23+32.(L3(2) X Sym(5)), P135 ~ 22+10+20.(Sym(3) X M222) and P235 ~
2}~_+22.COQ. All of these maximal parabolic subgroups are 2-radical. Indeed,
from [20] we observe that all 2-parabolic subgroups generated by Py, ..., P5 are
2-radical with the exception of P3, Py and P34. The reader can find further
information regarding the structure of the 2-radical parabolic subgroups in [20].

The fusion of elements within the 2-cores of Pjo5, Pi3s and Poss is given
n [I5]. We see that there are no characters of B satisfying the cuspidal condi-
tion for the 2-core O2(Pi35) and hence the baby monster admits no 2-cuspidal
characters.

M

The monster group has a unique 2-minimal parabolic system, { Py, P2, P3, Py, P5},
where P; ~ [2%%].L5(2) for i = 1,...,5. The maximal parabolic subgroups are
given by P1234 ~ 25+5+16+10.L5(2), P1235 ~ 24+1+2+8+8+12+4.(L4(2) X Sym(?))),
P1245 ~ 23+36.(L3(2) X 3.5}74(2)), P1345 ~ 22+11+22.(Sym(3) X M24) and P2345 ~
21424 Co;.

We observe that there is no x € Irr(M) that satisfies the cuspidal relation
for Og(Ps345). Indeed, let z be an involution of M in class 2B and let A be the
Leech lattice as defined in [I]. Moreover, let A; be the set of all vectors in A of
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type i defined as
A ={v e Al(v,v)/16 =i} .
Then calculations in [I] show that

|As| = 196,560 =24.33.5.7.13,
As] =2'2(212-1) =212.32.5.7.13, and
|Ay] =398,034,000 =2%.37.5%.7.13.

Let G := -0 - the automorphism group of A, and let G := G/(ex) (where
ex is the scalar map defined on A by —1). Thus G is equal to Co;. Since
ex acts trivially on A := A/2A, and G acts transitively on the set Ay ([T}
Lemma 22. 12(1)]) and on each of the sets Az, A4 ([ Lemma 22. 14( )]), it
follows that G acts transitively on the sets Ag, K; and A4 (where A is the
image of A; in A).

Without loss, we may assume that z is the central involution of the extra-
special group Os(Pesq5) and we define Pa3ys := Pasys/(z). By considering the
action of G on A we have that

’StabG(X;)’ —917.36.5%.7.11 .23,
‘StabG(X;)‘ —929.37.5%.7.11-23, and
‘StabG(X;)‘ —217.32.5.7.11-23

(where A\; € A;). It follows that

‘Stabp234 2)‘ :241.36,53.7.11.23’
‘Stabpms 3)‘ —92%.37.5%.7.11- 23, and (4)
‘Stabpz34 4)‘ —94.32.5.7.11.23.

The question remains, how does the element \; lift to the extra-special group
21424 — (0,(Py345)? Once this is established, we may then use the centralizer
orders

|Cri(24)] = 242313 .56 .72 .11-13-17-19-23 - 31 - 47,

|Cm(2B)| = 2%6.3% .5 . 72 .11 - 13- 23,

|Cri(4A)] =23 .37 .5%.7.11- 23, )
|Cn(4B)| = 227.3%.5% .72 .13 .17,

|Crn(4C)| = 23*-3% .57, and

|Cn(4D)| = 227 - 3% . 52.7-13

to determine the fusion within O(Ps345). Indeed, we have that Com ()\2) ~
224.002, Cs— ()\3) ~ 224 003 and O ()\4) ~ 224 (211 M24)

Ps345

There are two possible ways in Wthh a \; can lift into 21424, namely to an
abelian subgroup of order 4 of the form (\;,z) having exponent 2 or 4. The
former case occurs when |\;| = 2, whilst the latter case occurs when |\;| = 4
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and hence A\? = 2. Since (44y)® = 44y, (4Bum)? = 4By, (4Cy)? = 4Cy
and (4Dy)? = 4Dy, we may use the centralizer and stabilizer orders from
and to see that the only possible elements of order 4 in Ps345 must lie in the
M-conjugacy class 4A4. Since the exponent of 2'72* is 4, we conclude that the

—~G
elements of the orbit A3 lift to cyclic groups of order 4 containing 1, z and two
elements from the M-class 4A. This means that

0o (Pasas) N4A| = 2. ’/TS’ = |As| = 212(212 — 1) = 2!2.32.5. 7. 13 = 16,773, 120.

Next we consider the lifts of Ay and A\s. We see that these must lift to the
elementary abelian subgroups (Aq, z) and (A4, z) respectively. Since there are
only two M-classes of involutions, we have that (A22)92 = A9 and (A\g2)9%* = Ay
for some ¢o,94 € M. To determine which element lifts to class 24 and which
element lifts to 2B, we note that by [12] Lemma 4.4] for  # z an involution
of Pagys, either Cp,,,. (1) ~ 2'%23.Coqy (if  is not 2-central) or Cp,,,.(z) ~
21423 (211 Myy) if o is 2-central. Here

|21+23_002| =942 .36 . 53.7.11.23 and

6
21423 (21 1 Myy)| =2%-3% 5. 71123 ©)

Combining @ with and the fact that the 2-central elements of Pssy45 lie in
2B, we have that A, lifts to an elementary abelian subgroup generated by z and

an involution of the M-class 2A, whilst A4 lifts to a subgroup generated by z
and an element of 2B. Since z also lies in 2B, we conclude that

|0a(Pa3as) N 24] =2+ |As = |As] = 196, 560,
|02(Pagss) N2B] =2-|Ay|+1 =|A4]/244+1 =16,584,751 and
|09 (Pasas) N4A| =2 |Ag = |As] = 16,773, 120.

As there is no y € Irr(M) satisfying
X(1A) + 196560 - y(2A) + 16584751 - x(2B) + 16773120 - y(4A) = 0,

it follows that there are no 2-cuspidal characters of M.

3.4 The Pariahs
Ji
The normalizer of a Sylow 2-subgroup of J; is maximal. Thus as the cusp-
idal relation does not hold for such a Sylow subgroup, J; has no 2-cuspidal
characters.
O'N
The group O’ N admits a unique 2-minimal parabolic system of the form
{Py ~ 4°.2>.Sym(3), P, ~ 4.L3(4).2} .

The generators of Oy(P;) are elements of the O’ N-conjugacy class 4A. Thus we
see that the cuspidal relation does not hold on P, for any x € Irr(O’N). Hence
O'N admits no 2-cuspidal characters.
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Jy-conjugacy class, C' | 1A | 24 2B 4A 4B 4C
|O2(P12) N C| 1 | 3579 4868 | 22848 100800 72704
|O2(P13) N C| 1 | 3067 5892 | 21312 54720 46080
|O2(P23) N C| 1 | 1387 2772 | 4032 0 0

Jy-conjugacy class, C | 84 8B  8C
|O2(Pr2) N C| 0 57344 0
|O2(Py3) N C 0 0 0
|O2(P23) N C| 0 0 0

Table 8: The intersections of the 2-cores of the maximal parabolic subgroups of
J4 with the Jy-conjugacy classes.

J3

There is a unique 2-minimal parabolic system of J3, given by
{P1 ~2%1.(3 x Sym(3)), P, ~ 2174 Ly (4)} .

Considering the 2-core Oy(P,), it contains 1, 11 and 20 elements from the Js-
conjugacy classes 14, 2A and 4 A respectively. It follows that Js does not admit
any 2-cuspidal characters.

Ru

There are three 2-minimal parabolic subgroups of Ru given by P; ~ 2°+6. Sym(5)
and P; ~ 25%6+2 Qym(3) for i = 2,3. Since P3 < P;, we obtain a unique 2-
minimal parabolic system, namely {P;, P»}. Considering the 2-cores of P; and
P, we see that Oo(Py) intersects the Ru-conjugacy classes 14, 24, 2B, 4A, 4B,
4C,4D,8A,8B and 8C'in 1, 271, 0, 512, 64, 240, 960, 0, 0 and 0 elements respec-
tively, whilst O2(P2) intersects the given Ru-classes in respectively 1, 367, 192,
608, 448, 1296, 1440, 1536, 768 and 1536 elements. It follows that the cuspidal
relation holds on P; for xa, x3 € Irr(Ru) and on Ps for xo, x3, X4 € Irr(Ru). We
conclude that the two characters xs and x3 of degree 378 are the only 2-cuspidal
characters of Ru.

Jy

There is a unique 2-minimal parabolic system of Jy given by {P1, Py, P3} where
P, ~ [229].Sym(3) for i = 1,2 and P; ~ [2'®].Sym(5). The maximal 2-
parabolic subgroups of this system are given by Py ~ [2!8].L3(2), P13 ~
[217].(Sym(3) x Sym(5)) and Py3 ~ 21712.3.M3y.2. By considering centralizer
orders, powering up classes and conjugation of representatives of certain Pjo-,
Py3- and Ps3-conjugacy classes by random elements in Jy, we may determine
the fusion of O3(P12)-, O2(Py3)- and Oz (Pag)-classes in J4. We detail the orders
of the intersections of the 2-cores of the maximal parabolic subgroups with the
Js-conjugacy classes in Table Consequently, the cuspidal relation holds on
Py, for the characters x2, x3, x4 and x5, it holds on P53 for x2, x3, X4, X5,
X6, X7s X9 X10, X12 and x13, whilst the cuspidal relation holds on P,3 for the
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irreducible characters y2 and x3. We conclude that J; admits two 2-cuspidal
characters, x2 and y3, both of degree 1333.
Ly

There are six 2-minimal parabolic subgroups of Ly, three of which feature in
the two 2-minimal parabolic systems of Ly. These are P, ~ [27]. Sym(3), P ~
[25].Sym(5), P3 ~ 2.Sym(9) and they give rise to the systems {P;, P»} and
{P1, P3}. Since |O2(Py)| = 27, |02(P;)| = 25 and |O2(P3)| = 2, it is easy to
see that the cuspidal relation does not hold for any of the 2-minimal parabolic
subgroups of Ly, and hence there are no 2-cuspidal characters of Ly.

4 3-Cuspidal Characters

We now describe the 3-cuspidal characters for each of the sporadic groups.

4.1 The Mathieu Groups
My

The normalizer of a Sylow 3-subgroup of M;j; is the maximal subgroup Mg : 2
of My,. Consequently, we see that M7; admits two 3-cuspidal characters, yg
and x7, both of degree 16.

M2
The group Mi2 has a unique 3-minimal parabolic system
{P ~3°.GLx(3),P» ~ 3°.GLs(3)} .

The non-trivial elements of the 3-cores Oz(P;) and Os3(FP») lie in the Mjs-
conjugacy class 3A. It follows that the 3-cuspidal characters of Mis are x4
and x5, both of which have degree 16.

M22

There is a unique 3-minimal parabolic system of Moo, namely
{P1 = Mo, P> = L3(4)}.

Since O3(P;) =1 for i = 1,2, an element x € Irr(Msz) will be 3-cuspidal if and
only if the cuspidal relation holds for a Sylow 3-subgroup. Since this is never
the case, Mo has no 3-cuspidal characters.

Mo

The 3-cores of the two 3-minimal parabolic subgroups comprising the unique
3-minimal parabolic system

{P1 &~ Mll,PQ ~ L3(4) . 22}

of Mss are both trivial. Since the cuspidal relation does not hold for a Sylow
3-subgroup, we conclude that Mss admits no 3-cuspidal characters.
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Moy

There are three 3-minimal parabolic subgroups of May given by P; ~ 3.Sym(6),
Py ~ 26.33_'*'2.2},_"'2 and P3 ~ Mjs : 2. These give rise to two 3-minimal parabolic
systems of Moy, namely { Py, P3} and {P», Ps}. It is easy to observe that there is
no x € Irr(May) satisfying the cuspidal relation for a Sylow 3-subgroup of May.
It follows that neither 3-minimal parabolic system of My, admits a 3-cuspidal
character.

4.2 The Leech Lattice and Conway Groups
HS

As a Sylow 3-subgroup of HS has order 9, it is easy to see that the cuspidal
relation will not hold for such a subgroup, and hence H.S admits no 3-cuspidal
characters.

Jo
There is a unique 3-minimal parabolic system of J, given by
{P1 ~ 3.Alt(6).2, P, 2 U3(3)}.

The non-trivial elements of O3(P;) are contained in the Js-conjugacy class 3A.
We immediately see that J» has no 3-cuspidal characters.

COl

There is a solitary 3-minimal parabolic system of C'o;, which has rank 3. Its
maximal parabolic subgroups are Py ~ 3174.5p4(3).2, Pi3 ~ 33T4.GLy(3)? and
Py3 ~ 35.2.M,.

The Co;-fusion of the 3-core of Pa3 is described in [6]. We see that Oz(Pa3)
intersects the C'oj-conjugacy classes 14, 34, 3B, 3C and 3D in 1, 24, 264, 440
and 0 elements respectively. It follows that the cuspidal relation does not hold
for P»3 and hence C'o; admits no 3-cuspidal characters.

COQ
The unique 3-minimal parabolic system of Coy has the form
{Py ~ 32174 Sym(5), P, ~ 3*.L(9). Dih(8)} .

Since O3(P,) intersects the respective Cog-conjugacy classes 14, 34 and 3B in
1, 20 and 60 elements, we see that there are no 3-cuspidal characters of Cos.

003

There are two 3-minimal parabolic subgroups of Cos and they form the unique
3-minimal parabolic system
{P1 ~ 351.4.Sym(6), P, ~ 3°.(M11 x 2)} .

The 3-cores O3(P;) and O3(P,) intersect the Cos-classes 1A, 34, 3B and 3C
in 1, 2, 240 and 0 and 1, 110, 132 and 0 elements respectively. It follows
that the cuspidal relation holds on P; for xg,x7 € Irr(Cos) and on Py for
X10; X11 € Irr(Cos). Consequently, there are no 3-cuspidal characters of Cos.
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M°L
The McLaughlin group has a unique 3-minimal parabolic system given by
{Py ~ 3% Mo, P, ~ 37*.2.Sym(5)} .

The 3-core O3(P;) intersects the M€¢L-conjugacy classes 1A, 34 and 3B in 1,
20 and 60 elements respectively. It follows that no x € Irr(M°L) satisfies the
cuspidal relation for P; and hence M¢L has no 3-cuspidal characters.

Suz

The unique 3-minimal parabolic system
{Py ~ 3°. My, P, ~ 312, (Alt(4) x 2%).2}

of Suz does not admit any 3-cuspidal characters. To see this, we note that the
3-core O3(P;) intersects the Suz-classes 14, 34, 3B and 3C in 1, 22, 220 and
0 elements respectively, meaning that the cuspidal relation does not hold on P;
for any x € Irr(Suz).

4.3 The Monster Group and its Subquotients

He

Since a Sylow 3-subgroup of He has order 27 and exponent 3, we easily observe
that there are no 3-cuspidal characters of He.

HN

The unique 3-minimal parabolic system of HN is
{Py ~37*.2.Sym(5), P, ~ 3*.2.(Alt(4) x Alt(4)).4}.

The character table of the subgroup M = 3'74.SL,(5) < HN is given as [8]
TABLE II]. Since M < P, it follows that O3(M) = O3(Py). Moreover, every
M-conjugacy class is either contained in, or disjoint from Os(M). Using the
notation from [§], we have that

O3(M)=1U3,U32U3,U3s.

Considering centralizer orders in M and HN, we see that 3; and 32 are con-
tained in the HN-class 3B, whilst 35 and 33 lie in either 34 or 3B. It fol-
lows that |O3(P1) N3A| = |O3(M)N3A| = 0,120 or 240 and |O3(P;) N3B| =
|O3(M) N3B| = 2,122 or 242. For each of these possibilities, we see that the
cuspidal relation would not hold for P;, and hence there are no 3-cuspidal char-
acters of HN.

Th

The Thompson group has a single 3-minimal parabolic system. It is of rank 2
and has the form

{P1 ~ 3UFDFH2 G0 (3) Py ~ 3(2+3)+4.GL2(3)} .
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Conjugacy Class, C | 1A | 3A 3B 3C 3D
[03(Pr2) N C] 1| 0 260 234 234
105(P13) N C| 1|0 260 234 234
|03(P3) N C| 1 |72 38 576 1152

Table 9: The orders of the intersections of the Fiss-conjugacy classes with the
3-cores of maximal 3-parabolic subgroups.

The 3-cores O3(P;) and O3(Pz) intersect the respective Th-conjugacy classes
1A, 34, 3B, 3C, 94, 9B and 9C in 1, 270, 2186, 4104, 2106, 5184 and 5832
elements and 1, 756, 2672, 4590, 648, 5184 and 5832 elements respectively. It
follows that for both P, and P, there is a unique element of Irr(7Th) satisfying
the cuspidal relation, namely xo of degree 248. We conclude that xs is the
unique 3-cuspidal character of Th.

Fligo

There is a unique 3-minimal parabolic system of Fiso, which has rank 3 and
minimal parabolic subgroups of the form P; ~ [3%].2.PGLy(3) for i = 1,2,3.
The maximal parabolic subgroups of this system are

Py = Py ~ 32 L3(3) and  Pas ~ 3170.22.5L5(3). Sym(4).

The maximal parabolics Pjo and P;3 are submaximal subgroups of Fliss, being
contained in the maximal subgroups isomorphic to O7(3), and hence their 3-
cores can be easily computed. Meanwhile, by [2 (39.6)], the 3-core O3(Pa3)
is isomorphic to the Fitting subgroup of the normalizer in Fiso of an element
of the Fiss-class 3B. The orders of the intersections of the 3-cores of these
maximal parabolics with the Fiss-conjugacy classes is summarized in Table [0}

We see that the cuspidal relation holds on Pj5 and P;3 for the characters
X2, X5 € Irr(Figg), and it holds on Pa3 for xo. Consequently, xo (of degree 78)
is the unique 3-cuspidal character of Fligo.

Fliag

The group F'ia3 has a unique 3-minimal parabolic system given by

{P1 ~ [3"%].22.PGL(3), P» ~ [3'%].22.PGL5(3), Ps ~ [3%].2.L5(3)*.2. Sym(3) } .

The corresponding 3-maximal parabolic subgroups are

Py ~ 33T7.GL3(3), Pz ~3.t%:2170:3172:2.Sym(4) and  Poz ~ Dy(3).Sym(3).

Using the information on Figs-fusion within Oz(Pi3) given in [I8, Table 2],
and the fact that the non-trivial elements of Z(Sljg) lie in the F'igs-class 3B,
we see that Oz(Pi3) intersects the Fligz-classes 34, 3B, 3C' and 3D in 864,
1538, 3456 and 13824 elements respectively. (We note that the above fusion can
also be calculated within Py3. Indeed, there are nine Ps3-classes of elements of
order 3, say 3a, ..., 3¢, having centralizer orders in P»3 of 408146688, 37791360,
37791360, 12737088, 2834352, 944784, 314928, 78732 and 17496 respectively.
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Element, m | Staby,(2)(m) |StabU5(2) (m)| }mU5(2) |
ms 3% Alt(5) 4860 2816
mo 3. Alt(6) 1080 12672
ms 21+6 3142 3 10368 1320
ma 33, Alt(4) 324 42240

Table 10: The non-trivial orbits of the unique irreducible 10-dimensional
GF(3)Us(2)-module.

It follows that the Ps3-classes satisfy the following inclusions; 3c,3d C 3A,
3a,3e¢ C 3B, 3b,3g C 3C and 3f,3h,3i C 3D.) Consequently, the cuspidal
relation does not hold on P35 for any x € Irr(Fis3), and Fiss admits no 3-
cuspidal characters.

-/
Fi5,

As with Fiss we see that there is a unique 3-minimal parabolic system of F'ib,,
namely

{P1 ~ [3'].22.PGL(3), P> ~ [3'%].2°. PGL5(3), Py ~ [3"°].2.Sym(5) },

having maximal parabolics Pia ~ 33t773.13(3).2, Pi3 ~ 327448 (SLy(3) x
Alt(5)).2 and Pas ~ 31710.U5(2).2.

Consider the extra-special 3-core, O3(Pa3) = 3}:“10. Since there is a unique
irreducible 10-dimensional GF(3)Us(2)-module, M, we can explicitly determine
the sizes of the orbits of elements of this module. These are summarized in
Tlabllg [0 We see that there are at most four classes of non-central elements of
3.

Let z € Z(3171%)\ {1} and let = € 317\ Z(317'%). Thus z represents a
non-zero vector in M. Then z, 22, zz, 222, 222 and 2222 are all Fii,;-conjugate.
Indeed, from the ATLAS we have that for any 3-element w € F'il,, the elements
w and w? are Fif,-conjugate. Suppose that g € Fi}, is such that 29 = 22. Then
(21)9 = z2? as z is central. Thus zz and zx? lie in a common Fi),-class, and
are joined by (z1)? = 2222 and (22%)? = 2%x. Finally, as zx and 2%z are
Fily,-conjugate, there exists h € Fil, satisfying 2%z = (22)" = 22" and hence
zx = 2. We conclude that the orbits of mq, me, ms and my give rise to orbits
of 31710\ Z(3171%) of respective sizes 8448, 38016, 3960 and 126720.

Label the orbit of 3?10 arising from m; by M; for i =1,...,4. Considering
the orders of stabilizers given in Table[I0] together with the centralizer orders of
elements of order 3 in Fi}, given in the ATLAS, we deduce that My, Ma, M3 C
3A U 3B U 3C, whilst elements in My could form a subset of 34, 3B, 3C, 3D
or 3E. Since N(3B) & Py, it follows that the non-trivial central elements of
31719 lie in the Fiby-class 3B.

The menagerie of information obtained above results in 135 different pos-
sibilities for the fusion of 3-elements within Oz(Pa3) =2 Sflo. Feeding each
possibility into MAGMA and allowing it to roam over all 108 complex charac-
ters of F'il,, we see that the cuspidal relation never holds for P3, and hence
Fil, admits no 3-cuspidal characters.
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Aside 4.1. We note that the Fiby-fusion within the 3-core O3(Pa3) has previ-
ously been studied by Wilson. Indeed, in [18, Section 2.2] Wilson calculates that
O3(Pa3) contains 3960, 8450, 38016 and 126720 elements from the respective
Fib,-classes 3A, 3B, 3C and 3D. However, these calculations are based heavily
on an unpublished preprint, and we have been unable to verify them.

B

There is a unique 3-minimal parabolic system of B, which has rank 3. The
maximal parabolic subgroups of this system are Pja ~ 3377.GL3(3), P13 ~
3236 .GLy(3)? and Pag ~ 31782146 PSp,(3).2. Considering the minimum
value that each x € Irr(B) takes on 3-elements, we see that the only possible
3-cuspidal character of B is yo of degree 4371. However, as B satisfies the
condition of Lemma we see that xs cannot be 3-cuspidal, and hence B
admits no 3-cuspidal characters.

M

The monster group, M, has a unique 3-minimal parabolic system, which has
rank 3. Its maximal parabolic subgroups are given by

Piy ~ 3381624 15(3), Piz ~ 327110 (GLy(3) x Myy) and Pz ~ 317'%.2.Suz 2.

By considering the 3-core O3(Ps3), we see that it has exponent 3. Moreover,
appealing to [0, Lemma 1.5] we see that

|03(P23) N 3A| = 196, 560 and ‘03(P23) n 3B| =1,397,762.

It immediately follows that Ml admits no 3-cuspidal characters.

4.4 The Pariahs
J1

The cuspidal relation does not hold for a Sylow 3-subgroup of J;. Hence there
are no 3-cuspidal characters for the unique 3-minimal parabolic system, {J;},
of Jl.

O'N

A Sylow 3-subgroup of O'N has order 81. Moreover, since there is a unique
O’ N-conjugacy class of non-trivial 3-elements, we see that the cuspidal relation
does not hold for a Sylow 3-subgroup of O’N. Consequently, O’'N admits no
3-cuspidal characters.

J3

The normalizer of a Sylow 3-subgroup of J3 is maximal. Moreover, such a Sylow
subgroup intersects the Js-conjugacy classes 14, 34, 3B, 9A, 9B and 9C in 1,
18, 8, 72, 72 and 72 elements respectively. Checking the cuspidal relation for
each x € Irr(Js) for a Sylow 3-subgroup, we see that there are no 3-cuspidal
characters of Js.
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Ru

Since a Sylow 3-subgroup of Ru has order 27 and there is a unique Ru-conjugacy
class of non-trivial 3-elements, it is easy to see that Ru admits no 3-cuspidal
characters.

Jy

The non-trivial elements of a Sylow 3-subgroup of Jy lie in the J,-class 3A. Since
such a subgroup has order 27, it is easy to see that the cuspidal relation does
not hold for a Sylow 3-subgroup of J4. Hence, J; has no 3-cuspidal characters.

Ly

There is a unique 3-minimal parabolic system of Ly given by
{Py ~ 3>T%.8.Sym(5), P, ~ 3°.(M11 x 2)} .

Considering the minimum value that each x € Irr(Ly) takes on elements of
order 3, we see that the only possible candidates for 3-cuspidal characters are
x7 and xg of degree 120064. However, these characters take strictly negative
values on all 3-elements, and hence the cuspidal relation cannot hold for them
for both O3(P») and a Sylow 3-subgroup of Ly. We conclude that there are no
3-cuspidal characters of Ly.

5 5-Cuspidal Characters

The groups M11, ]\4127 Mgg, ]\4237 ‘1\4247 SUZ, He, Fizg, Figg, F’i/247 Jl, O/N, Jg,
Ru and J; have Sylow 5-subgroups of exponent 5 and of order at most 53. Thus,
considering the minimal values that an irreducible character takes on elements
of order 5 together with the character degree, we see that none of these groups
admit a 5-cuspidal character. We now consider the remaining eleven sporadic
groups in turn.

HS

A Sylow 5-subgroup of HS intersects the HS-conjugacy classes 1A, 5A, 5B and
5C"in 1, 4, 40 and 80 elements respectively. It follows immediately that H.S has
no 5-cuspidal characters.

J>

The normalizer in Jy of a Sylow 5-subgroup, S, is maximal and S intersects
each of the Jy-conjugacy classes 5A4, 5B, 5C and 5D in 6 elements. From this
we deduce that Jy has a unique 5-cuspidal character given by x¢ of degree 36.

001

There is a unique 5-minimal parabolic system of Co; given by

{P ~5%.(4 x Alt(5)).2, P, ~ 5'T2.GLy(5)} .
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Considering the minimum value that each x € Irr(Co;) takes on elements of
order 5, and the order of the 5-cores of the minimal parabolic subgroups, we see
that there are no 5-cuspidal characters of Coy.

002, C’O'g,7 Mc°L

If G € {Cog,Co3, ML}, then a Sylow 5-subgroup of G intersects the G-
conjugacy classes 1A, 54 and 5B in 1, 4 and 120 elements respectively. It
follows that the cuspidal relation does not hold for a Sylow 5-subgroup for any
X € Irr(G) and hence G has no 5-cuspidal characters.

HN

There is a unique 5-minimal parabolic system of HN given by
{Py ~ 51 (211 5.4), Py ~ 57124 Alt(5) }

The character table of P; is given as [8, Table III], whilst a partial character
table of P, - featuring the conjugacy classes of elements of order 2 and classes
contained in Os(P) - is given in Table By considering the restriction of
X2 € Irr(HN) to P; and P,, we may calculate the HN-fusion within O5(P;)
and Os(Pz). We see that O5(P;) intersects the H N-classes 14, 54, 5B, 5C, 5D
and 5F in 1, 400, 324, 800, 800 and 800 elements respectively, whilst Os(P)
intersects the given classes in 1, 0, 624, 650, 650, and 1200 elements respectively.
Consequently, the cuspidal relation holds on P; for x4 € Irr(HN) and on P, for
X4, X5 € Irr(HN). We conclude that x4 (of degree 760) is the unique 5-cuspidal
character of HN.

Th

The normalizer of a Sylow 5-subgroup of Th is a maximal subgroup. Thus a
character x € Irr(Th) will be 5-cuspidal precisely when the cuspidal condition
holds for the Sylow subgroup. Since Th has a unique conjugacy class of elements
of order 5, we observe that there is a unique 5-cuspidal character of Th, namely
X2 of degree 248.

B

There is a unique 5-minimal parabolic system of B given by
{P ~ 51121 Sym(5).2, P, ~ 5> T T2.GLy(5)}

Considering the minimum value that each x € Irr(B) takes on B-classes of 5-
elements, we see that the only possible 5-cuspidal character of B is xo. However,
deg(x2) = 4371, and B satisfies the conditions of Lemma Thus there are
no 5-cuspidal characters of B.

M

The monster has a unique 5-minimal parabolic system, namely

{P ~5'%0.2.(Jy x 2).2, P, ~ 5121 Sym(3).GLy(5) } .
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Class 11 21 22 51 52 53 57 53 59 510
Size 1 625 3750 24 50 50 600 600 600 600

Order | 1 2 2 5 5 5 5 5 5 5
X1 1 1 1 1 1 1 1 1 1 1
X2 1 1 -1 1 1 1 1 1 1 1
X3 2 -2 0 2 2 2 2 2 2 2
Xa 2 -2 0 2 2 2 2 2 2 2
X5 2 -2 0 2 2 2 2 2 2 2
X6 2 -2 0 2 2 2 2 2 2 2
X7 3 3 1 3 3 3 3 3 3 3
Xs 3 3 1 3 3 3 3 3 3 3
Xo 3 3 103 3 3 3 3 3 3
X10 3 3 -1 3 3 3 3 3 3 3
X11 4 4 0 4 4 4 4 4 4 4
X12 4 4 0 4 4 4 4 4 4 4
X13 4 4 0 4 4 4 4 4 4 4
X14 4 -4 0 4 4 4 4 4 4 4
X15 5 5 1 5 5 5 5 5 5 5
X16 5 5 -1 5 5 5 5 5 5 5
X17 6 -6 0 6 6 6 6 6 6 6
X1s 6 -6 0 6 6 6 6 6 6 6
X19 10 2 0 10 5w +5-w? —5-w—5-w?-5 0 0 0 0
X20 10 2 0 10 5w —5-w2—5 5w 45 w? 0 0 0 0
X21 20 -4 0 20 10 - w® + 10 - w? —10- w? — 10 - w? — 10 0 0 0 0
X22 20 4 0 20 —10-w®—10-w?—10 10 - w? 4 10 - w? 0 0 0 0
X3 | 20 -4 0 20 —10-w®—10-w?—-10 10 - w? 4 10 - w? 0 0 0 0
X2a | 20 -4 0 20 10 - w® + 10 - w? —10-w® — 10 - w? — 10 0 0 0 0
Xos | 24 0 4 24 24 24 -1 -1 -1 -1
X6 | 240 4 24 24 24 -1 -1 -1 -1
X27 30 6 0 30 —15-w®—15-w?—15 15 - w? 4 15 - w? 0 0 0 0
X | 30 6 0 30 —-15-w®—15-w?>—15 15 w? + 15 - w? 0 0 0 0
X20 | 30 6 0 30 15 - w? 4 15 - w? —15-w® - 15-w? — 15 0 0 0 0
X3 | 30 6 0 30 15 - w? 4 15 - w? —15-w? —15-w? — 15 0 0 0 0
X31 40 -8 0 40 —20- w3 —20-w? —20 20 - w? + 20 - w? 0 0 0 0
X32 40 8 0 40 20 - w® +20 - w? —20 - w® — 20 - w? — 20 0 0 0 0
X33 | 40 -8 0 40 20 - w3 + 20 - w? —20 - w® — 20 - w? — 20 0 0 0 0
X34 40 8 0 40 —20-w® —20-w?—20 20 - w3 420 - w? 0 0 0 0
X35 | 48 0 0 48 48 48 -2 -2 -2 -2
X3 | 48 0 0 48 48 48 -2 -2 -2 -2
X37 50 10 0 50 25 - w3 + 25 - w? —25-w® —25-w? — 25 0 0 0 0
Xss | 50 10 0 50 —25-w®—25-w?—25 25 w3 +25 - w? 0 0 0 0
X3 | 60 -12 0 60 30 - w® + 30 - w? —30-w® — 30 - w? — 30 0 0 0 0
X40 60 -12 0 60 —30-w?—30-w?—30 30 - w® + 30 - w? 0 0 0 0
xa1 | 120 0 4 -5 0 0 -5 0 5 -5
Xa2 | 120 0 4 -5 0 0 -5 0 5 -5
Xa3 | 120 0 4 5 0 0 0 5 —5-w-5-w?-5 0
Xas | 120 0 4 -5 0 0 5wt 4+5-w?+5 -5 0 —5-w —5-w?
Xa5 | 120 0 4 -5 0 0 0 5 5w +5-w? 0
xa6 | 120 0 4 -5 0 0 5w —=5.-w? -5 0 5w +5-w?+5
Xa7 120 0 -4 -5 0 0 5-wt+5-w?+5 -5 0 —5-w? —5-w?
Xas | 120 0 4 5 0 0 0 5 —5-w-5-w?-5 0
X409 | 120 0 4 -5 0 0 0 5 5w 45 w? 0
X50 120 0 4 -5 0 0 —5-w? —5-w? -5 0 5w +5-w?+5

Table 11: A partial character table of the 5-minimal parabolic subgroup P, ~

521142 4, Alt(5) of HN (where w = exp(2mi/5)).
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Using a similar approach to that used for the baby monster, with the 5-core
O5(P1), we deduce that there are no 5-cuspidal characters of M.

Ly

From [I4] we see that there is a unique 5-minimal parabolic system of Ly,
having rank 3. Its minimal parabolic subgroups are Py ~ 5)7*.4.PGLs(5),
Py ~ 5%72.4.PGLy(5) and Py ~ 5.7*.4.PGLy(5). The maximal 5-parabolic
subgroups are given by

Py ~53.8L5(5), Piz~5.7.2.A1t(6).4 and P32 Ga(5).

By considering the elementary abelian subgroup Os(P2) = 53, we see that
the only possible 5-cuspidal characters of Ly are y2 and xs (both of degree
2480), and that for these characters to be 5-cuspidal, we must have that the
non-trivial elements of Os(Py2) are contained in the Ly-conjugacy class 5A.
Defining S to be our given Sylow 5-subgroup of Ly, we see that S has a unique
normal elementary abelian 5-subgroup of order 53. Considering this within the
maximal subgroup G3(5) < Ly, we see that the non-trivial elements of O5(P;2)
are indeed contained in the Ly-class 5A. It remains to check the cuspidal relation
for xo and 3 for the extra-special 5-core O5(P;3) of order 5.

By constructing Os(Py3) within both Pj3 and Pz we may deduce that it
intersects the Ly-conjugacy classes 14, 54 and 5B in 1, 724 and 2400 elements
respectively. It follows that the cuspidal relation holds on O5(P;3) for both x4
and xs, and hence we see that ys and xs are 5-cuspidal characters of Ly.

6 p-Cuspidal Characters (p > 5)

In the case that p > 5, most sporadic groups with order divisible by p have a
cyclic Sylow p-subgroup of order p. The exceptions are (Coy,p =7), (He,p =17),
(Th,p = 7), (Fiby,p = T7), B,p = 7), (M,p = 7,11,13), (O'N,p = 7) and
(J47p = 11)

The normalizer of a Sylow 7-subgroup, S, of He is maximal in He, and hence
there is a unique 7-minimal parabolic system given by {He}. Consequently, an
element y € Irr(He) will be 7-cuspidal precisely when the cuspidal condition
holds for S. We have that S contains 1, 42, 42, 132, 63 and 63 elements from
the He-classes 1A, TA, 7B, 7C, 7D and TE respectively. It follows that the
7-cuspidal characters of He are y2 and x3 of degree 51.

In all other cases, since the sporadic group in question contains no elements
of order p® for a > 1, we may consider the minimum value that each irreducible
character takes on elements of order p, to conclude that there are no p-cuspidal
characters.

We conclude by considering the p-cuspidal characters arising from sporadic
groups having a cyclic Sylow p-subgroup of order p. Since such a subgroup will
necessarily be the p-core of its normalizer, it is easy to see that the cuspidal re-
lation must hold for the Sylow subgroup. Moreover, a character will be cuspidal
precisely when this is true. This gives an additional four cuspidal characters
for the sporadic groups; the 10-dimensional characters xs, X3, xa € Irr(My;1) are
11-cuspidal and the 22-dimensional character x2 € Irr(Mas) is 23-cuspidal.
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