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Hermitian flag manifolds and orbits of the Euclidean group

Philip Arathoon, James Montaldi

Abstract

We study the adjoint and coadjoint representations of a class of Lie group including the Euclidean
group. Despite the fact that these representations are not in general isomorphic, we show that there
is a geometrically defined bijection between the sets of adjoint and coadjoint orbits of such groups. In
addition, we show that the corresponding orbits, although different, are homotopy equivalent. We also
provide a geometric description of the adjoint and coadjoint orbits of the Euclidean and orthogonal
groups as a special class of flag manifold which we call a Hermitian flag manifold. These manifolds
consist of flags endowed with complex structures equipped to the quotient spaces that define the flag.

Keywords: Adjoint orbits, coadjoint orbits, semi-direct products,

1 Introduction

For any Lie group, the adjoint and coadjoint representations are of fundamental importance to an un-
derstanding of the structure of the Lie group itself, as well as in various applications such as geometric
mechanics, symplectic geometry, representation theory, and more.

For the example of the unitary group, the adjoint orbits are well known to equal the isospectral sets
of skew-Hermitian matrices, which in turn, may canonically be identified with manifolds of complex flags.
The coadjoint orbits of the unitary group are identical to the adjoint orbits as a consequence of there
being an isomorphism between the adjoint and coadjoint representations. Indeed, the same is true for
any compact or semisimple Lie group. However, a similar flag-like interpretation of (co-)adjoint orbits for
SO(n) appears to be absent from the literature—we provide such an interpretation (as Hermitian flags)
en route to studying the adjoint and coadjoint orbits of the Euclidean group .

We therefore consider examples of groups which are neither compact nor semisimple; namely, we
consider a class of semidirect products which we call groups of Euclidean type. Specifically, such a group
G is obtained by fixing a compact Lie group H together with a representation V and forming the semidirect
product G = H n V whose group product is given by

(h1, v1)(h2, v2) = (h1h2, v1 + h1v2).

The Euclidean group E(n) is an example of such a group, given by setting H = O(n) and V = Rn with
the standard representation. For the particular example of the Euclidean and orthogonal groups, we
classify the adjoint and coadjoint orbits, and exhibit these orbits as a manifolds of Hermitian flags. These
manifolds consist of regular flags which are additionally equipped with some extra structure. The quotient
spaces which define a flag may be equipped with orientations or a metric preserving complex structure;
hence our choice of the term Hermitian. The well-established literature concerning the coadjoint orbits
of a semidirect product, allow us to derive interesting results concerning the symplectic geometry of such
flag manifolds.

The adjoint and coadjoint representations for the Euclidean group are not in general isomorphic.
Therefore, there is no reason to suspect that both orbits should have much in common. However, for
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2 P. Arathoon & J. Montaldi

the example of the Poincaré group, obtained by setting H equal to an indefinite orthogonal group, there
exists a “curious bijection” between the sets of adjoint and coadjoint orbits [5]. This bijection may be
visually demonstrated for the example of the special Euclidean group in two dimensions. Figure 1 shows
the adjoint and coadjoint orbits of SE(2). Observe how there exists a geometric bijection between orbits:
cylinder coadjoint orbits to circle adjoint orbits, plane adjoint orbits to point coadjoint orbits, and both
origins to each other. Moreover, two orbits corresponding under this bijection are homotopic. We will
exhibit this bijection for all groups of Euclidean type, and prove that all orbits which correspond under
the bijection are homotopic to each other. For the Euclidean group a stronger result is true: we show
that for any two orbits in bijection, one is a vector or affine bundle over the other.

The paper is in two parts: the first (Section 2) describes the relation mentioned above between adjoint
and coadjoint orbits of groups of Euclidean type, while in Section 3 we discuss the particular case of the
Euclidean group itself, where more detailed geometry is determined.

Our results only apply to semidirect products of Euclidean type, and thus exclude the example of the
Poincaré group on account of the indefinite orthogonal groups being non-compact. However, our methods
can in fact be adapted so that they apply to a wider class of semidirect products including the Poincaré
group. This is beyond the aims of this paper but will be included in a sequel [1].

(a) Adjoint orbits

vx

vy

ω

(b) Coadjoint orbits

px

py

L

Figure 1: Orbits for the special Euclidean group SE(2) on its Lie algebra and dual. Let (ω, v)
denote elements in the Lie algebra se(2) = so(2) × R2, and (L, p) for elements in the dual.
The adjoint representation is given by Ad(r,d)(ω, v) = (ω, r = v − ωRπ/2d) and the coadjoint

representation by Ad∗(r,d)(L, p) = (L+ dTRπ/2p, rp). Here, Rπ/2 is an anticlockwise rotation by
π/2 and (r, d) is an element in SE(2).

It is natural to ask how much of the bijection properties discussed in this paper extend to more general
groups, and to other contragredient pairs of representations.

Notation

Let G be a group and M a space upon which G acts, G × M → M ; (g,m) 7→ gm. We denote the
orbit through m ∈ M by OGm. The stabiliser or isotropy subgroup of this action at m is the subgroup
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Hermitian flag manifolds 3

{g ∈ G | gm = m} and is denoted by Gm. The orbits are themselves homogeneous G-spaces which may
be written as a coset space OGm ∼= G/Gm.

Throughout this paper H will denote a Lie group with Lie algebra h and identity element e, and V
a representation of H. From this we consider the semidirect product G = H n V as defined earlier with
Lie algebra g = h× V . Our guiding example will be that of the Euclidean group G = E(n).

Definition 1.1. The semidirect product G = H n V will be called a group of Euclidean type if H is
compact. Since any compact group is a subgroup of an orthogonal group, we remark that every group of
Euclidean type is a subgroup of the Euclidean group E(n) for large enough n.

The elements of the Euclidean group, along with its Lie algebra and dual, have well known physical
meanings together with standard notation. We mimic this notation to represent typical elements of our
group G.

– Group elements, (r, d) ∈ G; r ∈ H for rotation and d ∈ V for displacement.

– Lie algebra elements, (ω, v) ∈ g; ω ∈ h for angular velocity and v ∈ V for linear velocity.

– Dual Lie algebra elements, (L, p) ∈ g∗; L ∈ h∗ for angular momentum and p ∈ V ∗ for linear
momentum.

2 Orbit geometry

In [8] the isotropy subgroup for a coadjoint orbit is shown to be a group extension of a smaller group,
referred to in the literature as a little group. Here we derive an analogous result for the adjoint orbits,
and restrict our attention to the case where the group extension is a split extension; whereby the isotropy
subgroup is itself given by a semidirect product. With this condition on the orbits, a property we call
properness, we are able to exhibit a rich geometric structure between the orbits and their canonical bundles
and submanifolds.

Isotropy subgroups

The dual g∗ is canonically isomorphic to h∗ × V ∗. For any η ∈ g∗ we may identify it with the pair
(L, p) ∈ h∗ × V ∗ which satisfies 〈η, (ω, v)〉 = 〈L, ω〉 + 〈p, v〉 for every (ω, v) in g, and where 〈 , 〉 denotes
the pairing between a space and its dual. The coadjoint action is then given by [8]

Ad∗(r,d)(L, p) = (Ad∗r L+ µ (rp, d) , rp) . (2.1)

Here we have the momentum map µ : V ∗ × V −→ h∗ satisfying

〈µ(p, v), ω〉 = 〈p, ωv〉 (2.2)

for all ω ∈ h. For a fixed p ∈ V ∗ introduce the map

τp : V −→ h∗ (2.3)

given by τp(v) = µ(p, v). The group Hp = {r | rp = p} is called the little group. The Lie algebra of this
group hp = {ω | ωp = 0} has the property that its annihilator h◦p in h∗ is equal to the image of τp [8,
Lemma 1].

For a given (L, p) consider the isotropy subgroup GL,p. From (2.1), for (r, d) to belong to GL,p we
must first have rp = p, and therefore that r belongs to Hp; and secondly that Ad∗r L + τp(d) = L.
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4 P. Arathoon & J. Montaldi

Project both sides of the second equation onto h∗p using the canonical restriction map ι∗p : h∗ → h∗p. Since
Im τp = h◦p = ker ι∗p, and given that ι∗p commutes with the coadjoint action restricted to Hp, we have that
Ad∗r(ι

∗
pL) = ι∗pL. Therefore r belongs to the subgroup (Hp)ι∗pL

and GL,p fits into the exact sequence

{0} −→ ker τp
i−→ GL,p

j−→ (Hp)ι∗pL
−→ {e}. (2.4)

For this sequence we have i(d) = (e, d) and j(r, d) = r. This sequence is not usually split. If however,
the inclusion σ : (Hp)ι∗pL

−→ G given by σ(r) = (r, 0) defines a homomorphism into GL,p, then we have

a split exact sequence, and the isotropy subgroup is equal to

GL,p = (Hp)ι∗pL
n ker τp. (2.5)

This condition is satisfied whenever (Hp)ι∗pL
× {0} belongs to GL,p, or equivalently when

(Hp)ι∗pL
= Hp ∩HL. (2.6)

We now provide an analogous result for the adjoint orbits. Let (ω, v) belong to g and consider the
expression for the adjoint action [6, Section 19],

Ad(r,d)(ω, v) = (Adr ω, rv − (Adr ω)d) . (2.7)

If (r, d) is to belong to the stabiliser Gω,v then we firstly require r ∈ Hω. We then must have rv−ωd = v.
Project both sides of this equation onto the quotient space V/ Imω. This projection commutes with the
representation of Hω on V/ Imω (note that this is well defined since Imω is invariant under Hω). Hence
r[v] = [v] and so we must additionally have that r belongs to the subgroup (Hω)[v]. The stabiliser Gω,v
then fits into the exact sequence

{0} −→ kerω
i−→ Gω,v

j−→ (Hω)[v] −→ {e}. (2.8)

Here once again, i(d) = (e, d) and j(r, d) = r. As with the coadjoint isotropy subgroups, this exact
sequence is not necessarily split. If however, there exists a splitting map σ : (Hω)[v] −→ Gω,v given by
σ(r) = (r, 0), then Gω,v is equal to the semidirect product

Gω,v = (Hω)[v] n kerω. (2.9)

Equivalently, this is the case when

(Hω)[v] = Hω ∩Hv. (2.10)

Definition 2.1. If equations (2.10) and (2.6) hold for given points (ω, v) ∈ g and (L, p) ∈ g∗, then these
points together with the orbits through them will be called proper. This is equivalent to the isotropy
subgroups being equal to the semidirect products in (2.9) and (2.5).

Bundles and submanifolds

The orbit through any point contains two natural submanifolds given by restricting the action through
this point to the two subgroups, H = H × {0}, and V = {e} × V . The purpose of this subsection is
to exhibit an interplay between these submanifolds and the natural bundle structures defined between
orbits.
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Hermitian flag manifolds 5

Theorem 2.1. For when the points (ω, v) ∈ g and (L, p) ∈ g∗ are proper, the G- and H-orbits are
connected by the bundle maps in Figure 2. By insisting that V act trivially on the H-spaces in the
diagram, all maps are G-equivariant with fibres equivariantly diffeomorphic to the space written next to
the arrow. The horizontal arrows are vector bundles with fibres equal to the orbits of V . For the coadjoint
orbit OGL,p equipped with the Kirillov-Kostant-Souriau (K.K.S.) symplectic form, the fibres of OGL,p → OHL,p
are isotropic submanifolds, and the fibres of OGL,p → OG0,p are symplectic submanifolds.

Proof. By properness of (ω, v) and (L, p) we can use equations (2.9) and (2.5) to express the isotropy
subgroups of all the spaces. The equivariant maps in the diagrams then follow. For instance: Gω,v =
(Hω∩Hv)nkerω ⊂ (Hω∩Hv)nV = Gω,0 and so the map Ad(r,d)(ω, v) 7→ Ad(r,d)(ω, 0) gives a well-defined

equivariant bijection OGω,v → OGω,0. That the horizontal fibres are vector bundles follows from the fact
that the fibres are equal to the orbits of V which are isomorphic to Imω and h◦p, and that the image of
the bundle map naturally embeds as a zero section.

Now to turn our attention to the symplectic geometry of the coadjoint orbits. That the orbits of
V in OGL,p are isotropic submanifolds is proven in [4, Proposition 4.4]. Finally, for r ∈ Hp the map

Ad∗(r,0)(L, p) 7→ Ad∗r(ι
∗
pL) defines an equivariant diffeomorphism between the fibre of OGL,p → OG0,p over

(0, p), and the coadjoint orbit of Hp through ι∗pL ∈ h∗p. It is a straightforward calculation to check that the

pullback of the K.K.S. form on the coadjoint orbit in h∗p agrees with the K.K.S. form on OGL,p restricted
to the fibre.

OGω,0 OHω

OHω,vOGω,v
OVω,v ∼= Imω

OVω,0 ∼= Imω

OHω

[v]OHω

[v]

OG0,p OHp

OHL,pOGL,p
OVL,p ∼= h◦p

OV0,p ∼= h◦p

OHp

ι∗pL
OHp

ι∗pL

Figure 2

An orbit bijection

From here on we suppose that H is compact and so G is a group of Euclidean type. Using the standard
averaging arguments, we may equip each of V and h with an H-invariant inner product; say BV and Bh

respectively. With this additional structure we may establish H-equivariant isomorphisms between V and
h with their duals. These isomorphisms will be given by sending v and ω to the elements p(v) and L(ω)
satisfying BV (v, x) = 〈p(v), x〉 and Bh(ω, ξ) = 〈L(ω), ξ〉 for all x ∈ V and ξ ∈ h.

Definition 2.2. Define the subset ∆ ⊂ g by

∆ := {(ω, v) | ωv = 0} . (2.11)

The image of ∆ under the H-equivariant isomorphism ϕ : g → g∗ given by ϕ(ω, v) = (L(ω), p(v)) is the
set ϕ(∆) := ∆∗. We will call these the Cartan subsets.
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In the next proposition we show that these sets serve as normal forms for the orbits. This result
explains our choice of terminology; the Cartan subsets are analogous to the Cartan subspace of a compact
Lie algebra, through which all adjoint orbits intersect [2, Chapter 4].

Proposition 2.2. The adjoint and coadjoint orbits of a group G of Euclidean type intersect the sets ∆
and ∆∗ respectively. Furthermore, all points belonging to these sets are proper and therefore, all orbits
of g and g∗ are proper. Finally, for any (ω, v) ∈ ∆ and (L, p) ∈ ∆∗, we have OGω,v ∩ ∆ = OHω,v and

OGL,p ∩∆∗ = OHL,p.

Proof. As ω is skew-self-adjoint with respect to BV , V admits an orthogonal decomposition V = Imω ⊕
kerω. With reference to the adjoint action in (2.7), observe that any adjoint orbit must therefore intersect
∆, and that this intersection is equal to an orbit of H. As the decomposition V = Imω⊕kerω is orthogonal
with respect to the inner product BV , the inclusion defines an Hω-equivariant isomorphism between kerω
and the quotient V/ Imω. Thus, for any (ω, v) in ∆ we have v ∈ kerω, and so (Hω)[v] = Hω ∩ Hv.
Therefore, every orbit in g is proper.

For the coadjoint orbits we claim to have the Hp-invariant decomposition h∗ = h◦p ⊕ L(hp) for any
p ∈ V ∗. This holds because L(hp) is the orthogonal complement to h◦p with respect to the inner product
Bh. With reference to equation (2.1) and the fact that Im τp = h◦p, one sees that every orbit in g∗ intersects
∆∗, and that this intersection is equal to an orbit of H. The map ι∗p restricted to L(hp) defines an Hp-
equivariant isomorphism between L(hp) and h∗p. Hence, for any (L, p) in ∆∗ we have (Hp)ι∗pL = Hp ∩HL

and therefore all points in ∆∗ are proper.

As the bijection ϕ : ∆ → ∆∗ is H-equivariant, it follows that the set of H-orbits in ∆ is in bijection
with the set of H-orbits in ∆∗. However, as a corollary to Proposition 2.2 the sets of adjoint and coadjoint
orbits of G are in bijection with the sets of H-orbits in ∆ and ∆∗ respectively, and therefore by extension,
so too are orbits in g with g∗.

Theorem 2.3. The map ϕ : ∆ → ∆∗ establishes a bijection between the sets of adjoint and coadjoint
orbits of G. More precisely, the adjoint orbit through (ω, v) ∈ ∆ corresponds under the bijection with the
coadjoint orbit through ϕ(ω, v) = (L(ω), p(v)) ∈ ∆∗. Furthermore, any two orbits corresponding under the
bijection are vector bundles over a common base space, namely the manifold OHω,v ∼= OHL,p. In particular,
orbits in bijection with each other have the same homotopy type.

Proof. Take (ω, v) ∈ ∆ and write (L(ω), p(v)) ∈ ∆∗ as (L, p). From Theorem 2.1 the orbits OGω,v and

OGL,p are both vector bundles over OHω,v and OHL,p with fibres isomorphic to Imω and h◦p respectively.
Since ω 7→ L(ω) and v 7→ p(v) are H-equivariant maps, Hω = HL and Hv = Hp. It follows that
Hω ∩Hv = Hp ∩HL and therefore OHω,v ∼= OHL,p.

We obtain a stronger bijection result for the particular example of the (special) Euclidean group. We
will show that for any two orbits corresponding under the bijection, one is either a vector or affine bundle
over the other. To do this we need to first refine the Cartan sets by decomposing them into disjoint
H-invariant subsets ∆ = ∆h ∪∆ and ∆∗ = ∆h∗ ∪∆∗ given by

∆h = {(ω, 0) | ω ∈ h} , ∆ = {(ω, v) ∈ ∆ | v 6= 0} ,
∆h∗ = {(L, 0) | ω ∈ h∗} , ∆∗ = {(L, p) ∈ ∆∗ | p 6= 0} . (2.12)

Orbits through ∆ and ∆∗ might be described as being generic orbits. Also note that the bijection pairs
orbits in ∆h and ∆h∗ with each other, likewise with ∆ and ∆∗.
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Hermitian flag manifolds 7

Secondly, we recall that for a principal G-bundle P → B (where G may now be any group) together
with a space F upon which G acts, the associated fibre bundle BF = P ×G F is the set

P × F/ ∼, where (p, f) ∼ (pg−1, gf).

We obtain the following proposition for the special case when the base space B is a homogeneous space
and where the fibre F is acted upon transitively.

Proposition 2.4. Let B be a homogeneous G-space and Gb the isotropy subgroup for a given b ∈ B. The
map g 7→ gb defines a principal Gb-bundle G→ B. Suppose F is a space upon which Gb acts transitively.
Then the associated fibre bundle BF = G ×Gb

F admits a transitive action of G with isotropy subgroup
isomorphic to (Gb)f for some f ∈ F , and for which the map BF → F is G-equivariant.

Proof. The action of G on BF is given by g̃ · [(g, f)] = [(g̃g, f)] and is well defined. As Gb acts transitively
on F every element in BF may be denoted by an equivalence class of the form [(g, f)] for any fixed
f ∈ F . From this it follows that the action of G is transitive with the isotropy subgroup of [(e, f)] equal
to (Gb)f .

In particular, we remark that when the fibre F is an affine space, and the action of Gb on F is that
of an affine representation, then BF is an affine bundle. Recall that an affine bundle is one where scalar
multiplication and subtraction is defined on the fibres, but unlike a vector bundle, there is no canonical
choice of zero section.

Theorem 2.5. Let G be the (special) Euclidean group. The following holds.

1. Adjoint orbits through (ω, 0) ∈ ∆h are G-equivariant vector bundles over the corresponding coadjoint
orbit through (L, 0) ∈ ∆h∗ with fibres isomorphic to Imω.

2. Coadjoint orbits through (L, p) ∈ ∆∗ are G-equivariant affine bundles over the corresponding adjoint
orbit through (ω, v) ∈ ∆ with fibres isomorphic to the quotient kerω/ ker τp.

Proof. Once again, as ω 7→ L(ω) and v 7→ p(v) are H-equivariant maps, we have that Hω = HL and
Hv = Hp. Therefore, with reference to (2.1), the orbit OGL,0 may be identified with the adjoint orbit OHω .

For Part 1, the desired bundle OGω,0 → OGL,0 ∼= OHω is the same as that given in Figure 2.

Before addressing Part 2 we must first determine what the space ker τp is equal to. By unpacking the
definitions of τp and BV , observe that x belongs to ker τp if and only if BV (ξv, x) = 0 for all ξ ∈ h. For
when H = SO(n) or O(n), the orbit of H through v is a sphere of radius BV (v, v). Therefore, ker τp is
equal to the one-dimensional span of v, and consequently is fixed by Hp = Hv.

For Part 2 write b = (ω, v) and let B = OGω,v. Consider the principal Gb-bundle G → B where Gb =
Gω,v = (Hω ∩Hv)n kerω. The group Hω ∩Hv preserves both kerω and ker τp, and thus induces an affine
representation of Gb on the quotient F = kerω/ ker τp given by (r, d) · [k] = [rk + d]. This representation
is transitive, and the stabiliser of f = [0] is the subgroup (Hω ∩ Hv) n ker τp. By Proposition 2.4, the
associated affine bundle BF admits a transitive G-action with isotropy subgroup (Hω ∩Hv)n ker τp. But
this is equal to GL,p = (Hp ∩HL) n ker τp, the stabiliser of the coadjoint orbit through (L, p). Therefore
BF may be identified with OGL,p and we are done.

This theorem may be checked against the example in Figure 1 for SE(2). Here observe that ∆h is the
ω-axis, and ∆ is the vxvy-plane minus the origin.
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3 Orbits of the Euclidean group

It is well known that the adjoint orbits of the unitary group U(n) are equal to the manifolds of complex
flags in Cn. However, the literature does not appear to address the exact nature of the adjoint orbits
of the orthogonal group. In this section we review the definition of a flag manifold and introduce new
Hermitian and affine flags endowed with additional structure. The adjoint and coadjoint orbits of the
orthogonal and Euclidean groups turn out to be examples of such manifolds. We begin by recalling a
geometric definition for the Euclidean group which will serve us throughout this section.

Definition 3.1. For an affine space A, the Euclidean group E(A) is the group of affine-linear isomorphisms
which preserves a given Euclidean distance. If the group also preserves an orientation on A we write the
special Euclidean group as SE(A).

Linear flags

Definition 3.2. A flag F in V = Rn is a strictly ascending sequence of subspaces beginning with {0}
and ending with V given by

F = ({0} = E0 ( E1 ( · · · ( Ek = V ) . (3.1)

We will call the subspaces Ei the flag subspaces. The rank of the flag F is the number k of non-zero flag
subspaces. Let di denote the dimension of Ei/Ei−1; the tuple σ = (d1, . . . , dk) is the signature of the flag
F . The set of all flags in V of a given signature σ will be written as F(σ). These sets generalise the notion
of projective spaces and Grassmannians. For example, in our notation we have RPn−1 = F(1, n− 1) and
GrR(k;n− k) = F(k, n− k).

We now suppose that V is equipped with an inner product. A flag F now determines a unique
ordered sequence of mutually orthogonal subspaces (V1, . . . , Vk) where V1 = E1 and Ej+1 = Ej ⊕Vj+1 for
1 ≤ j ≤ k. We will call the subspaces Vj the flag components of F , and note that dimVj = dj . Conversely,
observe that an ordered sequence of orthogonal subspaces which span V uniquely determines a flag with
these subspaces as flag components.

These flags may be equipped with additional structure. For instance, we may prescribe an orientation
on a given flag component Vj , or equivalently on the quotient Ej/Ej−1. Should a flag possess this attribute

we will write the signature as (d1, . . . , d̃j , . . . , dk) where the tilde indicates that the flag component Vj
receives an orientation. Flags may also be endowed with an orthogonal complex structure on a given Vj ,
or equivalently on Ej/Ej−1; that is, a linear map Jj : Vj → Vj with J2j = −I which preserves the inner

product. We will write the signature of such a flag as (d1, . . . , d
C
j , . . . , dk), where the raised C indicates

that Vj (which is necessarily even-dimensional) has been endowed with an orthogonal complex structure.
We will refer to these flags with additional structure as Hermitian flags.

The set of all such flags of a given signature admits a transitive action by the orthogonal group O(V )
preserving the inner product. For any r we define rF to be the flag whose flag subspaces are given by rEj .
Equivalently, the flag components Vj determined by F are sent to rVj . In addition, if a flag component
Vj is equipped with either an orientation or complex structure Jj , then the corresponding orientation on
rVj is the induced orientation, and the complex structure given by r ◦ Jj ◦ r−1. This action is transitive
and allow us to write these sets as homogeneous spaces

F(d1, . . . , d̃j , . . . , d
C
k ) =

O(V )

O(V1)× · · · × SO(Vj)× · · · × U(Vk)
. (3.2)

Let F be a flag of rank k as in equation (3.1) of composite signature (σ, τ); here the signature σ refers to
the first l flag subspaces of F and τ the remaining k− l subspaces for a given l ≤ k. There is a bundle map
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Hermitian flag manifolds 9

F(σ, τ) −→ F(σ) given by sending the flag F to the flag E0 ( E1 ( · · · ( El ( V ; effectively ‘forgetting’
the higher flag subspaces given by τ . The fibre containing F is equal to the flag manifold of flags in V/El
of signature τ . We thus have the following equivariant fibre-bundle for flag manifolds:

F(τ) F(σ, τ)

F(σ)

(3.3)

Theorem 3.1 (Orbits of O(n)). Any adjoint or coadjoint orbit of O(n) is equivariantly diffeomorphic to
a manifold of Hermitian flags in Rn.

Proof. Let ω belong to a given adjoint orbit through h = so(n). Since ω is a skew-symmetric matrix it
admits an orthogonal eigenspace decomposition with respect to its complexified action on Cn, along with
purely imaginary eigenvalues. Moreover, non-zero eigenvalues appear in opposite pairs; that is, if iλj is
an eigenvalue of ω then so is −iλj with the same multiplicity. Let E±λj ⊂ Cn denote the eigenspaces
for a distinct non-zero eigenvalue pair ±iλj . Observe that the action of ω restricted to the real subspace
Vj =

(
E+λj ⊕ E−λj

)
∩ Rn squares to minus the identity multiplied by λ2j . Order the eigenvalues of ω

so that the non-zero distinct eigenvalue pairs ±iλ1, . . . ,±iλk satisfy |λ1| < · · · < |λk| and where, should
kerω 6= {0}, write the zero eigenvalue as λ0 = 0. It can now be seen that ω uniquely determines a flag F
in Rn with flag components given by

(kerω, V1, . . . , Vk) , (3.4)

together with orthogonal complex structures on each Vj given by restriction of λ−1j ω. This correspondence
between elements in so(n) and Hermitian flags is equivariant with respect to O(n), and therefore defines
an equivariant diffeomorphism between the adjoint orbit through ω with the manifold F(d0, d

C
1 , . . . , d

C
k ).

Finally, since the isomorphism ω 7→ L between so(n) and so(n)∗ is O(n)-equivariant, the coadjoint orbit
through L = L(ω) may be identified with the adjoint orbit through ω.

More generally, the adjoint orbits of a semisimple Lie group go by the names of generalised flag
varieties or simply just flag manifolds [3]. Though we do not show it here, the adjoint orbits of the
compact symplectic group Sp(n), the group of isomorphisms of quaternionic ‘vector space’ Hn preserving
a Hermitian form, may also be described as a manifold of flags. Analogously to the case for the orthogonal
group, the flag manifolds in question consist of quaternionic flags with a designated choice of complex
structure assigned to certain flag components.

Affine flags

Definition 3.3. An affine flag in V is a strictly ascending sequence of affine subspaces terminating with
V .

F = (A1 ( · · · ( Ak = V ) (3.5)

The affine subspaces Aj will also be referred to as the flag subspaces of F . Recall that any affine subspace
Aj determines an associated subspace [Aj ] given by Aj − v for any v ∈ Aj , and that this does not depend
on the choice of v. In this way, an affine flag F determines an associated flag [F ] given as in equation (3.1)
where Ej = [Aj ]. If [F ] has signature (d0, d1, . . . , dk), then F is defined to have signature (d0; d1, . . . , dk).
The set of all affine flags of a given signature σ will be written as AffF(σ).

The manifold AffF(σ) admits a transitive action by the Euclidean group. Here (r, d) ∈ E(V ) sends
the flag F to rF + d, the affine flag obtained by sending each flag subspace Aj to rAj + d. The induced
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action of (r, d) on the associated flag [F ] is r[F ], that is [rF + d] = r[F ]. It follows that these manifolds
are homogeneous spaces

AffF(d̃1; . . . dj , . . . , d
C
k ) =

E(V )

SE(A1)× · · · ×O(Vj)× · · · × U(Vk)
. (3.6)

The map F 7→ [F ] gives an equivariant vector bundle over F(σ) whose fibre above [F ] is equal to all
distinct translates of the subspace E1 (which we might like to call the flag pole of the flag F ). This is
isomorphic to the vector space V/E1.

V/E1 AffF(σ)

F(σ)

(3.7)

The zero section of this vector bundle is the subset of ordinary linear flags viewed as affine flags; that is,
those affine flags F with [F ] = F .

In much the same way as we constructed the fibre bundle in (3.3), we may apply the same reasoning
to affine flags and establish the equivariant fibre bundle

F(τ) AffF(σ, τ)

AffF(σ)

(3.8)

Theorem 3.2 (Coadjoint orbits of E(n)). All coadjoint orbits of G = E(n) intersect the sets ∆h∗ and
∆∗ as given in (2.12). Let L = L(ω), where ω is the element in so(n) determining the flag components
in (3.4). The orbit through (L, 0) ∈ ∆h∗ is equivariantly diffeomorphic to F(d0, d

C
1 , . . . , d

C
k ), the orbit

through (L, p) ∈ ∆∗ is equivariantly diffeomorphic to AffF(1̃; d0 − 1, dC1 , . . . , d
C
k ) and the orbit OHL,p is

H-equivariantly diffeomorphic to F(1̃, d0 − 1, dC1 , . . . , d
C
k ).

Proof. From the coadjoint action given in (2.1), observe that the orbit through (L, 0) is equal to the orbit
OHL . This orbit is identified with OHω and therefore the result for ∆h∗ follows from Theorem 3.1.

For (L, p) ∈ ∆∗ the isotropy subgroup is given in (2.5) by GL,p = (Hp ∩HL) n ker τp. From the proof
of Theorem 2.5, this is equal to (Hv ∩ Hω) n Span{v}, where v is the non-zero element in kerω with
p = p(v). Therefore, the subgroup Hω ∩Hv consists of those elements which preserve the flag components

(Span{v},K0, V1, . . . , Vk) (3.9)

together with the complex structures defined on each Vj . Here the one-dimension flag component Span{v}
is oriented (in the direction of +v) and K0 is the (possibly trivial) (d0−1)-dimensional subspace orthogonal
to v satisfying kerω = Span v⊕K0. From equation (3.6) we recognise that the group GL,p is the stabiliser
subgroup of the affine flag F as in (3.5) with associated flag components given by (3.9), and for where
A1 = Span{v}. There is therefore an E(n)-equivariant diffeomorphism from the orbit through (L, p) ∈ ∆∗

with AffF(1̃; d0 − 1, dC1 , . . . , d
C
k ) given by sending Ad∗(r,d)(L, p) to rF + d. The result for the orbit OHL,p is

obtained similarly, by remarking that the isotropy subgroup is Hω ∩Hv.

Armed with this result, we can test it out to obtain the well-known coadjoint orbits of E(3): the point
orbit, spheres, and tangent bundles to spheres [7, Theorem 4.4.1]. Before showing this, we recall that the
manifold of oriented affine lines AffF(1̃;n− 1) may canonically be identified with the tangent bundle to
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the unit sphere Sn−1 ⊂ Rn. An oriented affine line l determines an associated oriented one-dimensional
subspace [l]. This in turn determines a unique point v ∈ Sn−1. The correspondence identifies the line l
with the intersection of l with the tangent space TvS

n−1 ⊂ Rn.

Corollary 3.3. For G = E(3), the coadjoint orbit through (L, 0) in ∆h∗ is: the point orbit if L = 0,
and the sphere F(1, 2C) ∼= S2 for L 6= 0. For (L, p) in ∆∗, the orbit is: a single sphere tangent bundle
AffF(1̃; 2) ∼= TS2 if L = 0, or two disjoint sphere tangent bundles AffF(1̃; 2C) ∼= TS2 t TS2 for when
L 6= 0.

Proof. For ω ∈ so(3), either ω = 0 or ω is non-zero and admits flag components (kerω, V1). The kernel
kerω is necessarily one-dimensional, and V1 is equipped with a complex structure. Now directly apply
Theorem 3.2.

Affine flags with grain

Definition 3.4. An affine flag with grain is defined to be an affine flag F as in (3.5) but with an additional
oriented flag space V0, the grain, prepended to the associated flag

[F ] = ({0} ( V0 ( E1 ( · · · ( Ek = V )

where each Ej is the associated subspace [Aj ]. If [F ] has signature (d̃0, d1, . . . , dk) then we write the

signature of F as ([d̃0, d1]; . . . , dk).

The affine subspace A1 of such a flag may be thought of as a union of parallel subspaces of the
form V0 + v as v ranges over A1. Our choice of terminology is to invoke the image of parallel lines of
grain running along the length of a wooden plank. The manifold of affine flags with grain also admits a
transitive action under the Euclidean group. Here the stabiliser of a flag must preserve all flag subspaces
Aj as well as the oriented grain V0. The manifold of all such flags is a homogeneous space given by

AffF([d̃0, d1]; . . . , dk) =
E(V )

E(A1)[V0] × · · · ×O(Vk)
. (3.10)

The notation E(A1)[V0] denotes the subgroup of E(A1) for which [rV0 + d] = V0 and preserves the
orientation of V0. For example, if V0 is the oriented span of the line v, then E(n)[V0] = O(n)v nRn.

There are three natural bundle structures on the manifold of affine flags with grain which concern us.
The first bundle map sends the affine flag F with grain V0 to the ordinary affine flag obtained by forgetting
the grain subspace V0. The fibre is then equal to the space of all oriented d0-dimensional subspaces V0
inside E1. This gives us the equivariant fibre bundle

F(d̃0, d1) AffF([d̃0, d1];σ)

AffF(d0 + d1;σ).

(3.11)

The second bundle structure is the vector bundle map sending F to the associated flag [F ]. The fibre in
this case is once again equal to all distinct translates of A1, itself isomorphic to the vector space V/E1.
We thus have the equivariant vector bundle

V/E1 AffF([d̃0, d1];σ)

F(d̃0, d1, σ).

(3.12)
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The third and final bundle map sends an ordinary affine flag F = (A0 ( A1 ( · · · ( Ak = V ), to the affine
flag with grain F = A1 ( · · · ( Ak = V with associated flag [F ] = (E0 ( E1 ( · · · ( Ek = V ); thus the
first space A0 is forgotten yet its associated space E0 = [A0] becomes the grain. The fibre is equal to all
distinct translates of A0 within the space A1. This is isomorphic to the affine space A1/A2 and so we
obtain the equivariant affine bundle

A1/A2 AffF(d̃0; d1, σ)

AffF([d̃0, d1];σ).

(3.13)

Theorem 3.4 (Adjoint orbits of E(n)). All adjoint orbits of G = E(n) intersect the sets ∆h and ∆
as given in (2.12). Let ω be an element in so(n) determining the flag components in (3.4). The orbit
through (ω, 0) ∈ ∆h is equivariantly diffeomorphic to AffF(d0; d

C
1 , . . . , d

C
k ), the orbit through (ω, v) ∈

∆ is equivariantly diffeomorphic to AffF([1̃, d0 − 1]; dC1 , . . . , d
C
k ) and the orbit OHω,v is H-equivariantly

diffeomorphic to F(1̃, d0 − 1, dC1 , . . . , d
C
k ).

Proof. From (2.9) we have Gω,0 = Hω n kerω. From (3.6) we recognise that this is equal to the isotropy
group of an affine flag F as in (3.5) with flag components given by (3.4) and A1 = kerω. It follows
that there is an equivariant diffeomorphism between this orbit and AffF(d0; d

C
1 , . . . , d

C
k ) given by sending

Ad(r,d)(ω, 0) to the flag rF + d.

For (ω, v) ∈ ∆, since the point is proper we have that Gω,v = (Hv∩Hω)nkerω. Therefore, from (3.10)
we recognise that Gω,v is equal to the isotropy subgroup fixing the affine flag with grain F as given in
Definition 3.4, whose associated flag is determined by the flag components in (3.9), and with A1 = kerω.
The diffeomorphism is then given by sending Ad(r,d)(ω, v) to the flag rF + d. The result for the orbit

OHω,v is obtained similarly by remarking that the isotropy subgroup is Hω ∩Hv.

Corollary 3.5. For G = E(3), the adjoint orbit through (ω, 0) in ∆h is: the point orbit if ω = 0,
and a sphere tangent bundle AffF(1; 2C) ∼= TS2 for ω 6= 0. For (ω, v) in ∆, the orbit is: a sphere
AffF([1̃; 2]) ∼= S2 if ω = 0, or two disjoint sphere tangent bundles AffF(1̃; 2C) ∼= TS2 t TS2 for when
ω 6= 0.

If we identify so(3) with R3 in the standard way, then the form 〈(ω1, v1), (ω2, v2)〉 = ωT1 v2+vT1 ω2 defines
an invariant non-degenerate symmetric form on se(3). Therefore, the adjoint and coadjoint representations
of E(3) are isomorphic, and thus the orbits are identical. This confers with the results from Corollaries 3.3
and 3.5. However, notice that the orbit bijection from Theorem 2.5 does not pair identical orbits together,
but that they are indeed homotopic.

The geometry of the Euclidean group orbits

As the adjoint and coadjoint orbits of E(n) are flag manifolds, the orbit geometry described earlier
concerning bundles between orbits and submanifolds may be reinterpreted as maps between flag manifolds.
In Figure 3 we recast the diagrams from Figure 2 by replacing the generic orbits through ∆ and ∆∗ with
the corresponding Hermitian flag manifolds using Theorems 3.4 and 3.2. The bundle maps between the
orbits precisely correspond to the natural flag bundles introduced before.

The orbit bijection result from Theorem 2.5 for the Euclidean group may also be recast in terms of
flag manifolds. For elements in ∆h and ∆h∗ , the vector bundle OGω,0 −→ OGL,0 between two bijected orbits
is the vector bundle
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AffF(d0; d
C
1 , . . . , d

C
k ) −→ F(d0, d

C
1 , . . . , d

C
k ) (3.14)

given in (3.7) with fibres isomorphic to V/ kerω ∼= Imω ∼= Rn−d0 . Recall that these fibres may be identified
with the translates of the space kerω. For elements in ∆ and ∆∗, the affine bundle OGL,p −→ OGω,v between
two bijected orbits is the affine bundle

AffF(1̃; d0 − 1, dC1 , . . . , d
C
k ) −→ AffF([1̃, d0 − 1]; dC1 , . . . , d

C
k ) (3.15)

given in (3.13) with fibres isomorphic to the affine quotient kerω/ ker τp ∼= Rd0−1. Recall that these fibres
may be identified with the translates of ker τp within kerω. As these bundles all have contractible fibres,
we once again arrive at the result that bijected orbits have the same homotopy type.

From Theorem 2.1 all generic coadjoint orbits through (L, p) ∈ ∆∗ are equivariant fibre bundles over
the orbit through (0, p), which by Theorem 3.2 may be identified with AffF(1̃;n− 1). This bundle map
corresponds to the flag bundle in (3.8) which sends the affine flag to the one-dimensional oriented affine
line, or flag pole. This orbit is the well-known symplectic manifold Dn of oriented lines in Rn. The
invariant symplectic form is unique up to scalar multiple and can be described as follows. First (similar
to the usual argument for Grassmannians), every line near ` ∈ Dn is the graph of an affine map `→ `⊥,
whence we can identify

T`Dn ' Aff(`, `⊥).

An element of this space can be given by a + sb where s is the parameter along ` and a,b are elements
of `⊥ (or more canonically of Rn/`). Given two such affine linear maps, one forms the skew product

ω(a + sb,a′ + sb′) = a · b′ − a′ · b.

This is a well-defined expression (independent of choice of point s = 0 on `) and defines a natural
symplectic structure on Dn. On the other hand, it does depend on the speed of parametrization of `, and
this gives the scalar multiple relating different invariant symplectic structures.

The orbit Dn may be thought of as being a fundamental orbit, since all generic orbits fibre over it.
Therefore, using this result from Theorem 2.1 in combination with Theorems 3.1 and 3.2, we can establish
the following result concerning the symplectic geometry of flag manifolds.

Corollary 3.6. Let d0, d1, . . . , dk be positive integers with each dj even for j > 0. The flag manifolds
AffF(1̃; d0 − 1, dC1 , . . . , d

C
k ) and F(d0 − 1, dC1 , . . . , d

C
k ) may be given a symplectic form which is invariant

under the actions of E(n) and O(n) respectively. With respect to this symplectic structure the E(n)-
equivariant bundle

AffF(1̃; d0 − 1, dC1 , . . . , d
C
k ) −→ AffF(1̃;n− 1) = Dn

given in (3.8) is a symplectic fibration with fibres symplectomorphic to F(d0 − 1, dC1 , . . . , d
C
k ), and the

E(n)-equivariant vector bundle

AffF(1̃; d0 − 1, dC1 , . . . , d
C
k ) −→ F(1̃, d0 − 1, dC1 , . . . , d

C
k )

given in (3.7) has isotropic fibres.

We conclude by remarking that, since any given group G of Euclidean type is a subgroup of E(n) for
large enough n, every adjoint and coadjoint orbit of G will be a submanifold of the flag manifolds that
we have exhibited for E(n). As a particular example, for the special Euclidean group SE(n), the orbits
are the connected components of the orbits of E(n). These also admit a geometric description in terms
of flag manifolds.
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(a) Adjoint orbit diagram

AffF(d0; d
C
1 , . . . , d

C
k ) F(d0, d

C
1 , . . . , d

C
k )

F(1̃, d0 − 1, dC1 , . . . , d
C
k )AffF([1̃, d0 − 1]; dC1 , . . . , d

C
k )

Rn−d0

Rn−d0

F(1̃, d0 − 1)F(1̃, d0 − 1)

(b) Coadjoint orbit diagram

AffF(1̃;n− 1) F(1̃, n− 1)

F(1̃, d0 − 1, dC1 , . . . , d
C
k )AffF(1̃; d0 − 1, dC1 , . . . , d

C
k )

Rn−1

Rn−1

F(d0 − 1, dC1 , . . . , d
C
k )F(d0 − 1, dC1 , . . . , d

C
k )

Figure 3
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candae Mathematica, 90(1-2), pp.65–89.

[6] Guillemin, V. and Sternberg, S., 1990. Symplectic techniques in physics. Cambridge university press.

[7] Marsden, J.E., Misio lek, G., Ortega, J.P., Perlmutter, M. and Ratiu, T.S., 2007. Hamiltonian reduction by
stages (Vol. 1913). Berlin: Springer.

[8] Rawnsley, J.H., 1975, September. Representations of a semi-direct product by quantization. Mathematical Pro-
ceedings of the Cambridge Philosophical Society (Vol. 78, No. 2, pp. 345–350). Cambridge University Press.

PA: philip.arathoon@manchester.ac.uk
JM: j.montaldi@mancehster.ac.uk

School of Mathematics, University of Manchester, Manchester, M13 9PL, UK.

April 25, 2018


