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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS∗

PRASHANTH NADUKANDI† AND NICHOLAS J. HIGHAM†

Abstract. We derive an algorithm for computing the wave-kernel functions cosh
√
A and

sinhc
√
A for an arbitrary square matrix A, where sinhc(z) = sinh(z)/z. The algorithm is based

on Padé approximation and the use of double angle formulas. We show that the backward error of
any approximation to cosh

√
A can be explicitly expressed in terms of a hypergeometric function. To

bound the backward error we derive and exploit a new bound for ‖Ak‖1/k that is sharper than one
previously obtained by Al-Mohy and Higham (SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009).
The amount of scaling and the degree of the Padé approximant are chosen to minimize the com-
putational cost subject to achieving backward stability for cosh

√
A in exact arithmetic. Numerical

experiments show that the algorithm behaves in a forward stable manner in floating-point arithme-
tic and is superior in this respect to the general purpose Schur–Parlett algorithm applied to these
functions.

Key words. wave kernel, matrix function, Padé approximation, backward stability, hypergeo-
metric function, matrix norm estimation
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1. Introduction. The general solution of the scalar wave equation

∂2

∂t2
u(x, t)− Lu(x, t) = b(x, t),(1.1a)

u(x, 0) = f(x),
∂

∂t
u(x, 0) = g(x),(1.1b)

where L is a differential operator in x, has the formal expression [11], [29]

(1.2) u(x, t) = cosh(t
√
L)f + t sinhc(t

√
L)g +

∫ t

0

(t− s) sinhc
(
(t− s)

√
L
)
b(·, s) ds.

Here, sinhc(z) = sinh(z)/z, with sinhc 0 := 1.
The two fundamental solutions to (1.1) are obtained by applying the operators

cosh t
√
L and t sinhc t

√
L to the Dirac delta function. These solutions are the kernels

of the linear (integral) transformation that maps the external input b(x, t) and the
initial data f(x) and g(x) to the general solution of (1.1). Greiner et al. [11] have
explicitly computed the wave kernels for several subelliptic second-order operators.

We will focus on the algebraic case where f , g, b, and u are vectors in Cn inde-
pendent of x and L is a matrix A ∈ Cn×n:

u′′(t)−Au(t) = b(t), u(0) = u0, u′(0) = u′0.(1.3)

Such linear second-order ODE systems are obtained (for instance) from a semidiscre-
tization of (1.1) by the finite element method. For this algebraic system the wave
kernels are the matrix functions cosh t

√
A and t sinhc t

√
A.
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In view of these connections we will call the functions cosh
√
z and sinhc

√
z

the wave-kernel functions. In this paper we derive a new algorithm for computing the
wave-kernel matrix functions cosh

√
A and sinhc

√
A for an arbitrary square matrix A.

We emphasize that A in (1.3) is the given matrix. Typically (for example, in [6], [16]),
the matrix in (1.3) is assumed to be given in the form A2. Treating general A presents
new challenges for the backward error analysis, as we will see.

The wave-kernel functions have the power series representations

(1.4) cosh
√
z =

∞∑
n=0

zn

(2n)!
, sinhc

√
z =

∞∑
n=0

zn

(2n+ 1)!
.

Both series have an infinite radius of convergence and hence both are entire functions
(analytic in the whole complex plane). Since cosh and sinhc are even functions there
are no square root terms in (1.4) and so in the matrix case there are no questions
about the existence of the matrix square root or of which square root to take.

In many applications A is symmetric, but nonsymmetric A arise in stability and
position feedback control of circulatory systems [30, chap. 5], constrained external
damping in rotatory shafts [20, p. 43], frictional contact stability and control of ro-
bot grasping arrangements [26, chap. 4], [27], and semi-Lagrangian formulation of
flows [22].

The stability analysis of second-order ODE systems is done in the frequency
domain assuming a time periodic external input b(t). In applications where b(t) is a
non-periodic function of time we have to work in the time domain. The time inte-
gration of stiff ODE systems is a challenging task. The wave-kernel matrix functions
are useful for deriving accurate time integrators suitable for stiff second-order ODE
systems.

When A is a large, possibly sparse matrix there are various approaches to com-
puting the action of a matrix function f(A) on a vector b [15, chap. 13]. One is to
generate approximations to f(A)b from a Krylov subspace K(A, b) [13]. Krylov sub-
space methods reduce the approximation of f(A)b to the computation of f(H)e1 for a
much smaller upper Hessenberg matrix H, where e1 is the first unit vector. Another
approach is to apply a series approximation along with a suitable scaling strategy [4].

In this work we develop algorithms for computing the wave-kernel matrix functi-
ons based on Padé approximation. The algorithms scale the matrix (A ← 4−sA),
evaluate a Padé approximant, then undo the effect of the scaling via recurrences. The
amount of scaling and the Padé degree are based on the backward error of the Padé
approximant to cosh(

√
4−sA). We obtain an explicit expression for the backward

error, valid for any rational approximation, involving a hypergeometric function. For
Padé approximants we expand this expression in a power series and bound it in terms
of quantities ‖Ak‖1/k. Our technique for exploiting these quantities is a refinement
of that introduced by Al-Mohy and Higham [3] and yields bounds never larger and
possibly much smaller. The resulting algorithm is backward stable for computing
cosh(

√
A) and mixed forward–backward stable for computing sinhc(

√
A), where sta-

bility is with respect to truncation error in exact arithmetic.
Prior work on computing the wave-kernel matrix functions and their action on

vectors has mainly been restricted to the case where the matrixA is symmetric positive
definite [12], [28]. An exception is Al-Mohy’s recent work [2], wherein algorithms to
compute the action of trigonometric and hyperbolic matrix functions are derived for
any square matrix A. The wave-kernel matrix functions are included as a special case.
The approach taken therein is to bound the absolute forward error of approximations
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based on truncated Taylor series of the matrix functions evaluated at a scaled value
of the matrix A. Extending Al-Mohy’s analysis to bound the relative forward error
is desirable but appears difficult, because it would require a tight lower bound on
the norm of the matrix function. Our approach of bounding the (relative) backward
error provides a scale-independent measure and it avoids any need for consideration
of condition numbers when assessing bounds.

To obtain the backward error result needed to derive our algorithm we need to
understand the behavior of the inverse of the function cosh

√
z. The necessary results

are given in section 2.
In section 3 we derive a new bound for the norm of a general matrix power series

in terms of bounds for the quantities maxk≥2m ‖Ak‖1/k. The backward error analysis,
and its application to Padé approximants, is given in section 4. Our algorithm for
computing the wave-kernel matrix functions is presented in section 5, where careful
attention is given to the choice of the parameter s (the amount of scaling) and m (the
Padé degree).

The Schur–Parlett algorithm [10], [15, chap. 9], designed for general matrix functi-
ons, can also be used to compute the wave-kernel matrix functions. This algorithm
requires the ability to compute the derivatives at scalar arguments of the wave-kernel
functions, which are given by

d
k

dzk
cosh

√
z =

∑
n≥0

(n+ 1)k
(2k + 2n)!

zn =
1

(k + 1)k
0F1

(
; k +

1

2
;
z

4

)
,(1.5a)

d
k

dzk
sinhc

√
z =

∑
n≥0

(n+ 1)k
(2k + 2n+ 1)!

zn =
1

(k + 1)k+1
0F1

(
; k +

3

2
;
z

4

)
,(1.5b)

where (a)n is the Pochhammer symbol and 0F1(; a; z) is a hypergeometric function,
both of which are defined in appendix A.2. Numerical experiments are given in
section 6 to test the practical behavior of our algorithm and to compare it with the
Schur–Parlett algorithm.

2. Fundamental regions and principal inverse of cosh
√
z. We begin by de-

veloping understanding of the inverse of cosh
√
z that will be needed for the backward

error analysis.
A region that is mapped by a function in a one-to-one manner onto the whole

complex plane, except for one or more cuts, is called a fundamental region of that
function [1, p. 98].

Lemma 2.1 (Fundamental regions of cosh
√

). As n runs over positive integers,
the parametric curves

Γn(t) := t2 − n2π2 + i (2nπt)

divide the complex plane into fundamental regions of cosh
√
z.

Proof. The parametric curves Γn are motivated by the identity

(2.1) cosh
√

(ρ2 − λ2) + i2λρ = cosh ρ cosλ+ i sinh ρ sinλ,

where λ, ρ ∈ R. The segments of the parametric curve

(2.2) Sρ(t) := ρ2 − t2 + i (2ρt)



4 P. NADUKANDI AND N. J. HIGHAM
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(a) Domain (z-plane).
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(b) Range (w-plane).

Fig. 2.1: The fundamental regions Ω0 (pink) and Ω1 (green, dotted) are shaded in
the z-plane. The function cosh

√
z maps regions labelled Qi in the domain (z-plane)

to regions labelled Q′i in the range (w-plane). The curve Sρ(t) defined in (2.2), with
ρ = π/

√
2, is shown as a dashed line in the z-plane. Points on Sρ(t) map to the elliptic

curve (cosh ρ cos t)+i(sinh ρ sin t) shown as a dashed line in the w-plane. Some salient
points in the w-plane are shown by uniquely shaded markers: , , , , , , , and
their pre-images are shown in the z-plane. With the aid of these marker points we can
associate every curve shown in the z-plane with a corresponding curve in the w-plane.

that lie in the strict interior of the region bounded by Γn(t) and Γn+1(t) are { Sρ(t) :
nπ < t < (n+ 1)π } and { Sρ(t) : −(n+ 1)π < t < −nπ }. To fix ideas we show Γ1(t),
Γ2(t), and Sρ(t) with ρ = π/

√
2, in Figure 2.1a.

Using (2.1), we find that when ρ > 0, cosh
√

maps the Sρ curve segments to the
strict upper and strict lower segments of the elliptic curve cosh ρ cos t + i sinh ρ sin t
in a bijective manner. As ρ→ 0, the Sρ curve segments converge to the line segment
S0, and cosh

√
maps the corresponding S0 line segment to the line −1 < w < 1 in

a bijective manner. By varying ρ from 0 to ∞ the Sρ curve segments will sweep out
the strict interior of the region bounded by Γn(t) and Γn+1(t). The image of the Sρ
curve segments sweep out the entire w-plane except for two cuts (−∞,−1) and (1,∞)
along the real axis. Here w = −1 and w = 1 are branch points.

The proof that the convex region of Γ1(t) is a fundamental region of cosh
√

proceeds in a similar fashion by considering the curve segment { Sρ(t) : −π < t < π }.
The image of this Sρ curve segment sweeps out the entire w-plane except for a cut
(−∞,−1). Here only w = −1 is a branch point.

We denote by Ωn the fundamental region bounded by Γn(t) and Γn+1(t), and
by Ω0 the convex region of Γ1(t). In Figure 2.1a we show Ω0 (pink shading) and Ω1

(green dotted shading).
The curve Γn(t) corresponds to both edges of the positive cut if n is even, and

to the edges of the negative cut if n is odd. To maintain a bijective mapping, we will
include the curve segments Γn(t < 0) and Γn+1(t < 0) in Ωn if n is odd. If n is even,
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then the curve segments Γn(t ≥ 0) and Γn+1(t ≥ 0) are included in Ωn. The curve
segment Γ1(t ≥ 0) is included in Ω0.

Definition 2.2 (Principal domain of cosh
√

). We call the fundamental region
Ω0 the principal domain. It contains the origin (marked in Figure 2.1a), whose
image in the w-plane is not a branch point.

The fundamental regions of cosh
√

are the branches of its compositional inverse.

Definition 2.3 (Principal inverse of cosh
√

). Let w belong to the complex
plane with a cut along the real axis from −∞ to −1 and let z belong to the principal
domain Ω0. The principal inverse (cosh

√
)−1 is the bijective mapping w → z such

that w = cosh
√
z.

Lemma 2.4. The principal inverse (cosh
√

)−1 is analytic at all points other than
those on the branch cut along the real axis from −∞ to −1.

Proof. Since cosh
√

is entire and its derivative is nonzero1 for any interior point
a ∈ Ω0, we can use the Lagrange inversion theorem (see appendix A.1) to express
(cosh

√
)−1 as a power series that converges in some neighbourhood of cosh

√
a.

Thus (cosh
√

)−1 is analytic at cosh
√
a. Hence (cosh

√
)−1 is analytic at all points

other than those on the branch cut.

A consequence of Lemma 2.4 is that the radius of convergence of the power series
of (cosh

√
)−1 about cosh

√
a is equal to |1+cosh

√
a| which is the distance of cosh

√
a

to the nearest branch point w = −1.
The sum of a convergent power series of a multi-valued function might fall in

a branch different from the principal branch. Should this be the case, the equality
of the function to its power series will not hold. For the equality to hold the disc
of convergence should not touch or cross the specified branch cut. We will use the
power series of (cosh

√
)−1 about the point w = 1 and the largest disc centred at

this point touches the branch cut at the branch point w = −1. Hence, the equality
of (cosh

√
)−1 with its power series about w = 1 holds inside the disc |w − 1| < 2.

The power series of (cosh
√

)−1 about the point w = cosh
√

0 = 1 can be shown,
using the Lagrange inversion theorem, to be

(cosh
√

)−1w =

∞∑
n=1

(w − 1)n

n!
lim
x→0

 d
n−1

dxn−1

( ∞∑
m=0

xm

(2m+ 2)!

)−n
= 2(w − 1)− 1

3
(w − 1)2 +

4

45
(w − 1)3 − 1

35
(w − 1)4 +

16

1575
(w − 1)5

− 8

2079
(w − 1)6 +

32

21021
(w − 1)7 − 4

6435
(w − 1)8 + · · · , |w − 1| < 2.(2.3)

The preimage of the disc |w − 1| ≤ 2 in the principal domain is shown in Fi-
gure 2.2a. Note that it includes the origin and contains the disc |z| ≤ 3 (dashed line).
In the next lemma we show that the power series (2.3) has a succinct hypergeometric
representation. This representation is invaluable because for some rational function
h(z) we will later want to evaluate partial sums of the power series of (cosh

√
)−1h(z)

about z = 0 and we can delegate the change in expansion point to the computer al-
gebra package Maple, which has knowledge of the hypergeometric function.

1The derivative of (cosh
√
z)′ is zero only at points of the form z = −n2π2 for integer n ≥ 1,

which do not belong to the interior of the principal domain Ω0
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−13 −π2 −7 −5 −3 −1 1 3 5 7
−6

−4

−2

0
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Re(z)

Im(z)

(a)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3
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−1
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1
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3

Re(w)

Im(w)

(b)

Fig. 2.2: (a) Preimage of the disc {w : |w − 1| ≤ 2 } in the principal domain, along
with the disc |z| ≤ 3 (dashed line). (b) The disc {w : |w − 1| ≤ 2 } and the branch
cut (−∞,−1) in the range.

Lemma 2.5. The principal inverse (cosh
√

)−1 has the hypergeometric represen-
tation

(2.4) (cosh
√

)−1w = 2(w − 1) 3F2

(
1, 1, 1;

3

2
, 2;

1− w
2

)
, |w − 1| ≤ 2.

Proof. A series expansion of cosh−1 w [23, eq. (4.38.4)] about the point w = 1 is

cosh−1 w =
√

2(w − 1)

[
1 +

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

22nn!(2n+ 1)
(1− w)n

]
, Rew > 0, |w−1| < 2.

Using the equations

1 · 3 · 5 · · · (2n− 1) =
1

2

(
1

2
+ 1

)(
1

2
+ 2

)
· · ·
(

1

2
+ n− 1

)
2n =

(
1

2

)
n

2n,(
1

2

)
n+1

=

(
1

2

)
n

2n+ 1

2
=

1

2

(
3

2

)
n

,

we can express

1 +

∞∑
n=1

1 · 3 · 5 · · · (2n− 1)

22nn!(2n+ 1)
(1− w)n = 1 +

∞∑
n=1

(
1
2

)
n

(
1
2

)
n(

3
2

)
n
n!

(
1− w

2

)n
= 2F1

(
1

2
,

1

2
;

3

2
;

1− w
2

)
,

and hence

(2.5) cosh−1 w =
√

2(w − 1) 2F1

(
1

2
,

1

2
;

3

2
;

1− w
2

)
, Rew > 0, |w − 1| < 2.

Let us now write the power series of (cosh
√

)−1w given in (2.3) in the form

(2.6) (cosh
√

)−1w = 2(w − 1)

∞∑
n=0

cn(1− w)n, |w − 1| < 2.
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Equations (2.5) and (2.6), and Clausen’s identity [8]

2F1

(
a, b; a+ b+

1

2
; ξ

)2

= 3F2

(
2a, 2b, a+ b; 2a+ 2b, a+ b+

1

2
; ξ

)
with a = b = 1/2 and ξ = (1 − w)/2, are used in the relation (cosh

√
)−1w =

(cosh−1 w)2 to arrive at

(2.7)

∞∑
n=0

cn(1− w)n = 3F2

(
1, 1, 1;

3

2
, 2;

1− w
2

)
, Rew > 0, |w − 1| < 2.

As we have only nonnegative integer powers of 1−w in (2.7) and 3F2(1, 1, 1; 3/2, 2; 1− w/2)
converges for |w−1| = 2 (see appendix A.2), the equality holds in the disc |w−1| ≤ 2
without the restriction Rew > 0. Thus we obtain (2.4).

3. Bounding a matrix power series. In the design of our algorithm we will
need to bound the norm of a matrix power series that represents the error in an
approximation. This is a standard requirement in algorithms based on Padé approx-
imants [3], [5], [6], [7], [17]. In this section we derive a new bound for the norm of an
arbitrary matrix power series

g`(A) =

∞∑
i=`

ciA
i.

We denote by ‖ · ‖ any consistent matrix norm with ‖I‖ = 1.
Al-Mohy and Higham [3, Thm. 1.1] note that

‖g`(A)‖ ≤
∞∑
i=`

|ci|‖Ai‖ =

∞∑
i=`

|ci|
(
‖Ai‖1/i

)i
≤
∞∑
i=`

|ci|βi,

where β = maxi≥` ‖Ai‖1/i. The motivation for this bound is that ‖Ai‖1/i satisfies
ρ(A) ≤ ‖Ai‖1/i ≤ ‖A‖ and can be much smaller than ‖A‖ for a nonnormal matrix,
so the bound can be much smaller than

∑∞
i=` |ci|‖A‖i.

In seeking a more easily computed quantity than β, Al-Mohy and Higham [3,
Lem. 4.1] show that if a, b, i, j are nonnegative integers such that ai+ bj ≥ 1 then

(3.1) ‖Aai+bj‖1/(ai+bj) ≤ max
(
‖Aa‖1/a, ‖Ab‖1/b

)
.

We specialize this result as follows. Denote by gcd(a, b) the greatest common
divisor of a and b.

Theorem 3.1. Let a, b, k, and m be positive integers. Then

(3.2) αm(A) = min
gcd(a,b)=1,
ab−a−b<2m

max
(
‖Aa‖1/a, ‖Ab‖1/b

)
satisfies

(3.3) max
k≥2m

‖Ak‖1/k ≤ αm(A) ≤ ‖A‖.

Furthermore, αm(A) is nonincreasing in m.
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Proof. Observe that as i and j run independently over the nonnegative integers
the values of ai + bj run over a certain subset of the nonnegative integers. If a and
b are co-prime, that is, gcd(a, b) = 1, it is well known that this subset includes all
positive integers greater than ab−a−b. The number ab−a−b is called2 the Frobenius
number [25] of the set {a, b}. If ab − a − b < 2m then from (3.1) we get the bound
maxk≥2m ‖Ak‖1/k ≤ max

(
‖Aa‖1/a, ‖Ab‖1/b

)
. Taking the minimum of these bounds

over all co-prime a and b we obtain the lower bound in (3.3). That αm is nonincreasing
in m is because the set of a and b in the minimum defining αm grows with m.

Al-Mohy and Higham [3, Thm. 4.2] chose b = a + 1 in (3.1), for which the co-
prime condition is naturally satisfied and the condition ab− a− b < 2m simplifies to
(a− 1)a ≤ 2m. However, a stronger bound is obtained by not limiting the co-primes
in Theorem 3.1, as the following example confirms.

Example 3.2. The columns of the matrix[
2 2 2 2 2 3 3
3 5 7 9 11 4 5

]
represent all possible co-primes a, b satisfying ab− a− b < 2m for m = 5 (we exclude
pairs with a or b equal to 1, as this case simply gives ‖Ak‖ ≤ ‖A‖k). Using the ine-
quality max

(
‖Aa‖1/a, ‖Aa+b‖1/(a+b)

)
≤ max

(
‖Aa‖1/a, ‖Ab‖1/b

)
the set of co-primes

needed to compute α5(A) reduces to[
2 3 3
11 4 5

]
and so

α5(A) = min max

[
‖A2‖1/2 ‖A3‖1/3 ‖A3‖1/3
‖A11‖1/11 ‖A4‖1/4 ‖A5‖1/5

]
,

where the max operates along the columns of the matrix and produces a row vector.
Choosing A to be any involutory matrix with ‖A‖ > 1 we get

max
k≥10

‖Ak‖1/k ≤ α5(A) = min max

[
1 ‖A‖1/3 ‖A‖1/3

‖A‖1/11 1 ‖A‖1/5
]

= ‖A‖1/11,

which is smaller than the bound obtained by Al-Mohy and Higham [3, Thm. 4.2]

min
(a−1)a≤10

max
(
‖Aa‖1/a, ‖Aa+1‖1/(a+1)

)
= min max

[
‖A2‖1/2 ‖A3‖1/3
‖A3‖1/3 ‖A4‖1/4

]
= min max

[
1 ‖A‖1/3

‖A‖1/3 1

]
= ‖A‖1/3,

by a factor of ‖A‖8/33, which can be arbitrarily large because an involutory matrix
can have arbitrarily large norm (for example, the matrix

[
1−b b
2−b b−1

]
) is involutory for

any b). This improvement can lead to a saving of several matrix multiplications in our
algorithm, and indeed other algorithms with a similar derivation, such as the scaling
and squaring algorithm for the matrix exponential [3].

2We thank Hung Bui and Sean Prendiville for pointing this out during a discussion on the
Euclidean algorithm.
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A drawback of the αm, compared with the quantities used by Al-Mohy and Hig-
ham with b = a+ 1, is that they involve norms of higher powers of A, so in principle
are more expensive to compute. Two factors mitigate the expense. First, we will es-
timate the norms without computing the matrix powers explicitly, making the overall
cost O(n2) flops compared with the O(n3) flops cost of the whole algorithm when A
is dense. Second, we will exploit matrix powers that are explicitly computed within
the algorithm in order to reduce the cost further.

4. Error analysis for the wave kernels.

4.1. Approximation error. Let h(z) denote an approximation to cosh
√
z for

z in a disc centered at the origin such that |h(z) − cosh
√
z| → 0 as z → 0. The

forward error e(z) of the approximation h(z) to cosh(
√
z) is defined by

(4.1) e(z) = h(z)− cosh
√
z.

For z in the principal domain Ω0, the backward error E(z) of the approximation
h(z) to cosh(

√
z) is defined using the principal inverse as

(4.2) E(z) = (cosh
√

)−1h(z)− z,

so that

(4.3) cosh
√
z ≈ h(z) = cosh

√
z + E(z) = cosh

√
z + e(z).

As (cosh
√

)−1 is analytic everywhere except on its branch cut, E is analytic if h is
analytic and does not take values on this branch cut.

For a given tolerance ε we wish to identify a disc centered at the origin such that
|E(z)| ≤ ε|z| inside that disc. In order to do this we need a representation to quantify
the backward error.

Lemma 4.1. For all z in the principal domain of cosh
√

, if h(z) is any approx-
imation to cosh

√
z such that |1 − h(z)| ≤ 2 then the backward error E(z) has the

hypergeometric representation

(4.4) E(z) = 2
(
h(z)− 1

)
3F2

(
1, 1, 1;

3

2
, 2;

1− h(z)

2

)
− z.

Proof. For any z such that |1− h(z)| ≤ 2, the hypergeometric series

3F2

(
1, 1, 1;

3

2
, 2;

1− h(z)

2

)
converges. If z belongs to the intersection of this region with the principal domain
Ω0, then the backward error result follows from (2.4) and (4.2).

Our attempts to identify the fundamental regions of sinhc
√

were not fruitful.
Without this knowledge the backward error in the approximations to sinhc

√
z cannot

be uniquely defined. So we construct approximations to sinhc
√
z using h(z) and

derive mixed forward–backward error bounds.

Lemma 4.2. For all z in the principal domain of cosh
√

, if h(z) is any approx-
imation to cosh

√
z such that |1− h(z)| ≤ 2 then for E(z) given in (4.4) then

(a) sinhc
√
z ≈ 2h′(z) =

(
1 + E′(z)

)
sinhc

√
z + E(z), and
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(b) E′(z) has the hypergeometric representation

E′(z) = 2h′(z) 3F2

(
1, 1, 1;

3

2
, 2;

1− h(z)

2

)
(4.5)

+
1

3

(
1− h(z)

)
3F2

(
2, 2, 2;

5

2
, 3;

1− h(z)

2

)
h′(z)− 1.

Proof. Clearly h(z) has no singularities in the region { z : |1− h(z)| ≤ 2 } and by
definition h(z) does not take values on the branch cut (−∞,−1). So from Lemma 2.4
we see that E(z) is analytic in this region, which leads to the identity

(4.6) 2
d

dz
cosh

√
z + E(z) =

(
1 + E′(z)

)
sinhc

√
z + E(z).

The mixed error result (a) follows by taking derivatives in (4.3) and using (4.6).
The result (b) follows by taking derivatives in (4.4) and using the identity

d

dz
3F2

(
1, 1, 1;

3

2
, 2; z

)
=

1

3
3F2

(
2, 2, 2;

5

2
, 3; z

)
.

A matrix function is completely determined by the values of the function and
its derivatives on the spectrum of the matrix [15]. Since the functions cosh

√
z and

sinhc
√
z are entire, the matrix functions cosh

√
A and sinhc

√
A are defined for all A.

The approximation h(A) is defined if the set of eigenvalues of A does not contain the
singularities of h(z). Let ρ(A) denote the spectral radius of A.

Theorem 4.3. If A has eigenvalues in the principal domain of cosh
√

and h(z)
is any approximation to cosh

√
z such that ρ(I − h(A)) ≤ 2 then

(a) cosh
√
A ≈ h(A) = cosh

√
A+ E(A), where E is given by (4.4), and

(b) sinhc
√
A ≈ 2h′(A) = (I + E′(A)) sinhc

√
A+ E(A), where E′ is given by

(4.5).

Proof. (a) and (b) follow by applying Lemmas 4.1 and 4.2 on the spectrum of A.

4.2. Padé approximants. Let rm(z) = pm(z)/qm(z) be the [m/m] (diagonal)
Padé approximant to cosh

√
z. Thus pm and qm are polynomials of degree at most

m, qm(0) = 1, and rm(z)− cosh
√
z = O(z2m+1). We are not aware of a proof of the

existence of rm for all m. Nevertheless, rm exists for a particular m if the m × m
Toeplitz matrix with (i, j) entry 1/

(
2(i− j + m)

)
! is nonsingular [21, p. 362]. Using

Maple we have verified the existence of the first 100 diagonal Padé approximations.
The contours of |1 − rm(z)|/2 are shown in Figure 4.1 for m ≤ 4. Observe that

in all the sub-figures the disc |z| ≤ 3 (dashed line) is contained inside the contour
|1− rm(z)|/2 = 1; we will prove that this is the case for all m ≤ 20.

Lemma 4.4. Let p(z) and q(z) be polynomials such that q(0) = 1 and the coeffi-
cients of both p(z) and q(−z) are positive real numbers. If R is a positive real number
such that q(−R) < 2 then for |z| ≤ R,

2− q(−R) ≤ |q(z)| ≤ q(−R),(4.7)

|p(z)|
|q(z)|

≤ p(R)

2− q(−R)
.(4.8)
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(a) m = 1
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(b) m = 2
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6

1
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(c) m = 3

−12 −π2 −7 −5 −3 −1 1 3 5 7
−6

−4

−2

0

2

4

6

1

1

1

1

2

2

Re(z)

Im(z)

(d) m = 4

Fig. 4.1: The contours of |w−1|/2, where w = rm(z) is the [m/m] Padé approximant
to cosh(

√
z) of degree m ∈ {1, 2, 3, 4}, along with the circle |z| = 3 (dashed line).

Proof. Given that q(0) = 1 and q(−z) has real positive coefficients, the term
q(−|z|)−1 is positive and the inequality |q(z)−1| ≤ q(−|z|)−1 ≤ q(−R)−1 holds in
the region |z| ≤ R. In other words, q(z) is contained in a circle with center (1, 0) and
radius q(−R)− 1. It follows that max{0, 2− q(−R)} ≤ |q(z)| ≤ q(−R). If q(−R) < 2
and p(z) has real positive coefficients, then the inequality in (4.8) is obtained by taking
the ratio of the upper bound of |p(z)| with the lower bound of |q(z)|.

Lemma 4.5. For the [m/m] Padé approximant rm(z) to cosh
√
z the condition

|1 − rm(z)| ≤ 2 is satisfied inside the disc |z| ≤ 3 for all m ≤ 20. For a matrix
argument A,

(4.9) ρ(A) ≤ 3⇒ ρ (I − rm(A)) < 2 for m ≤ 20.

Proof. We will first prove that rm(z) is analytic in the disc |z| ≤ 3 for m ≤ 20.
Let pm(z) and qm(z) denote the numerator and denominator polynomials of rm.
Using Maple we have obtained symbolically the coefficients of pm(z) and qm(z) for
m ∈ {1, 2, . . . , 20} and found that pm(z), qm(−z), and pm(z) − qm(z) have positive
real coefficients. Choosing R = 3, we find that the first element of the sequence
{2− qm(−R)} is 3/4 and the next 19 elements are, to 4 significant digits,

{.8613, .9079, .9313, .9453, .9546, .9612, .9661, .9699, .9730,

.9754, .9775, .9793, .9807, .9820, .9832, .9842, .9851, .9858, .9866} .
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Hence 2 − qm(−R) ≥ 3/4 for m ≤ 20, and it follows from the lower bound in (4.7)
that qm(z) has no zeros in the disc |z| ≤ 3 for m ≤ 20. Therefore rm(z) is analytic in
the disc |z| ≤ 3 for m ≤ 20.

Likewise, the first element of the sequence {[pm(3)− qm(3)]/[2− qm(−3)]} is 2
and the next 19 elements are, to 5 significant digits,

{.97443, .96533, .96182, .96017, .95928, .95874, .95840, .95816, .95799,

.95787, .95778, .95770, .95764, .95760, .95756, .95753, .95750, .95748, .95746} × 2.

Hence the first 20 elements of the sequence are less than or equal to 2. Substituting
p(z) with pm(z)− qm(z) in Lemma 4.4, it follows from (4.8) that

(4.10) |z| ≤ 3⇒ |1− rm(z)| = |pm(z)− qm(z)|
|qm(z)|

≤ pm(3)− qm(3)

2− qm(−3)
≤ 2 for m ≤ 20

The result (4.9) follows by applying (4.10) to the spectrum of A.

For m ≤ 20 we can therefore replace the condition |1 − rm(z)| ≤ 2 with the
condition |z| ≤ 3 in Lemmas 4.1 and 4.2. Likewise, we can replace the condition
ρ(I − rm(A)) ≤ 2 in Theorem 4.3 with the more readily verifiable condition ρ(A) ≤ 3
for m ≤ 20.

We make the following conjecture based on similar observations for m > 20.

Conjecture 4.6. For all m, the [m/m] Padé approximant rm(z) to cosh
√
z

satisfies |1− rm(z)| ≤ 2 in the disc |z| ≤ 3.

4.3. Error bounds for Padé approximants. The forward error em(z) and
backward error Em(z) of the [m/m] Padé approximant rm(z) to cosh

√
z are defined,

as in (4.1) and (4.2), by

(4.11) em(z) = rm(z)− cosh
√
z, Em(z) = (cosh

√
)−1rm(z)− z.

Recall that | cosh
√
z − 1| < 2 for |z| ≤ 3 (Figure 2.2) and |rm(z)− 1| ≤ 2 for |z| ≤ 3

and m ≤ 20 (Lemma 4.5). Therefore from Lemma 4.1 we find that Em(z) is analytic
for |z| ≤ 3 and m ≤ 20. From (4.11) and the fact that cosh

√
is entire, we obtain

em(z) = cosh
√
z + Em(z)− cosh

√
z

= Em(z)(cosh
√

)′z +
1

2!
Em(z)2(cosh

√
)′′z + · · · .

Since em(z) is O(z2m+1), by the definition of rm, it follows that Em(z) is O(z2m+1).
Thus

(4.12) Em(z) = z
∑
k≥0

cm,kz
2m+k = zÊm(z) for |z| ≤ 3, m ≤ 20,

for some coefficients cm,k, where Êm(z) denotes the relative backward error. For a
matrix argument A it follows from (4.12) that

Em(A) = A
∑
k≥0

cm,kA
2m+k = AÊm(A), for ρ(A) ≤ 3, m ≤ 20.

Using Theorem 3.1 we have

(4.13) ‖Êm(A)‖ ≤
∑
k≥0

|cm,k|αm(A)
2m+k

,
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where αm is defined in (3.2).
Taking derivatives in (4.12) and replacing z by A it follows that

E′m(A) =
∑
k≥0

(2m+ k + 1)cm,kA
2m+k, for ρ(A) ≤ 3, m ≤ 20,

and then Theorem 3.1 gives

(4.14) ‖E′m(A)‖ ≤
∑
k≥0

(2m+ 1 + k)|cm,k|αm(A)
2m+k

.

(Recall that E′m(z) occurs in the error expansion for sinhc(
√
A) in Theorem 4.3 (b).)

Using Maple we have obtained symbolically the first 600 terms in the power series
of Em(z) for m ≤ 20 and found that except for m = 2 the coefficients of the series have
alternating signs. For m = 2, the coefficients have a structured pattern of alternating
signs

{−1, 1,−1, 1, . . . ,−1, 1︸ ︷︷ ︸
28 terms

, 1,−1, . . . , 1,−1︸ ︷︷ ︸
28 terms

,−1, 1, . . . ,−1, 1︸ ︷︷ ︸
28 terms

, . . .}.

Note that the first 30 coefficients have alternating signs. The first term is the coeffi-
cient of z5 and it is of the order of 10−7. Its product with 35 is of the order of 10−4.
The 30th term is the coefficient of z34 and it is of the order of 10−37. Its product
with 334 is of the order of 10−21. Effectively, then, in the context of double-precision
arithmetic with |z| ≤ 3, we can regard Em(z), and also Êm(z), as having power series

with alternating coefficients. Then
∑
k≥0 |cm,k|αm(A)

2m+k
= |Êm(−αm(A))| and the

bound for ‖Êm(A)‖ in (4.13) simplifies to

‖Êm(A)‖ ≤ |Êm(−αm(A))| ≤ |Êm(−3)| for m ≤ 20, αm(A) ≤ 3

Additionally,
∑
k≥0(2m + 1 + k)|cm,k|αm(A)

2m+k
= |E′m(−αm(A))| and the bound

for ‖E′m(A)‖ in (4.13) simplifies to

‖E′m(A)‖ ≤ |E′m(−αm(A))| ≤ |E′m(−3)| for m ≤ 20, αm(A) ≤ 3.

The IEEE double precision unit roundoff u is 2−53. Table 4.1 contains the values
of |Êm(−3)| and the radius

(4.15) θm = max{x : |Êm(−x)| = u }.

Table 4.2 contains the values of |E′m(−3)| and the radius

(4.16) θ′m = max{x : |E′m(−x)| = u }.

In these tables the values of θm, θ′m, |Êm(−3)| and |E′m(−3)| are computed using
variable precision arithmetic with 100 significant digits.

Observe that for m ≥ 6 we have both |Êm(−3)| < u and |E′m(−3)| < u. Addi-
tionally, for m < 6 the values of θ′m in Table 4.2 are smaller than the corresponding
values in Table 4.1. So choosing θ′m from Table 4.2 we get

‖Êm(A)‖ ≤ u, ‖E′m(A)‖ ≤ u for m ≤ 20, αm(A) ≤ min
(
3, θ′m

)
.
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Table 4.1: Relative backward error bound |Êm(−3)| and values of θm in (4.15) for the
[m/m] Padé approximants to cosh

√
z for IEEE double precision arithmetic.

m |Êm(−3)| θm m |Êm(−3)| θm

1 4.68× 10−2 1.63× 10−7 6 2.24× 10−21 > 3
2 8.85× 10−5 3.46× 10−3 7 2.29× 10−26 > 3
3 2.94× 10−8 1.26× 10−1 8 1.37× 10−31 > 3
4 2.93× 10−12 8.75× 10−1 9 5.08× 10−37 > 3
5 1.17× 10−16 2.98 10 1.23× 10−42 > 3

Table 4.2: Mixed error bound |E′m(−3)| and values of θ′m in (4.16) for approximations
to sinhc

√
z for IEEE double precision arithmetic.

m |E′m(−3)| θ′m m |E′m(−3)| θ′m

1 1.58× 10−1 9.42× 10−8 6 3.04× 10−20 > 3
2 4.80× 10−4 2.31× 10−3 7 3.57× 10−25 > 3
3 2.20× 10−7 9.14× 10−2 8 2.40× 10−30 > 3
4 2.79× 10−11 6.66× 10−1 9 9.95× 10−36 > 3
5 1.36× 10−15 2.36 10 2.66× 10−41 > 3

The double-angle formulas

(4.17) cosh 2
√
A = 2

(
cosh

√
A
)2 − I, sinhc 2

√
A = sinhc

√
A cosh

√
A,

hold for all A. When αm(A) > min (3, θ′m), we scale down A by a factor 4s such that
αm(4−sA) ≤ min

(
3, θ′m

)
, compute approximations to cosh

√
4−sA and sinhc

√
4−sA

and then scale up using the double-angle recurrence

(4.18)

C0(A) = rm(4−sA), S0(A) = 2r′m(4−sA),

Ci+1(A) = 2Ci(A)2 − I, Si+1(A) = Si(A)Ci(A), i = 0, . . . , s− 1,

cosh
√
A ≈ Cs(A), sinhc

√
A ≈ Ss(A).

If the scaling up phase is done in exact arithmetic, then from Theorem 4.3 we find

Cs(A) = cosh

√
A
(
I + Êm(4−sA)

)
,(4.19a)

Ss(A) =
(
I + E′m(4−sA)

)
sinhc

√
A
(
I + Êm(4−sA)

)
,(4.19b)

with
‖Êm(4−sA)‖ ≤ u, ‖E′m(4−sA)‖ ≤ u.

Thus in exact arithmetic the approximation Cs(A) to cosh
√
A is backward stable and

the approximation Ss(A) to sinhc
√
A is mixed forward–backward stable.

5. Algorithm for computing the wave kernels. The matrices rm(A) and
r′m(A) are obtained by solving qm(A)rm(A) = pm(A) and q2m(A)r′m(A) = wm(A),
where

wm(A) := p′m(A)qm(A)− pm(A)q′m(A).
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Table 5.1: Parameter σ that minimizes the number of matrix multiplications µt for
each degree m in the Paterson–Stockmeyer algorithm to evaluate pm(A), qm(A) and
wm(A), along with µ∗ = µt − (σ − 1).

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
σ 1 2 3 4 5 6 4 4 5 5 6 6 7 7 8 8 9 9 10 10
µt 0 1 3 4 5 6 7 8 9 9 10 10 11 11 12 12 13 13 14 14
µ∗ 0 0 1 1 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Using Maple we have obtained symbolically the coefficients of the polynomials pm
and qm, evaluated them using variable precision arithmetic, and stored them as IEEE
double precision floating point numbers. To reduce cost and to avoid bringing any
finite precision cancellation errors to prominence, we also evaluated symbolically and
stored numerically the coefficients of the degree 2m− 2 polynomial wm(A). All these
are off-line calculations, done in advance.

We will use the Paterson–Stockmeyer (PS) algorithm [15, p. 73], [24] to compute
the polynomials pm(A), qm(A), and wm(A). Let σ ≤ m be a positive integer and
suppose we compute and store A2, A3, . . . , Aσ, which requires µσ = σ − 1 matrix
multiplications. The total number of matrix multiplications in the PS algorithm is
then

µt = (σ − 1) + 2
⌊m
σ

⌋
− 2(σ | m) +

⌊
2m− 2

σ

⌋
−
(
σ | (2m− 2)

)
,

where bm/σc is the largest integer less than or equal to m/σ and σ | m is either 1 (if
σ divides m) or 0 (otherwise).

For each m, the σ that mininimizes the number of matrix multiplications in the PS
algorithm to compute pm(A), qm(A) and wm(A) is shown in Table 5.1. For m ≤ 20,
this cost jumps between degree m and m+ 1 only for m ∈ {1–8, 10, 12, 14, 16, 18, 20}.
Hence we will consider only these m in our algorithm. The matrices whose columns
are the co-primes required to compute αm(A), for these m are shown in Table 5.2.

The definition of αm(A) involves norms of various powers of A defined in (3.2)
We will compute only those powers needed for the evaluation of the polynomials
and will use those powers to estimate the norms of the others. We use the 1-norm
and estimate norms using the block algorithm of Higham and Tisseur [19], which
estimates ‖B‖1 using a few matrix–vector products with B and BT . We denote a
call to the estimator by normest1(An1 , An2 , . . . , Ank), which means that the algo-
rithm estimates ‖An1+n2+···+nk‖1 by forming matrix–vector products An1+n2+···+nkx
as An1(An2(. . . (Ankx))) (and similarly for the transpose).

In using normest1 we want to do as few matrix–vector products as possible. We
will use the powers of A stored in the PS algorithm to this end. For instance, con-

sider m = 1, for which only A is stored. To compute α1(A) we estimate ‖A2‖1/21

and ‖A3‖1/31 (see Table 5.2) by calling normest1(A,A) and normest1(A,A,A), re-
spectively. If we proceed to m = 2, we compute and store A2 (see Table 5.1).

To compute α2(A) we compute ‖A2‖1/21 directly and estimate ‖A5‖1/51 with the call
normest1(A,A2, A2). Note that it makes no difference to the quality of the estimate
how the matrix–vector products are factored; our aim is purely to minimize the cost.

We note that Higham and Smith [18, p. 20] analysed the stability with respect to
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Table 5.2: Matrices whose columns are the co-primes required to compute αm(A).

m Co-primes m Co-primes

1

[
2
3

]
8

[
2 3 3 4
17 7 8 5

]
2

[
2
5

]
10

[
2 3 3 4 4 5
21 10 11 5 7 6

]
3

[
2 3
7 4

]
12

[
2 3 3 4 4 5 5
25 11 13 7 9 6 7

]
4

[
2 3 3
9 4 5

]
14

[
2 3 3 4 4 5 5 5
29 13 14 7 9 6 7 8

]
5

[
2 3 3
11 4 5

]
16

[
2 3 3 4 4 5 5 5 5 6
33 16 17 9 11 6 7 8 9 7

]
6

[
2 3 3 4
13 5 7 5

]
18

[
2 3 3 4 4 5 5 5 5 6
37 17 19 11 13 6 7 8 9 7

]
7

[
2 3 3 4
15 7 8 5

]
20

[
2 3 3 4 4 5 5 5 5 6
41 19 20 11 13 7 8 9 11 7

]

Table 5.3: Matrices whose columns are the co-primes required to compute αm(A)
sequentially, that is, for each m we update αm(A)← min(α∗(A), αm(A)) where α∗(A)
was computed in the previous step.

m Co-primes m Co-primes m Co-primes

1

[
2
3

]
6

[
2 3 4
13 7 5

]
14

[
2 3 5
29 14 8

]
2

[
2
5

]
7

[
2 3
15 8

]
16

[
2 3 3 4 5 6
33 16 17 11 9 7

]
3

[
2 3
7 4

]
8

[
2
17

]
18

[
2 3 4
37 19 13

]
4

[
2 3
9 5

]
10

[
2 3 3 4 5
21 10 11 7 6

]
20

[
2 3 5
41 20 11

]
5

[
2
11

]
12

[
2 3 4 5
25 13 9 7

]

rounding errors of the double angle recurrence (4.18) for their algorithm to compute
the matrix cosine. They found that the relative forward error bound is a sum of
terms comprising two factors. The first factor is a power up to the sth of an O(1)
scalar independent of A. These factors are innocuous if s is small and are likely to
be pessimistic, otherwise. The second factor is a product of terms that depend on
the norms of the intermediate Ci(A), and is difficult to bound a priori. The number
of such terms grows with s. So to mitigate the potential deterioration of accuracy in
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the recurrence, our priority is to minimize s in the scaling stage. The sharper error
bounds given in (4.13) and (4.14) and choosing the pair with the larger m and smaller
s when there is a choice contribute to this objective.

Recall that {A : ρ(A) ≤ 3} is the set of admissible A for which the error terms

‖Êm(A)‖ and ‖E′m(A)‖ are well-defined. As ρ(A) ≤ αm(A), we note that Am,u :=
{A : αm(A) ≤ min{θ′m, 3}} is a subset of the admissible set and in this subset the

error terms ‖Êm(A)‖ and ‖E′m(A)‖ are bounded by the unit roundoff. Further, as
αm(A) is nonincreasing with m by Theorem 3.1, the subset Am,u will grow with m
if θ′m does. Observe in Tables 4.1 and 4.2 that for m ≤ 5, θ′m increases with m and
θ′m < 3. Hence for all m ≤ 5 the subset Am,u will certainly grow larger with m.
Therefore, to avoid scaling in our algorithm we will compute αm(A) sequentially and
check if A ∈ Am,u.

We note that the co-primes listed in Table 5.2 are appropriate to compute each

αm(A) independently. Suppose we have computed and stored α4(A) and ‖Ak‖1/k1

for k ∈ {2, 3, 4, 5, 9}. Observe in Table 5.2 that for m = 5 we can reuse the known

‖Ak‖1/k1 and we only need to estimate ‖A11‖1/111 . By definition α5(A) ≤ α4(A)

and observe that both max(‖A3‖1/31 , ‖A4‖1/41 ) and max(‖A3‖1/31 , ‖A5‖1/51 ) were in-
cluded while computing α4(A). So to compute α5(A) we first assign α5(A) ←
max(‖A2‖1/21 , ‖A11‖1/111 ) and then update α5(A) ← min(α4(A), α5(A)). Following
this line of reasoning, the matrices whose columns are the co-primes required to com-
pute αm(A) sequentially are shown in Table 5.3.

Taking all these aspects into account we now present our algorithm to compute
the scaling s and the order m.

Algorithm 5.1 (Parameter selection). Given A ∈ Cn×n this algorithm com-

putes the order m and the scaling s such that the relative errors ‖Êm(4−sA)‖1 and
‖E′m(4−sA)‖1 in (4.19) are bounded by the IEEE double precision unit roundoff. It
uses the quantities θ′m tabulated in Table 4.2 and the co-primes listed in Table 5.3.

1 Compute and store β2 = normest1(A,A)1/2, β3 = normest1(A,A,A)1/3

and α1(A) = max(β2, β3).
2 if α1(A) ≤ θ′1, then m = 1, s = 0, quit, end.

3 Compute and store A2, β2 = ‖A2‖1/21 , β5 = normest1(A,A2, A2)1/5

and α2(A) = max(β2, β5).
4 if α2(A) ≤ θ′2, then m = 2, s = 0, quit, end.

5 Compute and store A3, β3 = ‖A3‖1/31 , β4 = normest1(A,A3)1/4,

β7 = normest1(A,A3, A3)1/7 and α3(A) = min max
[
β2 β3

β7 β4

]
.

6 if α3(A) ≤ θ′3, then m = 3, s = 0, quit, end.

7 Compute and store A4, β4 = ‖A4‖1/41 , β9 = normest1(A,A4, A4)1/9

and α4(A) = min max
[
β2 β3

β9 β5

]
.

8 Update α4(A)← min(α3(A), α4(A)).
9 if α4(A) ≤ θ′4, then m = 4, s = 0, quit, end.

10 Compute and store β11 = normest1(A3, A4, A4)1/11 and
α5(A) = max(β2, β11).

11 Update α5(A)← min(α4(A), α5(A)).
12 if α5(A) ≤ θ′5, then m = 5, s = 0, compute and store A5, quit, end.
13 Compute and store β13 = normest1(A,A4, A4, A4)1/13

and α6(A) = min max
[
β2 β3 β4

β13 β7 β5

]
.
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14 Update α6(A)← min(α5(A), α6(A)).
15 if α6(A) ≤ 3, m = 6, then s = 0, compute and store A5, A6, quit, end.
16 Compute and store β8 = normest1(A4, A4)1/8,

β15 = normest1(A3, A4, A4, A4)1/15 and α7(A) = min max
[
β2 β3

β15 β8

]
.

17 Update α7(A)← min(α6(A), α7(A)).
18 if α7(A) ≤ 3, then m = 7, s = 0, quit, end.
19 Compute and store β17 = normest1(A,A4, A4, A4, A4)1/17

and α8(A) = max(β2, β17).
20 Update α8(A)← min(α7(A), α8(A)).
21 if α8(A) ≤ 3, m = 8, then s = 0, quit, end.

22 Compute and store A5, β5 = ‖A5‖1/51 , β10 = normest1(A5, A5)1/10

β21 = normest1(A,A5, A5, A5, A5)1/21 and

α10(A) = min max
[
β2 β3 β3 β4 β5

β21 β10 β11 β7 β6

]
.

23 Update α10(A)← min(α8(A), α10(A)).
24 if α10(A) ≤ 3, then m = 10, s = 0, quit, end.

25 Compute and store A6, β6 = ‖A6‖1/61 , β25 = normest1(A,A6, A6, A6, A6)1/25

and α12(A) = min max
[
β2 β3 β4 β5

β25 β13 β9 β7

]
.

26 Update α12(A)← min(α10(A), α12(A)).
27 if α12(A) ≤ 3, m = 12, then s = 0, quit, end.

28 Compute and store A7, β7 = ‖A7‖1/71 , β14 = normest1(A7, A7)1/14

β29 = normest1(A,A7, A7, A7, A7)1/29 and α14(A) = min max
[
β2 β3 β5

β29 β14 β8

]
.

29 Update α14(A)← min(α12(A), α14(A)).
30 if α14(A) ≤ 3, then m = 14, s = 0, quit, end.

31 Compute and store A8, β8 = ‖A8‖1/81 , β16 = normest1(A8, A8)1/16

β33 = normest1(A,A8, A8, A8, A8)1/33 and

α16(A) = min max
[
β2 β3 β3 β4 β5 β6

β33 β16 β17 β11 β9 β7

]
.

32 Update α16(A)← min(α14(A), α16(A)).
33 if α16(A) ≤ 3, then m = 16, s = 0, quit, end.

34 Compute and store A9, β9 = ‖A9‖1/91 , β19 = normest1(A,A9, A9)1/19,

β37 = normest1(A,A9, A9, A9, A9)1/37 and α18(A) = min max
[
β2 β3 β4

β37 β19 β13

]
.

35 Update α18(A)← min(α16(A), α18(A)).
36 if α18(A) ≤ 3, then m = 18, s = 0, quit, end.

37 Compute and store A10, β10 = ‖A10‖1/101 , β20 = normest1(A10, A10)1/20,
β41 = normest1(A,A10, A10, A10, A10)1/41 and

α20(A) = min max
[
β2 β3 β5

β41 β20 β11

]
.

38 Update α20(A)← min(α18(A), α20(A)).
39 if α20(A) ≤ 3, then m = 20, s = 0, quit, end.
40 Compute sk = ceil (log4[αk(A)/3]) for k = [6, 7, 20].
41 s = s20
42 m = smallest k ∈ [6, 7, 20] such that sk = s20.
Note that if we arrive at line 40 of Algorithm 5.1, then we have already incurred

the cost of computing and storing A2, A3, . . . , A10. At this stage of the algorithm
scaling is necessary. To minimize the scaling we choose s = s20. It might be the
case that the scaled matrix will belong to several Am,u. We choose the m that
minimizes the multiplication cost µ∗. Observe in Table 5.1 that for m ≤ 20 the matrix
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multiplication count µ∗ jumps between degree m and m+ 1 only for m ∈ {2, 6, 7, 20}.
Using the θ′m in Table 4.2 we find that ceil (log4(θ′6/θ

′
2)) = 6, which means that once

we scale down A to enter the set A6,u we need to scale down further by a factor 46 to
enter the set A2,u. Hence we exclude the choice m = 2 in the line 40 of Algorithm 5.1.

We now present our complete algorithm for computing the wave-kernel matrix
functions.

Algorithm 5.2 (wave-kernel matrix functions). Given A ∈ Cn×n this algorithm
computes the wave-kernel functions C = cosh

√
A and S = sinhc

√
A.

1 Obtain m and s from Algorithm 5.1 applied to A.
2 Choose σ for this m from Table 5.1.
3 A← 4−sA and Ak ← 4−skAk for k = 1, 2, . . . , σ.
4 Compute the matrix polynomials pm(A), qm(A) and wm(A) using

the Paterson–Stockmeyer algorithm and the matrix powers computed
on the previous steps.

5 Compute an LU factorization with partial pivoting LU = qm(A).
6 Compute C = U−1L−1pm(A) and S = 2U−1L−1U−1L−1wm(A) by

substitution using the LU factors.
7 for m = 1: s
8 S ← SC
9 C ← 2C2 − I

10 end
Cost. The total cost of Algorithm 5.2 is(

20

3
+ 4s+ 2 min

(
m, 5 +

⌈
m− 2

2

⌉)
+ 4(s 6= 0)(m 6= 20)

⌈m
3

⌉)
n3 flops,

for m ≥ 3. The first term is the cost of the LU decomposition and the substitutions.
The second term is the cost of undoing the effect of scaling via recurrences. The
third term is the cost of parameter selection and computation of the Padé approxi-
mants using the Paterson–Stockmeyer algorithm in the absence of scaling. The fourth
term is the additional cost for having computed A2, A3, . . . , A10 and if in line 42 of
Algorithm 5.1 we obtain either m = 6 or m = 7.

6. Numerical examples. All our experiments are performed in MATLAB R2017b,
for which the unit roundoff is u = 2−53 ≈ 1.11× 10−16. In the first example we con-
sider a matrix whose wave kernels have an explicit representation. For the rest of
the test matrices we use Davies’s approximate diagonalization method [9] to com-
pute accurate values of cosh

√
A and sinhc

√
A, employing the VPA arithmetic of the

Symbolic Math Toolbox at 250 digit precision. In this method we add a random
perturbation of norm 10−125 to A, diagonalize the result, then apply the wave-kernel
functions to the eigenvalues; the perturbation ensures the eigenvalues are distinct so
that the diagonalization is always possible.

Recall that Algorithm 5.2 is backward stable in exact arithmetic and we expect the
relative (forward) error to be bounded by a modest multiple of the condition number
cond(f,A) times the unit roundoff, where f is the function in question. This condition
number is given in [15, chap. 3] and we estimate it using the code funm condest1 from
the Matrix Function Toolbox [14].

The test suite consists of 87 mainly 15×15 test matrices adapted from the Matrix
Computation Toolbox [14], the MATLAB gallery function, and the matrix function
literature. The relative forward errors and the error estimates are shown in Figure 6.1,
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ordered by decreasing cond(f,A) for the test matrices. Observe that the relative
errors are bounded by the estimated condition number times the unit roundoff. Thus
our algorithm behaves in a forward stable manner in floating point arithmetic. We
compare our algorithm with the MATLAB function funm, which uses the Schur–
Parlett algorithm of Davies and Higham [10], [15, chap. 9]. Here we supply funm

with derivatives computed from (1.5). We see that funm is generally forward stable
but behaves in an unstable manner on several matrices. Algorithm 5.2 clearly has
superior stability to funm.

In the next experiment we multiply each matrix in the test suite by a factor 60
and compute the wave kernels. The rationale of this experiment is to ensure that some
scaling will occur in Algorithm 5.2 and to study the algorithm’s robustness to changes
in the approximation order and scaling. The relative forward errors and the error
estimates are shown in Figure 6.1c and 6.1d. Additionally, the change in the forward
errors for Algorithm 5.2 due to the scaling A ← 60A are shown shown as vertical
bars. The results are plotted in the same order: the condition number times the unit
roundoff line is no longer monotonic and in a few cases overflow was encountered
(these errors are not plotted). The general trend is that the errors increase but
this increase is not uniform. Additionally, for some test matrices the errors decrease
which is why we chose to illustrate these nonintutive error changes using vertical bars.
Nevertheless, we observe that the relative errors for Algorithm 5.2 are again bounded
by a modest multiple of the condition number times the unit roundoff.

7. Conclusions. We have developed the first algorithm for computing the wave
kernel cosh

√
A that is backward stable in exact arithmetic and is suitable for any

square matrix A. The algorithm also computes the wave kernel sinhc
√
A, for which it

is mixed forward–backward stable in exact arithmetic. Numerical experiments show
that the algorithm behaves in a forward stable manner in floating-point arithme-
tic, whereas the Schur-Parlett algorithm applied to these functions displays some
instability. Several trigonometric matrix functions can be computed from this al-
gorithm by an appropriate change of variables: for instance, cosA = cosh

√
−A2,

cos
√
A = cosh

√
−A, and sincA = sinhc

√
−A2.

The improved bound for ‖Ak‖ in section 3 can profitably be used in existing
matrix function algorithms based on Padé approximation, such as those in [3], [5], [6],
[7], [17], though it will require reworking of the underlying logic for the choice of the
amount of scaling and the Padé degree.

Following the lead of Strang and MacNamara [28, p. 527] we plan to pursue the
role of wave-kernel matrix functions to consider waves on graphs and the application
to characterization and classification of directed graphs.

Appendix A. Background.

A.1. Lagrange inversion theorem. If a function f(z) is analytic at a point
z = a in its domain and the derivative f ′(a) 6= 0, then the Lagrange inversion the-
orem [23, eq. (1.10.13)] allows us to express the inverse function of f(z) as a power
series. The theorem states that if w = f(z) then

(A.1) z = f−1(w) = a+

∞∑
n=1

[w − f(a)]n

n!
lim
x→a

[
d
n−1

dxn−1

(
x− a

f(x)− f(a)

)n]

The theorem also guarantees that the series in (A.1) has a nonzero radius of conver-
gence, that is, f−1(w) is an analytic function of w in a neighbourhood of w = f(a).



COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS 21

0 10 20 30 40 50 60 70 80 90
10-20

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Alg. 5.2

funm

(a) f(A) = cosh
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(b) f(A) = sinhc
√
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(c) A← 60A, f(A) = cosh
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Fig. 6.1: Relative forward errors of Algorithm 5.2 and the MATLAB function funm for
the computed wave kernels cosh

√
A and sinhc

√
A. The solid red line is the condition

number estimate of the matrix functions times the unit roundoff. The results in
(a) and (b) are ordered by decreasing cond(f,A). These orderings are retained in
(c) and (d), respectively, in which vertiucal bars denote the change in the error of
Algorithm 5.2 from (a) and (b).

A.2. Generalized hypergeometric function. The generalized hypergeome-
tric function is defined by the power series

pFq(a1, . . . , ap; b1, . . . , bq; z) =
∑
n≥0

(a1)n (a2)n · · · (ap)n
(b1)n (b2)n · · · (bq)n

zn

n!
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where (a)n is the Pochhammer symbol for the raising factorial:

(A.2) (a)0 = 1, (a)n = a(a+ 1)(a+ 2) · · · (a+ n− 1).

The radius of convergence of the power series is ∞ if p < q + 1, 1 if p = q + 1, and
0 if p > q + 1. When p = q + 1 and |z| = 1, the power series converges absolutely if
Re
(∑

i bi −
∑
j aj
)
> 0.

REFERENCES

[1] Lars Valerian Ahlfors. Complex Analysis: An Introduction to the Theory of Analytic Functions
of One Complex Variable. Third edition, McGraw-Hill, Inc., New York, USA, 1979. 331
pp. ISBN 0070006571.

[2] Awad H. Al-Mohy. A new algorithm for computing the actions of trigonometric and hyperbolic
matrix functions. MIMS EPrint 2017.29, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, August 2017. 16 pp.

[3] Awad H. Al-Mohy and Nicholas J. Higham. A new scaling and squaring algorithm for the
matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989, 2009.

[4] Awad H. Al-Mohy and Nicholas J. Higham. Computing the action of the matrix exponential,
with an application to exponential integrators. SIAM J. Sci. Comput., 33(2):488–511,
2011.

[5] Awad H. Al-Mohy and Nicholas J. Higham. Improved inverse scaling and squaring algorithms
for the matrix logarithm. SIAM J. Sci. Comput., 34(4):C153–C169, 2012.

[6] Awad H. Al-Mohy, Nicholas J. Higham, and Samuel D. Relton. New algorithms for computing
the matrix sine and cosine separately or simultaneously. SIAM J. Sci. Comput., 37(1):
A456–A487, 2015.

[7] Mary Aprahamian and Nicholas J. Higham. Matrix inverse trigonometric and inverse hyperbolic
functions: Theory and algorithms. SIAM J. Matrix Anal. Appl., 37(4):1453–1477, 2016.

[8] Thomas Clausen. Ueber die Fälle, wenn die Reihe von der Form y = 1 + α
1
· β
γ
x + α.α+1

1.2
·

β.β+1
γ.γ+1

x2+etc. ein Quadrat von der Form z = 1+ α′

1
· β

′

γ′ ·
δ′

ε′ x+ α′.α′+1
1.2

· β
′.β′+1
γ′.γ′+1

· δ
′.δ′+1
ε′.ε′+1

x2+

etc. hat. Journal für die reine und angewandte Mathematik, 1828(3):89–91, 1828.
[9] E. B. Davies. Approximate diagonalization. SIAM J. Matrix Anal. Appl., 29(4):1051–1064,

2008.
[10] Philip I. Davies and Nicholas J. Higham. A Schur–Parlett algorithm for computing matrix

functions. SIAM J. Matrix Anal. Appl., 25(2):464–485, 2003.
[11] Peter C. Greiner, David Holcman, and Yakar Kannai. Wave kernels related to second-order

operators. Duke Mathematical Journal, 114(2):329–386, 2002.
[12] Volker Grimm and Marlis Hochbruck. Rational approximation to trigonometric operators. BIT

Numerical Mathematics, 48(2):215–229, 2008.
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