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The central topic of this thesis is the study of persistence of stationnary motion
under explicit symmetry breaking perturbations in Hamiltonian systems. Explicit
symmetry breaking occurs when a dynamical system having a certain symmetry
group is perturbed in a way that the perturbation preserves only some symmetries
of the original system. We give a geometric approach to study this phenomenon
in the setting of equivariant Hamiltonian systems. A lower bound for the number
of orbits of equilibria and orbits of relative equilibria which persist after a small
perturbation is given. This bound is given in terms of the equivariant Lyusternik-
Schnirelmann category of the group orbit. We also find a localization formula for
this category in terms of the closed orbit-type strata. We show that this formula
holds for topological spaces admitting a particular cover, made of tubular neigh-
bourhoods of their minimal orbit-type strata. Finally we propose a construction

of symplectic slices for subgroup actions.
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INTRODUCTION

When we talk about symmetries, we either refer to the symmetry of a physical
law (dynamical equations) or the symmetry of a physical state (solution of these
equations). The symmetry or symmetry group of a physical law (or a physical state)
is defined to be the group of transformations which leave these equations (or this
solution) invariant. Although the symmetry of a system of dynamical equations
is reflected into the range of solutions of these equations in the sense that two
solutions are related to one another by an element of this group of transformations,
there might be solutions which do not exhibit this symmetry. Such a solution has
a lower symmetry group than the one of the dynamical equations from which it
is originated. In a theoretical approach we say that the symmetry group of this
physical state is a subgroup of the symmetry group of the physical law. This
phenomenon is called spontaneous symmetry breaking and is widely studied in

mathematical physics.

This thesis focuses on another notion of symmetry breaking called explicit
symmetry breaking. We define it as a process of perturbing symmetric dynamical
equations such that the resulting equations have a lower symmetry group. In fact
any physical law observed in nature can be thought as a perturbation of a physical
law having a bigger symmetry group. However the more symmetric a dynamical
system is, the more simple its solutions are. In fact, complicated and interesting
dynamical behaviours require low symmetry group. For example, Lauterbach et
al. [11, 27, 36] show that some periodic solutions of an unperturbed dynamical
system persist under symmetry breaking perturbations and become heteroclinic

cycles.

The lack of symmetries of a perturbed system can be due for example to the

presence of terms whose origin is different from case to case. As explained in
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Brading and Castellani [8], such terms can be introduced artificially in order to
match with theoretical or experimental observations. For example in quantum
field theory, the Lagrangian for weak interactions is constructed so that the parity-
symmetry and the charge-parity symmetry are violated, making the theory in the
line with experimental observations. Besides, quantization processes might also
be a cause for the appearance of such terms which are the so-called quantum
anomalies. In this case, the terms are not artificially introduced but they appear

after a renormalization procedure.

The dynamical systems studied in this thesis are Hamiltonian systems. While
spontaneous symmetry breaking phenomena are discussed in many papers related
to bifurcations theory, fewer papers treat the case of explicit symmetry breaking
phenomena and many results holding for general dynamical systems need to be
adapted to the Hamiltonian case. Some aspects are studied by several authors
including Ambrosetti et al. [1], Grabsi, Montaldi and Ortega [23] and Gay-Balmaz
and Tronci [22]. For what we are concerned, we are interested in the number of
solutions of such systems which persist under explicit symmetry breaking pertur-
bations. In the Hamiltonian formulation of classical mechanics, explicit symmetry
breaking perturbations can arise as described above but they can also arise as
metric perturbations. Morally, a Hamiltonian dynamical system is partially deter-
mined by a scalar function called the Hamiltonian. This function is regarded as
the total energy of the system, which is generally the sum of the kinetic energy,
defined by mean of a metric, and the potential energy. If the Hamiltonian is writ-
ten in term of the kinetic energy only, an example of explicit symmetry breaking
perturbation would be a metric perturbation so that the perturbed metric has not
the same invariance properties as the original metric.

Phase spaces (space of positions and momenta) of Hamiltonian systems are
symplectic manifolds and the symmetries of such systems are encoded into Lie
group actions on those manifolds. A symplectic manifold is a smooth manifold
M equipped with a non-degenerate closed two-form w. A (proper) action of a
(connected) Lie group G on M is canonical if it is smooth and it preserves w. A
class of canonical Lie group actions on symplectic manifolds are Hamiltonian. To
those actions we can associate a Noether conserved quantity expressed in term of

a momentum map P : M — g*, where g* is the dual of the Lie algebra of G.
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This notion generalizes the notion of angular momentum in classical mechanics,
when the phase space is T*R3, acted on by the group of rotations SO(3). By a
Hamiltonian (proper) G-manifold, we mean a quadruple (M, w, G, ) as described
above, with G connected.

The dynamics is governed by a Hamiltonian h which is a G-invariant real-
valued function defined on M. We refer to G as the symmetry group of the
system. The non-degeneracy and the G-invariance of the symplectic form allow
us to associate to h a G-equivariant vector field X}, whose flow lines ¢;(m) are
the evolution maps. Together with M, they define a dynamical system and are
solutions of the equations of motion & = Xj(z). We focus on specific solutions of
these equations of motion, namely equilibria (fixed points under the dynamics) and
relative equilibria (group orbits fixed under the dynamics). For example, for a good
choice of Riemannian metric on the two-sphere S?, the norm square of an element
in a fiber of T*5? defines an SO(3)-invariant Hamiltonian function, understood as
the kinetic energy. The relative equilibria of the associated Hamiltonian system
project to the great circles on S2.

To study explicit symmetry breaking phenomena, we consider pertubations h)
of h that are smooth in the real parameter A, and invariant with respect to a
closed subgroup H C G. Such perturbations are called H-perturbations. Under a
specific non-degeneracy condition on a (relative) equilibrium of the unperturbed
Hamiltonian h, there is a chance that this (relative) equilibrium persists under a
small H-perturbation.

Section 4.1 is devoted to the question of persistence of equilibria. In this case,
the required non-degeneracy condition on an equilibrium m € M of h is a particu-
lar case of Morse-Bott condition, when the critical manifold of A is the group orbit
G - m (cf. Definition 4.1.1). We show that at least a certain number of H-orbits
of equilibria persist under a small H-perturbation, in a tubular neighbourhood
of G- m (cf. Theorem 4.1.2 and Corollary 4.1.3). This number is the positive
integer Caty (G/G,,), which is the H-equivariant Lyusternik-Schnirelmann cate-
gory of the group orbit. For technical reasons, our result requires the additional
assumption that the set H\G of right cosets is compact, as a topological space.

The proof uses the well-known Symplectic Tube Theorem (cf. Theorem 2.4.1 [26,
40]), which states that there is a tubular neighbourhood of a group orbit which
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can be identified (by mean of a G-equivariant symplectomorphism) with a neigh-
bourhood of the zero section of the normal bundle of this group orbit. This setting
provides good (semi-global) coordinates on M, with variables along the group or-
bit and variables along the normal directions to the group orbit. An application
of the Implicit Function Theorem and a Morse Lemma with parameters allows us
to forget about the normal coordinates, reducing the proof to an application of
the equivariant Lyusternik-Schnirelmann Theorem 3.4.5 on the group orbit. If G
is compact, we do not require any assumption on the perturbation h,. However,
for non-compact Lie groups, a compactness assumption on hy must be fulfilled in

order to apply Theorem 3.4.5, as explained in Section 3.4.4.

We present applications of our result, including the problem of an ellipse-shaped
planar rigid body moving in a planar irrotational, incompressible fluid with zero
vorticity and zero circulation around the body (cf. Section 4.1.2). The reduced
motion at zero vorticity and zero circulation is governed by Kirchhoff equations.
Classical treatments of the problem can be found for example in [48, 35, 30, 68].
This problem turns out to exhibit symmetry breaking phenomena from different
points of view. We can for example consider the body without the fluid. The fluid
density is then understood as a “parameter”. The O(2)-symmetry of the reduced

Hamiltonian breaks into a Dy-symmetry when this parameter varies.

Extending Theorem 4.1.2 and Corollary 4.1.3 to the case of relative equilibria
is a bit more challenging because we must take into account the conservation of
momentum. This case is treated in Section 4.2. Whereas equilibria are just critical
points of the Hamiltonian function h, relative equilibria are critical points of the
restriction of this same function to a level set ®;' (1) of the momentum map. Let
m € M be one of those critical points. The element £ € g playing the role of
a Lagrange multiplier is called the velocity of m, which is in general not unique
when the action is not free. For that reason, we refer to a relative equilibrium as
a pair (m,£) € M x g. We denote the underlying Lagrange function associated
to & by hé. A standard definition says that a relative equilibrium (m,€) of h is
non-degenerate if the Hessian of h¢ at m is a non-singular quadratic form when
restricted to some symplectic subspace Ny C T,,M, called the symplectic slice
at m. If the perturbations h, are invariant with respect to the full symmetry

group G, this notion of non-degeneracy is enough to guarantee the persistence of a
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relative equilibrium. This is no longer the case if h) has a smaller symmetry group
than the one of h. In [23] a step in that direction is taken, when the symmetry
group is a torus that breaks into a subtorus. In addition, all the group actions in
consideration are assumed to be free. We extend their result to non-free actions

and non-abelian symmetry groups.

A necessary condition for a relative equilibrium of h to persist under an H-
perturbation is that the velocity £ belongs to b, the Lie algebra of H. Another
problem is that relative equilibria of an H-perturbation h) are critical points of the
restriction of this same function to a level set ®;'(a), where ®5 : M — b* is the
momentum map associated to the H-action on M. This momentum map can be
constructed as the composition of the projection ¢ : g* — h* with &¢ : M — g,
where i is given by restriction of the linear forms on g to the Lie subalgebra b. If
p is a regular value of the momentum map ®¢ and a = i;(u), then the level set

®3/ (o) contains @' () as a submanifold. We show that
ker (D®y(m)) = ker (D®g(m)) & M

for some linear subspace M C T,,M, described in Proposition 4.2.1. In Section
5.1.1 a splitting of g is introduced, giving a more precise description of M (cf.
Proposition 5.1.3). We say that a relative equilibrium (m, §) of h with momentum
p = ®g(m) is a-nondegenerate if the Hessian of h® at m is a non-singular quadratic

form when restricted to the subspace
Ny & M.

Another condition that we require is a regularity condition on the stabilizers. Ex-
plicitly we require g, C g¢, which are respectively the Lie algebras of the stabilizers
G, and G¢. This condition is based on Lemma 4.2.3 that we prove in Section 6.2,

using the machinery of root systems.

Under these assumptions on a relative equilibrium (m,§) € M x b of h, and

modulo some technicalities, the least number of H,-orbits of relative equilibria with
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velocity close to &, which persist under a small H-perturbation in some neighbour-

hood of G, - m in ®5'(«), is the positive integer
Catp, (G./Gm) -

This is the content of Theorem 4.2.5 and Corollary 4.2.6. As an example, the
Hamiltonian of the spherical pendulum can be thought as an S!-perturbation of
the SO(3)-invariant Hamiltonian h on T*S? governing the co-geodesic motions on
the sphere. The relative equilibria of h project to the great circles on S?. Only
one of those circles persists in the good neighbourhood under this S*-perturbation,
provided the gravity encoded in the parameter is sufficiently small. This example

is discussed in Section 4.2.4.

Because of the importance of the equivariant Lyusternik-Schnirelmann category
in this study, we dedicate a chapter to this notion where we obtain some new
results. Let M be a topological space, acted on continuously and properly by
a topological group G. We define a GG-categorical open subset of M to be a G-
invariant open subset of M admitting a G-deformation retract onto a G-orbit (cf.
Section 3.1.1). The topological invariant Catg(M) is the least number (possibly
infinite) of G-categorical open subsets that are required to cover M. If M and G
have an additional smooth structure, a class of G-categorical open subsets consists
of G-tubular open subsets, which are essentially tubular neighbourhoods of group
orbits (cf. Definition 3.2.1). This fact is a direct application of the Tube Theorem
2.1.5.

This topological invariant is in general difficult to compute and we are usually
only able to know an estimation of it, in term of the cup length of M. We obtain
a new formula to reduce the calculation of Catq (M) to the calculation of the
equivariant Lyusternik-Schnirelmann category of the minimal orbit-type strata of
M. In general, any topological space M can be written as a disjoint union of
smaller subsets Mpg, called strata, indexed on some strictly partially ordered set
(B, <). Those strata are required to fit in a specific way and form themselves
a strictly partially ordered set (cf. Section 2.2). A stratum is minimal if it is
minimal with respect to the strict partial order defined on them. If M is a proper

G-manifold, the strata Mgz are generally defined as the connected components of
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the orbit-type submanifolds. We use a modified definition of orbit-type stratum
(cf. Definition 2.2.1). We say that an orbit-type stratum is a G-orbit of a connected

component of the subset of M of all the points having the same stabilizer.

On a large class of proper G-manifolds M, including symplectic toric manifolds,
we observe that M can be entirely covered by a subcover of its minimal orbit-type
strata, made of G-tubular open subsets. Besides this cover is the smallest cover,
made of G-categorical open subsets, that we can take. Such covers are called
minimal G-tubular covers and are discussed in Section 3.2. However those covers
do not exist in general. We present some non-examples in Section 3.2.1, when M is
a non-Hamiltonian compact S'-manifold. By using the natural stratification of the
moment polytope, we show in Section 3.2.2 that every symplectic toric manifold
admits a minimal G-tubular cover, where GG in this case is a torus having half the
dimension of M and acting effectively on it (cf. Theorem 3.2.6). In the case where
M admits a minimal G-tubular cover, we show that the calculation of Catg(M)
is intrinsically reduced to those of the minimal orbit-type strata of M. Explicitly,

we obtain the localization formula
Catg(M) = Z CatG (Mﬁ)

where the summation is taken over the minimal orbit-type strata Mz (cf. Theorem
3.3.1 and Corollary 3.3.2). The result of Bayeh and Sarkar (cf. [6] Theorem 5.1),
which states that the equivariant Lyusternik-Schnirelmann category of a quasitoric
manifold is precisely the number of fixed points of the torus action, is a consequence
of Theorem 3.2.6 and of our localization formula. After this work was completed
we found that the result of Theorem 3.3.1, from which the localization formula
follows under an additional assumption, had already been obtained by Hurder and
Tében (cf. [28] Theorem 3.7).

Another question raised in this thesis concerns the choice of symplectic slices
for subgroup actions. Since the questions of stability and of bifurcations of relative
equilibria rely on the positive (or negative) definiteness of the Hessian of h¢ (repec-
tively h§) on a symplectic slice N for the G-action (respectively a symplectic slice
N, for the H -action), knowing a way to compare N; and N, is of particular inter-

est. If p is a regular value of the momentum map &5 : M — g*, the orbit G - m,
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of some point m € M with momentum g, is transverse to the level set ®;'(11). As
constructed by Roberts, Wulff and Lamb [61], a subspace of T,,,M transverse to
G - m is isomorphic to m* x N; where m* is isomorphic to (g,/g,)". The notation
g - m denotes the tangent space at m of G - m. A symplectic slice Ny at m is a

choice of G,,-invariant complement
Ny :=ker(D®g(m))/g, - m.

It is endowed with a symplectic structure and a linear Hamiltonian action of the
stabilizer GG,,. Given a closed subgroup H C G we can construct a momentum
map ®y : M — b* as described above. For av = i*(p), a symplectic slice at m is

an H,,-invariant complement
N, := ker(D®;(m)) /b - m.

It is used implicitly in [23] that, whenever G is a torus and H is a subtorus, both

acting freely on M, a symplectic slice N, at m can be chosen of the form
Ny =N, @® X,

for some symplectic subspace X, C T,,M isomorphic to g/bh x (g/h)*. We gen-
eralize this observation to non-abelian Lie groups and non-free actions with the
assumption G,, C Ng(H), where Ng(H) denotes the normalizer of H in G. In

this case we show that a symplectic slice N; for H can be chosen of the form
Ny =N, & X,, ®s(G, H, j1) - m,

for some subspace X,, C T,,M symplectomorphic to a canonical cotangent bundle
b x b*, and where s(G, H, 1) - m is some symplectic vector subspace of (g/g,) - m
(cf. Theorem 5.1.4 and Lemma 5.1.5). We also give the associated splitting of
the symplectic form on N (cf. Theorem 5.1.6), and the associated splitting of the
momentum map associated to the linear Hamiltonian H,,-action on N; in terms

of the momentum map on N; (cf. Proposition 5.1.7).

The subspaces b and s(G, H, ) are constructed explicitly in Section 5.1.1, by
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using a splitting of the Lie algebra g. Although the notations can be misleading,
those two subspaces are not Lie subalgebras of g in general. When G is a torus
and H is a subtorus, both acting freely on M, the subspace b is isomorphic to
g/b whereas the subspace s(G, H, 11) is trivial (cf. Example 5.1.8). In Perlmutter,

Rodriguez-Olmos and Sousa-Dias [59], the subspace
s(G,H, ;) Cg

is obtained by a different construction. It is isomorphic to a symplectic slice at u
for the H-action on the coadjoint orbit G - . We show in Proposition 5.1.2 that
our space, as constructed, coincides with their construction. This construction
strongly depends on the choice of momentum p as shown in Example 5.1.9, in the
case where G = SO(3) and H = SO(2).

I would like to thank all the people who gave me suggestions, shared ideas and
who with I could discuss about mathematics, including Philip Arathoon, Luis Gar-
cia Naranjo, Anton Izosimov, Yael Karshon, Hovhannes Khudaverdyan, Eckhard
Meinrenken and Miguel Rodriguez-Olmos. I thank my colleagues who proofread
parts of this thesis, Floriana Amicone, Matthew Peddie, and the School of Mathe-
matics of the University of Manchester for its friendly environment and from whom
I owe my scholarship. My special thanks go to James Montaldi for his guidance
and for being an amazing supervisor. Finally thanks to you Christophe, for your

comments, and for being my sun when Manchester is rainy.



PRELIMINARIES

We work with smooth manifolds and, except stated otherwise, the term submani-
fold refers to an embedded submanifold. A Lie group G is a set endowed with both
a smooth structure and a group structure that are compatible in the sense that the
group operations of inversion and multiplication are smooth. A (smooth) action of
a Lie group G on a smooth manifold M is a group homomorphism G — Diff(M)
such that the action map (g, m) € Gx M + g-m € M is smooth. A G-manifold is
a pair (M, G) where M is a smooth manifold acted on by a Lie group G. A smooth
map f: M — N between two G-manifolds is G-equivariant if f(g-m) = g- f(m)
for all g € G and m € M. Two G-manifolds (M, G) and (N, G) are isomorphic if
there exists a G-equivariant diffeomorphism f : M — N between them. A real-
valued smooth function f : M — R defined on a G-manifold M is G-invariant if
f(g-m) = f(m) for all g € G and m € M. We denote by C*°(M)% the space of
smooth real-valued G-invariant smooth functions on M. The stabilizer of m € M
is the subgroup G,, = {g € G | g-m = m}. We say that the action of G on M
is free if all the stabilizers G,, are equal to the trivial group 1. The group orbit or
G-orbit of a point m € M is the set G-m = {g-m | g € G}. We use the notation
g - m to mean the tangent space to G - m at m. The space g stands for the Lie
algebra of G with Lie bracket [, -], obtained by identifying g with the left invariant

vector fields on G.

2.1 Proper G-manifolds

Let (M,G) be a G-manifold. Although group orbits are manifolds in their own
right in the sense that they are injectively immersed submanifolds of M, they are

not in general submanifolds for the subspace topology. However if the group action

18



19 PRELIMINARIES

is proper then the group orbits are embedded submanifolds. The action of G on

M is proper if the map
(gm) e GX M+~ (m,g-m)eMx M (2.1)

is a proper map i.e. the preimage of any compact set is compact. A direct conse-
quence is that all the stabilizers GG,,, are compact since they are identified with the

preimage of a compact set. In this case we refer to (M, G) as a proper G-manifold.

Example 2.1.1. Clearly any G-manifold (M, G) where G is compact is a proper

G-manifold. Other examples include:

(i) (G, @) is a proper G-manifold where G acts on itself by left or right multi-

plication. Indeed in this case the map (2.1) is a diffeomorphism.

(ii) If (M, Q) is a proper G-manifold then so is (M, H) for any subgroup H of G

acting on M as G does.

Proposition 2.1.2. All the group orbits in a proper G-manifold (M, G) are

embedded closed submanifolds.

Proof. Let G -m be the group orbit of some m € M. The orbit map
Tm:9g€G—g-meM

is G-equivariant where G acts on itself by left multiplication. In particular 7,
has constant rank which equals the dimension of the orbit space G/G,,. Since
Tm 18 G-invariant, where G,, acts on G by right multiplication, it descends to
a well-defined injective smooth map 7,, : G/G,, — M. Since the quotient map
7w : G = G/G,, has maximal rank and 7, has constant rank, it follows that 7,
has constant rank. A smooth injective map of constant rank is an immersion (cf.
[37] Theorem 4.14). We still have to show that 7, is a topological embedding. By

continuity of m and properness of 7,,,, the map 7, is also proper. Since every proper
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map whose codomain is metrizable is closed [56], 7,, is a topological embedding
(cf. [37] Theorem A.38). In particular the image G - m = 7,,(G/G,,) is a closed
embedded submanifold of M. |

A direct consequence of the closedness of the orbits for a proper G-action is
that M /G is Hausdorff. If (M, G) is a proper G-manifold and if G acts freely on
M then the orbit space M /G admits a smooth structure such that the quotient
map 7 : M — M/G is a smooth submersion (cf. [44] Proposition 9.3.2).

Example 2.1.3 (Non-proper R-manifold). Think of S* as the complex numbers
of length one and let T = S! x S! be the two-torus equipped with the R-action

(t,(z,w)) e Rx T (62Mt2, eQmo‘tw) eT

where « is an irrational number. This map defines an irrational flow on the torus.
Each group orbit for this action is an injectively immersed submanifold diffeomor-
phic to R. Since the orbit maps of Proposition 2.1.2 are not homeomorphisms
onto their image, the group orbits are not embedded submanifolds of T. In fact,
it can be shown that the orbits are dense in T (cf. [37] Examples 4.20 and 5.19).

In particular (T, R) is an example of non-proper R-manifold.

2.1.1 Existence of slices on proper G-manifolds

An important feature about proper G-manifolds is the existence of slices. Let
(M,G) be a proper G-manifold. Given a subgroup K of G together with a K-
manifold (S, K), there is a (left) K-action on the product G x S given by

k-(g,s) = (gk k-s). (2.2)

This action is free and proper by freeness and properness of the action on the
first factor. The orbit space G X S is thus a smooth manifold whose points are
equivalence classes of the form [(g, s)], and the orbit map p: G xS — G xx Sis a
smooth surjective submersion. Moreover the group G acts smoothly and properly

on G X S, by left multiplication on the first factor.
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Definition 2.1.4. Let (M, G) be a proper G-manifold and set K = G, for some
m € M. A K-manifold (S, K) is called a slice at m if

(i) S is an embedded submanifold of M containing m.

(ii) There is a G-invariant open subset U C M containing m such that the

G-equivariant map
7:[(9,8)] €EGXxgSr—g-seU (2.3)

is a diffeomorphism.

In particular, a slice at m is transverse at m to the group orbit G - m (cf. [52]
Theorem 2.3.26). Palais proved ! that when (M, Q) is a proper G-manifold, there
is a slice at every point m € M (cf. [53] Theorem 2.3.3). Previously, this result
had been obtained by Koszul [33] for compact Lie group actions. When (M, G) is
a proper GG-manifold, the existence of slices follows from the Tube Theorem, which
is here stated as in [52] (cf. Theorem 2.3.28). In the statement below, a K -vector
space is a pair (N, K), where N is a vector space on which a Lie group K acts

linearly.

Theorem 2.1.5 (Tube Theorem). Let (M,G) be a proper G-manifold and
set K = G,, for some m € M. Let (N,K) be a K-vector space which is
K -equivariantly isomorphic to T,,M/g - m and let Ny C N be an open K-
invariant neighbourhood of 0. Then, there exists a G-invariant neighbourhood

UC M of m and a G-equivariant diffeomorphism
0:GxgNg—=U (2.4)

sending [(e,0)] on m.

In fact, Palais assumes that G is a Lie group and M is a completely regular Hausdorff
topological space. He introduces the terminology “Palais-proper”. If M is locally compact, this
definition is equivalent to ours.



PRELIMINARIES 22

The triplet (¢, G X g Ny, U) is called a G-tube at m and we also say that G X x Ny
is a local model for U. As a corollary, it is easy to verify that S = ¢ ([(e, No)]) is a
slice at m. We thus get

Theorem 2.1.6 (Slice Theorem). Let (M, G) be a proper G-manifold. Then

there is a slice at every point of M.

2.1.2 G-invariant metrics on proper G-manifolds

An important consequence of the existence of slices is that any proper G-manifold
(M,G) admits a G-invariant Riemannian metric [57]. To show it, we recall the
standard construction of K-invariant inner products on a finite dimensional K-
vector space (V, K), when K is a compact Lie group. We call it the averaging
method. Let (V, K) be a (finite dimensional) K-vector space with inner product
(-,+). If K is compact we can construct a new inner product on V which is K-
invariant. To do that, let € be the Lie algebra of K and we fix a basis eq,...,e, of
£, with dual basis €!,...,&" of €. We define an n-form o € Q"(K) by

o(g) = (Ly-1)" (51 Ao A 5”)

which is in fact a volume form. By construction it satisfies the K-invariance
property o(hg) = (Ly-1)*o(g) for all h € K. Since K is compact, the integral [, o
is finite and then w = ﬁ is such that w(K) = 1. It thus defines a K-invariant

K
measure on K, which is called the Haar-measure. Define an inner product by

@)= [ (g-m9-9wlg™). (25)
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Henceforth this inner product is K-invariant since, for all h € K,

(h-z,h-y) = /K(gh-x,gh'y)w((gh)_l)
—= /K (k- k-y) (Lp) w(hk™)

= /K(k;-x,k:-y)w(k_l)
= (z,y).

Proposition 2.1.7 (cf. [53] Theorem 4.3.1). Any proper G-manifold (M, G)

admits a G-invariant Riemannian metric.

Proof. Endow M with the Riemannian metric coming from the ambient Eu-
clidean space. Let m € M with stabilizer K = G,,, compact by properness of the
action. We know there is a slice S at m and let 7: G xx S — U as in (2.3). Since
7 is a diffeomorphism, the slice S embedds in M as s — 7 ([e, s]). We pullback on
S the Riemannian metric on M by mean of this embedding. This induces an inner
product (-, -)s on each tangent space T,S. By compacity of K we can assume that
this inner product is K-invariant using the averaging method if necessary. Since
the orbit map p: G x S — G xg S is a surjective submersion, any tangent vector
in Ty (G xg S) is of the form T, 4p - (v, ) for some (v,a) € T,G x T,S. We

define a Riemannian metric h on G X g S by

h(lg.s) (Tigwp - (v,0), Tgp - (w,8)) := (a, B).. (2.6)

It is well-defined since (-, -)s is K-invariant. Furthermore, it is G-invariant by con-
struction. The pullback of h along 77! defines a G-invariant Riemannian metric on
U. Therefore since a slice exists at each m € M, each G-orbit has a neighbourhood
on which we can define a G-invariant metric. Using a partition of unity, they can

all be patched together in order to get a G-invariant metric on the whole M. W
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2.2 Stratifications and orbit-type strata

A partition of a topological space M is a cover of M by pairwise disjoint subsets.
Clearly every topological space admits a partition into its connected components.
If our topological space is endowed with a group action, we can choose a partition
which also encodes the information about the group action. For example, a proper
G-manifold (M, G) can be partitioned into locally closed (connected) submanifolds
called the orbit-type strata, each of them being a union of group orbits with the

same orbit-type.

2.2.1 Orbit-type strata

Let G be a Lie group and H C G be a closed subgroup. The conjugacy class of
H is the set (H) = {L C G| L = gHg ! for some g € G}. Given a G-manifold
(M, G), we define the set

My = {m € M | G,y € (H)}

which is the union of all the G-orbits in M with orbit-type (H). Using the defi-
nitions and the G-invariance of My, it is shown in [52] (Proposition 2.4.4) that
Mgy = G - My where

My={meM|G,, =H}.

Note that the biggest subgroup of G which leaves My invariant is the normalizer
Ng(H) = {g € G| gHg ! = H} . Furthermore this action induces a well-defined
free action of the quotient group Ng(H)/H on Mpy. Write

My = H My
beBy
as the disjoint union of its connected components, indexed on some set By. Given

b € By, we define the equivalence class (b) to be the set of indices a € By such
that G - MH@ =G - MH,b-

Definition 2.2.1. An orbit-type stratum Mgy 4) is the G-orbit of the connected

component My, of M.
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We use here a modified definition of the standard definition which states that
an orbit-type stratum is a connected component of M. If the G-action on M is
proper, the connected components M, are locally closed embedded submanifolds
of M and so are their G-orbits (cf. [52] Proposition 2.4.7).

The example below illustrates the difference between the standard definition
of orbit-type strata and ours. With our definition, the orbit-type strata might not

be connected.

Example 2.2.2. Think of R* = R\ {0} as a multiplicative group and let it act
on M =R? by t-(z,y) = (z,ty). The stabilizers of points of M are either equal
to the trivial group 1, or equal to R*. Then Mg+ = Mg~ is the z-axis, and
Muy = My = Hy U H_ where Hy = {(x,y) € M | £y > 0}. According to the
standard definition of orbit-type strata, there are two strata with orbit-type (1),
namely the connected components H, and H_; and one stratum with orbit-type
(R*), the z-axis.

With our definition, there is one stratum with orbit-type (R*) which is the
x-axis; but there is only one stratum with orbit-type (1) which is H; U H_. In-
deed, M; has two connected components, H, and H_. The R*-orbits of each of
them coincide. There is thus only one stratum with orbit-type (1) and it is not

connected.

Before giving some examples, we introduce the notion of G-connectivity. We
say that a G-manifold (M, G) is G-connected if it can be written as the G-orbit of
a connected submanifold. Although M might not be connected we still have the

following fundamental result:

Proposition 2.2.3. Let (M, G) be a G-connected G-manifold and let A C M
be a non-empty G-invariant subset. If A is open and closed then A = M.

Proof. Since M is G-connected, M = G - N for some connected submanifold N.
Let A C M be a non-empty G-invariant subset. Assume by contradiction that
A°= M\ A # &. Then M can be written as the disjoint union of two non-empty
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open subsets, A and A°. By G-invariance, the orbit spaces A/G and A°/G are
open for the quotient topology in N = M/G. Since there are non-empty and N is

connected we have a contradiction. Consequently A° = & and then A =M. N

Example 2.2.4. Given an equivalence class (H), the corresponding orbit-type

strata might not all have the same dimension, as shown in the following example,

appearing in Delzant [16] and Sjamaar and Lerman [66].

(i)

(i)

(iii)

Let M = CP? endowed with the Sl-action 6 - 29 : 21 : 20] = [€?20 : 21 : 23).
The set Mg has two connected components namely, the point [1 : 0 : 0]
and a copy of CP', which consists of the points of the form [0 : z; : 2]
Since S! acts trivially on each of these components, they form themselves
two orbit-type strata, which are closed submanifolds of M. Since the action
is free anywhere else, the last orbit-type stratum is M \ ({[1: 0 : 0]} U CP?).
It has orbit-type (1) and is an open dense submanifold of M.

Let M = S? be the 2-sphere embedded in R?, equipped with the S'-action
which rotates the sphere about the z-axis. There are three orbit-type strata
namely, M) which is diffeomorphic to S x (—1,1) and the two closed

connected components of Mg that are the North and South pole.

The rotations of a tetrahedron form a group T of order 12, which is a zero-
dimensional Lie subgroup of SO(3). In particular T acts on M = S2. This
group contains a copy of the cyclic group of order three C3 ~ Zj for each
vertex, one copy of Z, for each axis joining the middle point of an edge and

the middle point of the opposite edge, and the identity (cf. Figure 2.1).

There are two minimal strata with orbit-type (Zs3), one minimal stratum
with orbit-type (Zs), and one open dense stratum with orbit type (1) (cf.
Figure 2.2). Indeed, when H = Zs, the eight points forming My are a
union of two T-orbits. There are thus two strata with orbit-type (Z3). For
H = Z,, the six points forming M) are a single T-orbit and form a single

stratum.
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V2

Figure 2.1: On the left hand side we fix a vertex v and
permute the three other vertices. As a subgroup it is
isomorphic to C'5. On the right hand side we permute
v1,v2 and v3, v4. This subgroup is isomorphic to Zs.

H My M,
T %] %]

1 | M\ {14 points } | M \ {14 points }

Figure 2.2: Orbit-type strata of (M, T) where M = 52,

2.2.2 Stratification by orbit-type strata

There are several ways to define stratifications. The one we present here is the
definition used by Kirwan in her thesis [32]. It is more flexible than the standard
definition of Duistermaat and Kolk [17] (Definition 2.7.3), especially for applica-

tions to algebraic geometry. Recall that a partial order < on a set B is a binary
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relation which is reflexive, antisymmetric and transitive. The pair (B, <) is called
a partially ordered set. A strict partial order < on B is a binary relation which is
irreflexive (an element cannot be compared with itself) and transitive. Note that
in this case if a, 8 € B are such that a < 3, then § £ a. For example the set of
conjugacy classes of subgroups of G admits the strict partial order <.,,;, where
we say that (K) <.n; (H) if and only if H is conjugate to a proper subgroup of

K. This relation is clearly irreflexive and transitive.

Example 2.2.5. The group T has four conjugacy classes, namely (T), (Z3), (Z>)

and (1). There are partially ordered with respect to <., as shown in Figure 2.3.

T
/N
Zg ZQ
\1/

Figure 2.3: Conjugacy classes of subgroups of T
where the order goes up to down i.e. (T) is minimal
with respect to <con;-

Definition 2.2.6. A collection {Mj | 8 € B} of subsets of a topological space M
is locally finite if each compact set of M meets only finitely many Mz. A locally
finite collection {Mj | 8 € B} of locally closed (non-empty) subsets of M form a
B-stratification of M if M is the disjoint union of the strata Mg, and there is a
strict partial order < on the indexing set B such that

Mg c |J M, (2.7)
azp
for every f € B. We say that the B-stratification is smooth if M is a smooth

manifold and every Mp is a locally closed submanifold.

Given a B-stratification of M, a strict partial order can be defined on the strata
in the following way
M, <Mz <+ a=<p. (2.8)
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We say that a stratum Mp is minimal with respect to (2.8) if there is no aw € B
such that M, < Mg. Of course minimal strata are not unique because we just
have a partial ordering. If My is a minimal stratum, (2.7) implies that Mz C Mj.
In particular Mg = Mg i.e. Mg is closed in M. Given a strict partial order on
the strata, we can associate to it an oriented graph whose vertices are the indices
b € B. Two vertices «, § € B are linked by an oriented edge o — f if and only
if Mg < M, (cf. Example 2.2.7).
We show now that orbit-type strata of a proper G-manifold form a B-stratification,

for some indexing set B that has to be determined. Let (M,G) be a proper G-
manifold. For each closed subgroup H C G, we associate an indexing set By such
that My can be written as the disjoint union of the orbit-type strata Mg ) with
b € By (cf. Definition 2.2.1). In order to partition M, we define B to be the set of
pairs = ((H), (b)) where (H) is the conjugacy class of some closed subgroup of
G, and b € By. We write Mg = Mg, when 3 = ((H), (b)). We define a strict
partial order < on B as follows: for a = ((K), (a)) and g = ((H), (b)),

a<p <= a#f and M,NMsz+# 2. (2.9)

By a # 3 we mean that the associated orbit-type strata M, and My are distinct.

Example 2.2.7. Let T = S' x S! be a two-torus acting on M = CP? x CP? by
0,0) - ([ewzo D21 29, [€wo wy wg]) )

In what follows, CP! denotes the copy of CP! in CP? made of points of the form
[0: 21 : 29]. We denote by {m} the set consisting of the single point m = [1:0: 0],
and by U the (open) submanifold CP?\ ({m} U CP'). In this example we have
four orbit-types (H), with H being either 1, S' x 1, 1 x S or the full torus S* x S*.
Since My is connected, there is only one stratum M., with orbit-type (1), which

is open and dense in M. The other strata are given in the tables below.

Qg = ((Sl x 1),(a)) | My, M.,
ay {m} x U | {m} x CP?
Qs CP'xU | CP*xCP?
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O‘% = ((1 X Sl)? (5)) Ma} Ma;
ol U x {m} | CP% x {m}
ol UxCP' | CP?x CP!
By = ((Sl X Sl)? (b)) Mﬁb Mﬁb
61 {m} x CP! {m} x CP!
B {m} x{m} | {m} x {m}
S5 CP! x CP!' | CP' x CP!
o CP!' x {m} | CP!* x {m}

The oriented graph associated to the strict partial order (2.9) is pictured below.

53%042%54

RN

oy —

L

51<7041*>52

In general, using the strict partial order <..,; on the conjugacy classes of
subgroups of GG is not enough to guarantee that we have a good stratification. For
instance, in Example 2.2.4 (iii), we have (T) <con; (Z2) but there are no strata

with orbit-type (T). However we have the following lemma:

Lemma 2.2.8. Ifa = ((K),(a)) and g = ((H), (b)) then

a=<f = (K) <cnj (H).

Proof. By definition a@ < (3 implies that there exists some z € M, N Ms. In
particular x € M, and then G, € (K). By the Tube Theorem 2.1.5, there is a

G-invariant open neighbourhood U C M of x, locally modelled by an associated
bundle G x¢, Ny, in which z reads [(e, 0)].
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By definition of the adherence, there is a sequence (x,)neny C Mp converging
to x in M, with stabilizers G, € (H). For n big enough, x,, € U and it can thus
be identified with some point [(g,, V)] € G X, No. The stabilizer of [(gy, v,)] is

and is thus conjugate to a proper subgroup of GG, because by assumption M, and

Mg are disjoint. Since G, € (K) and G,,, € (H), it follows that (K) <con; (H). W

Proposition 2.2.9. Let (M,G) be a proper G-manifold and let (B, <) as
above with partial order (2.9). Then the orbit-type strata {Mpz | B € B} form
a smooth B-stratification of M.

Proof. By definition, the orbit-type strata form a disjoint cover of M. Therefore,
any closure of an orbit-type stratum Mj is included in a union of strata M,
(including Mp), having non-empty intersection with M. To show (2.7), we may
show that

M,NMs#2 = M,C Mg.

Assume M,NM s # & for some (possibly equal) indices a = ((K), (a)) and 8 =
((H), (b)) in B. Note that M, N Mg is G-invariant. Indeed if z € M, N M, there
is a sequence (x,,)nen C Mg converging to z. Given g € G the sequence (g - 2, )nen
belongs to Mg by G-invariance of Mgz, and converges to g - x by continuity of the
action. By closedness of Mz and G-invariance of M,, we have g -z € M, N Mg.

The strategy now is to show that M, N Mg is closed and open in M,. By G-
connectedness of M, we will get M, ﬂﬂ/j = M, and we are done. The closedness
condition is immediate since, given a sequence (z,)nen C M, N Mg converging to
x € M,, the limit point x must also belong to M s because this set is closed.

Let us show that M, N Mg is open in M,,. Let z € M, N Mgz such that G, = K.
As in Lemma 2.2.8, we use the Tube Theorem 2.1.5 to get a G-invariant open

neighbourhood U C M of z, locally modelled by an associated bundle G' x g N,
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in which x reads [(e,0)]. Then V = U N M, is open in M, for the subset topology.
This subset locally reads

(G XK No)(K) =G XK (NO)K'

Let y € V' be an arbitrary point corresponding to some [g, | in the local model.
By construction v € (Ny)x and then K, = K.

By definition of the adherence, there is a sequence (z,)n,en C Mp converging
to x in M, with stabilizers G,, € (H). For n € N big enough, =, € U N Mp.
It can thus be identified with some [(gn, vn)] € (G Xk No) ) whose stabilizer is
conjugate to H. Besides, G4, v.)] = 9nK0, 9, Hence K, € (H).

Let N € N big enough such that v+, € Ny. Then the sequence (y,,),~x C U
whose terms correspond to [ggn,V + v,,] in the local model converges to_y. By

linearity of the K-action on Ny, we have
Ky, =K,NK, =K, € (H).

In particular G, € (H). This shows that (y,)nen C Mps and thus y € M. Hence
V C M, N Mg and then M, N Mg is open in M,. Since M, is G-connected,

Ma:Maﬂﬂg CH/B.

In particular, if « # [, we have a < 5. We thus proved (2.7). This cover
is a locally finite cover of locally closed submanifolds. The fact that the strata
are locally closed embedded submanifolds is a consequence of Proposition 2.4.7 in
[52]. That such a cover is locally finite is a consequence of Proposition 2.7.1 in

[17]. Both facts require the group action to be proper. ]

2.2.3 Stratification of a convex polytope by open faces

There is a natural stratification of a convex polytope into vertices, edges and
higher dimensional faces. Let A C (R")* be a n-dimensional convex polytope.

Let X1,..., X4 in R™ be the outward-pointing normal vectors to the facets. Then
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there exists real numbers Ay, ..., A\g such that A reads
d
A=({ne ®)"|{uXi) <A}
i=1

Let B be the set of subsets (possibly empty) 8 C {1,...,d}. For each 8 € B

we consider the intersection

Fp={neA|{nX)=N\}
iep

If F3 # @, its relative interior 1%’ 3 is called a [-dimensional open face of A where [

is equal to » minus the cardinality of 3. We equip B with the strict partial order

a<p <= a#p and %amf?ﬂ#@. (2.10)

With this strict partial order, the collection {Fg | 5 € B} forms a B-stratification
of A. A strict partial order is defined on the set of faces by

Fo<Fg +— a<p.
Finally note that, if & < 3 then § C «.

Example 2.2.10. Let A C (R?)* be the polytope with vertices (1,0), (0,0) and

(0,1). According to our previous notations, set

S B

and A\ =0, Xy =0, 3= 1.The elements of A are the p € (R?)* which satisfy

<:U’7 Xl)
<:U’7X2>
(1, X3)

IA N IA
¥ orox
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(0,1)

X, X3

(0’0) XQ (1’0)

The faces corresponding to the subsets o« = {2,3} and § = {2} are respectively
the single vertex F', = {(1,0)}, and Fg which is the (open) edge joining (1,0) and
(0,0). We clearly have ]%a C 1%’5 and then o < 3.

2.3 Symplectic manifolds and Hamiltonian actions

In the Hamiltonian formulation of classical mechanics, the phase space of a dy-
namical system is a cotangent bundle whose zero section is a smooth manifold
describing all the different configurations of the system. A cotangent bundle is a

particular example of symplectic manifold.

2.3.1 Symplectic manifolds

A symplectic manifold is a pair (M,w) where M is a 2n-dimensional smooth man-
ifold and w € Q?(M) is a closed 2-form which is non-degenerate in the sense that
the map

W TM — T*M (2.11)

defined by (w’(v),w) = w(m)(v,w) for v,w € T,,M, is a fiberwise isomorphism.
In particular, w™ obtained by wedging w with itself n times is a volume form
(nowhere vanishing top-degree form). Any symplectic manifold is therefore natu-

rally oriented and has a canonical measure 7’: called the Liouville measure. The

2-form w is called a symplectic form or a symplectic structure.
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Example 2.3.1 (The sphere S?). The 2n-dimensional sphere S?" is symplectic
only when n = 1. There is in fact a cohomological reason for that. We start by

proving a general fact about compact symplectic manifolds:

Proposition 2.3.2. If (M,w) is 2n-dimensional and compact (closed with-
out boundary), then the de Rham cohomology class [w] € H*(M;R) is non-

vanishing.

Proof. By contradiction we assume that [w"] = 0. This implies that there exists

a € Q" 1(M) such that w™ = da. Since M is compact, we can use Stokes Theorem

Vol(M):/Mw":/Mda:/aMazo.

Hence M has no volume which is a contradiction. Consequently [w] is non-

to deduce

vanishing since otherwise w” = d(f A w"!) where w = df. In particular, exact

symplectic forms only exist on non-compact manifolds. [ |

If we go back to our example, the only non-trivial de Rham cohomology groups
of S?" are H°(S*";R) and H?"(S5?";R). Since [w] belongs to H*(S5?";R), this class
is non-vanishing only when n = 1. Therefore S? is the only even-dimensional

sphere which is symplectic. To find the symplectic form, we identify
TSQZ{U:(x,y)652XR3|x-y:0}.
The symplectic form w € Q?(S5?) is defined pointwise by
w(z) (v,w) =x- (y X 2).

where v = (z,y) and w = (z, 2) are in T,,5. This form is closed because it is of top
degree and is non-degenerate because if v = (z,y) is such that y # 0, the form is

non-vanishing. Indeed by choosing w = (z,z x y), we get w(z) (v,w) = ||y||* # 0.
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Example 2.3.3. Let C" with complex coordinates z = (z,...,2,_1) endowed

with the standard hermitian metric H = Z?:_Ol dz; @ dz; where
H(u,v) = Z w;v; for wv,u e T,C" ~ C".

The standard symplectic form wy € Q?(C") is the imaginary part of H modulo a
sign

wolu, v) = ; (H(u,v) = T, 0)) = & (H(u,v) — H(v, ).

1
2
In a chart, it has the expression wy = %Z?:_(]l dz; N\ dz;.

Example 2.3.4 (Complex projective spaces). Let C* = C\ {0} be the complex
torus. The complex projective space CP" ! is defined as the orbit space of the
principal C*-bundle 7 : C* \ {0} — CP"~! where the (right) action of C* on
C"\ {0} is

A (20, 2n-1) = (20, -0y 201 ).

We denote by z = [29 : -++ : z,-1] = 7(2) the class corresponding to the point

z=(20,...,2n_1). Setting ||z||> = H(z, z), the unit sphere in C" is
Sl ={zeC"||2]* =1}

The Lie group S!, identified with the complex numbers of length one, acts on
S?7=1 by right multiplication on each factor. Since this action is free and proper,
the orbit map p : S?"~! — S§?~1/S1 is a principal S'-bundle. Clearly the map
Cpt — §2n1/S1 given by

[ZO : "':Zn—l] I—)p(a)’,zn_l)
el el

is a well-defined diffeomorphism. The complex projective space CP" ! is equipped

with the Fubini-Study symplectic form
— lon 2
ws = 500log (ER (2.12)

which is defined on a copy of C*~! in CP"~!, obtained by removing an hyperplane
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at infinity. The term log (]|z||?) is a Kéhler potential and is not globally defined.

In a coordinate chart on CP" !, say
©: (20, s 2n0) EC" T —[20: 12, 9:1] €CP" L, (2.13)

the Fubini-Study symplectic form reads

gors = o (50008 (I2]7))

s n—2 a n—2

25507 \im ||l

NS L nds - LS A g
= = zi Ndz; — = z; N dzy,.

201127 2 A el

Example 2.3.5 (Coadjoint orbits). Let G be a Lie group with Lie algebra (g, [, *])
(thought as the left invariant vector fields on G). The Adjoint representation of G
on g is the representation Ad : G — Gl(g)

d B
Adg(w) = | gexp(te)g !
t=0

where exp : g — G is the group exponential. Denote by (-, -) the natural pairing
between g and its dual g*. The coAdjoint representation is the dual representation
Ad* : G — Gl(g*) given by

(Ady-ip,w) = (u, Adg1z) for pegi,reg.

A group orbit G-p C g* for this representation is called a coadjoint orbit. Coadjoint

orbits G - u carry a symplectic structure

w(p) (g (1), ygr (1)) = ={p, [, 9])
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where g (1), yg- (1) € T, (G- ). To define those tangent vectors, we consider
the adjoint representation ad : g — Gl(g) defined by ad,y = [z,y]. The dual
representation ad® : g — Gl(g*) is called the coadjoint representation. Then
elements of T), (G - ) are of the form g (p) = —ad;p € g*.

2.3.2 Hamiltonian actions

Let (M,w) be a symplectic manifold acted on by a Lie group G. The action is
canonical or symplectic if the diffeomorphisms generated by the action are sym-
plectic maps i.e. diffeomorphisms preserving the symplectic structure. Every z € g
induces a vector field xy; € X(M), an infinitesimal generator, defined pointwise
by

xpr(m) exp(tx) - m. (2.14)

dt|,_,

If the action is symplectic, £,, w = 0. In this case Cartan’s magic formula and

TM
the closedness of w imply that ¢,,,w € Q'(M) is closed, and then locally exact. A
canonical action is Hamiltonian if this 1-form is exact for all x € g. In this case,

the vector field x,; is Hamiltonian in the sense that
Loy W = —dog (2.15)

for some ¢ € C*°(M) depending linearly on x. A map ®¢ : M — g* satisfying
(Dg(m),x) = ¢%(m) is called a momentum map. A momentum map is said

equivariant if ®g(g-m) = Ady-1Pg(m) for all m € M and g € G.

Definition 2.3.6. Let (M,w) equipped with a Hamiltonian action of a (con-
nected) Lie group G with equivariant momentum map ®5 : M — g*. We call
the quadruple (M, w, G, ®g) a Hamiltonian G-manifold. 1f in addition the group

action is proper, this quadruple is called a Hamiltonian proper G-manifold.

Example 2.3.7 (Canonical non-Hamiltonian action). An example of action which
is not Hamiltonian is the action of G = R on M = S* x R, acting by translations
on the second factor. Let (6,2) € S* x R be the coordinates on M. Any element
x € R induces a vector field x); = x%. The action preserves the symplectic form

w=d0 Adz, but t,,,w = —xdf is not globally exact as # is multivalued on M.
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Momentum maps are not unique in the sense that, if &, P, : M — g* arise
from the same canonical Lie group action, then ¢{ — ¢% is a Casimir function on
M for any = € g ie. the associated Hamiltonian vector field Xys_4r vanishes
identically. Indeed Xy» = X4z = x5y by construction. If M is connected, the only
Casimir functions are the constants and then, in this case, a momentum map is
determined up to a constant in g*. The reader is referred to [52] for further details.
An obstruction for the existence of a momentum map is the non-vanishing of the
first de Rham cohomology group H'(M,R).

Proposition 2.3.8 ([52] Proposition 4.5.17). A canonical action of a Lie
group G on (M,w) is Hamiltonian if and only if the map below vanishes

identically.

p:g/lg,s] — H'(MR)

(2] = [iay o]

This theorem gives a necessary and sufficient condition for the existence of a
momentum map but it is not enough to guarantee than such a momentum map is
equivariant. In general, a momentum map is equivariant modulo a cocycle which
vanishes if, for example, the group G is compact or if M is a cotangent bundle
(cf. [52] Section 4.5 for further details). We now give some well-known examples
of (equivariant) momentum maps. Many other examples are presented in [44]
(Section 11.4).

Example 2.3.9. The unitary group U(n) consists of complex matrices B € M,,(C)
satisfying BB* = B*B = I,,, where B* is the conjugate transpose of B. This Lie
group acts on C" by isometries. Its Lie algebra u(n) consists of skew-hermitian
matrices i.e. matrices A € M,,(C) such that H(Au,v) + H(u, Av) = 0, or equiva-
lently matrices such that A = —A*. Since U(n) preserves the hermitian structure

of C™, it also preserves the symplectic form wg on C”. It is in fact Hamiltonian
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with momentum map ® : C* — u(n)* defined by
1
(P(2),A) = —in(Az,z). (2.16)

To show this is indeed a momentum map, let v € T,C" ~ C™ and observe that

(D®(2) -v,A) = d B (®(z +tv), A)
_ _; (wo(Av, 2) + wo(Az, )
= —% (H(Az,v) — H(v, Az))

= —Wo (AZ7 U)
where Az is the infinitesimal generator for the U(n)-action on C", at the point z.

Example 2.3.10. By linearity, the action of U(n) on C" preserves the set of
lines in C" \ {0} and thus descends to an action on CP"~! making the orbit map
7 :C"\ {0} — CP"! equivariant. This action preserves wrg and is Hamiltonian.
A momentum map ® : CP™* — u(n)* is given by

~ i H(Az,z)

(D(2),A) = R (2.17)

To construct it in this form, we start by working in the chart ¢ : C*~! — CP"!
as in (2.13). This coordinate chart factors through the sphere S**~! as

where 7 : C"! < §?7~1 i the embedding

(Z07 sy Rn—2s 1)
L+ 55 ff?

(Zo, . 7Zn—2) — (218)

and U C 52" is the image of this embedding. We define ® : CP*' — u(n)* in
the chart as

oe=i(2],)
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with ® as in (2.16). Explicitly, for A € u(n) and z = [29 : --- : 2,2 : 1] in this

chart, we have

B2, 4) = (@ (”H)A>
~ lwg(Az,2)
2 AP
i H(Az,2)
2 I

Since this result does not depend on the chart, ® extends globally as in (2.17).

2.3.3 Symplectic reduction

The well-known Noether’s theorem states that, to each (smooth) symmetry of a
dynamical system corresponds a conserved quantity. For Hamiltonian systems this
quantity is expressed in term of a momentum map. More explicitly assume that h
is a G-invariant Hamiltonian defined on a Hamiltonian G-manifold (M,w, G, ®¢).
In this case, Noether’s Theorem says essentially that the flow lines ¢; of the G-
equivariant Hamiltonian vector field X,, are confined to level sets of the momentum
map (cf.[44] Theorem 11.4.1). In particular, the number of variables of the system
can be reduced. In a more abstract language, it means that the quotient space
obtained by quotienting a level set ;' (1) of the momentum map by the subgroup
of G preserving it, and the reduced Hamiltonian h, defined on it, form a Hamil-
tonian system in their own right, provided that the group action is nice enough.

This is the process of symplectic reduction of Marsden and Weinstein [41].

Theorem 2.3.11 (Symplectic Reduction). Let (M,w,G,®g) be a Hamil-
tonian proper G-manifold on which G acts freely. Then the reduced space
M, = o' (1)/G, admits a symplectic form w,,, uniquely defined by the rela-
tion Thw, = iyw. The maps m, : 5 () = M, and i, : 5 (u) — M are the

quotient map and the inclusion map, respectively.
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In the example below we show that the Fubini-Study symplectic form can be
understood as the reduced symplectic form arising from a symplectic reduction
process. The reader is invited to consult the excellent lecture notes of Berline and
Vergne [7] (Section 2.3) for a more general exposition in the case of projective

varieties.

Example 2.3.12. The Fubini-Study symplectic wps € Q?(CP"!) of Example
2.3.4 arises from symplectic reduction. We first show that there is a unique sym-
plectic form w,eq € Q*(CP" 1) such that

Mt = Wol
where S~ is a level set ¢~!(a) of a momentum map ¢ : C* — u(1)* arising from
a Hamiltonian action of U(1) on C", and 7, : ¢~ *(a) — ¢1(a)/U(1) is the orbit
map.

As before S* is identified with U(1), the complex numbers of the form e with
6 € R. This group acts on C" by multiplying each component on the right by €.
Since this action is hermitian, it also preserves the canonical symplectic form wy.
Moreover this action is Hamiltonian with momentum map ¢ : C* — u(1)*. If we
think of U(1) as embedded in U(n), the momentum map ¢ can be computed using
the formula derived in (2.16). Explicitly, we identify both u(1) and its dual u(1)*
with the pure imaginary complex numbers. Given x € u(1), we have

l

(p(2),x) = —;wo(xz,z) i) (H(xzz,2) — H(z,22)) = —21'2 El

Therefore ¢(z) = £||z||?. For a = £ we have that ¢~*(a) = S?*~! and this level set
is invariant by the U(1)-action. We can apply the symplectic reduction process
to get the existence of a unique 2-form w,eg on the reduced space ¢~'(a)/U(1),
uniquely defined by the relation
W;wred = Wo g2n-1’
It remains to show that w,.qs coincides with the Fubini-Study symplectic form
defined in (2.12). It is sufficient to show that they coincide in the chart ¢ :
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C"! — CP™ ! defined in (2.13). This chart factors through the sphere S?"~! via
the embedding i : C"~! — 5?"~! defined in (2.18). Let U C S?"~! be the image
of this embedding. Then

o1.

¥ = Ta U
By looking at the coordinates (wy, ..., w,_2,1) on U with

Zj

1+ 37057 22

wj o1l =
it is a straightforward calculation to show that

7" (WO‘U) =" (; de'wj N dw])
j=0

coincides with ¢*wpg as derived above. Using Proposition 2.3.12 we obtain

© Wred = (ﬂ—a U o Z) Wred = 1 (ﬂ—a U) Wred = 1 (WO’U> = @ WFs

which shows that wpg coincides with the reduced symplectic form.

2.4 Symplectic tubular neighbourhoods of group orbits

In this section we introduce the Symplectic Tube Theorem (Theorem 2.4.1) which
is a fundamental result to study both, the local dynamics and the local geometry
of a Hamiltonian proper G-manifold (M,w, G, ®¢). It states essentially that every
m € M admits a G-invariant neighbourhood, which is G-equivariantly symplecto-
morphic to a neighbourhood of the zero section of a symplectic associated bundle.
This contruction provides tractable semi-global coordinates for M near G-orbits.
Those coordinates are sometimes referred as slice coordinates. This theorem was
obtained by Guillemin and Sternberg [26] and by Marle [40], for canonical Lie group
actions with equivariant momentum map. It has been extended independantly by
Ortega and Ratiu [52] and by Bates and Lerman [5], for general canonical Lie
group actions. Schmah [64] and Perlmutter, Rodriguez-Olmos and Sousa-Dias [59]

studied the case when M is a cotangent bundle.
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2.4.1 Witt-Artin decomposition

We briefly recall the construction underlying the Symplectic Tube Theorem. The
reader is referred to Ortega and Ratiu [52] (Chapter 7) or Cushman and Bates [52]
(Appendix B Section 3.2) for details. Let m € M with momentum p = ®g(m).
Denote by G,, and G, the stabilizers of m and p respectively, and by g,, and g,
their respective Lie algebras. The stabilizer GG, is compact by properness of the
G-action on M. We can thus split g, and g into a direct sum of G,,-invariant
subspaces

9y =9n@®m and g=g, dmodn.

The tangent space T}, M can be decomposed into a direct sum of four Gz,,-invariant
subspaces

with respect to which the skew-symmetric matrix associated to w(m) has a specific
normal form. This decomposition was first introduced by Witt [70] for symmetric
bilinear forms. The part T, @ T} corresponds to the directions tangent to the group
orbit whereas Ny @ N; is a specific choice of normal space. Those subspaces are

defined as follows:
(i) To :=ker (D®g(m))Ng-m =g, - m.
(ii) 77 := n-m which is a symplectic vector subspace of (T, M,w(m)).

(iii) Ny is a choice of G,,-invariant complement to Tj in ker (D®g(m)). It is a
symplectic subspace of (T,,M,w(m)) and is called the symplectic slice. The
linear action of G,, on Nj is globally Hamiltonian with momentum map

Oy, 1 Ny — g7, given by

1
<<I)N1 (V),l‘) = iw(le (V)7 V)
for all v € Ny and = € g,,.

(iv) Np is a G,-invariant Lagrangian complement to Tj in the symplectic orthog-
onal (T} @ N;)“™. Moreover, there is an isomorphism f : Ny — m* given
by (f(w),y) = w(m) (yar(m), w) for all w € Ny and y € m.
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A splitting (2.19) is called a Witt-Artin decomposition of T,, M, relative to the
G-action. Note that the symplectic form w(m) restricted to T3 coincides with the
Kostant-Kirillov-Souriau symplectic form. Moreover, the symplectic form w(m)
restricted to Ty @ Ny takes the form

w(m)(zyr(m) +w, )y (m) +w') = (f(w), z) = (f(w), ') (2.20)

for every z, 2" € m,w,w" € Ny, and f as in (iv). Indeed since y,,(m) = 0 for every
Y € gm, the elements of T are of the form z,(m) with € m. Let z,2’ € m and
w,w € Ny. As both Ty and Ny are Lagrangian in Ty & Ny,

w(m)(zar(m) +w, 2y (m) + w') = w(m)(za(m), w') + w(@)y, (m), w)

which coincides with (f(w’), x) — (f(w),z’).

Since N; is a G,,-invariant subspace, there is a well-defined action of G,, on

the product G x m* x Nj given by
k- (g,p,v) = (g™, Adjip, k- v). (2.21)

This action is free and proper by freeness and properness of the action on the first
factor. The orbit space Y is thus a smooth manifold whose points are equivalence
classes of the form [(g, p, v)]. The group G acts smoothly and properly on Y, by left
multiplication on the first factor. Let m§ C m* and (N;)y C N; be G,,-invariant

neighbourhoods of zero in m* and Nj, respectively. Then
Yy := G Xg,, (mg x (Ny1)o) (2.22)

is a neighbourhood of the zero section in Y. It comes with a symplectic structure
wy, if it is chosen small enough ([52] Proposition 7.2.2). Define the Chu map

0

U M — Z?(g) associated to the G-action by

W(m)(x,y) = w(m)(@a(m), yar(m)). (2.23)
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Note that ¥(m)(z,y) = —(u, [x,y]), and thus ¥(m) coincides with the Kostant-

Kirillov-Souriau symplectic form on the coadjoint orbit G - p whenever z,y € n.

2.4.2 The Symplectic Tube Theorem

We can now state the symplectic analogue of the Tube Theorem 2.1.5.

Theorem 2.4.1 (Symplectic Tube Theorem). Let (M,w, G, ®g) be a Hamil-
tonian proper G-manifold. Let m € M with momentum u = ®g(m). If the
neighbourhood Yy defined in (2.22) is sufficiently small, it admits a symplectic
structure wy,. In this case, there exists a G-invariant neighbourhood U C M

of m and a G-equivariant symplectomorphism

@ : (Yo,wr) = (U,w|, )

such that ¢ ([e,0,0]) = m.

We call the triplet (¢, Yy, U) a symplectic G-tube at m and we also say that (Y, wy,)
is a symplectic local model for (U, w‘U). Besides the momentum map ®4 : M — g*

can be expressed in terms of the slice coordinates:

Theorem 2.4.2 (Marle-Guillemin-Sternberg Normal Form Theorem). Let
(M,w,G,®g) be a Hamiltonian proper G-manifold and let (¢, Yy, U) be a
symplectic G-tube at m € M. Then the G-action on Yy s globally Hamilto-

nian with associated momentum map ®¢ : Yo — g* defined by
ba([g, p,v]) = Ads-1 (D (m) + p + O, (v)). (2.24)

It coincides with @G‘U when pulled back along o~ *.



THE EQUIVARIANT
LYUSTERNIK-SCHNIRELMANN
CATEGORY

The Lyusternik-Schnirelmann category or LS-category of a topological space X is
the homotopical invariant Cat(X) defined to be the least number of open subsets
U C X, whose inclusion is nullhomotopic, that are required to cover X. Although
it is now the subject of a full theory in connection with algebraic topology, it was
originally introduced by Lyusternik and Schnirelmann in a course on the global cal-
culus of variations, when X is a smooth compact manifold without boundary [39].
In this case they show that any f € C°°(X) has at least Cat(X) critical points.
The difference with Morse theory is that f is allowed to have degenerate critical
points. However this is in no way a generalization of Morse theory because a Morse
function determines entirely the topological structure of the underlying manifold.
Indeed in this case X has the homotopy type of a CW-complex and each cell is
determined by exactly one critical point in the sense that its dimension is the
Morse index of the critical point [49]. Rewiews on the Lyusternik-Schnirelmann

theory are for instance [29, 13, 4].

3.1 Terminologies

A topological space X is said to be completely regular if, for any closed subset Y
of X and any y ¢ Y, there is a continuous map f € C(X) sending y to 0, and
Y to 1. In this section a pair (X, G), where X is a completely regular topological
space on which a topological group G acts continuously, is called a G-space. If

the action is proper, we refer to it as a proper G-space. The equivariant analogue

47
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of the LS-category has been introduced by Fadell [19] and Marzantowicz [46] for
compact groups, and by Colman [12] for finite groups. A substantial part of the
theory has been extended for non-compact Lie groups when (X, G) is a proper
G-space by Ayala, Lasheras and Quintero [3], thanks to the result of Palais [53]

on the existence of slices for proper Lie group actions.

3.1.1 G-categorical open subsets

Let (X, G) be a proper G-space. A homotopy H : X x [0,1] — X which satisfies
H(g-x,t) = g- H(x,t) for every g € G, v € X and t € [0,1] is called a G-
homotopy. We write Hy(z) = H(x,t). Let A, B C X be two G-invariant subsets.
A G-deformation retract of A onto B is a G-homotopy H : A x [0,1] — A such
that Hyo(z) = =, Hi(z) € B for every € A, and H,(b) = b for every b € B.

Definition 3.1.1. A G-invariant subset U C X is called G-categorical if there

exists a G-deformation retract of U onto the orbit G - z of some = € U.

Definition 3.1.2. Given a G-invariant subset A C X, the equivariant LS-category
of A in X, denoted Catg(A, X), is the least number of G-categorical open subsets
U C X that are required to cover A. If no such cover exists, we set Catg(A, X) =
oo. Furthermore we write Catg(X) = Catg(X, X) and Catg(X) = oo if such a
cover does not exist. The non-equivariant LS-categories Cat(A, X) and Cat(X)
are obtained by setting G = 1.

Observe that in particular a G-invariant subset A C X is G-categorical if and
only if Catg (A4, X) = 1.

Proposition 3.1.3 ( Marzantowicz [46]). Let (X, G) be a proper G-space and let
A, B be G-invariant open subsets of X.

(i) (Subadditivity) Catg (AU B, X) < Catg (A, X) + Catg (B, X).

(7i) (Invariance) If ¢ : X — X is a G-equivariant homeomorphism, then
Catg (A, X) = Catg (9(A), X).

Example 3.1.4. The equivariant version of the LS-category is in general different

from its non-equivariant analogue, as shown in the examples below.
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Let X = S' xR with cylindrical coordinates (6, z). Define an S*-action on X
by ¢-(0,2) = (0 + ¢, z). The cylinder itself is an S'-categorical open subset
with S'-deformation retract H : X x [0,1] — X given by H((0,2),t) =
(0, (1 —1t)z). Therefore, Catg1(X) = 1. However we require two contractible

open subsets to cover X, which yields

1 = Catgi1(X) < Cat(X) = 2.

Consider the complex projective space X = CP? with the S!-action
0-[20:21: 2] = [¥2 1 21 : 2]

For i = 0,1,2, the open subsets U; = {[z0 : 21 : 2] | z; # 0} are S'-invariant.

On Uy, an S'-deformation retract onto an orbit is given by
H([z0:21: 22, t) =[z0: (1 —t)z1 : (1 —t)z).

The image H,(Up) is the single point [1 : 0 : 0] which is a fixed point of the
action, hence an S'-orbit. Similar homotopies can be found on U; and Us,
respectively. Therefore Catgi(X) is at most three. The fact that we have an

equality follows from Proposition 3.2.3 below. We conclude that

Catgi(X) = Cat(X) = 3.

The group T acts on X = S? as in Example 2.2.4 (iii). We construct a cover

of X by three T-categorical open subsets as follows:

Pick a point 1 € X and its opposite point y; € X. The T-orbit of x; forms
a spherical tetrahedron with vertices x1, x9, 3, 4. Similarly the T-orbit of
y, forms another spherical tetrahedron with vertices v, s, y3,y4. For each

© < j denote by p;; the middle point of the geodesic arc joining ; and z;.
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Figure 3.1: Spherical tetrahedrons on the sphere.

For each i, let D; C X be an open disk centered at x; such that
D;nD; = {p;} Vi<j

In the same way, let for each 4, an open disk F; C X centered at y; with the
property

Vi<j E;NE;={pu} where k¢ {ij} k<l

as shown in Figure 3.2.

Z2

D23

Figure 3.2: Disk E, centered at y4.

Finally we define for each ¢ < j, an open subset B;; C X containing p;; such
that



51 THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY

yk € Bij\ By Vk#i,j

We obtain the following T-categorical open subsets:

which retracts in a T-equivariant way onto the orbit T - y;, and
i<j

which retracts in a T-equivariant way onto the orbit T - p;5. Those three
subsets form a cover of X. This cover is in fact the smallest that we can

take, by Proposition 3.2.3 below. Hence

3 = Catyp(X) > Cat(X) = 2.

3.1.2 LS-categories and orbit spaces

In this section, (X, G) is a proper G-space. In [3] (Proposition 2.4), Ayala, Lasheras
and Quitero extended the result of Marzantowicz [46] for compact groups stating
that

Catg(X) > Cat(X/G)

with equality under the additional assumptions that X is metrizable and G acts

with only one orbit type, in particular freely.
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Example 3.1.5. Let S®° C C? be given by

2
55 = {(Z(), 21,22) € (C3 ‘ Z |Zi|2 = ].}
1=0

We identify S with the complex numbers of length one and we let it act on S° by
right multiplication on each factor. This action is free and proper. The orbit space
CP? is therefore a smooth manifold and the orbit map is a principal S'-bundle
7155 — CP2% We thus have

Catg1(S°) = Cat(CP?) = 3.
Example 3.1.6 (Real projective spaces). Let G = Z, acting on S™ by the an-
tipodal map. The orbit space for this action is homeomorphic to RP™ and the

quotient map 7w : S™ — RP™ is a covering map. We make use of the following

result:

Theorem 3.1.7 ([46] Corollary 1.17). If G is a finite group acting freely on
the n-dimensional sphere S™ then Catg(S™) =n + 1.

Since G is a finite group acting freely on S™, Theorem 3.1.7 yields
Cat(RP") = Catg(S™) =n+ 1.

Example 3.1.8 (Lens Spaces). Let $?"~' C C" be given by
S2n_1 = {(Zl, Ce ,Zn) I~ Cn | Z ’ZZ|2 = 1}
i=1

Let ¢ = €2™/P be a primitive pth root of unity and let ¢i,...,q, be integers rela-

tively prime to p. We let Z, = {1,¢,e%,...,eP7'} act on S?"! by

(21, ey 2n) = (€021, ... e 2,). (3.1)
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The orbit map 7 : S*"~! — S$?"=1/7, is a covering map as a consequence of [9]
(Proposition 7.2). The orbit space S**~!/Z, denoted L(p;qi,...,q,) is called the

(2n — 1)-dimensional lens space. By Theorem 3.1.7 we get

3.2 G-tubular covers

If (M,@G) is a proper G-manifold, the Tube Theorem 2.1.5 allows us to produce
G-categorical open subsets in the following way: any m € M admits a G-invariant
neighbourhood U C M such that the map ¢ : Yy — U defined in (2.4) is a

G-equivariant diffeomorphism. Here
Yo =G xg,, No

where N, is a fixed neighbourhood of zero in some subspace N C T,,M, com-
plementary to g - m in T,, M, on which G,, acts linearly. The proper G-manifold
Y; is a local model for U, in which m reads ¢~'(m) = [e,0]. The G-homotopy
F Yy x[0,1] = Y, defined by

F(l(g, V)], 1) = [(g, (1 = t)v)],

is a G-deformation retract of Yy onto the orbit G - [e,0]. By using the fact that
¢ is a G-equivariant diffeomorphism, the open subset U = ¢(Y}) is G-categorical
since the G-homotopy H : U x [0,1] — U given by

H(p,t) = ¢ (Fl¢™'(p):1)) (3.2)

is a G-deformation retract of U onto G - m.

Definition 3.2.1. A G-categorical open subset U C M as above, with associated
G-deformation retract as in (3.2), is called a G-tubular open subset of M. A cover

of M made of G-tubular open subsets is called a G-tubular cover of M.

Clearly, every m € M admits a neighbourhood which is a G-tubular open

subset of M. Consequently, G-tubular covers of M always exist. The question is
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whether they can be refined. Let U be any G-tubular cover of M. We know that
M can be decomposed into the disjoint union of its orbit-type strata { Mz | 8 € B},
which form themselves a smooth B-stratification of M. Let B’ C B be the biggest
subset of indices § € B such that Mz is minimal with respect to (2.8). Consider
the disjoint union A of all the strata Mg with 5 € B’. From U we extract a
subcover U’, chosen as small as possible such that U’ covers A. In particular U’ is

a refinement of U. We ask the following:
(Q) Does it exist U' C U, obtained as above, which is still a cover of M ?

The answer is in general negative (cf. Section 3.2.1). However it is positive
for all the proper G-manifolds listed in Example 3.1.4, where U’ is constructed
explicitly.

Definition 3.2.2. Let (M, G) be a proper G-manifold. The subcover U’ defined

above is called a minimal G-tubular cover if the following occur:
(i) U is a cover of M.

(ii) For each minimal orbit-type stratum Mg, the set
V= {Vs=UnM,; |UeU}

is the smallest cover by G-categorical open subsets of M3, where the topology

of Mpg is the subset topology.

We discuss the simplest example where such a cover exists. Let S? C R3, on
which S! acts by rotations about the z-axis. This action has two minimal orbit-
type strata, namely the North and South pole. Two small disks centered at those
points are S!-tubular open subsets and can be taken sufficiently big so that they
form a minimal S'-tubular cover of S2. In this example, a disk centered at the
North pole can be extended until its closure meets the South pole. The impossibil-
ity to extend it further relies on the fact that such neighbourhoods are constructed
by mean of the Riemannian exponential map. This map is no longer injective if
the disk contains two opposite points on the sphere. The next proposition gives

another answer to this fact by using the properties of G-tubular open subsets.



THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY

ot
ot

Proposition 3.2.3. Let (M,G) be a proper G-manifold. If U C M is a G-
tubular open subset which intersects a minimal orbit-type stratum Mg, then
U retracts onto the orbit G-x of some x € Mp. In particular G-tubular open

subsets intersect at most one minimal orbit-type stratum.

Proof. Let § = ((H), (b)) € B such that Mz is a minimal orbit-type stratum.
Let U C M be a G-tubular open subset of M such that U N Mz # &, and let
H :U x[0,1] = U be a G-deformation retract of U onto G - z for some z € M.
By contradiction, assume that z € M, for some a = ((G.), (a)) # 5.

Each point y € U N Mp has stabilizer G, € (H). By G-equivariance of the
homotopy, G, is a subgroup of G, () which is itself conjugate to G, as H;(y) and

x lie on the same orbit. In particular (G;) <conj (H). Two cases occur:

(i) If Mg N M, # @, then 8 < «a since 3 # a. By Lemma 2.2.8 we get
(H) <conj (G;) which is a contradiction.

(i) If Mg N M, = @ we must use the assumption that U is G-tubular. Let
G X, No be the local model for U. Given y € Mz we define the G-equivariant
path y(t) = Hy(y), where ¢t € [0, 1]. In the local model, y reads [g, ] and y(¢)
reads [g, 4] where v, = (1 — t)v. We can assume without lost of generality
that (G,), = H. Observe that, by linearity of the G,-action on Ny, we have
(Go)wy = (Gy)y = H for all t # 1. Hence Gy, = 9(Go)ug ' = gHg™*
for every ¢ # 1. In particular, y(t) € Mz for all ¢ # 1. Since the path y(¢)
starts at y € Mg and ends on G - & C M,, there is some ty € [0, 1] such that
y(tg) € M,. The parameter ty is chosen the smallest such that this occurs.
If t, # 1, the previous argument shows that y(ty) € Mgz N M,, which is a
contradiction. Otherwise, since y(t) € My for all ¢ < t, there is a sequence
(Yn)nen C Mp which converges to y(ty). By closedness of Mg, this yields
y(to) € Mg N M,, which is again a contradiction. We conclude that x € M.



THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY 56

3.2.1 Non-examples

The answer to question (Q) is in general negative. In the examples below, (M, G)

is a proper G-manifold with M compact, and the action admits only one closed

orbit-type stratum Mg.

Example 3.2.4. The first example discussed below is a compact S*-manifold

with only one closed orbit-type stratum, which is an S!-orbit.

Think of M = S as the set of unit vectors (21, 2;) € C? equipped with the
Sl-action

240

0-(21,22) = (ewzl,e Z9).

This action has only one minimal orbit-type stratum Mgz with 8 = ((Z2), (b))
for some index b € By,. Explicitly

My ={(0,22) € C* | |2|* = 1}

which is diffeomorphic to a circle. In particular Mz is the S'-orbit of the
point (0,1) € S3. The S'-invariant open subset

2
U={(a,2) € 5| |l < 5
is an S'-invariant tubular neighbourhood of the minimal orbit-type stratum,
and is diffeomorphic to a solid torus (cf. Figure 3.3). Since My is an S'-
orbit, U is an S'-tubular open subset. We may choose U’ = {U}. This cover
satisfies (ii) of Definition 3.2.2 but it does not satisfy (i), since it does not

cover M. To cover M we require the additional open subset

1
vz{mﬂge§|mﬁ>3}

which is also a solid torus, understood as an S'-invariant tubular neighbour-
hood of the S'-orbit of (1,0) (cf. Figure 3.3). It is therefore S'-categorical
and then Catg: (M) < 2. There is in fact equality because otherwise it would

mean that S? is contractible onto a circle, which is untrue.
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Mg
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‘ :"— 21| = 2 and |2o/? = &

|20|? =

|21 =% and |2 =2 .|

=
3 /

LA

Figure 3.3: Representation in R3 of the sphere S°
with a point removed. The stratum Mp is a circle
closing at infinity and the tori around it form a solid
torus, which is a tubular neighbourhood.

(ii) We discuss a more complicated example of an orientable compact smooth
manifold equipped with a canonical S!-action with only one closed orbit-type
stratum, which is not an S'-orbit. This example was found and suggested
to us by Eckhard Meinrenken.

Let S? C R3 with cartesian coordinates (x,y,z). Consider the diffeomor-
phism 7; : S? — S? sending a point m = (r,y,2) € S? onto 71(m) =
(,y,—2z) € S?. Similarly let S* C R? with cartesian coordinates (u,v) and
75+ ST — S' sending a point w = (u,v) € S onto T(w) = (u, —v) € S
Let

M =5*x S

and the orientation-preserving diffeomorphism f : M — M defined by
fim,w) = (1i(m), n(w)) VY(m,w) € S*x S*.

The mapping torus of f is the 4-dimensional smooth manifold

M x [0, 1]
((m,w), 0) ~ (f(m,w), 1)

My =
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It can be viewed as the total space of a smooth fiber bundle over S' with
fiber M. Elements of M} are equivalence classes of the form [(m,w),t]. We

define an S'-action on M + as follows:
0 - [(m,w),t] = [(Re(m), w),1]

where Ry denotes the rotation in R? of angle § about the z-axis. This is well-
defined since such rotations fix the z-axis and thus f above is S'-equivariant.

The minimal stratum has orbit-type (S') and is the S!-orbit of
(Mp)s = {[(N,w),f] € My | N =(0,0,1) € §*,w e St € [0,1]} .

The latter is diffeomorphic to a Klein bottle. We set 8 = ((S'), (b)). Since
the circle acts trivially on (My)g1, the minimal stratum is Mg = (My)g1.

Let Vi C S? be a disk centered at the North pole, which does not meet
the equator. Define V' to be the union of V; and 74(V;). The subset U =
V' x S* % [0,1] is open in M x [0, 1] and the corresponding mapping torus Uy
is an S'-invariant tubular neighbourhood of Mjg. Hence there is a projection
p: Uy — Mg. Let Vi be the smallest cover by G-tubular open subsets of Mg,
for the subset topology. We can choose U’ = {p‘l(Vg) | Vs € Vé} . Then U’
satisfies (ii) of Definition 3.2.2 but it does not satisfies (i).

3.2.2 Tubular covers of symplectic toric manifolds

In this section we show that symplectic toric manifolds admit a minimal tubular
cover. Such a cover is constructed explicitly in Theorem 3.2.6. Symplectic toric
manifolds form a particular class of algebraic toric varieties and their relations are
discussed in the book of Cannas da Silva (cf. [10] Section 6.6).

Definition 3.2.5. Let T be an n-dimensional torus with Lie algebra t and dual
Lie algebra t*. A Hamiltonian T-manifold (M, w, T, ®.) is called a symplectic toric
manifold if (M, w) is a 2n-dimensional compact connected symplectic manifold and

the Hamiltonian action of T on M is effective.

For symplectic toric manifolds, the image ®+(M) of the momentum map is a
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Delzant polytope i.e. a convex polytope A C (R™)* which is simple i.e. each vertex
x meets exactly n edges, rational i.e. the edges meeting at a vertex z are of the
form x+ta, ; where a,; € (Z™)*, smoothi.e. for each vertex = the isotropy weights

Qpi, ..., 0, form a Z-basis of (Z™)*.

This observation is due to Delzant (cf. [16] Lemmas 2.2 and 2.4). Delzant also
proved that A determines entirely the symplectic toric manifold (M, w, T, &), up
to T-equivariant symplectomorphisms (cf. [16] Theorem 2.1). His proof relies on a
well-known result of convexity obtained independently by Atiyah [2] and Guillemin
and Sternberg [25], which states that the image of a momentum map for the action

of a torus (not necessarily effective) on a compact symplectic manifold is a convex

polytope.

We recall some standard facts about Morse theory applied to a symplectic
toric manifold (M, w, T, ®;). The reader is referred to the book of Guillemin and
Sjamaar (cf. [24] Section 3.6) for details. Let My be the fixed point set of T. For
every m € My, the torus acts on the tangent space at m. There is a T-invariant
complex structure on M such that T,,, M is a complex T-representation with weight
space decomposition

Capy @ 0C,,,,

where a1, ..., € t° are the weights of the representation. A generic compo-
nent of the momentum map ®, : M — t* is a component ¢¢ = (®.(-),&) where
€ € g is generic i.e. a,(§) # 0 for every m € My and i = 1,...,n. In this case,
the critical points of ¢¢ are isolated and ¢¢ is a Morse function whose critical set
is precisely M,. Moreover every critical point of ¢* has even index. Therefore
symplectic toric manifolds possess an extra structure given by the properties of

the T-action. This structure is used to construct a minimal T-tubular cover of M.

Before proving this, we recall a standard fact of algebraic topology. Let X
be a topological spaces and let I = [0,1]. We denote by C(I,X) the set of
continuous maps from I to X. The compact-open topology on C(I,X) is the
topology generated by the subsets of the form

Oxv={fe€CX) | f(K)CU}
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where K C I is compact and U C X is open. Then the map

C(X xI,X) — C(X,C(I,X))
f— o= fo:t— f(x,t)}

is a bijection (cf. [72] Proposition 1.2.3.2).

Theorem 3.2.6. Let (M,w,T,®;) be a symplectic toric manifold. Then M

admits a minimal T-tubular cover.

Proof. Let {Ms | 8 € B} be the B-stratification of M into orbit-type strata,
with strict partial order (2.9). Since T is compact, there are only finitely many
minimal orbit-type strata Mg, , ..., Ms,. By assumption on the T-action, each Mpg,
is an isolated fixed point m; € M,. Then there is & € t such that ¢% is a generic
component of the momentum map, which takes its minimum at m;. Let —V¢%
be the gradient vector field associated to this component, with corresponding flow
¢¢. Since the image of the momentum map ®,(M) is a Delzant polytope A, the
B'-stratification {]%ﬂ/ | ' € B'} of A by open faces (cf. Section 2.2.3) coincides
with the B-stratification by orbit-type of M. In other words, for every i =1,...,¢,
we can associate to f5; € B a unique index ! € B’ such that ®(Mp,) is precisely

[e]
the zero-dimensional face F'g. For each other index o € BB there is a unique o el

such that ®(M,) = }OWQ/. Define an open subset Vs C t* by

Vo= | Fu

Bi=a’

By continuity and T-invariance of ®., the subset Ug, = &, 1(V51/_) is a T-invariant

open neighbourhood of m; in M. It reads

Us, = | M.

BiZa

For every m € Upg, \ {m;}, the flow line ¢;(m) is defined for every t € R, by
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compacity of M. By construction of Ug,, the point m belongs to some orbit-type
stratum M, with §; < a. Since ¢ is stratum-preserving, ¢;(m) € Up, for every
t € R. Moreover the only critical point of ¢% in U, is m;, and it is a minimum.

Hence ¢;(m) tends to m; as t tends to infinity. Therefore the continuous map

fm:[O,l[ — Uﬁz‘

t — g (m)

extends by continuity into a map f,, : 0,1) — Up, with fm(l) = m;. Then the

map

H:Us x[0,1] — Us,
(m,t) — fult)

is a T-deformation retract of Ug, onto the orbit T - m; = m,;. In particular Up, is
T-categorical for every i = 1,...,¢. It is clear that U = {Ups, }_, is a cover of M
made of T-tubular open subsets, which are themselves tubular neighbourhoods of
the closed strata. By Proposition 3.2.3, this cover is the smallest that we can take

and then U is minimal. [ |

As a corollary we obtain the result of Bayeh and Sarkar (cf. [6] Theorem 5.1).
This result is also a direct consequence of the Localization Formula (Corollary
3.3.2) that we obtain in Section 3.3 below.

Corollary 3.2.7 ([6] Theorem 5.1). Let (M,w, T, ®,) be a symplectic toric
manifold. Then Catp(M) coincides with the cardinality of M.

Our choice to consider symplectic toric manifolds makes the proof of Theorem
3.2.6 relatively straightforward for two reasons. The first reason is that the fixed
points of the T-action are isolated, and the second reason is that the stratification
by orbit-type strata of M coincides with the stratification by open faces of the

polytope. Whether this approach can be generalized to Hamiltonian manifolds
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equipped with an arbitrary Hamiltonian torus action is very likely to be true.
The conjecture below is the result of a discussion with Yael Karshon and Eckhard

Meinrenken, and its proof is still under construction.

Conjecture 3.2.8. Any Hamiltonian T-manifold (M,w,T,®;) where T is

a torus admits a minimal T-tubular cover.

To close this section, we illustrate the steps of Theorem 3.2.6 on the standard

example of a symplectic toric manifold.

Example 3.2.9. Consider the symplectic manifold M = CP? on which the torus
T = S! x St acts effectively by

(0,0) - [€P2 : €2 : ).

A momentum map for this action can be chosen of the form

O ([20: 21 22)) = ( Els |21 |2 )

|20]% 4 [21]2 + |22/ [20? + |21]? + |22

where the factor —% is ignored. The image of the momentum map is the polytope
A C (R?*)* whose vertices are the points x; = (1,0), x5 = (0,1), z3 = (0,0) (cf.
Figure 3.4). Those vertices are precisely the images under @, of the fixed points
of the T-action, namely m; =[1:0:0], mg=[0:1:0] and mg=[0:0:1]. The

weight space decomposition at a fixed point m; € My is
CO4771,7:,1 @ (Cami,2

with weights ay,, 1, m, 2 € (R?)* given in Figure 3.4.

It is easily checked that the vector
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T2
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r3 | ¥ms,1 Qmy 1 T

Figure 3.4: Weights of the torus action and moment polytope.

satisfies auy,, ;(§) # 0 for every i = 1,2,3 and j = 1,2. Therefore the component

¢¢ of the momentum map given by

2|20/* + |21 /?
3 Z0 + Rl R =
§b ([ 0 1 2]) |ZO|2 + |Zl|2 + |Z2|2

is generic and takes its minimum at m3 =[0:0: 1].

In this example we have five orbit-types (H), with H being either the full torus
T, the trivial group 1, or a subgroup diffecomorphic to a circle, namely S* x 1,
1 x S* and the diagonal subgroup Sy, = {(#,6) € T | § € S'}. There is only
one orbit-type stratum M. with orbit-type (1), which is open and dense in M. All
the strata with orbit-type diffeomorphic to S are different copies of CP! in CP?,

namely

e For a = ((S' x 1), (a)) we have M, = {[0: z; : 2] € CP?}.
e For § = ((1 x S1), (d)) we have Ms = {[z0: 0 : 29] € CP?}.
o For v = ((Sjiag): (¢)) we have M, = {[z : z : 0] € CP?}.

The three minimal orbit-type strata have orbit type (T). They form the fixed

point set of the torus T and are given by
e For 81 = ((T), (b1)) we have Mg, = {[1:0: 0] € CP?}.
e For 8y = ((T), (ba)) we have Mg, = {[0:1: 0] € CP?}.

e For 3 = ((T), (b3)) we have Mg, = {[0:0: 1] € CP?}.
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The oriented graph associated to the strict partial order (2.9) is given below (cf.
Figure 3.5).

|

/\\

\ (I)'r (“?\[w)

D (Ms)

Figure 3.5: The oriented graph associated to the
strict partial order (2.9) on the orbit-type strata is
given on the left hand side. The image of the strata
are shown on the right hand side.

As in Example 2.2.10, we take B’ to be the set of subsets 5’ C {1,2,3}. For
every i = 1,2,3 we define 5/ = {k,j} € B’ where k < j and k,j # i. The corre-
sponding zero-dimensional open face is the vertex ZO? g = ;. Following Example
2.2.10, we set o/ = {1}, 0’ = {2} and ¢’ = @. Then for instance & (M,) = 1%’0/.
With the notations of Theorem 3.2.6 the open subset Vj C (R?*)* is

V,Bé :FgéUFa/UF(;/UFE/
and the corresponding T-tubular open subset Ug, = @ 1(V[3§) is

U53 = M53 UM,UMsU M..

3.3 Localization Formula

In this section we obtain a localization formula (cf. Corollary 3.3.2) for proper
G-manifolds which admit a minimal G-tubular cover. This formula says in par-
ticular that the equivariant LS-category of a proper G-manifold is intrinsic to the
equivariant LS-category of its minimal orbit-type strata. The theorem below holds

in general, without any assumption on the proper G-manifold.
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Theorem 3.3.1. Let (M,G) be a proper G-manifold and write M as the
disjoint union of its orbit-type strata {Mgz | f € B}. Let B’ be the biggest
subset of B such that Mg is minimal for every 5 € B'. Then

Catg(M) > > Cate(Mjp).
BeB’

Proof. Let U be a G-tubular cover of M. Choose U € U such that U N Mp # &
for some g € B, say 8 = ((H), (b)). By Proposition 3.2.3, U does not intersect
any other minimal stratum and the G-deformation retract H : U x [0,1] — U
retracts onto an orbit G - x of some x € Mz. The set Vg = U N Mp is open in Mg

for the subset topology, and it is G-invariant because so are U and Mjg.

Let G x¢g, No be the local model for U. Given y € V3 we define the G-
equivariant path y(t) = H(y), where ¢ € [0,1]. In the local model, y reads [g, V],
and y(t) reads [g,v¢] where 1, = (1 — t)v. Since (G,), € (H), we use the linearity
of the G -action on Ny, to obtain (G,),, = (G.), = (H) for all t € [0, 1]. Hence

Glow] = 9(Gr)g ™t € (H) forall t€(0,1].

In particular, y(t) € Mg for all t € [0,1]. Because y € Vj is arbitrary and [0, 1] is
compact, the map F : V3 x [0,1] — V3 given by Fi(y) = y(t) is a homotopy. It
is clearly G-equivariant by construction and defines a GG-deformation retract of Vj

onto G - z. It follows that Vj is G-categorical.
Let Uz C U be the subset of all U € U such that U N Mg # &. Then

VQZ{VrB:UﬁMrB’UEUB}

is a cover of Mg by G-categorical open subsets, which is not necessarily a minimal

cover. This procedure associates to each § € B' a cover Vs of Mp.

Proposition 3.2.3 says that, if o, 8 € B’ are distinct, then U, NUz = @. In
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particular, each V3 € V3 is determined by a unique U € Up. Therefore

Catg(M) Z Z Catg(Mg).
peB’

After this work was completed we found that the result of Theorem 3.3.1 had
already been obtained by Hurder and Toben (cf. [28] Theorem 3.7), by using
a method similar to ours. However with our construction involving minimal G-

tubular covers, we obtain the following:

Corollary 3.3.2 (Localization Formula). Let (M, G) be a proper G-manifold
which admits a minimal G-tubular cover. Decompose M into its orbit-type
strata {Mg | € B}. Let B’ be the biggest subset of B such that Mg is

minimal for every 5 € B'. Then

Oatg(M) = Z Catg(Mg>.
BeB’

Proof. By Theorem 3.3.1, Catg(M) > > scp Catg(Mg). The other inequality is
a direct consequence of the properties of a minimal G-tubular cover (cf. Definition
3.2.2). O

Proposition 3.3.3. Let (M, G) be a proper G-manifold which admits a min-

imal G-tubular cover. Assume Mg is a minimal orbit-type stratum with

B = ((H),(b). Then

Catg (Mg) = CatNG(H) (MHJ,) 5
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Proof. Let U’ be a minimal G-tubular cover of M and let Mj be a minimal orbit-
type stratum. By definition of U’, the set Vg = {Vz = U N Mz | U € U'} is the
smallest cover by G-categorical open subsets of Mg, where the topology of Mj is
the subset topology.

For every Vg € Vg, let f/ﬁ = V3N Mpyp. Then ‘75 is an Ng(H )-invariant
open subset of My, for the subset topology. Let H : V3 x [0,1] — V3 be a
G-deformation retract of V3 onto some orbit G - x of x € Mg. Then the Ng(H)-
homotopy F : Vi x [0,1] — Vs defined by

F, = Ht’ for each t € [0,1]

Vs
is an Ng(H )-deformation retract of Vj onto the orbit Ng(H) - z. Therefore the set
Vs = {Vs = VN My, | Vs € Vs} is a cover of My, made of Ng(H)-categorical
open subsets. This cover is minimal by assumption and because Mg = G - My,
We thus get

Catg (Mp) = Catng iy (Map) -

The reader is invited to compare the above result with [46] (Proposition 2.1).
By Theorem 3.2.6, every symplectic toric manifold satisfies the assumptions of
Corollary 3.3.2 and Proposition 3.3.3. Therefore Corollary 3.2.7 is a direct conse-

quence of the Localization Formula.

Example 3.3.4. We verify Theorem 3.3.2 on the other examples discussed
in this chapter.

(i) Let M = S? C R3 on which S! acts by rotations about the z-axis. The

minimal strata have orbit-type (H) where H = S', namely

Mg, ={(0,0,(=1)™)}, B =((S").(t)) and b=12

Then
Catsl (Mﬁl) + Catsl (Mﬁ’z) =1+1= Catgl (M) .
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(ii) Let M = CP? equipped with the action of S*

0

0-[20:21:2) = [%2: 211 2]

The minimal strata Mg, and Mg, have orbit-type (H) = (S'). There is a
CP! and the single point [1 : 0 : 0], respectively. Therefore

Catsl (Mgl) + Catsl (Mﬂz) =2+1= Catsl (M) .

(iii) Let M = S? acted on by the group T as in Example 3.1.4 (iii). There are
three minimal orbit-type strata. Two of them, Mg, and Ms,, have orbit-type
(Z3). The last minimal stratum M, has orbit-type (Z). We find

Catz3 (Mﬂ1) + Catzs (M,BQ) + CatZQ (Ma) =14+14+1= Catqr (M)

3.4 Ciritical point theory

In their original paper [39], Lyusternik and Schnirelmann showed that if M is
a compact Riemannian C*-manifold, then any function f € C'(M) has at least
Cat (M) critical points. The infinite dimensional case has been studied by Schwartz
[65] when M is a complete C*-manifold without boundary modeled on a separable
Hilbert space, i.e. each point of M has a neighbourhood homeomorphic to an
infinite dimensional Hilbert space, and f satisfies a suitable compactness condition.
Motivated by existence theorems in the calculus of variations, Palais extended
Schwartz’s result for complete Finsler C?-manifolds (cf. [54] Theorem 7.2) where
there is no Riemannian metric to define the gradient. The equivariant analogue has
been proved by Fadell [19] and Marzantowicz [46] in the case when G is compact.
The extension to proper Lie group actions can be found in Ayala, Lasheras and
Quintero [3]. In this section, we present Schwartz’s version of the Lyusternik-
Schnirelmann Theorem in the non-equivariant case (cf. Theorem 3.4.3) and explain
how to extend it to the equivariant case following the lines of [3]. Complete proofs

of the results presented below can be found in the book of Palais and Terng [57].
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3.4.1 Gradient vector field

Let (M, g) be a connected Riemannian manifold without boundary. For my, my €
M we define

dlms,ms) = inf [ gr(6) (3(0). (1) (33

where the infimum is taken over all the C! paths 7 joining m; and msy. The metric
topology induced by d coincides with the original topology of M. We say that
M is geodesically complete if the Riemannian exponential Fxp(m) : T,,M — M
is defined on the whole T,,M for all m. By the Hopf-Rinow Theorem, M is
geodesically complete if and only if it is complete as a metric space i.e. if the
metric (3.3) is complete. Given f € C'(M) the gradient of f is the unique vector
field Vf € X(M) defined pointwise by

g(m) (v, Vf(m)) =df(m)-v forallv e T, M. (3.4)

For v € T,,, M we set ||[v||* = g(m) (v,v). Recall that m € M is a critical point of f
is df (m) = 0 or equivalently if V f(m) = 0. Otherwise, we say that m is a reqular
point. The image by f of a critical point (resp. regular point) is called a critical
value (resp. regular value). If ¢ is a regular value then f~!(c) is a codimension one
embedded submanifold of M. Denote by C(f) the set of critical points of f and
by C.(f) the set of critical points m such that f(m) = c¢. Away from C(f), we can
define a normalized C! vector field X; by

_ —Vf(m)
V]2

called the gradient vector field. Let p; be the flow generated by X. Since the

derivative of f(p;(m)) with respect to t is identically minus one, f is monotonically

X(m) (3.5)

decreasing along the flow lines of X i.e.

flpi(m)) = f(m) —t.

The time-one map @y is the homeomorphism on M\ C(f) that sends m € M\ C(f)

onto ¢1(m), obtained from m by flowing down along the flow ¢; of the gradient
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vector field for the time ¢ = 1. To deal with the non-compactness of M, Schwartz

introduced the following condition on the manifold M and on the function f:

Definition 3.4.1 (Palais-Smale condition ). We say that a pair (M, f) satisfies
the Palais-Smale condition (PS) if the following holds.

(i) M is a complete C*-Riemannian manifold without boundary modeled on a
separable Hilbert space and f € C*(M) is bounded below.

(ii) If (xn)neny € M is a sequence of points such that the sequence of images
f(z,) is bounded and ||V f(x,)|| converges to zero, then (z,),en contains a

convergent subsequence in M.

Condition (ii) is a compactness condition which implies that f restricted to its
critical set C(f) is a proper map. In particular for any real number ¢, the subset
C.(f) is a closed bounded subset of M. Since M is complete, the Hopf-Rinow
Theorem implies that C.(f) is compact in M.

3.4.2 Deformation Lemma

For ¢ € R we set M, = f~'(] — 00, ¢]), the piece of the manifold below the level
f7Yc). If ¢ is a regular value of f then M, is a smooth submanifold of M with
boundary f~!(c). The hard part part of the Lyusternik-Schnirelmann Theorem
embodies in the First Deformation Lemma which states essentially that, away form
the critical points, the manifold M is a serie of submanifolds with boundary that
look like products that can be retracted onto the lower pieces by flowing down
along the flow of X. In other word, the topological information of the manifold is

essentially confined to the critical points of f.

Lemma 3.4.2 (First Deformation Lemma [57](Theorem 9.2.3)). Let U be
any neighbourhood of C.(f) in M. Then for e > 0 sufficiently small,
¥1 (Mchs \ U) C M.—..



71 THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY

Mc+€ _AC+ 3

M,_. c—e

Figure 3.6: Outside of the open set U, the manifold is
decomposed into products that can be retracted onto
the lower piece M. . by flowing down along ;. The
red lines indicate the flow lines of X.

3.4.3 Lyusternik-Schnirelmann Theorem

We may use the First Deformation Lemma to prove the Lyusternik-Schnirelmann
Theorem . We first define

en(f) =inf{ceR|Cat (M, M)>n}. (3.6)

It is proved in [57] (Proposition 9.2.8) that c¢,(f) is a critical value of f for n =
0,1,...,Cat(M) and that
cn(f) < enga(f) (3.7)

with possible equality. The proof below is taken from [57] but the original paper

of Palais is [55].

Theorem 3.4.3 (Lyusternik-Schnirelmann Theorem [65]). Let (M, f) be a
pair satisfying the (PS) condition. Then the number of critical points of f is
greater than or equal to Cat(M).

Proof. Since the theorem is trivial if f has an infinity of critical points, we assume
that there are only a finite number of critical points my,...,my in f~1(c) where
¢ = cur1(f) = ...cou(f) for some positive integer {. In particular, the critical
points are isolated. Take neighbourhoods U; of m; whose respective closure are

disjoint closed disks. Setting U = UF_,U; we obtain using the monotony condition
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and contractibility of U,

k
Cat(U, M) <> Cat(U;, M) = k.

i=1

By the First Deformation Theorem, there is ¢ > 0 such that M., \ U can be

deformed onto M._. by mean of the time-one map. Then
Cat (M. \U, M) < Cat (M,_.,M).
Since ¢ — e < ¢ = ¢,41(f) and (3.7), we must have
Cat (M.—e, M) <n+1 and Cat(M..\UM)<n.
By the subadditivity property
Cat (Meye, M) < Cat (Mo \ U, M) + Cat (U, M) < n+ k. (3.8)

Since ¢, (f) = ¢ < c+¢€ < cpppr1(f) and (3.7) we conclude that n+1 < n+k+1
and thus k& > [. Then there are at least [ critical points in f~!(c). In particular
if 1 <n < Cat(M), f has at least n critical point at or below the level ¢,(f). In
total, f has at least Cat(M) critical points. |

3.4.4 Critical points on proper G-manifolds

The above discussion generalizes when (M, G) is a proper G-manifold. The reader
is refered to [3] for details. In this case we know by Proposition 2.1.7 that we
can construct a G-invariant Riemannian metric on M, by applying the averaging
method on each tangent space. Given a function f € C®(M)% the associated
gradient vector field Vf is G-equivariant. Note that by G-invariance of f, if
m € C.(f) then G -m C C.(f). The Palais-Smale condition is replaced by the

orbitwise Palais-Smale condition.

Definition 3.4.4 (Orbitwise Palais-Smale condition [3]). A proper G-manifold
(M, Q) and a function f € CY(M)% satisfy the orbitwise Palais-Smale condition
(OPS) if the following holds:
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(i) M is a complete Riemannian proper G-manifold of class C?, without bound-

ary, modelled on a separable Hilbert G-space.
(ii) f is bounded below.

(iii) If (z,)nen € M is a sequence such that the associated sequence of images
f(z,) is bounded and ||V f(z,)|| converges to zero, then there exists a se-

quence

(gn)neN C G

such that the sequence (g, - T, )nen contains a convergent subsequence in M.

Similarly to the non-equivariant case, condition (iii) is a compactness condition
which implies that f restricted to its set of critical orbits modulo G is a proper
map. Note that if G is compact [19], condition (PS) implies condition (OPS).
In [3], Alaya, Lasheras and Quintero proved an equivariant version of the First

Deformation Lemma and obtained:

Theorem 3.4.5 ([3, 4]). If a proper G-manifold (M, G) and a function f €
CY(M)C satisfy condition (OPS), then f has at least Catg(M) critical orbits.
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This chapter embodies the central topic of this thesis. As already mentioned in
the introduction, a broad class of symmetric Hamiltonian systems can be viewed
as a perturbation of another Hamiltonian system having a bigger symmetry group.
For example, the motion of a spherical pendulum is governed by a Hamiltonian
defined on T*S?, which is invariant with respect to a circle action. It can be
viewed as a perturbation of the Hamiltonian governing the co-geodesic flow on
T*S?, which is invariant with respect to the full group of rotations in the three
dimensional Euclidean space. We start by specifying what we mean by explicit
symmetry breaking perturbations. Let (M,w, G, ®¢) be a Hamiltonian proper G-
manifold. The non-degeneracy of w implies that, associated to any Hamiltonian
h € C*(M)%, there is a unique vector field X}, defined by tx,w = —dh. Since the
action of G on M is canonical and h is G-invariant, the integral curve ¢;(m) of
X, starting at m € M satisfies ¢;(g - m) = g - pi(m) for all g € G. The resulting

Hamiltonian equations

d
g 2e(m) = Xn(ee(m)) (4.1)
are thus G-equivariant and we say that G is the symmetry group of (4.1). We
study the effect of a small Hamiltonian perturbation of these equations, which is

invariant with respect to a subgroup of G.

Definition 4.0.1. Let h € C*°(M)® and H C G be a closed subgroup. An
H-pertubation of h is a family of functions hy € C(M)# such that the map
(m,\) € M x R+ hy(m) € M is smooth, and hy = h.

74
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4.1 Symmetry breaking for equilibria

The aim of this section is to give an estimate of the number of H-orbits of equilibria
that persist under a small H-perturbation of some G-invariant Hamiltonian. This
is the content of Corollary 4.1.3. A point m € M is an equilibrium of h € C°°(M)%
if dh(m) = 0, or equivalently if Xj,(m) = 0. Assume N is some vector space and
f: G x N — R is a smooth function. We denote by dy f the partial derivative(s)
of f with respect to the N-variables. By abuse of notations we write D?f for the

Hessian of f and D% f for the Hessian with respect to the N-variables.

Definition 4.1.1. A G-nondegenerate equilibrium of h € C*(M)% is a point
m € M such that

(i) dh(m) =0,

(ii) D% Rh(m) is non-singular where N is any subspace of T;, M complementary
to g-m. In other words, the Hessian is non-singular in the directions normal

to the group orbit.

If m € M is a G-nondegenerate equilibrium of h then so is any p € G - m, by
G-invariance. For the same reason, the tangent space T, (G - m) is contained in
ker (D?h(p)) for any p € G - m. Definition 4.1.1 is a particular case of Morse-Bott
non-degeneracy when G - m is the critical manifold of i (cf. [14] Appendix E.2).
Note that Condition (ii) implies that the critical manifold G - m is isolated in the
sense that there exists a tubular neighbourhood of G- m that does not contain any

other critical points of h.

4.1.1 Persistence of equilibria

We say that a closed subgroup H C G is co-compact (in G) if the left multiplication
of H on G is co-compact i.e. the orbit space H \ G under this action is compact

(as a topological space). We can now state the main result of this section.
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Theorem 4.1.2. Let (M,w,G,®q) be a Hamiltonian proper G-manifold and
let H C G be a co-compact closed subgroup. Assume that hy € C®°(M)H is an
H-pertubation of some h € C*°(M)Y and that m € M is a G-nondegenerate
equilibrium of h.

Then there is a G-invariant neighbourhood U C M of m such that, if A
is sufficiently small, there exists a function fy € C™(G/Gn)" whose critical

points are in one-to-one correspondence with those of hy in U.

Proof. Let m € M be a G-nondegenerate equilibrium of h whose stabilizer is
denoted by K := G,,. Following the notations of Section 2.4 the product space
N :=m* x N; is a K-vector space and it is isomorphic to some K-vector space
complementary to g - m in T,, M. By the Symplectic Tube Theorem 2.4.1 and
G-nondegeneracy of m, we can choose a K-invariant neighbourhood Ny C N of
0 € N, such that

(i) The associated bundle G xx Ny is a symplectic local model of some G-

invariant neighbourhood U C M of m.
(ii) The only critical points of h in U are on G - m.

In that model the point m reads [(e,0)] and the H-pertubation is identified with
hy: G xg Ng— R. Let p: G x Ny = G xXg Ny be the orbit map. We define the
lift of hy by

lNL)\::p*h,\:GxNo—>R

where p* is the pullback map. The critical points of h) coincide with those of the

lift }~L,\. Indeed since p: G x Ny — G X Ny is a surjective submersion, we have
dhy ([(g:V)]) =0 &= (p"dhy) ((9,v)) =0 <= dhy((g,v)) =0.

We may thus work with h » instead of hy.
We define a (left) action of the direct product G x K on G x Ny by

(h7k) ) (ga V) = (hgk_lvk ’ V)‘
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By hypothesis, the lift h is G x K-invariant whereas the perturbation h, is only

H x K-invariant. Since (e,0) € G x Ny is a G-nondegenerate critical point of h,
dh(e,0) =0 and D%h(e,0) is non-singular. (4.2)

In particular the map
dN’fLIGXNoﬁNgﬁNO

satisfies d N?L(e, 0) = 0 and its derivative with respect to the Ny-variables, evaluated
at (e,0), is non-vanishing. The Implicit Function Theorem implies the existence
of a neighbourhood Vi x W of (0,¢e) in R x G such that, for any (), g) € Vi x W7,
there is a unique ¢} (g) € Ny satisfying

dnha(g, d3(9)) = 0. (4.3)

By H-invariance' of dez,\, we can choose Wj to be H-invariant. This procedure

defines an H-invariant smooth function

OV x W, — Ny
A g) — &5(9)

By G-invariance of h, (4.2) holds when replacing (e, 0) by any (g,0) € G x N,. We
apply the previous argument for every (g,0) with g ¢ H and use the compacity of
H \ G to extract a finite collection of open subsets {V; x W;}"_, with associated
H-invariant smooth functions ¢ : V; x W; — Ny satisfying (4.3). Let V C N, V;
be an open interval containing 0 € R. By uniqueness of each ¢’, we can glue them

together to define an H-invariant smooth function

QbZVXG — Ny
(A g) — oalg)

such that
dnha(g, dx(9)) = 0. (4.4)

"When we say that, we think of H as a subgroup of H x K.
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For every fixed parameter A € V|
ha(hgk™, ¢x(hgk™")) = ha(g, ¢a(g)) for any (h,k) € H x K.
It thus descends to a function fy € C*(G/K)" given by

£ (lg)) = ha (gl o ([9]x)) (4.5)

where [g]x denotes a coset in G/K. For any pair 8 = (\,[g]x) € V x G/K, we
define the shift BB : No — R by

hs(v) = ha([glk v + 6 ([9])) = Hr(lgl). (4.6)

This function has a non-degenerate? critical point at 0 € Ny. Indeed by (4.4)

and K-invariance® of hy,

dhs(0) = dnha([g]k: ¢ ([g])) = 0.

Moreover, its Hessian DQBﬁ(O) is non-singular, because non-degeneracy is a stable
condition®. By the Morse Lemma (cf. Lemma 2.2 in [49]) there is a local coordinate
system vg = (v1, ..., 1Y), defined in a neighbourhood Nz C N of 0 with 4(0) = 0,
such that

~ B ¢ ¢
hs(v) = hg(0) + > ei(1i)* = ei(n)® forall v e Ng. (4.7)
i=1 i=1
where ¢; = £1 and v3(v) = (v1, ..., ).

The Morse chart (Ng, v3) depends on 5 = (A, [g]x). Since the functions defining
(4.6) are H-invariant, the identity (4.7) holds on (Ng,vs) when replacing hg by
hg where ' = (A, [hg]x) with h € H. We repeat the previous argument for every
B = (\[gluk) € V x (H\G/K), where [g]ux denotes the double coset of g. We
thus obtain a collection of Morse charts (Ng, vg) indexed on V' x (H\G/K). The

compacity of H\G is used next to extract a finite number of Morse charts (Ng,, v3,)

2in the Morse sense ([49] Section 2).
3When we say that we think of K as a subgroup of H x K.
4We might have to take V smaller.
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fori =1,...,r. Using a partition of unity, we construct a local coordinate system
U= (#,...,"), defined in a neighbourhood Ny C N}, N3, of 0 with #(0) = 0,
such that

¢

hs(v) => ei(;)* forevery B€V xG/K, when ve N. (4.8)

=1

We may define a smooth map ¢ : V' x G/K X No = No by

(A (9l v) = Oa(lglk, v) = v + oallglx)- (4.9)

Replacing (4.9) in (4.6) yields

ha([gl ¥a([9)s v) = - €i(@)* + fallgls)  whenever v € N (4.10)
where &; = +1 and 5(v) = (74, . . ., ). Therefore ([g]x, v) € G/K x Ny is a critical
point of (4.10) if and only if

Let U C M be the G-invariant neighbourhood of m whose symplectic local model
is G xx No. In particular if A € V, the critical points of hy in U are in one-to-one
correspondence with those of the function f, € C*(G/K)# defined in (4.5). M

Corollary 4.1.3 (Persistence of Equilibria). If the manifold G/G,, and the
function f\ € C®(G/Gn)E of Theorem 4.1.2 satisfy condition (OPS), then
the number of H-orbits of equilibria that persist near G - m under a small
H -perturbation is bounded below by Caty(G/Gy,).

Proof. If \ is sufficiently small, Theorem 4.1.2 implies that the H-orbits of equi-

libria of h) in some neighbourhood of G'-m are in one-to-one correspondence with
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those of the function f\, € C°(G/G,)" defined as in (4.5). By Theorem 3.4.5,
the number of H-orbits of equilibria of h) is at least Caty(G/Gp). |

Note that if G is compact, the (OPS) condition is automatically satisfied.
Indeed, any compact manifold is automatically complete and the compactness

condition on f) is fulfilled.

Example 4.1.4. Think of the cylinder M = S! x R as embedded in R® with
coordinates (0, z) and endow it with the standard symplectic form w = df A dz.
The Lie group G = O(2) acts on M by R, - (0,2) = (0 + ¢, 2), it R, € O(2) is
a rotation of angle ¢; and by r, - (6,2) = (2a — 0, 2), if ro, € O(2) is a reflection
about the line forming an angle o with the z-axis in R3. The action of G on M
is Hamiltonian with momentum map ®¢ : (6,2) € M — z € R. Consider the
I-parameter family hy : S' x R — R defined by

ha(0,2) = 2* + X cos(nf).

Then h = hy is G-invariant and m = (0,0) is a G-nondegenerate equilibrium of h
whose stabilizer is G,,, = (ry). The perturbation hy is invariant® by H = D,,, where
D,, is the dihedral group of order 2n. The perturbed Hamiltonian hy has 2n critical
points whose coordinates are (Tk,0) for k = 0,...,2n — 1, which form a regular
2n-gone as shown in Figure 4.1 for the case n = 3. Since G/G,, = O(2)/(ro) is
topologically a circle, we find Caty(G/Gy,) = 2, by Theorem 3.1.7. Since G is
compact, condition (OP.S) of Corollary 4.1.3 is automatically satisfied. There are
thus two H-orbits of equilibria of A that will persist, and each of them is an n-gone
(cf. Figure 4.2).

5In fact, the full symmetry group should be D,, x Zs since Zs acts on the z-component by
swapping the sign. However such an action is not canonical in the sense that it does not preserve
the symplectic form. Since this discrete part does not contribute in the further application, we
do not take it into account.
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Figure 4.1: When n = 3,
h has a G-orbit (red circle)
consisting of G-nondegenerate
equilibria, on which the six
equilibria of h) lie.
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Ds-orbit
of equilibria
of hy

Circle of equilibria of hg

Figure 4.2: At the level of
coordinate z = 0, the six equi-
libria of h) form two different
Ds-orbits. One orbit is stable
and one is unstable.

4.1.2 Dynamics of a 2D rigid body in a potential flow

We apply the result of Corollary 4.1.3 to the problem of a planar rigid body B
of mass m moving in a planar irrotational, incompressible fluid with zero vortic-
ity and zero circulation around the body. The motion is governed by Kirchhoff
equations [31]. Classical treatments of the problem can be found in Lamb [35]
and Milne-Thomson [48]. The configuration space of the body-fluid system is a
submanifold @ of the product SE(2) x Emb,y; (Fo, R?), where SFE(2) is the special
Euclidean group describing the motion of the body, and Emb,y (Fo, R?) is the
space of volume-preserving embeddings of the fluid reference space F in R2. The
symmetry group of this system is the direct product of SE(2) (group of uniform
body-fluid translations and rotations) and the particle relabeling symmetry group
(volume-preserving diffeomorphisms of Fy). Since these actions commute, the sys-
tem can be reduced by the process of symplectic reduction by stages (cf. Marsden
et al. [43]).

The Hamiltonian of the system is invariant under the particle relabeling sym-
metry group. Geometrically, eliminating the fluid variables amounts to carry out
a symplectic reduction by this group. The particle relabeling symmetry group

acts on T*() in a Hamiltonian fashion. The associated momentum map has two
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components corresponding to the vorticity and the circulation. The reduction at
zero momentum corresponds to a fluid with zero circulation and zero vorticity.
In this case, the symplectic reduced space is identified with T*SFE(2), endowed
with the canonical symplectic form and the SFE(2)-invariant reduced Hamiltonian
is the sum of the kinetic energy of the body-fluid system by the addition of the
so-called “added masses”, and the kinetic energy of the body. Those added masses
depend only on the body’s shape and not on the mass distribution. The reader is
refered to Kanso et al. [30] and Vankerschaver et al. [68] for details. Since SE(2)
acts symplectically on T*SFE(2), the dynamics can be reduced a second time using
Poisson reduction and thereby the reduced motion is governed by the Kirchhoff
equations that are the Lie-Poisson equations on the dual Lie algebra se(2)* (cf.
Appendix A for details).

For the sake of simplicity we will assume that the body B is shaped as an
ellipse with semi-axes of length A > B > 0. We will use the formulae and follow
the notations of Fedorov et al. [20]. At the center of mass of B we attach a frame
{E1, E»} that is aligned with the symmetry axes of the body. Its position is related
at any time to a fixed space frame {ej,e2} by an element of SE(2). An element
of the Lie algebra ¢ € se(2) is identified with a vector

(0,v1,v5) € R® (4.11)

where 6 € R is the angular velocity of B and (vi,v2)T € R? is the linear velocity
of its center of mass, expressed in the body’s frame. In this setting the body has

kinetic energy
1
Tp = 56 - I (4.12)

with Iz := diag(Ig, m, m), where I is the moment of inertia of the body about its

center of mass. The kinetic energy of the fluid is given by

Tr = 6 It (4.13)

where Ir = £ diag((A* — B*)?, B, A?) is the tensor of added masses, and p is the
fluid density. In the absence of external forces, the Lagrangian of the body-fluid
system L : TSE(2) — R is given by £ = T + T. It defines a Riemannian metric
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on SE(2) with respect to which the motion of the body B is geodesic. Since £ does
not depend on the group variables, it is SFE(2)-invariant and can thus be reduced

to the function ¢ : se(2) — R given by

((¢) = éf (Is +1r)¢ (4.14)

with € asin (4.11). An element v of the dual Lie algebra se(2)* is identified with
a one by three matrix (z, a1, a2). The dual pairing (-,-) between se(2)* and se(2)
is thus given by

(1,€) := (z, 00, ) (6, v1,12)T = 20 + vy + Agvs. (4.15)

We perform the Legendre transform FL : £ € se(2) — ((Ig + 1x)¢)T € se(2)* to
obtain the reduced Hamiltonian h : se(2)* — R defined by

1
h(v) = o1 (Ig + 1) 7.

The Lie-Poisson equations on se(2)* that describe the motion of the body-fluid
system are
v =adsmv. (4.16)

ov
where ad¢v is identified with (g — gy, Oy, —éal) as computed in Appendix A.
This problem turns out to exhibit symmetry breaking phenomena from different

points of view:

(i) One point of view consists in looking at the body B without the fluid (p = 0).
Adding the fluid amounts to seeing the fluid density p as a “parameter”.
The O(2)-symmetry of the kinetic reduced Hamiltonian breaks into a Ds-

symmetry, where Dy is the symmetry group of an ellipse.

(ii) On the other hand we can consider the original system as being a circular
planar rigid body (A = B) in a fluid and the symmetry can be broken by
deforming the body into an elliptical shaped body. This case exhibits the
same pattern of symmetry breaking from O(2) to the subgroup Ds.
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These two approaches are the same from a group theoretical point of view. Con-
trary to Example 4.1.4, the Hamiltonian in consideration will not be perturbed by
adding some potential energy. In this case, there is no potential energy involved,
only the metric is perturbed giving rise to a modified kinetic energy. Let us now

discuss the two cases mentioned above.

(i) The unperturbed system on the Poisson reduced space se(2)* is governed by

the Hamiltonian

1 1 (2% ai+ad
h)=-v Iv=- 2 4% 417
() 2" T <IB+ m (4.17)
where v 1= (z,a1,a9) and T := Iz'. The Hamiltonian is invariant with

respect to the group G = O(2) . In particular, for each ¢ € R, the level sets
h(v) = ¢ describe spheroids in R3.

Adding a fluid to the system amounts to look at the variation of the param-

eter”
A? — B?
A=dp where d:=—— >0 Iis fixed.
m

1

sV - Iy with

This gives rise to the perturbed Hamiltonian hy(v)

1 1 1
I = di ( , , ) . 4.18
A 128 Ig + Aeg’ m+ Aes” m+ Acs ( )
where ¢; = mzd”, cy = W and c3 = w are fixed constants encod-
ing the datas of the system. The perturbed Hamiltonian reads
1 x? a? a2
ha(v) = = 1 2 4.19
)\(V) 2 <]B+/\cl+m+/\02+m+/\03) ( )

SIn fact, the full symmetry group should be O(2) x Zy since Zs acts on the z-component by
swapping the sign. However since this discrete part does not contribute in the further application,
we do not take it into account.

"We could simply consider p as being the parameter, but in this case the parameter would
not be dimensionless and we want to avoid this.
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8. This per-

and has symmetry H = D, the dihedral group of order four
turbation coincides with A when A = 0 and the function (\,v) — hy(v) is
smooth. Therefore, h) is an H-pertubation of h. The symmetry is broken
because the fluid influences the motion of the body if it is elliptical. If the
body is circular (A = B), or if it moves in the vacuum, its center of mass
would move at constant velocity and it would rotate at constant angular

speed.

(ii) We carry out another kind of perturbation: rather than perturbing the rigid
body motion by adding a fluid to the system, we start with a circular planar
rigid body (A = B) in a fluid and break the symmetry by changing the body

shape into an ellipse. The unperturbed Hamiltonian is given by

1 1 (2?2 o+ a?
h(v)=-v-Tv=- "+ L2 4.2
W) =gv-lr=3 (15 * m+d2> (4.20)

where dy = p“fQ, v = (z,a1,a0), I := (Ig + Iz)"' and A = B in the

definition of Ir. The Hamiltonian is invariant with respect to G = O(2).

For each ¢ € R, the level sets h(v) = c also describe spheroids in R?.

We perturb the body shape by setting A = AQI;BQ where B > 0 is fixed and
A > B > 0 varies. This gives rise to the perturbed Hamiltonian hy(v) =

v - Iyv with

1 1 1
I, =di 4.21
A 1ag<18+)\2d1’m+d2’m+()\+1)d2> (421)
where d; = p’ZB * The perturbed Hamiltonian is thus given by
1 x? a? 0%
h — 1 2 4.22
) 2<IB+)\2d1+m+d2+m+()\+1)d2> (4.22)

and is again symmetric with respect to the action of H = D,. In this case,

if there was no fluid (p = dy = 0), no symmetries would have been broken.

8The group D, is isomorphic to Zg X Zs which leaves hy invariant when acting on a; and as
by swapping the signs.
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Since the reduced motion is governed by the Lie-Poisson equations (4.16), it
is constrained to the coadjoint orbits of SE(2). As shown in [44] (Chapter 14.6),

almost all of them are cylinders (the singular orbits consist of points on the vertical

dashed line in Figure 4.3). In both cases, the level sets of hy are ellipsoids and

those of h = hg are spheroids. Their intersections with a coadjoint orbit are shown

in Figure 4.3. In particular, the circle of equilibria of A (in red in Figure 4.3)

breaks into four fixed points of h,, two of which are connected by four heteroclinic

cycles.

—
——
. '

Figure 4.3: The flow lines are given by intersecting
the level sets of hy (the ellipsoids) and the coadjoint
orbits. On the left hand side, we see the flow lines of h
on a coadjoint orbit. On the right hand side, the flow

has been perturbed.

Let us go back to the first case we discussed above with hy as in (4.19). We will

apply Corollary 4.1.3 to predict the existence of the four fixed points that persist

(cf. Figure 4.3). The Fréchet derivative of h) is

dv Ig+ Xy’ m 4+ e’ m+ Mg
Therefore, the Lie-Poisson equations (4.16) reduce to

A(ca—c3)

x (m+>\03)(m+)\02)a1a2
. _ To

ar = m~+Act
. _ __zoq

Q2 = m-+Ac1

ohyn ( T o o )

(4.23)

(4.24)

Setting A = 0 in (4.24), we see that the fixed points of h = hg are either of the
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form (0, oy, ap) with (aq, as) € (R?)*, or of the form (z,0,0) which correspond to
points on the singular coadjoint orbit.

Let p = (0,a1,a3) with a? + a3 = 1 be a fixed point of the unperturbed
hamiltonian h. The stabilizer of ;1 is G, = (ry) where 1y is a reflection in the plane.
The quotient G/G,, = O(2)/(ry) is topologically a circle yielding Catp,(S') = 2.
The four fixed points appearing in Figure 4.3 are the two H-orbits that persist.

4.2 Symmetry breaking for relative equilibria

In this section, we extend Theorem 4.1.2 and Corollary 4.1.3 to the case of relative
equilibria which is more subtle for two reasons: firstly we must take into account
the conservation of momentum, and secondly for a non-zero velocity the so-called
augmented Hamiltonian no longer has symmetry G.

We start by briefly recalling some standard facts about relative equilibria, the
reader is invited to consult the book of Marsden [42] (Chapter 4) for a more
detailed exposition. Given a Hamiltonian proper G-manifold (M,w,G, ®q), a
relative equilibrium of a Hamiltonian h € C*°(M)% is a pair (m, &) € M x g such
that Xp,(m) = &y (m). Equivalently, if (m,§) is a relative equilibrium of h, then

m is a critical point of the augmented Hamiltonian
he = h — ¢ € C°°(M)C

where ¢%,(m) := (®g(m), £), which is a Ge-invariant function which depends lin-
early on £. A standard fact about relative equilibria is that the velocity £ and the
momentum p = ®¢(m) commute i.e. £ € g,. Note that, if the stabilizer G,, is non
trivial and (m,§) is a relative equilibrium of h, then (m, & + n) is also a relative
equilibrium of A, for any n € g,,. Moreover if (m, ) is a relative equilibrium of A
then so is (g-m, Ad,€) for every g € G. In general a relative equilibrium is said to
be non-degenerate if the Hessian D2h¢(m) is a non-singular quadratic form, when
restricted to the symplectic slice N7 at m relative to the G-action. However, this
definition of non-degeneracy is not enough to guarantee that a relative equilibrium
of some h € C°°(M)% persists under an H-perturbation. For that reason, one shall

cook up a slightly stronger definition of non-degeneracy.
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4.2.1 Induced momentum map

Let H be a closed subgroup of G. The dual of the inclusion of Lie algebras
R which is the

restriction of the linear form p to the subalgebra hh. The action of H on M is still

iy - b < g is the projection if : g* — bh* and is given by i;(u) = u

both canonical and Hamiltonian. A momentum map for this action is given by

Oy =iyodg: M — b* and is called the induced momentum map for the H-action.

Proposition 4.2.1. Consider the decomposition of T,,M as in (2.19),
and define the subspace M = {zy(m) +w € Ty & Ny | —adip + f(w) € b°}
where f denotes the isomorphism between Ny and m*, and b° is the annihi-
lator of b in g*. Then ker (D®g(m)) = ker (D®g(m)) & M.

Proof. It is clear from the definitions that there is an inclusion of subspaces
ker (D®g(m)) C ker (D@ (m)) . (4.25)

Let (¢, G X¢,, (m§ x (N1)o),U) be a symplectic G-tube at m as in Theorem 2.4.1.

Linearising ¢! at m yields a linear symplectomorphism
T To®T1 ® No® N1 = Tpm1() (G Xg,, (m* X NY)).
For z + vy € g,, ® m and z € n we have
T - (@ + y)ar(m) + 221(m) + 0 + ) = Tregopp - (@ + 9+ 2 f(w), )

where p : G x m* x N — G Xg,, (m* x Np) is the orbit map. By definition, the

subspace ker (D®y(m)) consists of the elements

(@ +y)u(m) +zu(m) +w+v) e Tod Ty & No & Ny
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satisfying D(®py o pop)(m) - (z+y+ 2, f(w),r) = 0. Equivalently

d
0 = —

T q)Ho¢([(exp(t(x+y+z)),tf(w),tu)])

t=0

d » »
ag| " (A i(ory2y (1 + F () + P (1))
t=0

iy (—adip + f(w))

where the normal form for the momentum map is given by Theorem 2.4.2. As

required —adu + f(w) € h° since the kernel of i} is equal to h°. [ |

4.2.2 Non-degeneracy condition and regularity condition

We now state a stronger version of non-degeneracy of a relative equilibrium.

Definition 4.2.2. Let (M,w, G, @) be a Hamiltonian proper G-manifold, H C G
be a closed subgroup, and &5 : M — h* be the induced momentum map. Setting
o := ®y(m), a relative equilibrium (m,£) € M x g of h € C®°(M) is said to be
a-nondenegerate if D*h%(m) is a non-singular quadratic form on N; & M with M

as in Proposition 4.2.1.

Definition 4.2.2 only depends on a and not on the underlying Witt-Artin de-
composition of T,, M. If G is non-abelian, the space M might have an non-trivial
intersection with g -m. This intersection is the subspace q-m C g-m where q is

an H,,-invariant complement to g, in the “symplectic orthogonal”
b= {x € gl wai(m) € (- m)="}.

The non-singularity of D2hé(m) along g - m depends only on that of D2¢%,(m)

which has symmetry group G¢. In the last chapter, we prove the following lemma:
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Lemma 4.2.3. Let (M,w,G, ®g) be a Hamiltonian proper G-manifold. Let
m € M with momentum pn = ®g(m) and an element £ € g,,. If g is semi-

simple then the Hessian D%g(m) restricted to g - m is singular only along

(9e +9u) - m.

Therefore if an equilibrium (m, &) € M x g of some h € C°°(M)% with mo-
mentum g = $;(m) is a-nondegenerate in the sense of Definition 4.2.2, then g
has trivial intersection with q. In Theorem 4.2.5 we show that a number of orbits
of relative equilibria of h persist under H-perturbation. Such relative equilibria

must have their velocity § in h,. We assume an additional regularity assumption

O C G¢ (R)

This says essentially that p needs to be “more regular” than £ in the sense of
Definition 6.2.2, introduced in the last chapter. However if { € b,,, this assumption
depends on the embedding of h — g as shown in the example below. This is not
a problem for us because isomorphic Lie algebras have different underlying Lie

groups.

Example 4.2.4. In this example we show when condition (R) holds for g = s0(4)
and a subalgebra isomorphic to h = s0(3). The Lie algebra g consists of the

(—aT 0) =:(x,a)

where z,a € R3. We use the hat notation £ € h to mean the skew-symmetric

matrices of the form

matrix
0 —T3 i) T
2= x3 0 —x;| where x = | 29
—X2 T 0 T3

Given (z,a), (y,b) € g, the expression for the Lie bracket is

[(z,a), (y,b)] =(x X y+axbxxb+axy). (4.26)
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Coadjoint action. The dual g* is computed using the standard pairing $ Tr(A” B)
for square matrices A, B. The dual Lie algebra consists of pairs (x, p) € R? x R3
which satisfy

((x;p), (x,0)) = x-2+p-a
With this identification the paring reduces to the standard dot product in R3. The
linearized coadjoint action of g on g* is given by

ad, (X, p) = (X X T+ pxa,xXa+pxw) (4.27)

(z,0)

Indeed, for (z,a), (y,b) € g and (x, p) € g*, we compute

0, [(2,a), (y, b)])

<ad>(km,a)<X7p)7(y7b>> = p
p)s (T Xxy+axbrxbtaxy))
x

(x
(x
= x-(zxy+axb)+p-(xxb+axy)
(xxx+pxa)-y+(xxa+pxz)-b

(X x @+ pxa,xxa+pxz),(yb)).

Lie subalgebras isomorphic to so(3). Elements of h = so(3) are identified
with vectors # € R3 using the inverse of the hat map x € R® — 2 € h. There are
different ways to embed b into g as a Lie subalgebra. We restrict to the case when

the inclusion reads
ip: v €h (ta,sz) €9 (4.28)

for some constants ¢,s € R that have to be determined. In order for the image
in(h) to have a Lie subalgebra structure, the closedness under the bracket (4.26)
has to be satisfied. Calculating

[(tz, s7), (ty, sy)] = ((¢* + s%)z x y, 2ts(x x y)),

this should satisfy ((t* + s*)z x y,2ts(x x y)) = (tz X y, sz X y), leading us to
solve the equations t? 4+ s> = t and 2st = s. The only non-trivial solutions are
(t,s) = (1,0) and (¢,s) = (3,%3). We conclude that g has three subalgebras
isomorphic to s0(3) with inclusion as in (4.28), namely
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(i) The Lie algebra of rotations in R denoted s0(3), = {(x,0) € RS | z € R?}
with Lie bracket [(z,0), (y,0)] = (x x y,0).

(ii) The diagonal elements denoted s0(3); = {(%, %) ERC |z e R3} with Lie
bracket [(5,5), (%, §)] = (554 54).
(iii) The anti-diagonal elements denoted s0(3).q = {(%, —%) eERC |z e RS} with

Lie bracket [(3, %), (%, —%)] = (3%, —3Y).

Question: How many different embeddings h — g do we have in total?
202
elements (5, —3) € §0(3).q with respect to the bracket (4.26). Therefore there is an

isomorphism of Lie algebras (z,a) € so(4) — ((g, %) , (%, —%)) € 50(3)gx50(3)aq-

Note that the diagonal elements (£,%) € so(3); commute with the anti-diagonal

Regularity condition. Given a fixed momentum p := (x, p) € g*, the stabilizer

Lie subalgebra is
g.={(r,a)eg|xxr+pxa=0 and xXxa+pxz=0}

by (4.27). We show below whether condition (R) is satisfied for different choices

of Lie subalgebras isomorphic to b.

(i) Let h = s0(3), with inclusion map
ip:r €h— (2,0) €g.

To compute the dual of this inclusion i : g* — b*, we take (x, p) € g* and

x € h and we compute

(i (X, p), ) = ((X, p), iy (7)) = ((X; ), (2,0)) = x - .

Then
in((x.p)) =x €b".
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The symplectic orthogonal is b+ = {(x,a) € g| x x 2+ p x a = 0} . Since

the velocity ¢ € h must commute with g, it has to belong to the subspace

hu:

g, N h. Using equation (4.27),

b, ={(z,0) €s50(3), | x xx=0and px z=0}.

There are three cases to consider:

(a)

If x =p=0then g, =g and b, =h. We choose
§=(y,0)€bh
where y € R? is arbitrary. Using (4.26) we get
ge = {( My, \ay) € 9| A, A2 € R}

and clearly (R) does not hold.

If x and p are not collinear, h,, = {(0,0)}. In this case, the only available
velocity is £ = 0 and thus g¢ = g. In particular (R) holds.

If © = (x,p) is such that y = sp for some s € R, we choose £ of the
form
£:=(M\x,0)eb, forsome XeR

and thus g = {(x,a) € g | x x x =0 and a x x = 0} . Note that in par-
ticular, g¢ C g,. To see whether g, C g¢, pick an element (z,a) € g,.
By definition, it satisfies

rXxxy=pxa and xXa=2xXp. (4.29)

Using (4.29) and the fact that x = sp we get,

rxx=sxxp) =sxxa)=s(pxa)=s(rxY).
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Similarly
axx=s(axp) =s(xxz)=5*pxx)=s%(axy).

Therefore, (z,a) € g¢ as long as s* # 1 i.e. (R) holds as long as
i # (x,£x), as shown in Figure 4.4.

Figure 4.4: Condition (R) holds as long as p
is away form the red dashed lines that are sub-
spaces of codimension three in RS.

(ii) Let h = s0(3)4 with inclusion map

) eh»—><x x)e
i - T -, = .
b 979 g

To compute the dual of this inclusion i : g* — b*, we take (x,p) € g* and

x € h and we compute

(G0 ),3) = (0o @) = (o) (5.5 ) = 257w
Then
i) =L e,

Set = (x,p) € g° and a := if(u) = %52 € h*. Using Equation (4.27) we

b#:{<m $>650(3)d|axx20}.

2’2

get
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We thus choose a velocity of the form
£ := (Ao, ) €h,
for some A € R. By (4.26) the stabilizer Lie algebra of ¢ is
ge={(r,a)€glrzxa+axa=0}. (4.30)
In particular, g, C g¢ and (R) is automatic for any choice of p.

(iii) The case h = s0(3)4q is similar to the previous one.

4.2.3 Persistence of relative equilibria

We are now ready to state an equivalent version of Theorem 4.1.2 for relative
equilibria. The proof follows the same steps as Theorem 4.1.2. For that reason

some details have been skipped.

Theorem 4.2.5. Let (M,w,G,®g) be a Hamiltonian proper G-manifold.
Assume h € C®°(M)Y has a relative equilibriuvm (m,€) € M x b with mo-

mentum p = ®g(m). Let o be the restriction of pu to h. We assume that
(i) ®5'(a) is a smooth manifold,
(ii) (m,&) is a-nondegenerate and (R) is satisfied,
(iii) G, C H.,,
(v) H, C G, is co-compact.

Then there is a G,-invariant neighbourhood U c &5 (a) of m and a
neighbourhood V-C R x § of (0,€) such that, for each (\,n) € V, there
is a function fy € C®(G,/Gy)" whose critical points are in one-to-one

correspondence with those of hY in U.
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Proof. Let (m,§) € M x b be an a-nondegenerate relative equilibrium h, where
« is the restriction of the momentum p = ®¢(m) to h. By assumption &' (a) is
a smooth manifold on which G,, C H, acts canonically and properly.

Let K = G,, and consider the K-vector space N := N; & M, where N; is a
symplectic slice at m relative to the G-action, and M is as in Proposition 4.2.1.
By construction N is isomorphic to some K-vector space complementary to g, -m
in T, (@I_f(a)). By the Tube Theorem 2.1.5 there is a K-invariant neighbourhood
Ny C N of 0 € N, such that

(i) The associated bundle G, xx Ny is a local model for some G,-invariant
neighbourhood U C ®5'(a) of m.

(ii) The only critical points of h¢ in U are on G, - m.

In that model, the point m corresponds to [(e, 0)] and the augmented Hamiltonian
of an H-perturbation hy € C°°(M)™ of h is identified with &5 : G, xx Ny — R.
According to the proof of Theorem 4.1.2; the critical points of h§ are in bijective

correspondence with those of the lift
RS == p*hS : G x Np — R

where p : G, X Ny = G, X Ny is the orbit map. We may thus work with Ei
instead of 5.
We define a (left) action of the direct product G, x K on G, x Ny by

(h,k) - (g,v) = (hgk " k- v).

As G, C G by the (R) assumption, the lift h¢ is G, x K-invariant whereas hj is

only H, x K-invariant. By a-nondegeneracy of (m,§),
dhf(e,0) =0 and D2%hf(e,0) is non-singular.

As in the proof of Theorem 4.1.2, we can use the Implicit Function Theorem and
the compacity of H,\G,, to get an H,-invariant smooth function ¢} : G, — No,
depending on parameters (\,7) taken in a neighbourhood V' C R x h of (0,¢),
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satisfying
dxh!(g,9%(g)) =0 for every g€ G,.

For every fixed parameters (\,n) € V, the H, x K-invariance of R allows us
to define a function fy € C~(G,/K)"» by

Flglx) = EZ([Q]Kv oX(lg)x))

where [g]« is a coset in G,/ K. An application of the Morse Lemma with parameters
gives us a Morse chart (]vo,ﬁ) centered at 0 € Ny, where ]Vo C Ngp and v =
(',..., ™). Then there is a smooth map ¢} : G,/K x Ny — Ny, depending on
(A\,m) € V such that

Wl 2l ) = S + (g (4.31)

where ¢; = +1 and #(v) = (#,...,7,). Therefore ([g]x,) € G,/K x Ny is a
critical point of (4.31) if and only if

(f: siﬁidﬁi> (v)=0 and df/([g]x) =0.

Let U C ®5'(a) be the G -invariant neighbourhood of m whose local model is
Gy Xk No. In particular for (A\,n) € V, the critical points of h] in U are in

one-to-one correspondence with those of the function fy. n

Corollary 4.2.6 (Persistence of relative equilibria). If the manifold G, /G,
and the function fy € C*(G,/Gm)" of Theorem 4.2.5 satisfy condition
(OPS) then the number of H,-orbits of relative equilibria of h with velocity
close to &, that persist under a small H-perturbation in a neighbourhood of
G, -m in 5 (), is bounded below by Caty, (G,/Gp).

Proof. We apply Theorem 3.4.5 to f € C®(G,/G)"* and we obtain that the
number of H),-orbits of critical points of fy is bounded below by Catp, (G,./Grm).
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In other words, as long as (\,n) € V, the number of H,-orbits of relative equi-
libria of hy with velocity 1 in a neighbourhood of G, - m in ®;'(«) is at least
CatHH (Gu/Gm) [ |

Example 4.2.7 (Torus action). As a first application, we recover the result of
Grabsi, Montaldi and Ortega [23] for compact abelian groups and free actions. Let
(M,w, T", &) be a Hamiltonian T" space where T" is a n-torus acting freely on
M and let T” be a subtorus of T". Assume h € C*°(M)™" has an a-nondegenerate
relative equilibrium (m,€&) € M x t" with momentum pu = ®.n(m) and where
a = M‘tr' As T™ and T" are abelian, condition (R) always hold. By compactness
of T", condition (OPS) is automatic and then any T"-perturbation h) with A
small enough has at least

Catr (T™)

T"-orbit of relative equilibria with velocity closed to ¢ in a neighbourhood of T"-m

in @' (). Since T™ acts freely on T” by left multiplication,
Catyr (T") = Cat(T"/T") = Cat(T"™").

Hence Cat(T"™") = (n —r) + 1.

4.2.4 The spherical pendulum

As an application of Corollary 4.2.6, we consider the case of the spherical pendulum
whose Hamiltonian is viewed as a perturbation of the Hamiltonian governing the
motion of an unit mass point constrained to move on the surface of S?. Endow
R3 with the standard inner product (-,-) and let ey, 5, e3 be the standard basis.
The phase space for the spherical pendulum is the Hamiltonian proper G-manifold
(T*S%* w, G, &) where G = SO(3) acts on

T°5% = {(z,y) € S x R* | (,y) = 0}
by matrix multiplication A - (z,y) = (Ax, Ay). The associated momentum map

dg : T*S? — R3is
Pz, y) = xy.



99 EXPLICIT SYMMETRY BREAKING

Let H = SO(2) be the subgroup of rotations about the ez-axis with Lie algebra
b, the one-dimensional vector space generated by e;. We can think about the

Hamiltonian of the spherical pendulum

1
e, ) = Syl + A, )

as an H-perturbation of the G-invariant Hamiltonian h(z,y) = 5|y|*.

The relative equilibria of hy are the pairs ((z,y),£) € T*S? x b such that
where gb%(x, y) := (x x y,£). We show that these satisfy

A €12z, e3) = 0 and y = € x . (4.33)

Indeed the tangent space at (z,y) € T*S? is identified with
TlaoyT"S* ={(&,9) | (2,2) = 0 and (z,§) + (y, &) = 0}.

Equation 4.32 holds if, for all (&,y) € T{,,)T*S?, there is some non zero £ € b
such that

(y,9) + M, e3) = (& x y+x X 9,§). (4.34)

By setting & = 0, we obtain (({ x z) — y,y) = 0 for all y perpendicular to z. In
particular we choose § = (£ X x) — y and thus [|(¢ x ) — y||*> = 0 which implies
that

y=¢&xu. (4.35)

Replacing (4.35) in (4.34) yields
M, es) = (& X y,E)
which is equivalent to say that

(Nes — (y x &), &) = 0 for all & perpendicular to x.
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In other words, Ae3 — y X £ must be colinear to z. Using (4.35),

Aes =y x €= — [Pz + (A + [1€]*(x, e3)) €5

and thus (A + [|€]|*(z, e3)) e3 must be colinear to x. One possibility is z = e
which gives y = 0 by (4.35). The other possibility is

A+ [[€]1*(x,e3) = 0 and y = € X .

The relative equilibria ((z,y),&)) of the unperturbed Hamiltonian A are such that
x moves along a great circle on S? and those of hy are such that z describes a
circular trajectory at fixed height in the lower hemisphere of S?. Therefore the
only H,-orbit that has a chance to persist under h, is the one when x moves along
the equator. Indeed the point m = (e, sey) and & = ses, with s > 0, define
a G-nondegenerate relative equilibrium of the unperturbed Hamiltonian h, with
momentum g = sez. Observe that G, = SO(2) is the group of rotations about
the ez-axis. Embedding S* in S? as the equator allow us to view the orbit G, - m
as the set of perpendicular pairs (z,y) € S' x S! where S! is the equator of the
sphere of radius s. The (stable) relative equilibria of hy are of the form ((x,y),n)
with = re3 for some r € R and with z € S? having uniform circular motion at
constant negative heigh —%2. Since x € S? we must have |\| < r?. Given z we

can calculate y from (4.33). Setting a = s we get
(z,y) € P (a) & r(l-=)=s5 < 7ri(r—s) =\

The last equation can be solved for » and we find two solutions, one positive and
one negative. The condition |A| < r? implies that the only valid solution is the
positive one. Since the distance |r — s| is controlled by A, the velocity 7 is close to
¢ as A is sufficiently small. We conclude that for A small enough, h, has exactly
one H,-orbit of relative equilibria in a neighbourhood of G, - m in ®5'(«) with
velocity close to £&. For this example, the assumptions of Theorem 4.2.5 are all

satisfied. As expected, we have

CatHH(G“/Gm) = Catgo(g)(sl) =1.
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Bifurcation diagram If (z,y) satisfies (4.33) for some ¢, then it is a critical
point of rank one of the energy momentum map F\ = (hy, ®g). If we let £ varies,
s is viewed as a parameter and the boundary of F)(T*S?) is the convex region in
R? defined by the curve

st —3\? A2
ryA(S) = ( 232 , 8 — 83> . (436)

The critical points of rank zero (when £ = 0) are sent on F\(£es,0) = (£A,0).
The point (—es,0) is of type elliptic-elliptic whereas the point (e3,0) is of type
focus-focus (cf. Cushman and Duistermaat [15] and Vu Ngoc and Sepe [69)]).

q)H ®H

hox

»
ho .
20| (1,0)
-

Figure 4.5: Bifurcation diagrams of the energy-momentum map Fy when A = 0 (left
hand side) and when A > 0 (right hand side).
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Stability properties and bifurcations of relative equilibria can be determined by a
method developed by Krupa [34], which states that the dynamics of an equivariant
vector field in a neighbourhood of a group orbit is entirely governed by the dy-
namics transverse to that group orbit by using the the so-called slice coordinates
introduced by Palais [53]. While Krupa proved this result for compact Lie groups,
Fiedler et al. [21] extended it to proper group actions. The Hamiltonian analogue
has been studied by Mielke [47] as well as Roberts and Sousa Dias [60], and it
was expanded in Roberts, Wulff and Lamb [61]. By “dynamics transverse to the
group orbit”, we mean that the vector field in question can be split into two parts,
one part is defined along the group orbit and the other part belongs to a choice of
normal subspace transverse to that group orbit. For Hamiltonian systems defined
on (M,w,G,®g), the flow lines of a Hamiltonian vector field are confined to level
sets of the momentum map, reflecting the conservation of momentum. Therefore
the choice of normal space is more restrictive than for general dynamical systems
(Section 2.4). As constructed in Roberts, Wulff and Lamb [61], a space transverse
to G'-m is isomorphic to m* x N; where m* is isomorphic to (g,/gm) . A symplectic

slice Ny at m is a G,-invariant subspace of (1,,M,w(m)) defined by
Ny :=ker(D®g(m))/g, - m. (5.1)

It is endowed with both a natural symplectic structure wy, coming from w(m) and
a canonical linear Hamiltonian action of GG,,,. This subspace is of particular interest
for the study of stability, persistence and bifurcations of relative equilibria (cf. for

instance Patrick et al. [58], Lerman and Singer [38] and Ortega and Ratiu [51],

102
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Montaldi and Rodriguez-Olmos [50]).

5.1 The symplectic slice of a subgroup

Given a closed subgroup H C G we have seen that (M,w, H, ®y) is a Hamiltonian
H-space where @5 : M — h* is the induced momentum map. In this case, we can

also consider a Witt-Artin decomposition of T}, M relative to the H-action:

In particular, the H,,-invariant subspace N is a symplectic slice for the H-action.
It is chosen such that
Ny == ker(D® g (m))/bq - m (5.3)

where « := ®y(m). In general two arbitrary decompositions (2.19) and (5.2)
cannot be compared. In the study of explicit symmetry breaking phenomena, the
Hamiltonian equations are perturbed in a way that the symmetry group G breaks
into one of its subgroup H. The stability properties of the perturbed system rely
on a symplectic slice relative to the H-action on M, which is bigger than a slice
relative to the G-action. This leads us to find explicit relations between N; and
N;. Tt has been implicitly used in [23] that, when G is a torus and H is a subtorus

both acting freely on M, a symplectic slice N at m can be chosen of the form
N =N & X, (5.4)

for some subspace X,, C T,,M isomorphic to g/h x (g/h)*. We generalize this
observation for non-abelian Lie groups and non-free actions with the assumption
Gm € Ng(H), where Ng(H) is the normalizer of H in G. We show that, under
this assumption, there is a Witt-Artin decomposition (2.19) at m relative to the
G-action and a Witt-Artin decomposition (5.2) at m for the H-action that are
compatible in the sense that the symplectic slice N, for H can be expressed in

terms of the symplectic slice N; for G, and other subspaces of (2.19). Explicitly,

]/\\/i:Nl@Xm@g(G>H7M)'mv (55)
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for some subspace X,, C T} ® Ny symplectomorphic to a canonical cotangent
bundle b x b*, and where s(G, H, i) - m is some symplectic vector subspace of T}
(cf. Theorem 5.1.4 and Theorem 5.1.6). When G is a torus and H is a subtorus
both acting freely on M, we recover the equality (5.4). In this case, the vector
subspace b is isomorphic to g/h whereas the subspace s(G, H, i) - m is trivial (cf.
Example 5.1.8). In Perlmutter et al. [59], s(G, H, ) - m arises as a symplectic slice
at p for the H-action on the coadjoint orbit G - u. We give another proof of this
fact in Proposition 5.1.2. In our construction, s(G, H, ) is defined as a subspace

of the “symplectic orthogonal”
bt = {x € g|zm(m) € (h-m)*"™} (5.6)

which is present in the context of geometric quantization (cf. for instance Duval
and al. [18]). The construction holds only if we assume that b+ is G,,-invariant

which is automatic if we assume that G,,, C Ng(H).

5.1.1 Lie algebra splittings

Let m € M with momentum p = ®g(m) and assume that G,, C Ng(H). In
particular G, acts on the stabilizer subalgebras b,, and b, by mean of the Adjoint

action. We start by splitting the Lie algebra g into three parts
g=0gndmodn. (5.7)

for some G,,-invariant subspaces m and n that we shall choose in a specific way.
We use the following notations: if (V,w) is a symplectic vector space and W C V
is a subspace, the symplectic orthogonal W* of W in V is the set of vectors v € V'
such that w(v,w) = 0 for all w € W. Furthermore, if W, U are two subspaces
such that U ¢ W C V, then U'W denotes a complement of U in W so that
U®Uw =W is a direct sum.

By properness of the G-action, the stabilizer GG, is compact. The Lie subal-
gebra g,, can thus be decomposed into a direct sum of G,,-invariant subspaces

Om = by @ bitem. Similarly b, = b, @ p for some G,,-invariant complement p.
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Then,
gm+hu = hm@hi—ngm Dp.

Since g, + b, C g,, we can choose a G,-invariant complement

b:= (gm + bu)Lg”

so that
g =D @ pBhI B b =h,, B b Sp B b. (5.8)
hu gm

In particular we choose the G,,-invariant subspace m of (5.7) to be
m:=pDb.

By (5.8), it satisfies g, = g ® m. To define the space n in the decomposition
(5.7), we introduce the “symplectic orthogonal”

bt = {z € g|am(m) € (h-m)“}. (5.9)

Since G, C Ng(H), this subspace is G,-invariant. It is characterized as follows:

Proposition 5.1.1. The conditions below are equivalent:
(i) x € ht»
(i) . [z, m]) =0 for alln € b

(117) adyp € h° where h° = {\ € g* | /\‘h = 0} is the annihilator of b in g*

Proof. Let m € M and u = ®g(m). We first show that (i) < (ii).

rebhtr = ay(m)e(h-m)™

<~ w(m)(xpy(m),ny(m)) =0 for alln € b
< (u,lz,n]) =0forall neb.
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Indeed,
w(m)(zy(m),nu(m)) = —dog(m) - na(m)
= —(D®g(m) - nur(m), z)
- j:c t=0 <(I)G(6Xp(t77) : m)v I>
_ jt (Mg alm). )
= —{2c(m), d(.it t=0 Adexp(—tn)x>
= <#> [37’ 77]>

Finally, (ii) <= (ii7) since

(u,[z,n]) =0forallnelh <= (ad;u,n) =0forallneh

<~ adjuehbh’.

In particular, with the notations of Example 2.3.5, x4« () € T, (G- p)Nh°. W

Consider the projection a := M‘h € h* and let
ho ={rebh|adia=a}.

Let us show that g, Nbh, = b,. Since g, Nbh = b,,, the only non-trivial inclusion is

9. MNboe Db, Let z €h, and y € h. Then

(adya,y) = (o, [z,9])
{u; [z, y])  since [z, y] € b

= (adyp,y)

=0 smcexehu

which shows that z € g, N b,. We now choose a G,,-invariant complement a such
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that
9yt ha=b,®bhpm DbBa="h, ®adhm O b. (5.10)
N—— \—h,_/
g# [e%

Furthermore observe that b, C h+=. Indeed, pick some element x € b,, some

n € b, and notice that

{adyp,m) = (p, [z, ml) = (@ [z, n]) = (adza, ) = 0. (5.11)

Clearly g,, C h*» since g, = {z € g | adiu = 0}. We conclude that g, + b, C h>*.
Choose s(G, H, ) to be a Gp-invariant complement to g, + b, in h+». We can

thus express (5.9) as the direct sum of G,,-invariant subspaces
b =g, ©a@s(G H, p). (5.12)

In particular,

q:=a®s(G, H,p) (5.13)

is a G,,-invariant complement to g, in h*+. Finally, choosing a G,,-invariant

complement (h*#)ts of h1# in g yields the decomposition

g=h, @b dbdqed (hr)te. (5.14)

Iu n

By (5.8) and (5.14), the G,,-invariant subspaces m and n of (5.7) can thus be
chosen as follows:
m:=pPb and n=qq (ht) (5.15)

A Witt-Artin decomposition of M relative to the G-action can be chosen with the
subspaces in (5.7) taken as in (5.15). This yields
T.M=Ty®T, & Nyd Ny (5.16)

with Ty = (g, ®p®b) - m and T} = (q ® (h*#)1s) - m. Note that we have some

freedom in the choice of G,,-invariant normal subspaces Ny and N;. As we did
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previously we set a := ®y(m) = N‘h and we define Ty = b, - m. We shall give

a specific choice of subspaces Tj, No, N; such that the tangent space of M at m
decomposes as

which is compatible with (5.16).

5.1.2 Symplectic slice construction

In this section, we explain how to choose the symplectic slice (N17Wﬁ1> at m

appearing in (5.17). Explicitly we choose
leﬁ(Ga}L“)'m@Xm@Nl; (518)

where s(G, H, ;1) was previously defined as a G,,-invariant complement to g, + b,
in b+ and X,, C T,,M is some subspace symplectomorphic to b x b* endowed
with the canonical symplectic form. We show in Lemma 5.1.5 that s(G, H, u) - m
is a symplectic subspace of (T,,M,w(m)). This subspace depends on the choice of
group, subgroup, and on the momentum u. However the space b = (g, + f)M)LW
also depends on the dynamics of the G-action on M as it involves the stabilizer
subalgebra g,,. The next Proposition is a geometric description of the subspace

s(G,H,p) - m.

Proposition 5.1.2. The subspace s(G, H, i) -m is identified with a symplec-

tic slice at p for the H-action on the coadjoint orbit O,,.

Proof. The subgroup H acts on the coadjoint orbit O, = G - u in the obvi-
ous way. Since the momentum map for the standard G-action on O, is just
the inclusion O, — g*, the momentum map ® : O, — b* for the H-action is
given by ®(Ad;-.jt) = ig(Ad;-11). The kernel of its differential is ker(D®(u)) =
(a®s(G, H,p)) - u. Indeed, a straightforward calculation shows that

zg- (1) € ker (D®(p)) <= adypebh’.
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Proposition 5.1.1 implies that # € h#. Because of the identification
g =naT,00,)

and (5.12), we must have x € a @ s(G, H, ). The momentum of p is ®(u) =
z;(,u) = « and thus a symplectic slice for the H-action on O, is a complement to
Bo - i in ker(D® (). By construction, this complement is s(G, H, p) - ¢ which can
be identified with s(G, H, ) - m as s(G, H, 1) has trivial intersection with g, and

Ou- [

Proposition 5.1.3. Let (M,w,G, ®¢) be a Hamiltonian G-manifold, H be
a closed subgroup of G and @y : M — b* be the induced momentum map.
Then

ker (D®g(m)) = ker (D®g(m)) & M,

where M C T,,M is isomorphic to q - m X b* as defined in (5.15).

Proof. By Proposition 4.2.1
M={zy(m)+weT &Ny | —adipn+ f(w) € h°}. (5.19)
It remains to show that M is isomorphic to q - m x b*. By construction
Li=n-m=(q@ (b)) m

and N, is isomorphic to
m*=p" P b

An element zp/(m) +w € M can thus be written uniquely as
upr(m) + vpr(m) +w

for some unique elements u € q and v € (h#)+s. In addition, we set f(w) = 7+ 3
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for m € p* and § € b*. By definition of M the following relation holds:
(—ad, pu+7+B,m =0 foral neh. (5.20)
From the decomposition
g, = by, ® ()" @b,

we see that (8,n) = 0 for all n € b since g, Nh = bh, on which 8 vanishes. In
addition, (—ad}_ ,u,n) = (—adiu,n) for all n € h as u € q¢ C . Hence (5.20)
reduces to

(—adiu+m,m) =0 forall nebh. (5.21)

In particular, if n € b,, we are left with (m,7) = 0 and thus 7 = 0. Since
(—ad’u,n) = 0 for all € b, this implies that v € b+ N (h+)Le = {0}. Therefore
the element z);(m)+w we started with is such that z = v € q and f(w) = 8 € b*.

Conversely, it is straightforward to check from the argument above that an element
zy(m) +w € q-md Ny
such that f(w) = 8 € b* satisfies —adlu + 5 € h°. We showed that
M ={uy(m)+weq-me Ny | f(w) € b*}.

The isomorphism is F': up(m) + w € M — (up(m), f(w)) € q-m x b*. |

Theorem 5.1.4 (Symplectic Slice Reconstruction). Given the decomposition
(5.16), a symplectic slice Ni at m relative to the H-action can be chosen of
the form

Ny =s(G H,p) - m® Xp & Ny, (5.22)

where X,, =b-m®Y,, with Y,, C Ny isomorphic to b*.
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Proof. Let a Witt-Artin decompositin of M as in (5.16). Then by (5.8)

ker (D®g(m)) = g,-me Ny
= (b @by ©b)-ma N, (5.23)
= b, - m@®b-m®dN;.

By Proposition 5.1.3, there is a subspace Y,, C Ny isomorphic to b* such that

ker (D®y(m)) = ker (D®g(m)) @& q-me Y,
= b, mBeb-mBEN, &q-madY,, from (5.23).

In (5.10) and (5.13) we obtained b, = b, ® a and q = a @ s(G, H, p1). Therefore
b -m®q-m="h, mos(G,H, u) m.
Setting X,, = b-m @ Y,,, we conclude that
ker (D®y(m)) =bho -m @ s(G, H, 1) - m®d X,,, & Ny. (5.24)
A symplectic slice N at m for the H-action must satisfy
ker (D®g(m)) = bo - m & Ny.

Hence we choose Ny = s(G, H, 1) - m & X,, & Nj. [

Lemma 5.1.5. The subspace
s(G, H, 1) -m={zu(m) |z €s(G,H,p)}

is a symplectic vector subspace of (T,,M,w(m)). The restriction of w(m) on

s(G, H, ) - m coincides with the Kostant-Kirillov-Souriau symplectic form.
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Proof. Using (5.13), the complement to g, in g defined in (5.15) reads
n=a®s(G, H,p)oh)e. (5.25)
—_———
q

To show that s(G, H, i) - m is symplectic, we use that
n-m={zy(m) |z €n}

is a symplectic vector subspace of (T,,,M,w(m)). The restriction of w(m) on n-m

is non-degenerate and takes the form

\Ij(m)<x7y) = _<:u7 [-1',3/])-

Therefore w(m) restricted to n - m coincides with the Kostant-Kirillov-Souriau
symplectic form. Let us show that it is also non-degenerate when restricted to
s(G,H,p) - m. Assume z € s(G, H, ) is such that ¥(m)(z,y) = 0 for all y €
s(G, H, ). To show non-degeneracy we must show that x,(m) = 0. By (5.25)
any z € n can be written uniquely as z = u+y+v with v € a,y € s(G, H, u) and
v € (htr)Le. This yields

U(m)(z,2) = ¥(m)(xz,u) + ¥(m)(z,v) (5.26)
as the term W(m)(x,y) vanishes by assumption. Note that
U(m)(z,u) = —(u, [z, u]) =0

since z € b+ by (5.12) and u € a C b by (5.10). Moreover the last term of (5.26)
vanishes. To see this we construct a Witt-Artin decomposition at m relative to
the H-action:

ToM =Ty & Ty & Ny ® N (5.27)

with NI as in Theorem Theorem 5.1.4. Recall that

ker(D®p(m)) = Ty & Ny.
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Furthermore since ker(D®g(m)) = (b - m)“™ we can write
b ={z €g|zu(m) € To® N} (5.28)

There are two possibilities:

(i) If v € b then vy (m) € Ty since v € (h*#)Ls. The subspaces T; and N; are
symplectically orthogonal. Hence ¥(m)(z,v) = 0.

(i) Otherwise vy (m) € Np. Indeed since v € (ht#)Le, it cannot belong to
To ® Ny by (5.28). Since z(m) € s(G, H, ;1) -m C Ny and Ty & Ny and Ny

are symplectically orthogonal, we conclude that ¥(m)(z,v) = 0.

Therefore (5.26) reduces to
U(m)(z,z) =0 forall zéen.

Since n - m is symplectic we get xp7(m) = 0 and we are done. |

Theorem 5.1.6. With respect to the splitting of Theorem 5.1.4, the sym-

plectic form W, reads

U(m) & wx,, ®wn,
with W(m) as in Lemma 5.1.5 and
wx,,, (bar(m) +w, by (m) + ') = (f(w'),b) = (f(w), V)

for all b,/ € b and w,w' € Y,,.

Proof. We already know by Lemma 5.1.5 that the symplectic form on s(G, H, i) -
m is given by W(m). Denote by wy, the restriction of w(m) on X,,. By 2.20 it
coincides with the pullback of the canonical symplectic form on b x b* along the

isomorphism

by(m)+we X, =b-maY, — (b, f(w)) € b xb"
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Therefore

wx,, (bar(m) +w, by (m) +w') = (f(w'),b) — (f(w), V)
for all b,b’ € b and w,w’ € Y,,. As stated, we obtain the decomposition

wg, (m) = ¥(m) & wx,,(m) & w,.

Proposition 5.1.7. With respect to the splitting of Corollary 5.1.4, the mo-

mentum map <I>N1 : Nl — by, associated to the linear H,,-action on Nl

decomposes as

. 1 1
(O, (7)m) = =5 ((ad})*p,m) + (=ady f(w),m) + Swn (1 (v), v)
for all m € by, where v = xzp(m) + (by(m) + w) +v € Ny with x €
s(G,H,p),b€eb,weY,, andv € Nj.

Proof. By linearity of the Hamiltonian H,,-action on N, the momentum map

0] 7, takes the form

(@5, (7)) = g5, (15, (7),7) (5.29)

for all 7 € N; and 1 € b,,. With respect to the decomposition of N of Corollary
5.1.4, we write

U=ay(m)+ (by(m) +w)+venN
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where z € s(G, H, j1),b € b,w € Y,, and v € N;. For n € by,,, we get

) exp(tn) - xpr(m)

a . (Adetn.ﬁ?)M (m)

= [n, s (m).

my oa(m) = §
d

Similary g (bar(m)) = [, b]asr(m). By Corollary 5.1.4, the symplectic form on N

decomposes as wy (m) = V(m) & wx,, (m) & wy, and then (5.29) reads

o (15,0),7) = 5Wm)(ln, 21,0
+;wxm (m) ([77, blpr(m) + Ny, (w), bar(m) + w)
+;WN1 (an (V)7 V) .

By definition the second term of the above is % ((f(w), [,b]) — (f(ngz, (w)), b>)

2
Since the linear map f is H,,-equivariant,

{(f(nz,(w)), b) = (—ad; f(w),b) = =(f(w),[n, b]).

Finally

‘I’(m)([ﬁ7$]7$) = —<H7[[777$]75’3]>
= —(adfc,u, [.T, 77]>
= —((ady)p, m).

We thus obtain

1 1

(@5, (7). 1) = —5(ads)p,m) + (—ad; f(w), 1) + Joom, (i (), )
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Example 5.1.8 (Abelian groups). Let (M,w, G, ®¢) be a Hamiltonian G-manifold
where G is abelian and let H be a subgroup of G. For simplicity we assume that
this action is free i.e. all the stabilizers (G,,, are trivial. If m € M has momentum
p = ®g(m), we then g, = g and b, = b, = b. In particular g, + h, = g. Since G
is abelian h* = g, and thus (G, H, 1) = 0 as it is the orthogonal complement of
g, + bo in b+, On the other hand, b = b is isomorphic to g/h. Corollary 5.1.4
implies

N, =N @ X, (5.30)

where X, is isomorpic to g/h x (g/h)*.

Example 5.1.9. Let (M,w,G,®g) where G = SO(3) is the group of rotations in
R3. Assume that this action is free. Let H = SO(2) be the subgroup of rotations
about the axis defined by a vector # € R3. The Lie algebra g is the space of 3 x 3
skew-symmetric matrices. It is identified with R? and so is its dual g* by using the
standard dot product. Let m € M be a point with momentum ®g(m) = u € g*
where p := y € R®. Similarly an element y € g is identified with y := y € R3.
Clearly
g, :=span(y) CR* and b :=span(z) C R’

Since ad,pn == x X y € R3 the symplectic orthogonal h*+ is the subspace of R3
defined by
b ={y e R’ | (x x ) -y = 0}. (5.31)

There are three cases to be considered: when x and x are not collinear, when they

are collinear, and when x = 0.

(i) If x and z are not collinear then there are no elements in H fixing y. There-
fore h, = 0. As H is abelian, h, = b and thus g, + b, = span(x,z).
Furthermore

b+ := span(x, z)

is a two-dimensional plane. We conclude that s(G, H, 1) = 0. The other

Lo,

subspace of interest is b = (g, + bh,,) In this case, as g, + b, = 0, we

deduce that b = g,,. By applying Corollary 5.1.4, the symplectic slice for the
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(i)

(iii)

SYMPLECTIC SLICE FOR ACTIONS OF SUBGROUPS

H-action is given by
Ny =N, & X, (5.32)

where X, is isomorphic to g, x gj,.

When y and z are collinear, all the elements of H will fix Y € R?. Conse-
quently b, = h = g, and
hte =g:=R%.

In this case s(G, H, ) = n which is the orthogonal complement to g, in g.
In R3, it is identified with the plane through the origin that is orthogonal to
x. It is also naturally isomorphic to the tangent space at y of the 2-sphere
of radius | x| which corresponds to the coadjoint orbit O,. However, as
b, = b = g,, we find that b = 0. Therefore,

Ny, =N, @s(G, H,p)-m (5.33)

where s(G, H, 1) -m =n-m.

When o := x = 0 we have g, = g and b, = h. As H is abelian, h, = b and
we find g, + b, = g := R®. This implies that (G, H, u) = 0. The subspace
b is just h1e ~ g/b which is the orthogonal complement to b in g. Therefore

N, =N & X, (5.34)

where X, is isomorphic to g/bh x (g/h)*.



ROOT SYSTEMS AND HESSIAN
DEGENERACY

This section is devoted to the proof of Lemma 4.2.3 which states that if (M, w, G, ®¢)
is a Hamiltonian G-manifold with g semi-simple, m € M is a point with momen-
tum p = P (m) and £ € g,,, then the restriction of the Hessian D%¢%(m) to g-m

is degenerate only along

(gf + gu) s m.

Our proof relies on the machinery of root systems and will be a straightforward
calculation using a specific basis of g known as the Weyl-Chevalley basis (Theorem
6.1.11). To understand a Lie algebra g with vector space basis {zi,...,z,}, we

need to know the structure constants which are the coefficient cfj such that

n
[z, 2] = Z cfjxk
k=1

In particular, the Weyl-Chevalley basis of g is a basis with respect to which most
of the brackets [z;, z;] are zero. The idea is to first consider a basis of a Cartan
subalgebra of g which is in particular a maximal abelian subalgebra. Furthermore
this basis is extended to the whole g so that the associated root system of g encodes
entirely the structure constants. The references for this chapter are the books of
Taylor [67], Sattinger and Weaver [63] and Zhelobenko [71].

6.1 Weyl-Chevalley Normal Form Theorem

In this thesis we always assumed that g was a finite dimensional real Lie algebra.

However the result we need to prove relies on results that hold for complex Lie
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algebras. This is not a big deal because any real Lie algebra can be complexified

as shown below.

Definition 6.1.1. A complex Lie algebra is a complex vector space g equipped
with a bilinear Lie bracket [-,:] : g x g — g which is antisymmetric and satisfies
the Jacobi identity.

A real Lie algebra € with Lie bracket [-, -] can be turned into a complex Lie algebra
by the process of complezification. This means considering the complex vector
space tc = C ®g € whose elements are abbreviated 1 ®g = x and i Qg x = ix.
We endow £¢ with the Lie bracket [, -|c defined by

(21 + iy1, T2 + iyalc = [71, 2] — [y1, yo] + 7 ([71, 9] + [y1, 72]) (6.1)

for all T1,T2,Y1,Y2 € L.

Example 6.1.2. The complexification of the Lie algebras of the real compact
matrix Lie groups SU(3) and U(n) are sl3(C) and gl,(C) respectively.

From now we assume that our Lie algebras are complex with Lie bracket as

above. The subscript C is omitted except stated otherwise.

6.1.1 Reductive Lie algebras

Generally a Lie algebra is called reductive if its adjoint representation is completely
reducible. Theorem 6 of Section 96 in [71] implies that all complex reductive Lie
algebra are obtained by complexification of a compact Lie group. We thus take

this characterization as a definition.

Definition 6.1.3. A complex Lie algebra g is called reductive if there exists a real
compact Lie group K with Lie algebra £ such that g = €c. In this case € is called

a compact real form.

Proposition 6.1.4 (Inner product on reductive Lie algebras). Let g = ¢
be a reductive Lie algebra. There exists an inner product (-,-) on g with the

following properties:
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(i) (-,-) restricted to € x ¢ is real-valued.

(77) (adyy,z) + (y,ad,z) = 0 for all x € ¢, y,z € g. In particular the

endomorphisms ad, € End(g) are skew-symmetric for all x € €.

(1i7) (adyy,z) = (y,adyz) for all x,y,z € g with x* = —Z where T is
the complex conjugate of x i.e. the operators ad, € End(g) are skew-

hermitian.

Proof. Firstly we construct a K-invariant inner product on g. As ¢ is the Lie
algebra of some compact Lie group K we can take any real valued inner product
on ¢ and average it to obtain a new inner product (-,-), invariant with respect
to the Adjoint representation Ad : K — GI(£). We extend this inner product on

g = ¢ so that it defines an hermitian inner product

(T1 +dy1, 2o + iy2) = ({21, T2) — (Y1, 42)) — i ((T1,Y2) + (Y1, 72))

where x1, 2, Y1, y2 € . It satisfies the following properties:
(i) Setting y; = yo = 0 in the above yields (z1, x2) € R. Therefore the restriction

of (-,-) on € x ¢ is real.

(ii) Pick any = € ¢, y,z € g. The result follows by differentiating the relation
(Adetay, Adeeaz) = (y, z) with respect to ¢ € R and evaluating it at ¢ = 0.

(iii) Set x = x1 +ixe and x* = —xy + ixe with 21, 25 € €. Then

(adyy, 2) = ([z1,y],2) +i([z2,9],2)
= <y7 [xlv ]>

= —(y,[z1,2]) — {y,i[xs,2]) by C-bilinearity of (-, -)
)

= (y,[=w, 2) + (y, [, 2])
= (y,ad,2).

i(y, [xe, z]) as @y, a9 € ¢
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6.1.2 Semi-simple Lie algebras and the Killing form

Complex semi-simple Lie algebras are a particular case of complex reductive Lie
algebras for which there is a canonical choice of inner product as in Proposition

6.1.4. This inner product is given by the negative of the Killing form.

Definition 6.1.5. A reductive complex Lie algebra g is semi-simple if its center

3(g)={recg|[r,y] =0 Wy g} is trivial.

The Killing form of a Lie algebra g is the symmetric bilinear form x : gxg — C
defined by
k(z,y) = Tr (ad,ad,)

where Tr(-) denotes the trace of a linear operator. Cartan’s second criterion ([67]
Theorem 14.4.7) states that g is semi-simple if and only if the Killing form & is
non-degenerate. We show in Proposition 6.1.6 below that the negative —x defines
a K-invariant inner product on the compact real form € of g. The negative of the
Killing form is then extended into an hermitian inner product on the whole g as

in Proposition 6.1.4.

Proposition 6.1.6. The Killing k restricted to the compact real form € of g
has the following properties:

(i) K is symmetric.
(7i) k(Adpy, Adyz) = k(y, z) for every y,z € € and k € K.
(i17) k([x,yl,2) + k(y, [z, 2]) =0 for every z,y, z € L.

(iv) K is negative definite.

Proof. The first statement (i) follows from the symmetry of the trace operator.
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To show (ii) notice that, given k € K and y, z € £, we have

d
[Adyy, 2] = I

d

AdetAdk,y V4

t=0

— Adp Ad gty Adj.-
dt . k e k—12

= Adyly, Ad;'z).

Hence

k(Adyy, Adyz) = Tr(adagyadag,:)
= Tr(Adyad,ad, Ad;")
= Tr(ad,ad,)

= k(y,2).

To prove (iii) we use (i) with & = €' for t € R and z € . Differentiating (ii)
with respect to t yields x([z,y], 2) + k(y, [z, z]) = 0. Finally (iv) follows because,
by (iii), the operators ad, are skew-symmetric with respect to x and the trace of
the square of a skew-symmetric operator is negative. In particular the negative of

the Killing form is a real inner product on &. ]

If g is semi-simple, the Killing form is non-degenerate by Cartan’s second cri-

terion. It thus induces an isomorphism
kgt =g (6.2)

where k%()\) =: t, is uniquely defined such that x(ty,z) = A(z) for every = € g.

This isomorphism satisfies the equivariance property x*(ad;\) = [y*,t\] where

*—_

y* = —y for every y € g and A € g*. Indeed by (iii) of Proposition 6.1.4,

k (KH(adj)),z) = adjA(z)
= My ])
= K[y, 7))
= k([y",t\],z) where y*=-—y
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for any z,y € g and A € g*. The non-degeneracy condition implies that
/{ﬁ(ad;;)\) = [y*, t,). (6.3)

6.1.3 Cartan subalgebras and root systems

In all generality, a Cartan subalgebra of a Lie algebra is a nilpotent subalgebra
which is its own normalizer. However for complex semi-simple Lie algebras, a

Cartan subalgebra is a maximal abelian subalgebra whose elements are semi-simple
(cf. (iii) below).

Definition 6.1.7. Let g be a complex semi-simple Lie algebra. A complex Lie

subalgebra ) of g is called a Cartan subalgebra if
(1) [hl,hg] = (0 for all hl,hQ € [),
(ii) If some x € g satisfies [x,h]| = 0 for all h € b then z € b,

(iii) The endomorphisms ady, are diagonalizable for all h € §.

Theorem 6.1.8 (Existence of Cartan subalgebras [67]). Assume g = %
is a complex semi-simple Lie algebra for some compact real form € and let
t C t be any maximal commutative Lie subalgebra. Then b = tc is a Cartan

subalgebra. Furthermore every Cartan subalgebra arises that way.

Fix a Cartan subalgebra b of some complex semi-simple Lie algebra g. By (i)
of Definition 6.1.7 and the Jacobi identity of the Lie bracket, the operators ady

are pairwise commuting for all h € . Indeed if x € g and hy, hy € h we have
adp, adp,x = [h, [he, x]] = =[x, [h1, ho]] + [h2, [h1, ]] = adp,ady, @.

Since in addition they are diagonalizable, there is a single basis of g consisting of
vectors which are simultaneously eigenvectors for all ad, with A € b, and whose

corresponding eigenvalues depend linearly on h.



ROOT SYSTEMS AND HESSTAN DEGENERACY 124

Definition 6.1.9. An element o € h* is called a root if there exists a non-zero
vector x € g such that [h, x] = a(h)z for all h € h. The set of roots is denoted by

R and is viewed as a subset of h*. Given a root a € R, we call the subspace
0o ;= {z € g|adyr = a(h)z, Vh € b}

the root space of a.

Theorem 6.1.10 (Cartan decomposition). A complex semi-simple Lie alge-

bra g admits a decomposition of the form

5=ho (ea ga) (6.4

a€ER

with the properties

(i) Two root spaces g, and gz are orthogonal with respect to the Killing
form, as long as o+ 3 # 0.

(it) If o, B € R then [ga, 85] C Gats-

Proof. Since g is semi-simple, elements h € h give rise to linear operators ad;, €
End(h) that are simultaneously diagonalizable. The Lie algebra thus admits the

eigenspaces decomposition

g=009 (@ %)- (6.5)

a€ER

The root space go corresponding to the trivial root is the centralizer
¢(h) ={xeg|[h,z] =0 forall hebh}.

By the maximality assumption of the Cartan subalgebra, ¢4(h) = b.
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(i) Let x € g, and y € gg. Write b = tc and let h € t. Hence

0 = rk(adpz,y) + k(z,adpy)
= w(a(h)z,y) + Kz, B(R)y)
= (a(h) + B(h))k(z,y).

We use the C-linearity of « and 8 to obtain that (a(h) + 8(h))k(z,y) =0
for all h € . Since a + 5 # 0 we get k(x,y) = 0.

(ii) Let x € g, and y € gg. If @ + 3 € R then we can use the Jacobi identity to
show that, for all h € b,

adp([z,y]) = [h,[2,9]]

= [[h 2], y] + [z, [h, y]]
[a(h)z,y] + [z, B(h)yY]

= (a+B)(h)[z,y].

This shows that [ga, 9s] C ga+s- In particular, if © € g, and y € g_,, the
calculation above yields ad,([z,y]) = 0 and thus

[0, 9-a] C B (6.6)

If o+ f is neither zero nor a root, then [z, y] = 0.

There are standard facts about root spaces that we do not prove. One of them
is that for each root «, the only multiples of a that are roots are « itself and —a.
Another fact is that each g, is one dimensional as a complex vector space (cf. [63]
Theorem 7.23).

Theorem 6.1.10 above can be used to show that the Killing form & restricted to
a Cartan subalgebra b is non-degenerate. As g is semi-simple, & is non-degenerate
on g. Let h € b such that x(h,z) = 0 for all x € . Since b is k-orthogonal to all
the root spaces g, such that a # 0, we conclude that k(h,y) = 0 for all y € g using



ROOT SYSTEMS AND HESSTAN DEGENERACY 126

decomposition (6.4). Thus h = 0 by non-degeneracy of x on g. The isomorphism
(6.2) reduces to an isomorphism «* : h* — h. In particular to each root a € R is
associated a unique element t, € h which is a basis element of the one dimensional
subspace [ga, §_o] (cf. [67] Theorem 14.5.7).

6.1.4 The Weyl-Chevalley Normal Form Theorem

In this section, we construct a basis of a complex semi-simple Lie algebra g with
respect to which the Lie bracket has a specific normal form. Let h be a Cartan
subalgebra with basis {H,--- , Hy} orthogonal with respect to the Killing form.
In particular

[H;,H;]=0 forall i,j.

Consider the decomposition into root spaces
g=bhe (EB ga> :
a€R

Since each g, is one-dimensional as a complex vector space, we fix a basis element
X, for each of them such that x(X,, X_,) = 1. Such a basis always exists. Indeed
if X, € g. is a non-trivial element, then x(X,,y) = 0 for every y € gg such
that 5 € R\ {—a}. By non-degeneracy of the Killing form, the root space g_,
contains some non-trivial element X_,, element satisfying x(X,, X_o) # 0. The

claim follows from a normalization process. We choose
{Hy,..., Hy}U{X, | a € R}

as a basis of g. Let us find the structure constants of the Lie bracket with respect

to this basis. By definition of g,,
[HZ‘,XQ] = Oé(Hi)Xa

and by (6.6),
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with coefficients

Ni = k([ Xa, X 4|, Hy)

= ([Hy X X )

= o(H;)k(Xa, X_0o)
(

H;)

I
Q

since we chose an orthogonal basis. There is still to work out what is [X,, Xg]
when a+ 3 # 0. Of course, if o+ f3 is not a root, [X,, Xs] = 0 by (ii) of Theorem
6.1.10. For the same reason, if o + 3 € R,

[Xa, Xs] = AapXats

for some coefficients \,3 sometimes referred to the Cartan integers, after a suitable
normalization of each X,. Working out the coefficients A,z is a bit tedious and is
done along the lines of [62] (Section 2.5) and [63] (Theorem 10.1). We partially
proved the following:

Theorem 6.1.11 (Weyl-Chevalley Normal Form). Let g be a complex semi-
simple Lie algebra, § be a Cartan subalgebra and R be its set of roots. Then

there is a basis of g
{H17"'aHk}U{Xa | QER}

with respect to which the structure constants read

[Hiv Hj] =0 [XavX—Oé] = Zf:l Oé(H,)HZ
[Hia Xa] = Q(Hi)Xa [Xaa Xﬁ] = )‘aﬁXa—i-,B

where \op = 0 unless a+ B is a root. Furthermore there is a normalization of

X such that all the structure constants are integers and Aog = —N(—a)(—p)-
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6.2 Momentum map degeneracy along an orbit

This section is devoted to the proof of Lemma 4.2.3 where we assume that g is

semi-simple. For each ¢ € g a momentum map ®¢ : M — g* defines a smooth

function ngG : M — R depending linearly on &

e(m) = (P (m), €).

Assume that (m,&) € M x g is a relative equilibrium of some Hamiltonian h €
C>®(M)¢ with momentum p = ®g(m). By definition of a relative equilibrium, &
and p commute i.e. adiu = 0. We would like to describe the space of degeneracy
of the Hessian ngbg(m) along the orbit g -

m.

Proposition 6.2.1. If yp(m), zp(m) € g - m then

D¢ (m) (yar(m), xar(m)) = (Da(m), [z, [y, €])).-

Proof. Let yp(m) € g-m, then

Aom) - yae(m) = 5

d
dt
d
dt

P (e - m)
t=0

<(I)G<ety ’ m)7 €>

t=0

<(I)G(m)7 Ade—ty£>

t=0

= (®a(m), [&,y])-

For another element x,/(m) € g - m, we get

128
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DR ) (e m) ona ) = | G ) -y )
d

= & - <<Dg(€m : m)a [fayD

d
= a i <(I)G(m); Ade_m [57 y]>

= <(I)G(m)7 [l‘, [%5“)

Set 1 = ®(m) and note that the Jacobi identity of the Lie bracket and the fact
that adgp = 0 imply that (u, [z,[y,€]]) = (i, [y, [7,€]]), reflecting the symmetric
property of the Hessian. The non-degeneracy space of D2¢£G(m) along g-m consists

of the elements y € g such that

(i, [y, [z,&]]) =0 forall x€g. (6.8)

Since p and ¢ commute, we can fix a maximal commutative Lie algebra t C g such
that £ € tand p € t*. We complexify both of them as in Definition 6.1.1

gC:C(X)Rg and f(C:(C@Rt

and the Lie bracket extends into the bracket [-,-]c as in (6.1). After this step
the velocity and momentum read £ = 1 ®g £ and u = 1 ®g . There respective

stabilizer subalgebras are given respectively by

ge={z€gc|[r.flc =0} and g,:={z€gc|adp=0}.

Consider the Cartan Lie subalgebra h = t¢. Since & € h and p € bh*, it is clear
that b is a subspace of both g, and g,. We thus write

9525@(@95> and gu:h@(@ ga) (6.9)

BESy a€Dy
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for some finite subsets Sy and D of R with the property:

a € Sy (resp. Dy) = —a € Sy (resp. Dy).

Definition 6.2.2. £ (resp. p) is reqular if Sy = @ (resp. Dy = @).

Since g¢ is semi-simple, the Killing form induces an isomorphism «* : h* — b.
Let t,, € b be the image of p by this isomorphism and let Oy, be the adjoint orbit
of t,. According to (6.9) and (6.4), there is an identification

TtuOtu - Z G-

aER\Df

By (6.3) the problem stated in (6.8), after complexification of the Lie algebra g,
reduces to find all the y € g¢ satistying

k(Y tule, [z, €lc) =0 forall € gc. (6.10)

Let {Hy,..., H, }U{X, | & € R} be a Weyl-Chevalley basis of g¢ given by Theorem
6.1.11. Let y € gc be an arbitrary element and let y* = —y. With respect to the

Weyl-Chevalley basis, this element is expressed as

k
Y= Z%‘Hz‘ + Z faX, for some unique a;, pio € C. (6.11)
i=1 aER

Hence

k
[y*atu](c = [Z aiHi + Z ;uozonatu](C
=1

aER

= Z,ua[Xa,tu]@ as t,€h
aER

= - Z :U’oza(t,u)Xa
aER

= - Z paor(ty)Xa

CXER\Df
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where the last equality follows because
Wy tulc € 11,0y, .
Similarly (6.9) allows us to write an element [z, &]c € T¢O¢ as

[I,S]C: Z AﬁXﬁ with )\/BEC.
BER\Sy

Solving (6.10) is equivalent to solve

S D stk (X, Xg) =0 forany Mg e C.
aGR\Df 5€R\Sf

Using the fact that the g,’s appearing in the decomposition (6.4) are mutually
orthogonal with respect to x (except for those corresponding to the same root

with opposite sign), we get

0 = Z Z taAgor(ty)r (Xa, Xg)
OcER\Df ﬁER\Sf

= Y. Hadsa(ty)r (Xa, Xp)
Cx,ﬂGR\(DfUSf)

= Z Hara0(t,)k (Xa, Xo)
aGR\(DfUSf)

-+ Z fad—a(t,)k (Xa, X o)
O:GR\(DfUSf)

= Z Naa(tu) (Aak (Xa; Xa) + Aok (Xa, X-a)) -

OcER\(DfUSf)

This is true for any A, € C if and only if y, =0 for all « € R\ (DyU Sy) as such
roots satisfy a(t,) # 0 and both x(X,, X,) and x(X,, X_,) do not vanish. We
conclude that y € gc fulfils (6.10) for all = € gc if and only if y* decomposes as

k
Y= ZaiHi + Z Lo X (6.12)
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Therefore,

y*ef)@( P ga) = gc + gy

aEDfUSf

In particular this shows that the degeneracy set of the Hessian D?*®g(m) along
g - m belongs to g¢ + g,, by considering only the elements y € gc which are real.

This proves Lemma 4.2.3 because the other inclusion is clear.



Appendix

This section is a complement to the example of Section 4.1.2 on the dynamics of
a 2D Rigid body in a potential flow. Full details of what follows are available in
the book of Marsden and Ratiu [44] in Chapters 13 and 14.6.

The special Euclidean group of the plane SE(2) consists of pairs

(Rg,a) = (R;)e T)

T € R? is a vector, and Ry is a rotation in the plane about

where a = (a1, a9)
the origin of angle #. The group multiplication is just matrix multiplication. In

particular, the inverse of (Ry,a) € SE(2), is given by
(Ra, a)_1 = (R_g, —R_ga).

To obtain the Lie algebra se(2), we just differentiate paths in this group which
start at identity. The velocities of those paths are the elements of the Lie algebra.

Therefore se(2) is made of the pairs

(9,1}) = (_gj 8)

0

. 1
where 0 € R, v = (vy,v2)7 € R? and J = ( 0). The Lie bracket is then

obtained by a direct calculation
(6, 0), (6, w)] = (0, p.Jv — B.Jw).
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To figure out what the coadjoint representation of se(2) on se(2)* is, we need to

specify the elements of the dual se(2)*. We claim that they are pairs of the form

27 0
(r,a) == (a 0)

where r € R and a = (ay, ) € (R?)*. Since se(2) is a semi-simple Lie algebra, the
Killing form given by the trace of the produce of matrices defines a non-degenerate

pairing between se(2) and se(2)* and thus

z -0 )
Tr ((2J 8) ( OJ g)) = 20 + a1 + ays.
e}

Using our identifications, the pairing becomes
<(IE, a)a (‘97 U)> = .136 + a1v1 + QU2

which is the standard dot product in R3. It is now straightforward to compute the

coadjoint representation. Given (z,a) € s¢(2)* and (6, v), (¢, w) € se(2), we get

(ad(y (@, @), (G, w)) = ((z,a),[(6,0), (9, w)])
= ((z,a),(0,¢Jv — 0Jw))
= al(évg — 9w2) + ag(éwl — q'bvl)
= (oqvg — OéQUl)QZB + anbwy — ay 0w,

= <(O[JU, —90&]), (Qb, w))
Therefore ad; (2, @) = (aJv, —faJ) € se(2)*.

We now show that the Lie-Poisson equations are nothing else than coadjoint
motion on se(2)*.
obtained by Marsden, Ratiu and Weinstein [45] (cf. also [44] Chapter 13). Consider
the cotangent bundle T*SFE(2), equipped with the canonical symplectic structure.

The group SE(2) acts on T*SE(2) by cotangent lift of left multiplication and

This is an application of the Lie-Poisson reduction Theorem
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this action is canonical, free and proper. The left trivialization induces an SFE/(2)-

equivariant symplectomorphism
T*SE(2) — SE(2) x se(2)*

where the action of SE(2) on the right hand side is given by left multiplication on
the first factor (cf. [45] Section 2). In particular the orbit space

T*SE(2)/SE(2)

is canonically isomorphic to se(2)*, in the sense that there exists a Poisson dif-
feomorphism between them. Recall that T*SE(2) admits a canonical Poisson
structure coming from the symplectic structure and that the action of SE(2) is
canonical, free and proper. By the Lie-Poisson Reduction Theorem (cf. [45] The-
orem 2.1), the reduced space se(2)* admits a unique Poisson bracket' such that
the quotient map T*SE(2) — se(2)* is a Poisson map. Given v € se¢(2)* and two

smooth real-valued functions f, g defined on se(2)*, this Poisson bracket takes the

{F0hw) = < [‘;f ?"D (A)

where g—{j € se(2) is the functional derivative D f(v) regarded as an element of se(2)
rather than se(2)™. Explicitly

form

Df(v)-dv = <5u, gi> where dv € se(2).

If we assume that v in (A.1) depends on the time ¢, differentiating f(r) with

- {531

respect to t yields

'If we consider the cotangent lift of right multiplication rather than left multiplication, the
displayed Poisson bracket comes with a positive sign, rather than a negative sign.
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On the other hand, (A.1) also reads
. Of
()0 = sty ).

Therefore the general Lie-Poisson equations, determined by f = {f, g} are given
by

v = adi, V.

&‘oﬂ*
T le
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