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The central topic of this thesis is the study of persistence of stationnary motion
under explicit symmetry breaking perturbations in Hamiltonian systems. Explicit
symmetry breaking occurs when a dynamical system having a certain symmetry
group is perturbed in a way that the perturbation preserves only some symmetries
of the original system. We give a geometric approach to study this phenomenon
in the setting of equivariant Hamiltonian systems. A lower bound for the number
of orbits of equilibria and orbits of relative equilibria which persist after a small
perturbation is given. This bound is given in terms of the equivariant Lyusternik-
Schnirelmann category of the group orbit. We also find a localization formula for
this category in terms of the closed orbit-type strata. We show that this formula
holds for topological spaces admitting a particular cover, made of tubular neigh-
bourhoods of their minimal orbit-type strata. Finally we propose a construction
of symplectic slices for subgroup actions.
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INTRODUCTION

When we talk about symmetries, we either refer to the symmetry of a physical
law (dynamical equations) or the symmetry of a physical state (solution of these
equations). The symmetry or symmetry group of a physical law (or a physical state)
is defined to be the group of transformations which leave these equations (or this
solution) invariant. Although the symmetry of a system of dynamical equations
is reflected into the range of solutions of these equations in the sense that two
solutions are related to one another by an element of this group of transformations,
there might be solutions which do not exhibit this symmetry. Such a solution has
a lower symmetry group than the one of the dynamical equations from which it
is originated. In a theoretical approach we say that the symmetry group of this
physical state is a subgroup of the symmetry group of the physical law. This
phenomenon is called spontaneous symmetry breaking and is widely studied in
mathematical physics.

This thesis focuses on another notion of symmetry breaking called explicit
symmetry breaking. We define it as a process of perturbing symmetric dynamical
equations such that the resulting equations have a lower symmetry group. In fact
any physical law observed in nature can be thought as a perturbation of a physical
law having a bigger symmetry group. However the more symmetric a dynamical
system is, the more simple its solutions are. In fact, complicated and interesting
dynamical behaviours require low symmetry group. For example, Lauterbach et
al. [11, 27, 36] show that some periodic solutions of an unperturbed dynamical
system persist under symmetry breaking perturbations and become heteroclinic
cycles.

The lack of symmetries of a perturbed system can be due for example to the
presence of terms whose origin is different from case to case. As explained in
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INTRODUCTION 10

Brading and Castellani [8], such terms can be introduced artificially in order to
match with theoretical or experimental observations. For example in quantum
field theory, the Lagrangian for weak interactions is constructed so that the parity-
symmetry and the charge-parity symmetry are violated, making the theory in the
line with experimental observations. Besides, quantization processes might also
be a cause for the appearance of such terms which are the so-called quantum
anomalies. In this case, the terms are not artificially introduced but they appear
after a renormalization procedure.

The dynamical systems studied in this thesis are Hamiltonian systems. While
spontaneous symmetry breaking phenomena are discussed in many papers related
to bifurcations theory, fewer papers treat the case of explicit symmetry breaking
phenomena and many results holding for general dynamical systems need to be
adapted to the Hamiltonian case. Some aspects are studied by several authors
including Ambrosetti et al. [1], Grabsi, Montaldi and Ortega [23] and Gay-Balmaz
and Tronci [22]. For what we are concerned, we are interested in the number of
solutions of such systems which persist under explicit symmetry breaking pertur-
bations. In the Hamiltonian formulation of classical mechanics, explicit symmetry
breaking perturbations can arise as described above but they can also arise as
metric perturbations. Morally, a Hamiltonian dynamical system is partially deter-
mined by a scalar function called the Hamiltonian. This function is regarded as
the total energy of the system, which is generally the sum of the kinetic energy,
defined by mean of a metric, and the potential energy. If the Hamiltonian is writ-
ten in term of the kinetic energy only, an example of explicit symmetry breaking
perturbation would be a metric perturbation so that the perturbed metric has not
the same invariance properties as the original metric.

Phase spaces (space of positions and momenta) of Hamiltonian systems are
symplectic manifolds and the symmetries of such systems are encoded into Lie
group actions on those manifolds. A symplectic manifold is a smooth manifold
M equipped with a non-degenerate closed two-form ω. A (proper) action of a
(connected) Lie group G on M is canonical if it is smooth and it preserves ω. A
class of canonical Lie group actions on symplectic manifolds are Hamiltonian. To
those actions we can associate a Noether conserved quantity expressed in term of
a momentum map ΦG : M → g∗, where g∗ is the dual of the Lie algebra of G.
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This notion generalizes the notion of angular momentum in classical mechanics,
when the phase space is T ∗R3, acted on by the group of rotations SO(3). By a
Hamiltonian (proper)G-manifold, we mean a quadruple (M,ω,G,ΦG) as described
above, with G connected.

The dynamics is governed by a Hamiltonian h which is a G-invariant real-
valued function defined on M . We refer to G as the symmetry group of the
system. The non-degeneracy and the G-invariance of the symplectic form allow
us to associate to h a G-equivariant vector field Xh, whose flow lines ϕt(m) are
the evolution maps. Together with M , they define a dynamical system and are
solutions of the equations of motion ẋ = Xh(x). We focus on specific solutions of
these equations of motion, namely equilibria (fixed points under the dynamics) and
relative equilibria (group orbits fixed under the dynamics). For example, for a good
choice of Riemannian metric on the two-sphere S2, the norm square of an element
in a fiber of T ∗S2 defines an SO(3)-invariant Hamiltonian function, understood as
the kinetic energy. The relative equilibria of the associated Hamiltonian system
project to the great circles on S2.

To study explicit symmetry breaking phenomena, we consider pertubations hλ
of h that are smooth in the real parameter λ, and invariant with respect to a
closed subgroup H ⊂ G. Such perturbations are called H-perturbations. Under a
specific non-degeneracy condition on a (relative) equilibrium of the unperturbed
Hamiltonian h, there is a chance that this (relative) equilibrium persists under a
small H-perturbation.

Section 4.1 is devoted to the question of persistence of equilibria. In this case,
the required non-degeneracy condition on an equilibrium m ∈M of h is a particu-
lar case of Morse-Bott condition, when the critical manifold of h is the group orbit
G ·m (cf. Definition 4.1.1). We show that at least a certain number of H-orbits
of equilibria persist under a small H-perturbation, in a tubular neighbourhood
of G · m (cf. Theorem 4.1.2 and Corollary 4.1.3). This number is the positive
integer CatH (G/Gm), which is the H-equivariant Lyusternik-Schnirelmann cate-
gory of the group orbit. For technical reasons, our result requires the additional
assumption that the set H\G of right cosets is compact, as a topological space.

The proof uses the well-known Symplectic Tube Theorem (cf. Theorem 2.4.1 [26,
40]), which states that there is a tubular neighbourhood of a group orbit which
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can be identified (by mean of a G-equivariant symplectomorphism) with a neigh-
bourhood of the zero section of the normal bundle of this group orbit. This setting
provides good (semi-global) coordinates on M , with variables along the group or-
bit and variables along the normal directions to the group orbit. An application
of the Implicit Function Theorem and a Morse Lemma with parameters allows us
to forget about the normal coordinates, reducing the proof to an application of
the equivariant Lyusternik-Schnirelmann Theorem 3.4.5 on the group orbit. If G
is compact, we do not require any assumption on the perturbation hλ. However,
for non-compact Lie groups, a compactness assumption on hλ must be fulfilled in
order to apply Theorem 3.4.5, as explained in Section 3.4.4.

We present applications of our result, including the problem of an ellipse-shaped
planar rigid body moving in a planar irrotational, incompressible fluid with zero
vorticity and zero circulation around the body (cf. Section 4.1.2). The reduced
motion at zero vorticity and zero circulation is governed by Kirchhoff equations.
Classical treatments of the problem can be found for example in [48, 35, 30, 68].
This problem turns out to exhibit symmetry breaking phenomena from different
points of view. We can for example consider the body without the fluid. The fluid
density is then understood as a “parameter”. The O(2)-symmetry of the reduced
Hamiltonian breaks into a D2-symmetry when this parameter varies.

Extending Theorem 4.1.2 and Corollary 4.1.3 to the case of relative equilibria
is a bit more challenging because we must take into account the conservation of
momentum. This case is treated in Section 4.2. Whereas equilibria are just critical
points of the Hamiltonian function h, relative equilibria are critical points of the
restriction of this same function to a level set Φ−1

G (µ) of the momentum map. Let
m ∈ M be one of those critical points. The element ξ ∈ g playing the role of
a Lagrange multiplier is called the velocity of m, which is in general not unique
when the action is not free. For that reason, we refer to a relative equilibrium as
a pair (m, ξ) ∈ M × g. We denote the underlying Lagrange function associated
to ξ by hξ. A standard definition says that a relative equilibrium (m, ξ) of h is
non-degenerate if the Hessian of hξ at m is a non-singular quadratic form when
restricted to some symplectic subspace N1 ⊂ TmM , called the symplectic slice
at m. If the perturbations hλ are invariant with respect to the full symmetry
group G, this notion of non-degeneracy is enough to guarantee the persistence of a
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relative equilibrium. This is no longer the case if hλ has a smaller symmetry group
than the one of h. In [23] a step in that direction is taken, when the symmetry
group is a torus that breaks into a subtorus. In addition, all the group actions in
consideration are assumed to be free. We extend their result to non-free actions
and non-abelian symmetry groups.

A necessary condition for a relative equilibrium of h to persist under an H-
perturbation is that the velocity ξ belongs to h, the Lie algebra of H. Another
problem is that relative equilibria of an H-perturbation hλ are critical points of the
restriction of this same function to a level set Φ−1

H (α), where ΦH : M → h∗ is the
momentum map associated to the H-action on M . This momentum map can be
constructed as the composition of the projection i∗h : g∗ → h∗ with ΦG : M → g∗,
where i∗h is given by restriction of the linear forms on g to the Lie subalgebra h. If
µ is a regular value of the momentum map ΦG and α = i∗h(µ), then the level set
Φ−1
H (α) contains Φ−1

G (µ) as a submanifold. We show that

ker (DΦH(m)) = ker (DΦG(m))⊕M

for some linear subspace M ⊂ TmM , described in Proposition 4.2.1. In Section
5.1.1 a splitting of g is introduced, giving a more precise description of M (cf.
Proposition 5.1.3). We say that a relative equilibrium (m, ξ) of h with momentum
µ = ΦG(m) is α-nondegenerate if the Hessian of hξ atm is a non-singular quadratic
form when restricted to the subspace

N1 ⊕M.

Another condition that we require is a regularity condition on the stabilizers. Ex-
plicitly we require gµ ⊂ gξ, which are respectively the Lie algebras of the stabilizers
Gµ and Gξ. This condition is based on Lemma 4.2.3 that we prove in Section 6.2,
using the machinery of root systems.

Under these assumptions on a relative equilibrium (m, ξ) ∈ M × h of h, and
modulo some technicalities, the least number ofHµ-orbits of relative equilibria with



INTRODUCTION 14

velocity close to ξ, which persist under a small H-perturbation in some neighbour-
hood of Gµ ·m in Φ−1

H (α), is the positive integer

CatHµ (Gµ/Gm) .

This is the content of Theorem 4.2.5 and Corollary 4.2.6. As an example, the
Hamiltonian of the spherical pendulum can be thought as an S1-perturbation of
the SO(3)-invariant Hamiltonian h on T ∗S2 governing the co-geodesic motions on
the sphere. The relative equilibria of h project to the great circles on S2. Only
one of those circles persists in the good neighbourhood under this S1-perturbation,
provided the gravity encoded in the parameter is sufficiently small. This example
is discussed in Section 4.2.4.

Because of the importance of the equivariant Lyusternik-Schnirelmann category
in this study, we dedicate a chapter to this notion where we obtain some new
results. Let M be a topological space, acted on continuously and properly by
a topological group G. We define a G-categorical open subset of M to be a G-
invariant open subset of M admitting a G-deformation retract onto a G-orbit (cf.
Section 3.1.1). The topological invariant CatG(M) is the least number (possibly
infinite) of G-categorical open subsets that are required to cover M . If M and G
have an additional smooth structure, a class of G-categorical open subsets consists
of G-tubular open subsets, which are essentially tubular neighbourhoods of group
orbits (cf. Definition 3.2.1). This fact is a direct application of the Tube Theorem
2.1.5.

This topological invariant is in general difficult to compute and we are usually
only able to know an estimation of it, in term of the cup length of M . We obtain
a new formula to reduce the calculation of CatG (M) to the calculation of the
equivariant Lyusternik-Schnirelmann category of the minimal orbit-type strata of
M . In general, any topological space M can be written as a disjoint union of
smaller subsets Mβ, called strata, indexed on some strictly partially ordered set
(B,≺). Those strata are required to fit in a specific way and form themselves
a strictly partially ordered set (cf. Section 2.2). A stratum is minimal if it is
minimal with respect to the strict partial order defined on them. If M is a proper
G-manifold, the strata Mβ are generally defined as the connected components of
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the orbit-type submanifolds. We use a modified definition of orbit-type stratum
(cf. Definition 2.2.1). We say that an orbit-type stratum is aG-orbit of a connected
component of the subset of M of all the points having the same stabilizer.

On a large class of proper G-manifoldsM , including symplectic toric manifolds,
we observe that M can be entirely covered by a subcover of its minimal orbit-type
strata, made of G-tubular open subsets. Besides this cover is the smallest cover,
made of G-categorical open subsets, that we can take. Such covers are called
minimal G-tubular covers and are discussed in Section 3.2. However those covers
do not exist in general. We present some non-examples in Section 3.2.1, whenM is
a non-Hamiltonian compact S1-manifold. By using the natural stratification of the
moment polytope, we show in Section 3.2.2 that every symplectic toric manifold
admits a minimal G-tubular cover, where G in this case is a torus having half the
dimension of M and acting effectively on it (cf. Theorem 3.2.6). In the case where
M admits a minimal G-tubular cover, we show that the calculation of CatG(M)
is intrinsically reduced to those of the minimal orbit-type strata of M . Explicitly,
we obtain the localization formula

CatG(M) =
∑

CatG (Mβ)

where the summation is taken over the minimal orbit-type strataMβ (cf. Theorem
3.3.1 and Corollary 3.3.2). The result of Bayeh and Sarkar (cf. [6] Theorem 5.1),
which states that the equivariant Lyusternik-Schnirelmann category of a quasitoric
manifold is precisely the number of fixed points of the torus action, is a consequence
of Theorem 3.2.6 and of our localization formula. After this work was completed
we found that the result of Theorem 3.3.1, from which the localization formula
follows under an additional assumption, had already been obtained by Hurder and
Töben (cf. [28] Theorem 3.7).

Another question raised in this thesis concerns the choice of symplectic slices
for subgroup actions. Since the questions of stability and of bifurcations of relative
equilibria rely on the positive (or negative) definiteness of the Hessian of hξ (repec-
tively hξλ) on a symplectic slice N1 for the G-action (respectively a symplectic slice
Ñ1 for the H-action), knowing a way to compare N1 and Ñ1 is of particular inter-
est. If µ is a regular value of the momentum map ΦG : M → g∗, the orbit G ·m,
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of some point m ∈M with momentum µ, is transverse to the level set Φ−1
G (µ). As

constructed by Roberts, Wulff and Lamb [61], a subspace of TmM transverse to
G ·m is isomorphic to m∗×N1 where m∗ is isomorphic to (gµ/gm)∗. The notation
g · m denotes the tangent space at m of G · m. A symplectic slice N1 at m is a
choice of Gm-invariant complement

N1 := ker(DΦG(m))/gµ ·m.

It is endowed with a symplectic structure and a linear Hamiltonian action of the
stabilizer Gm. Given a closed subgroup H ⊂ G we can construct a momentum
map ΦH : M → h∗ as described above. For α = i∗(µ), a symplectic slice at m is
an Hm-invariant complement

Ñ1 := ker(DΦH(m))/hα ·m.

It is used implicitly in [23] that, whenever G is a torus and H is a subtorus, both
acting freely on M , a symplectic slice Ñ1 at m can be chosen of the form

Ñ1 = N1 ⊕Xm,

for some symplectic subspace Xm ⊂ TmM isomorphic to g/h × (g/h)∗. We gen-
eralize this observation to non-abelian Lie groups and non-free actions with the
assumption Gm ⊆ NG(H), where NG(H) denotes the normalizer of H in G. In
this case we show that a symplectic slice Ñ1 for H can be chosen of the form

Ñ1 = N1 ⊕Xm ⊕ s(G,H, µ) ·m,

for some subspace Xm ⊂ TmM symplectomorphic to a canonical cotangent bundle
b× b∗, and where s(G,H, µ) ·m is some symplectic vector subspace of (g/gµ) ·m
(cf. Theorem 5.1.4 and Lemma 5.1.5). We also give the associated splitting of
the symplectic form on Ñ1 (cf. Theorem 5.1.6), and the associated splitting of the
momentum map associated to the linear Hamiltonian Hm-action on Ñ1 in terms
of the momentum map on N1 (cf. Proposition 5.1.7).

The subspaces b and s(G,H, µ) are constructed explicitly in Section 5.1.1, by
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using a splitting of the Lie algebra g. Although the notations can be misleading,
those two subspaces are not Lie subalgebras of g in general. When G is a torus
and H is a subtorus, both acting freely on M , the subspace b is isomorphic to
g/h whereas the subspace s(G,H, µ) is trivial (cf. Example 5.1.8). In Perlmutter,
Rodríguez-Olmos and Sousa-Dias [59], the subspace

s(G,H, µ) ⊂ g

is obtained by a different construction. It is isomorphic to a symplectic slice at µ
for the H-action on the coadjoint orbit G · µ. We show in Proposition 5.1.2 that
our space, as constructed, coincides with their construction. This construction
strongly depends on the choice of momentum µ as shown in Example 5.1.9, in the
case where G = SO(3) and H = SO(2).

I would like to thank all the people who gave me suggestions, shared ideas and
who with I could discuss about mathematics, including Philip Arathoon, Luis Gar-
cía Naranjo, Anton Izosimov, Yael Karshon, Hovhannes Khudaverdyan, Eckhard
Meinrenken and Miguel Rodríguez-Olmos. I thank my colleagues who proofread
parts of this thesis, Floriana Amicone, Matthew Peddie, and the School of Mathe-
matics of the University of Manchester for its friendly environment and from whom
I owe my scholarship. My special thanks go to James Montaldi for his guidance
and for being an amazing supervisor. Finally thanks to you Christophe, for your
comments, and for being my sun when Manchester is rainy.



PRELIMINARIES

We work with smooth manifolds and, except stated otherwise, the term submani-
fold refers to an embedded submanifold. A Lie group G is a set endowed with both
a smooth structure and a group structure that are compatible in the sense that the
group operations of inversion and multiplication are smooth. A (smooth) action of
a Lie group G on a smooth manifold M is a group homomorphism G → Diff(M)
such that the action map (g,m) ∈ G×M 7→ g ·m ∈M is smooth. A G-manifold is
a pair (M,G) whereM is a smooth manifold acted on by a Lie group G. A smooth
map f : M → N between two G-manifolds is G-equivariant if f(g ·m) = g · f(m)
for all g ∈ G and m ∈ M . Two G-manifolds (M,G) and (N,G) are isomorphic if
there exists a G-equivariant diffeomorphism f : M → N between them. A real-
valued smooth function f : M → R defined on a G-manifold M is G-invariant if
f(g ·m) = f(m) for all g ∈ G and m ∈ M . We denote by C∞(M)G the space of
smooth real-valued G-invariant smooth functions on M . The stabilizer of m ∈M
is the subgroup Gm = {g ∈ G | g ·m = m}. We say that the action of G on M
is free if all the stabilizers Gm are equal to the trivial group 1. The group orbit or
G-orbit of a point m ∈M is the set G ·m = {g ·m | g ∈ G}. We use the notation
g · m to mean the tangent space to G · m at m. The space g stands for the Lie
algebra of G with Lie bracket [·, ·], obtained by identifying g with the left invariant
vector fields on G.

2.1 Proper G-manifolds

Let (M,G) be a G-manifold. Although group orbits are manifolds in their own
right in the sense that they are injectively immersed submanifolds of M , they are
not in general submanifolds for the subspace topology. However if the group action

18



19 PRELIMINARIES

is proper then the group orbits are embedded submanifolds. The action of G on
M is proper if the map

(g,m) ∈ G×M 7→ (m, g ·m) ∈M ×M (2.1)

is a proper map i.e. the preimage of any compact set is compact. A direct conse-
quence is that all the stabilizers Gm are compact since they are identified with the
preimage of a compact set. In this case we refer to (M,G) as a proper G-manifold.

Example 2.1.1. Clearly any G-manifold (M,G) where G is compact is a proper
G-manifold. Other examples include:

(i) (G,G) is a proper G-manifold where G acts on itself by left or right multi-
plication. Indeed in this case the map (2.1) is a diffeomorphism.

(ii) If (M,G) is a proper G-manifold then so is (M,H) for any subgroup H of G
acting on M as G does.

Proposition 2.1.2. All the group orbits in a proper G-manifold (M,G) are
embedded closed submanifolds.

Proof . Let G ·m be the group orbit of some m ∈M . The orbit map

τm : g ∈ G 7→ g ·m ∈M

is G-equivariant where G acts on itself by left multiplication. In particular τm
has constant rank which equals the dimension of the orbit space G/Gm. Since
τm is Gm-invariant, where Gm acts on G by right multiplication, it descends to
a well-defined injective smooth map τ̃m : G/Gm → M. Since the quotient map
π : G → G/Gm has maximal rank and τm has constant rank, it follows that τ̃m
has constant rank. A smooth injective map of constant rank is an immersion (cf.
[37] Theorem 4.14). We still have to show that τ̃m is a topological embedding. By
continuity of π and properness of τm, the map τ̃m is also proper. Since every proper
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map whose codomain is metrizable is closed [56], τ̃m is a topological embedding
(cf. [37] Theorem A.38). In particular the image G ·m = τ̃m(G/Gm) is a closed
embedded submanifold of M . �

A direct consequence of the closedness of the orbits for a proper G-action is
that M/G is Hausdorff. If (M,G) is a proper G-manifold and if G acts freely on
M then the orbit space M/G admits a smooth structure such that the quotient
map π : M →M/G is a smooth submersion (cf. [44] Proposition 9.3.2).

Example 2.1.3 (Non-proper R-manifold). Think of S1 as the complex numbers
of length one and let T = S1 × S1 be the two-torus equipped with the R-action

(t, (z, w)) ∈ R× T 7→
(
e2πitz, e2πiαtw

)
∈ T

where α is an irrational number. This map defines an irrational flow on the torus.
Each group orbit for this action is an injectively immersed submanifold diffeomor-
phic to R. Since the orbit maps of Proposition 2.1.2 are not homeomorphisms
onto their image, the group orbits are not embedded submanifolds of T. In fact,
it can be shown that the orbits are dense in T (cf. [37] Examples 4.20 and 5.19).
In particular (T,R) is an example of non-proper R-manifold.

2.1.1 Existence of slices on proper G-manifolds

An important feature about proper G-manifolds is the existence of slices. Let
(M,G) be a proper G-manifold. Given a subgroup K of G together with a K-
manifold (S,K), there is a (left) K-action on the product G× S given by

k · (g, s) = (gk−1, k · s). (2.2)

This action is free and proper by freeness and properness of the action on the
first factor. The orbit space G ×K S is thus a smooth manifold whose points are
equivalence classes of the form [(g, s)], and the orbit map ρ : G×S → G×K S is a
smooth surjective submersion. Moreover the group G acts smoothly and properly
on G×K S, by left multiplication on the first factor.
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Definition 2.1.4. Let (M,G) be a proper G-manifold and set K = Gm for some
m ∈M . A K-manifold (S,K) is called a slice at m if

(i) S is an embedded submanifold of M containing m.

(ii) There is a G-invariant open subset U ⊂ M containing m such that the
G-equivariant map

τ : [(g, s)] ∈ G×K S 7→ g · s ∈ U (2.3)

is a diffeomorphism.

In particular, a slice at m is transverse at m to the group orbit G ·m (cf. [52]
Theorem 2.3.26). Palais proved 1 that when (M,G) is a proper G-manifold, there
is a slice at every point m ∈ M (cf. [53] Theorem 2.3.3). Previously, this result
had been obtained by Koszul [33] for compact Lie group actions. When (M,G) is
a proper G-manifold, the existence of slices follows from the Tube Theorem, which
is here stated as in [52] (cf. Theorem 2.3.28). In the statement below, a K-vector
space is a pair (N,K), where N is a vector space on which a Lie group K acts
linearly.

Theorem 2.1.5 (Tube Theorem). Let (M,G) be a proper G-manifold and
set K = Gm for some m ∈ M . Let (N,K) be a K-vector space which is
K-equivariantly isomorphic to TmM/g · m and let N0 ⊂ N be an open K-
invariant neighbourhood of 0. Then, there exists a G-invariant neighbourhood
U ⊂M of m and a G-equivariant diffeomorphism

ϕ : G×K N0 → U (2.4)

sending [(e, 0)] on m.

1In fact, Palais assumes that G is a Lie group and M is a completely regular Hausdorff
topological space. He introduces the terminology “Palais-proper”. If M is locally compact, this
definition is equivalent to ours.
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The triplet (ϕ,G×KN0, U) is called a G-tube atm and we also say that G×KN0

is a local model for U . As a corollary, it is easy to verify that S = ϕ ([(e,N0)]) is a
slice at m. We thus get

Theorem 2.1.6 (Slice Theorem). Let (M,G) be a proper G-manifold. Then
there is a slice at every point of M .

2.1.2 G-invariant metrics on proper G-manifolds

An important consequence of the existence of slices is that any proper G-manifold
(M,G) admits a G-invariant Riemannian metric [57]. To show it, we recall the
standard construction of K-invariant inner products on a finite dimensional K-
vector space (V,K), when K is a compact Lie group. We call it the averaging
method. Let (V,K) be a (finite dimensional) K-vector space with inner product
(·, ·). If K is compact we can construct a new inner product on V which is K-
invariant. To do that, let k be the Lie algebra of K and we fix a basis e1, . . . , en of
k, with dual basis ε1, . . . , εn of k∗. We define an n-form σ ∈ Ωn(K) by

σ(g) = (Lg−1)∗
(
ε1 ∧ · · · ∧ εn

)
which is in fact a volume form. By construction it satisfies the K-invariance
property σ(hg) = (Lh−1)∗σ(g) for all h ∈ K. Since K is compact, the integral

∫
K σ

is finite and then ω = σ∫
K
σ
is such that ω(K) = 1. It thus defines a K-invariant

measure on K, which is called the Haar-measure. Define an inner product by

〈x, y〉 =
∫
K

(g · x, g · y)ω(g−1). (2.5)
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Henceforth this inner product is K-invariant since, for all h ∈ K,

〈h · x, h · y〉 =
∫
K

(gh · x, gh · y)ω((gh)−1)

=
∫
K

(k · x, k · y) (Lh)∗ω(hk−1)

=
∫
K

(k · x, k · y)ω(k−1)

= 〈x, y〉.

Proposition 2.1.7 (cf. [53] Theorem 4.3.1). Any proper G-manifold (M,G)
admits a G-invariant Riemannian metric.

Proof . Endow M with the Riemannian metric coming from the ambient Eu-
clidean space. Let m ∈M with stabilizer K = Gm, compact by properness of the
action. We know there is a slice S at m and let τ : G×K S → U as in (2.3). Since
τ is a diffeomorphism, the slice S embedds in M as s 7→ τ ([e, s]). We pullback on
S the Riemannian metric onM by mean of this embedding. This induces an inner
product 〈·, ·〉s on each tangent space TsS. By compacity of K we can assume that
this inner product is K-invariant using the averaging method if necessary. Since
the orbit map ρ : G× S → G×K S is a surjective submersion, any tangent vector
in T[g,s] (G×K S) is of the form T(g,s)ρ · (v, α) for some (v, α) ∈ TgG × TsS. We
define a Riemannian metric h on G×K S by

h([g, s])
(
T(g,s)ρ · (v, α), T(g,s)ρ · (w, β)

)
:= 〈α, β〉s. (2.6)

It is well-defined since 〈·, ·〉s is K-invariant. Furthermore, it is G-invariant by con-
struction. The pullback of h along τ−1 defines a G-invariant Riemannian metric on
U . Therefore since a slice exists at eachm ∈M , each G-orbit has a neighbourhood
on which we can define a G-invariant metric. Using a partition of unity, they can
all be patched together in order to get a G-invariant metric on the whole M . �
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2.2 Stratifications and orbit-type strata

A partition of a topological space M is a cover of M by pairwise disjoint subsets.
Clearly every topological space admits a partition into its connected components.
If our topological space is endowed with a group action, we can choose a partition
which also encodes the information about the group action. For example, a proper
G-manifold (M,G) can be partitioned into locally closed (connected) submanifolds
called the orbit-type strata, each of them being a union of group orbits with the
same orbit-type.

2.2.1 Orbit-type strata

Let G be a Lie group and H ⊂ G be a closed subgroup. The conjugacy class of
H is the set (H) = {L ⊂ G | L = gHg−1 for some g ∈ G}. Given a G-manifold
(M,G), we define the set

M(H) := {m ∈M | Gm ∈ (H)}

which is the union of all the G-orbits in M with orbit-type (H). Using the defi-
nitions and the G-invariance of M(H), it is shown in [52] (Proposition 2.4.4) that
M(H) = G ·MH where

MH = {m ∈M | Gm = H}.

Note that the biggest subgroup of G which leaves MH invariant is the normalizer
NG(H) = {g ∈ G | gHg−1 = H} . Furthermore this action induces a well-defined
free action of the quotient group NG(H)/H on MH . Write

MH =
∐
b∈BH

MH,b

as the disjoint union of its connected components, indexed on some set BH . Given
b ∈ BH , we define the equivalence class (b) to be the set of indices a ∈ BH such
that G ·MH,a = G ·MH,b.

Definition 2.2.1. An orbit-type stratum M(H),(b) is the G-orbit of the connected
component MH,b of MH .
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We use here a modified definition of the standard definition which states that
an orbit-type stratum is a connected component of M(H). If the G-action on M is
proper, the connected componentsMH,b are locally closed embedded submanifolds
of M and so are their G-orbits (cf. [52] Proposition 2.4.7).

The example below illustrates the difference between the standard definition
of orbit-type strata and ours. With our definition, the orbit-type strata might not
be connected.

Example 2.2.2. Think of R∗ = R \ {0} as a multiplicative group and let it act
on M = R2 by t · (x, y) = (x, ty). The stabilizers of points of M are either equal
to the trivial group 1, or equal to R∗. Then M(R∗) = MR∗ is the x-axis, and
M(1) = M1 = H+ ∪ H− where H± = {(x, y) ∈ M | ±y > 0}. According to the
standard definition of orbit-type strata, there are two strata with orbit-type (1),
namely the connected components H+ and H−; and one stratum with orbit-type
(R∗), the x-axis.

With our definition, there is one stratum with orbit-type (R∗) which is the
x-axis; but there is only one stratum with orbit-type (1) which is H+ ∪ H−. In-
deed, M1 has two connected components, H+ and H−. The R∗-orbits of each of
them coincide. There is thus only one stratum with orbit-type (1) and it is not
connected.

Before giving some examples, we introduce the notion of G-connectivity. We
say that a G-manifold (M,G) is G-connected if it can be written as the G-orbit of
a connected submanifold. Although M might not be connected we still have the
following fundamental result:

Proposition 2.2.3. Let (M,G) be a G-connected G-manifold and let A ⊂M

be a non-empty G-invariant subset. If A is open and closed then A = M .

Proof . Since M is G-connected, M = G ·N for some connected submanifold N .
Let A ⊂ M be a non-empty G-invariant subset. Assume by contradiction that
Ac = M \A 6= ∅. Then M can be written as the disjoint union of two non-empty
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open subsets, A and Ac. By G-invariance, the orbit spaces A/G and Ac/G are
open for the quotient topology in N = M/G. Since there are non-empty and N is
connected we have a contradiction. Consequently Ac = ∅ and then A = M . �

Example 2.2.4. Given an equivalence class (H), the corresponding orbit-type
strata might not all have the same dimension, as shown in the following example,
appearing in Delzant [16] and Sjamaar and Lerman [66].

(i) Let M = CP 2 endowed with the S1-action θ · [z0 : z1 : z2] = [eiθz0 : z1 : z2].
The set MS1 has two connected components namely, the point [1 : 0 : 0]
and a copy of CP 1, which consists of the points of the form [0 : z1 : z2].
Since S1 acts trivially on each of these components, they form themselves
two orbit-type strata, which are closed submanifolds of M . Since the action
is free anywhere else, the last orbit-type stratum is M \ ({[1 : 0 : 0]} ∪ CP 1).
It has orbit-type (1) and is an open dense submanifold of M .

(ii) Let M = S2 be the 2-sphere embedded in R3, equipped with the S1-action
which rotates the sphere about the z-axis. There are three orbit-type strata
namely, M(1) which is diffeomorphic to S1 × (−1, 1) and the two closed
connected components of MS1 that are the North and South pole.

(iii) The rotations of a tetrahedron form a group T of order 12, which is a zero-
dimensional Lie subgroup of SO(3). In particular T acts on M = S2. This
group contains a copy of the cyclic group of order three C3 ' Z3 for each
vertex, one copy of Z2 for each axis joining the middle point of an edge and
the middle point of the opposite edge, and the identity (cf. Figure 2.1).

There are two minimal strata with orbit-type (Z3), one minimal stratum
with orbit-type (Z2), and one open dense stratum with orbit type (1) (cf.
Figure 2.2). Indeed, when H = Z3, the eight points forming M(H) are a
union of two T-orbits. There are thus two strata with orbit-type (Z3). For
H = Z2, the six points forming M(H) are a single T-orbit and form a single
stratum.
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Figure 2.1: On the left hand side we fix a vertex v and
permute the three other vertices. As a subgroup it is
isomorphic to C3. On the right hand side we permute
v1, v2 and v3, v4. This subgroup is isomorphic to Z2.

H MH M(H)
T ∅ ∅

Z3

Z2

1 M \ {14 points } M \ {14 points }

Figure 2.2: Orbit-type strata of (M,T) where M = S2.

2.2.2 Stratification by orbit-type strata

There are several ways to define stratifications. The one we present here is the
definition used by Kirwan in her thesis [32]. It is more flexible than the standard
definition of Duistermaat and Kolk [17] (Definition 2.7.3), especially for applica-
tions to algebraic geometry. Recall that a partial order � on a set B is a binary
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relation which is reflexive, antisymmetric and transitive. The pair (B,�) is called
a partially ordered set. A strict partial order ≺ on B is a binary relation which is
irreflexive (an element cannot be compared with itself) and transitive. Note that
in this case if α, β ∈ B are such that α ≺ β, then β 6≺ α. For example the set of
conjugacy classes of subgroups of G admits the strict partial order ≺conj, where
we say that (K) ≺conj (H) if and only if H is conjugate to a proper subgroup of
K. This relation is clearly irreflexive and transitive.

Example 2.2.5. The group T has four conjugacy classes, namely (T), (Z3), (Z2)
and (1). There are partially ordered with respect to ≺conj as shown in Figure 2.3.

T

Z3 Z2

1

Figure 2.3: Conjugacy classes of subgroups of T
where the order goes up to down i.e. (T) is minimal
with respect to ≺conj .

Definition 2.2.6. A collection {Mβ | β ∈ B} of subsets of a topological space M
is locally finite if each compact set of M meets only finitely many Mβ. A locally
finite collection {Mβ | β ∈ B} of locally closed (non-empty) subsets of M form a
B-stratification of M if M is the disjoint union of the strata Mβ, and there is a
strict partial order ≺ on the indexing set B such that

Mβ ⊂
⋃
α�β

Mα (2.7)

for every β ∈ B. We say that the B-stratification is smooth if M is a smooth
manifold and every Mβ is a locally closed submanifold.

Given a B-stratification ofM , a strict partial order can be defined on the strata
in the following way

Mα < Mβ ⇐⇒ α ≺ β. (2.8)
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We say that a stratum Mβ is minimal with respect to (2.8) if there is no α ∈ B
such that Mα < Mβ. Of course minimal strata are not unique because we just
have a partial ordering. If Mβ is a minimal stratum, (2.7) implies that Mβ ⊂Mβ.
In particular Mβ = Mβ i.e. Mβ is closed in M . Given a strict partial order on
the strata, we can associate to it an oriented graph whose vertices are the indices
β ∈ B. Two vertices α, β ∈ B are linked by an oriented edge α −→ β if and only
if Mβ < Mα (cf. Example 2.2.7).

We show now that orbit-type strata of a properG-manifold form a B-stratification,
for some indexing set B that has to be determined. Let (M,G) be a proper G-
manifold. For each closed subgroup H ⊂ G, we associate an indexing set BH such
thatM(H) can be written as the disjoint union of the orbit-type strataM(H),(b) with
b ∈ BH (cf. Definition 2.2.1). In order to partition M , we define B to be the set of
pairs β = ((H), (b)) where (H) is the conjugacy class of some closed subgroup of
G, and b ∈ BH . We write Mβ = M(H),(b) when β = ((H), (b)). We define a strict
partial order ≺ on B as follows: for α = ((K), (a)) and β = ((H), (b)),

α ≺ β ⇐⇒ α 6= β and Mα ∩Mβ 6= ∅. (2.9)

By α 6= β we mean that the associated orbit-type strata Mα and Mβ are distinct.

Example 2.2.7. Let T = S1 × S1 be a two-torus acting on M = CP 2 × CP 2 by

(θ, φ) ·
(
[eiθz0 : z1 : z2], [eiφw0 : w1 : w2]

)
.

In what follows, CP 1 denotes the copy of CP 1 in CP 2 made of points of the form
[0 : z1 : z2]. We denote by {m} the set consisting of the single point m = [1 : 0 : 0],
and by U the (open) submanifold CP 2 \ ({m} ∪ CP 1). In this example we have
four orbit-types (H), with H being either 1, S1×1, 1×S1 or the full torus S1×S1.
Since M(1) is connected, there is only one stratum Mγ, with orbit-type (1), which
is open and dense in M . The other strata are given in the tables below.

αa = ((S1 × 1), (a)) Mαa Mαa

α1 {m} × U {m} × CP 2

α2 CP 1 × U CP 1 × CP 2
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α′` = ((1× S1), (`)) Mα′
`

Mα′
`

α′1 U × {m} CP 2 × {m}
α′2 U × CP 1 CP 2 × CP 1

βb = ((S1 × S1), (b)) Mβb Mβb

β1 {m} × CP 1 {m} × CP 1

β2 {m} × {m} {m} × {m}
β3 CP 1 × CP 1 CP 1 × CP 1

β4 CP 1 × {m} CP 1 × {m}

The oriented graph associated to the strict partial order (2.9) is pictured below.

β3 α2oo // β4

α′2

OO

��

γ //oo

OO

��

α′1

OO

��
β1 α1 //oo β2

In general, using the strict partial order ≺conj on the conjugacy classes of
subgroups of G is not enough to guarantee that we have a good stratification. For
instance, in Example 2.2.4 (iii), we have (T) ≺conj (Z2) but there are no strata
with orbit-type (T). However we have the following lemma:

Lemma 2.2.8. If α = ((K), (a)) and β = ((H), (b)) then

α ≺ β =⇒ (K) ≺conj (H).

Proof . By definition α ≺ β implies that there exists some x ∈ Mα ∩ Mβ. In
particular x ∈ Mα and then Gx ∈ (K). By the Tube Theorem 2.1.5, there is a
G-invariant open neighbourhood U ⊂ M of x, locally modelled by an associated
bundle G×Gx N0, in which x reads [(e, 0)].
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By definition of the adherence, there is a sequence (xn)n∈N ⊂ Mβ converging
to x in M , with stabilizers Gxn ∈ (H). For n big enough, xn ∈ U and it can thus
be identified with some point [(gn, νn)] ∈ G×Gx N0. The stabilizer of [(gn, νn)] is

G[(gn,νn)] = gn(Gx)νng−1
n

and is thus conjugate to a proper subgroup of Gx, because by assumption Mα and
Mβ are disjoint. Since Gx ∈ (K) and Gxn ∈ (H), it follows that (K) ≺conj (H). �

Proposition 2.2.9. Let (M,G) be a proper G-manifold and let (B,≺) as
above with partial order (2.9). Then the orbit-type strata {Mβ | β ∈ B} form
a smooth B-stratification of M .

Proof . By definition, the orbit-type strata form a disjoint cover of M . Therefore,
any closure of an orbit-type stratum Mβ is included in a union of strata Mα

(including Mβ), having non-empty intersection with Mβ. To show (2.7), we may
show that

Mα ∩Mβ 6= ∅ =⇒ Mα ⊂Mβ.

AssumeMα∩Mβ 6= ∅ for some (possibly equal) indices α = ((K), (a)) and β =
((H), (b)) in B. Note that Mα ∩Mβ is G-invariant. Indeed if x ∈Mα ∩Mβ, there
is a sequence (xn)n∈N ⊂Mβ converging to x. Given g ∈ G the sequence (g ·xn)n∈N
belongs to Mβ by G-invariance of Mβ, and converges to g · x by continuity of the
action. By closedness of Mβ and G-invariance of Mα, we have g · x ∈Mα ∩Mβ.

The strategy now is to show that Mα ∩Mβ is closed and open in Mα. By G-
connectedness of Mα we will get Mα ∩Mβ = Mα and we are done. The closedness
condition is immediate since, given a sequence (xn)n∈N ⊂Mα ∩Mβ converging to
x ∈Mα, the limit point x must also belong to Mβ because this set is closed.

Let us show thatMα∩Mβ is open inMα. Let x ∈Mα∩Mβ such that Gx = K.
As in Lemma 2.2.8, we use the Tube Theorem 2.1.5 to get a G-invariant open
neighbourhood U ⊂ M of x, locally modelled by an associated bundle G ×K N0,
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in which x reads [(e, 0)]. Then V = U ∩Mα is open in Mα for the subset topology.
This subset locally reads

(G×K N0)(K) = G×K (N0)K .

Let y ∈ V be an arbitrary point corresponding to some [g, ν] in the local model.
By construction ν ∈ (N0)K and then Kν = K.

By definition of the adherence, there is a sequence (xn)n∈N ⊂ Mβ converging
to x in M , with stabilizers Gxn ∈ (H). For n ∈ N big enough, xn ∈ U ∩Mβ.
It can thus be identified with some [(gn, νn)] ∈ (G×K N0)(H) whose stabilizer is
conjugate to H. Besides, G[(gn,νn)] = gnKνng

−1
n . Hence Kνn ∈ (H).

Let N ∈ N big enough such that ν+ νn ∈ N0. Then the sequence (yn)n≥N ⊂ U

whose terms correspond to [ggn, ν + νn] in the local model converges to y. By
linearity of the K-action on N0, we have

Kν+νn = Kν ∩Kνn = Kνn ∈ (H).

In particular Gyn ∈ (H). This shows that (yn)n∈N ⊂ Mβ and thus y ∈ Mβ. Hence
V ⊂Mα ∩Mβ and then Mα ∩Mβ is open in Mα. Since Mα is G-connected,

Mα = Mα ∩Mβ ⊂Mβ.

In particular, if α 6= β, we have α ≺ β. We thus proved (2.7). This cover
is a locally finite cover of locally closed submanifolds. The fact that the strata
are locally closed embedded submanifolds is a consequence of Proposition 2.4.7 in
[52]. That such a cover is locally finite is a consequence of Proposition 2.7.1 in
[17]. Both facts require the group action to be proper. �

2.2.3 Stratification of a convex polytope by open faces

There is a natural stratification of a convex polytope into vertices, edges and
higher dimensional faces. Let ∆ ⊂ (Rn)∗ be a n-dimensional convex polytope.
Let X1, . . . , Xd in Rn be the outward-pointing normal vectors to the facets. Then
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there exists real numbers λ1, . . . , λd such that ∆ reads

∆ =
d⋂
i=1
{µ ∈ (Rn)∗ | 〈µ,Xi〉 ≤ λi} .

Let B be the set of subsets (possibly empty) β ⊂ {1, . . . , d}. For each β ∈ B
we consider the intersection

Fβ =
⋂
i∈β
{µ ∈ ∆ | 〈µ,Xi〉 = λi} .

If Fβ 6= ∅, its relative interior
◦
F β is called a l-dimensional open face of ∆ where l

is equal to n minus the cardinality of β. We equip B with the strict partial order

α ≺ β ⇐⇒ α 6= β and
◦
Fα ∩

◦
F β 6= ∅. (2.10)

With this strict partial order, the collection {
◦
F β | β ∈ B} forms a B-stratification

of ∆. A strict partial order is defined on the set of faces by

◦
Fα <

◦
F β ⇐⇒ α ≺ β.

Finally note that, if α ≺ β then β ⊂ α.

Example 2.2.10. Let ∆ ⊂ (R2)∗ be the polytope with vertices (1, 0), (0, 0) and
(0, 1). According to our previous notations, set

X1 =
−1

0

 , X2 =
 0
−1

 , X3 =
1

1


and λ1 = 0, λ2 = 0, λ3 = 1. The elements of ∆ are the µ ∈ (R2)∗ which satisfy

〈µ,X1〉 ≤ λ1,

〈µ,X2〉 ≤ λ2,

〈µ,X3〉 ≤ λ3.
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The faces corresponding to the subsets α = {2, 3} and β = {2} are respectively
the single vertex

◦
Fα = {(1, 0)}, and

◦
F β which is the (open) edge joining (1, 0) and

(0, 0). We clearly have
◦
Fα ⊂

◦
F β and then α ≺ β.

2.3 Symplectic manifolds and Hamiltonian actions

In the Hamiltonian formulation of classical mechanics, the phase space of a dy-
namical system is a cotangent bundle whose zero section is a smooth manifold
describing all the different configurations of the system. A cotangent bundle is a
particular example of symplectic manifold.

2.3.1 Symplectic manifolds

A symplectic manifold is a pair (M,ω) where M is a 2n-dimensional smooth man-
ifold and ω ∈ Ω2(M) is a closed 2-form which is non-degenerate in the sense that
the map

ω[ : TM → T ∗M (2.11)

defined by 〈ω[(v), w〉 = ω(m)(v, w) for v, w ∈ TmM , is a fiberwise isomorphism.
In particular, ωn obtained by wedging ω with itself n times is a volume form
(nowhere vanishing top-degree form). Any symplectic manifold is therefore natu-
rally oriented and has a canonical measure ωn

n! called the Liouville measure. The
2-form ω is called a symplectic form or a symplectic structure.
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Example 2.3.1 (The sphere S2). The 2n-dimensional sphere S2n is symplectic
only when n = 1. There is in fact a cohomological reason for that. We start by
proving a general fact about compact symplectic manifolds:

Proposition 2.3.2. If (M,ω) is 2n-dimensional and compact (closed with-
out boundary), then the de Rham cohomology class [ω] ∈ H2(M ;R) is non-
vanishing.

Proof . By contradiction we assume that [ωn] = 0. This implies that there exists
α ∈ Ω2n−1(M) such that ωn = dα. SinceM is compact, we can use Stokes Theorem
to deduce

V ol(M) =
∫
M
ωn =

∫
M
dα =

∫
∂M

α = 0.

Hence M has no volume which is a contradiction. Consequently [ω] is non-
vanishing since otherwise ωn = d(f ∧ ωn−1) where ω = df . In particular, exact
symplectic forms only exist on non-compact manifolds. �

If we go back to our example, the only non-trivial de Rham cohomology groups
of S2n are H0(S2n;R) and H2n(S2n;R). Since [ω] belongs to H2(S2n;R), this class
is non-vanishing only when n = 1. Therefore S2 is the only even-dimensional
sphere which is symplectic. To find the symplectic form, we identify

TS2 =
{
v = (x, y) ∈ S2 × R3 | x · y = 0

}
.

The symplectic form ω ∈ Ω2(S2) is defined pointwise by

ω(x) (v, w) = x · (y × z).

where v = (x, y) and w = (x, z) are in TxS2. This form is closed because it is of top
degree and is non-degenerate because if v = (x, y) is such that y 6= 0, the form is
non-vanishing. Indeed by choosing w = (x, x× y), we get ω(x) (v, w) = ‖y‖2 6= 0.
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Example 2.3.3. Let Cn with complex coordinates z = (z0, . . . , zn−1) endowed
with the standard hermitian metric H = ∑n−1

i=0 dzi ⊗ dzi where

H(u, v) =
n−1∑
i=0

uiv̄i for v, u ∈ TzCn ' Cn.

The standard symplectic form ω0 ∈ Ω2(Cn) is the imaginary part of H modulo a
sign

ω0(u, v) = i

2
(
H(u, v)−H(u, v)

)
= i

2 (H(u, v)−H(v, u)) .

In a chart, it has the expression ω0 = i
2
∑n−1
i=0 dzi ∧ dz̄i.

Example 2.3.4 (Complex projective spaces). Let C× = C \ {0} be the complex
torus. The complex projective space CP n−1 is defined as the orbit space of the
principal C×-bundle π : Cn \ {0} → CP n−1 where the (right) action of C× on
Cn \ {0} is

λ · (z0, . . . , zn−1) = (z0λ, . . . , zn−1λ).

We denote by z = [z0 : · · · : zn−1] = π(z) the class corresponding to the point
z = (z0, . . . , zn−1). Setting ‖z‖2 = H(z, z), the unit sphere in Cn is

S2n−1 = {z ∈ Cn | ‖z‖2 = 1}.

The Lie group S1, identified with the complex numbers of length one, acts on
S2n−1 by right multiplication on each factor. Since this action is free and proper,
the orbit map ρ : S2n−1 → S2n−1/S1 is a principal S1-bundle. Clearly the map
CP n−1 → S2n−1/S1 given by

[z0 : · · · : zn−1] 7−→ ρ

(
z0

‖z‖
, . . . ,

zn−1

‖z‖

)

is a well-defined diffeomorphism. The complex projective space CP n−1 is equipped
with the Fubini-Study symplectic form

ωFS = i

2∂∂log
(
‖z‖2

)
(2.12)

which is defined on a copy of Cn−1 in CP n−1, obtained by removing an hyperplane
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at infinity. The term log (‖z‖2) is a Kähler potential and is not globally defined.
In a coordinate chart on CP n−1, say

ϕ : (z0, . . . , zn−2) ∈ Cn−1 7−→ [z0 : · · · : zn−2 : 1] ∈ CP n−1, (2.13)

the Fubini-Study symplectic form reads

ϕ∗ωFS = ϕ∗
(
i

2∂∂log
(
‖z‖2

))

= i

2∂
(
n−2∑
k=0

∂

∂zk

(
log

(
‖z‖2

))
dzk

)

= i

2∂
(
n−2∑
k=0

zk
‖z‖2dzk

)

= i

2

n−2∑
j=0

∂

∂zj

(
n−2∑
k=0

zk
‖z‖2

)
dzj ∧ dzk

= i

2

n−2∑
j=0

1
‖z‖2dzj ∧ dzj −

i

2

n−2∑
j,k=0

zkzj
‖z‖4dzj ∧ dzk.

Example 2.3.5 (Coadjoint orbits). Let G be a Lie group with Lie algebra (g, [·, ·])
(thought as the left invariant vector fields on G). The Adjoint representation of G
on g is the representation Ad : G→ Gl(g)

Adg(x) = d
dt

∣∣∣∣∣
t=0

gexp(tx)g−1

where exp : g → G is the group exponential. Denote by 〈·, ·〉 the natural pairing
between g and its dual g∗. The coAdjoint representation is the dual representation
Ad∗ : G→ Gl(g∗) given by

〈Ad∗g−1µ, x〉 = 〈µ,Adg−1x〉 for µ ∈ g∗, x ∈ g.

A group orbit G·µ ⊂ g∗ for this representation is called a coadjoint orbit. Coadjoint
orbits G · µ carry a symplectic structure

ω(µ) (xg∗(µ), yg∗(µ)) = −〈µ, [x, y]〉
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where xg∗(µ), yg∗(µ) ∈ Tµ (G · µ). To define those tangent vectors, we consider
the adjoint representation ad : g → Gl(g) defined by adxy = [x, y]. The dual
representation ad∗ : g → Gl(g∗) is called the coadjoint representation. Then
elements of Tµ (G · µ) are of the form xg∗(µ) = −ad∗xµ ∈ g∗.

2.3.2 Hamiltonian actions

Let (M,ω) be a symplectic manifold acted on by a Lie group G. The action is
canonical or symplectic if the diffeomorphisms generated by the action are sym-
plectic maps i.e. diffeomorphisms preserving the symplectic structure. Every x ∈ g

induces a vector field xM ∈ X(M), an infinitesimal generator, defined pointwise
by

xM(m) = d
dt

∣∣∣∣∣
t=0

exp(tx) ·m. (2.14)

If the action is symplectic, £xMω = 0. In this case Cartan’s magic formula and
the closedness of ω imply that ιxMω ∈ Ω1(M) is closed, and then locally exact. A
canonical action is Hamiltonian if this 1-form is exact for all x ∈ g. In this case,
the vector field xM is Hamiltonian in the sense that

ιxMω = −dφxG (2.15)

for some φxG ∈ C∞(M) depending linearly on x. A map ΦG : M → g∗ satisfying
〈ΦG(m), x〉 = φxG(m) is called a momentum map. A momentum map is said
equivariant if ΦG(g ·m) = Ad∗g−1ΦG(m) for all m ∈M and g ∈ G.

Definition 2.3.6. Let (M,ω) equipped with a Hamiltonian action of a (con-
nected) Lie group G with equivariant momentum map ΦG : M → g∗. We call
the quadruple (M,ω,G,ΦG) a Hamiltonian G-manifold. If in addition the group
action is proper, this quadruple is called a Hamiltonian proper G-manifold.

Example 2.3.7 (Canonical non-Hamiltonian action). An example of action which
is not Hamiltonian is the action of G = R on M = S1 × R, acting by translations
on the second factor. Let (θ, z) ∈ S1 × R be the coordinates on M . Any element
x ∈ R induces a vector field xM = x ∂

∂z
. The action preserves the symplectic form

ω = dθ ∧ dz, but ιxMω = −xdθ is not globally exact as θ is multivalued on M .
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Momentum maps are not unique in the sense that, if Φ1,Φ2 : M → g∗ arise
from the same canonical Lie group action, then φx1 − φx2 is a Casimir function on
M for any x ∈ g i.e. the associated Hamiltonian vector field Xφx1−φ

x
2
vanishes

identically. Indeed Xφx1
= Xφx2

= xM by construction. If M is connected, the only
Casimir functions are the constants and then, in this case, a momentum map is
determined up to a constant in g∗. The reader is referred to [52] for further details.
An obstruction for the existence of a momentum map is the non-vanishing of the
first de Rham cohomology group H1(M,R).

Proposition 2.3.8 ([52] Proposition 4.5.17). A canonical action of a Lie
group G on (M,ω) is Hamiltonian if and only if the map below vanishes
identically.

ρ : g/[g, g] −→ H1(M,R)

[x] 7−→ [ixMω]

This theorem gives a necessary and sufficient condition for the existence of a
momentum map but it is not enough to guarantee than such a momentum map is
equivariant. In general, a momentum map is equivariant modulo a cocycle which
vanishes if, for example, the group G is compact or if M is a cotangent bundle
(cf. [52] Section 4.5 for further details). We now give some well-known examples
of (equivariant) momentum maps. Many other examples are presented in [44]
(Section 11.4).

Example 2.3.9. The unitary group U(n) consists of complex matrices B ∈ Mn(C)
satisfying BB∗ = B∗B = In, where B∗ is the conjugate transpose of B. This Lie
group acts on Cn by isometries. Its Lie algebra u(n) consists of skew-hermitian
matrices i.e. matrices A ∈ Mn(C) such that H(Au, v) + H(u,Av) = 0, or equiva-
lently matrices such that A = −A∗. Since U(n) preserves the hermitian structure
of Cn, it also preserves the symplectic form ω0 on Cn. It is in fact Hamiltonian
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with momentum map Φ : Cn → u(n)∗ defined by

〈Φ(z), A〉 = −1
2ω0(Az, z). (2.16)

To show this is indeed a momentum map, let v ∈ TzCn ' Cn and observe that

〈DΦ(z) · v, A〉 = d
dt

∣∣∣∣∣
t=0
〈Φ(z + tv), A〉

= −1
2 (ω0(Av, z) + ω0(Az, v))

= − i2 (H(Az, v)−H(v, Az))

= −ω0(Az, v)

where Az is the infinitesimal generator for the U(n)-action on Cn, at the point z.

Example 2.3.10. By linearity, the action of U(n) on Cn preserves the set of
lines in Cn \ {0} and thus descends to an action on CP n−1 making the orbit map
π : Cn \ {0} → CP n−1 equivariant. This action preserves ωFS and is Hamiltonian.
A momentum map Φ̃ : CP n−1 → u(n)∗ is given by

〈Φ̃(z), A〉 = − i2
H(Az, z)
‖z‖2 . (2.17)

To construct it in this form, we start by working in the chart ϕ : Cn−1 → CP n−1

as in (2.13). This coordinate chart factors through the sphere S2n−1 as

ϕ = π
∣∣∣
U
◦ i

where i : Cn−1 ↪→ S2n−1 is the embedding

(z0, . . . , zn−2) 7−→ (z0, . . . , zn−2, 1)√
1 +∑n−2

i=0 |zi|2
, (2.18)

and U ⊂ S2n−1 is the image of this embedding. We define Φ̃ : CP n−1 → u(n)∗ in
the chart as

ϕ∗Φ̃ = i∗
(
Φ
∣∣∣
U

)
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with Φ as in (2.16). Explicitly, for A ∈ u(n) and z = [z0 : · · · : zn−2 : 1] in this
chart, we have

〈Φ̃(z), A〉 = 〈Φ
(
z

‖z‖

)
, A〉

= −1
2
ω0(Az, z)
‖z‖2

= − i2
H(Az, z)
‖z‖2 .

Since this result does not depend on the chart, Φ̃ extends globally as in (2.17).

2.3.3 Symplectic reduction

The well-known Noether’s theorem states that, to each (smooth) symmetry of a
dynamical system corresponds a conserved quantity. For Hamiltonian systems this
quantity is expressed in term of a momentum map. More explicitly assume that h
is a G-invariant Hamiltonian defined on a Hamiltonian G-manifold (M,ω,G,ΦG).
In this case, Noether’s Theorem says essentially that the flow lines ϕt of the G-
equivariant Hamiltonian vector fieldXh, are confined to level sets of the momentum
map (cf.[44] Theorem 11.4.1). In particular, the number of variables of the system
can be reduced. In a more abstract language, it means that the quotient space
obtained by quotienting a level set Φ−1

G (µ) of the momentum map by the subgroup
of G preserving it, and the reduced Hamiltonian hµ defined on it, form a Hamil-
tonian system in their own right, provided that the group action is nice enough.
This is the process of symplectic reduction of Marsden and Weinstein [41].

Theorem 2.3.11 (Symplectic Reduction). Let (M,ω,G,ΦG) be a Hamil-
tonian proper G-manifold on which G acts freely. Then the reduced space
Mµ = Φ−1

G (µ)/Gµ admits a symplectic form ωµ, uniquely defined by the rela-
tion π∗µωµ = i∗µω. The maps πµ : Φ−1

G (µ)→Mµ and iµ : Φ−1
G (µ)→M are the

quotient map and the inclusion map, respectively.
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In the example below we show that the Fubini-Study symplectic form can be
understood as the reduced symplectic form arising from a symplectic reduction
process. The reader is invited to consult the excellent lecture notes of Berline and
Vergne [7] (Section 2.3) for a more general exposition in the case of projective
varieties.

Example 2.3.12. The Fubini-Study symplectic ωFS ∈ Ω2(CP n−1) of Example
2.3.4 arises from symplectic reduction. We first show that there is a unique sym-
plectic form ωred ∈ Ω2(CP n−1) such that

π∗aωred = ω0

∣∣∣
S2n−1

where S2n−1 is a level set φ−1(a) of a momentum map φ : Cn → u(1)∗ arising from
a Hamiltonian action of U(1) on Cn, and πa : φ−1(a) → φ−1(a)/U(1) is the orbit
map.

As before S1 is identified with U(1), the complex numbers of the form eiθ with
θ ∈ R. This group acts on Cn by multiplying each component on the right by eiθ.
Since this action is hermitian, it also preserves the canonical symplectic form ω0.
Moreover this action is Hamiltonian with momentum map φ : Cn → u(1)∗. If we
think of U(1) as embedded in U(n), the momentum map φ can be computed using
the formula derived in (2.16). Explicitly, we identify both u(1) and its dual u(1)∗

with the pure imaginary complex numbers. Given x ∈ u(1), we have

〈φ(z), x〉 = −1
2ω0(xz, z) = − i4 (H(xz, z)−H(z, xz)) = − i2x

n−1∑
i=0
|zi|2.

Therefore φ(z) = i
2‖z‖

2. For a = i
2 we have that φ−1(a) = S2n−1 and this level set

is invariant by the U(1)-action. We can apply the symplectic reduction process
to get the existence of a unique 2-form ωred on the reduced space φ−1(a)/U(1),
uniquely defined by the relation

π∗aωred = ω0

∣∣∣
S2n−1

.

It remains to show that ωred coincides with the Fubini-Study symplectic form
defined in (2.12). It is sufficient to show that they coincide in the chart ϕ :
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Cn−1 → CP n−1 defined in (2.13). This chart factors through the sphere S2n−1 via
the embedding i : Cn−1 ↪→ S2n−1 defined in (2.18). Let U ⊂ S2n−1 be the image
of this embedding. Then

ϕ = πa
∣∣∣
U
◦ i.

By looking at the coordinates (w0, . . . , wn−2, 1) on U with

wj ◦ i = zj√
1 +∑n−2

i=0 |zi|2
,

it is a straightforward calculation to show that

i∗
(
ω0

∣∣∣
U

)
= i∗

 i
2

n−2∑
j=0

dwj ∧ dwj


coincides with ϕ∗ωFS as derived above. Using Proposition 2.3.12 we obtain

ϕ∗ωred = (πa
∣∣∣
U
◦ i)∗ωred = i∗(πa

∣∣∣
U

)∗ωred = i∗
(
ω0

∣∣∣
U

)
= ϕ∗ωFS

which shows that ωFS coincides with the reduced symplectic form.

2.4 Symplectic tubular neighbourhoods of group orbits

In this section we introduce the Symplectic Tube Theorem (Theorem 2.4.1) which
is a fundamental result to study both, the local dynamics and the local geometry
of a Hamiltonian proper G-manifold (M,ω,G,ΦG). It states essentially that every
m ∈M admits a G-invariant neighbourhood, which is G-equivariantly symplecto-
morphic to a neighbourhood of the zero section of a symplectic associated bundle.
This contruction provides tractable semi-global coordinates for M near G-orbits.
Those coordinates are sometimes referred as slice coordinates. This theorem was
obtained by Guillemin and Sternberg [26] and by Marle [40], for canonical Lie group
actions with equivariant momentum map. It has been extended independantly by
Ortega and Ratiu [52] and by Bates and Lerman [5], for general canonical Lie
group actions. Schmah [64] and Perlmutter, Rodríguez-Olmos and Sousa-Dias [59]
studied the case when M is a cotangent bundle.
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2.4.1 Witt-Artin decomposition

We briefly recall the construction underlying the Symplectic Tube Theorem. The
reader is referred to Ortega and Ratiu [52] (Chapter 7) or Cushman and Bates [52]
(Appendix B Section 3.2) for details. Let m ∈ M with momentum µ = ΦG(m).
Denote by Gm and Gµ the stabilizers of m and µ respectively, and by gm and gµ

their respective Lie algebras. The stabilizer Gm is compact by properness of the
G-action on M . We can thus split gµ and g into a direct sum of Gm-invariant
subspaces

gµ = gm ⊕m and g = gm ⊕m⊕ n.

The tangent space TmM can be decomposed into a direct sum of four Gm-invariant
subspaces

TmM = T0 ⊕ T1 ⊕N0 ⊕N1 (2.19)

with respect to which the skew-symmetric matrix associated to ω(m) has a specific
normal form. This decomposition was first introduced by Witt [70] for symmetric
bilinear forms. The part T0⊕T1 corresponds to the directions tangent to the group
orbit whereas N0 ⊕ N1 is a specific choice of normal space. Those subspaces are
defined as follows:

(i) T0 := ker (DΦG(m)) ∩ g ·m = gµ ·m.

(ii) T1 := n ·m which is a symplectic vector subspace of (TmM,ω(m)).

(iii) N1 is a choice of Gm-invariant complement to T0 in ker (DΦG(m)). It is a
symplectic subspace of (TmM,ω(m)) and is called the symplectic slice. The
linear action of Gm on N1 is globally Hamiltonian with momentum map
ΦN1 : N1 → g∗m given by

〈ΦN1(ν), x〉 = 1
2ω(xN1(ν), ν)

for all ν ∈ N1 and x ∈ gm.

(iv) N0 is a Gm-invariant Lagrangian complement to T0 in the symplectic orthog-
onal (T1 ⊕ N1)ω(m). Moreover, there is an isomorphism f : N0 → m∗ given
by 〈f(w), y〉 = ω(m) (yM(m), w) for all w ∈ N0 and y ∈ m.
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A splitting (2.19) is called a Witt-Artin decomposition of TmM , relative to the
G-action. Note that the symplectic form ω(m) restricted to T1 coincides with the
Kostant-Kirillov-Souriau symplectic form. Moreover, the symplectic form ω(m)
restricted to T0 ⊕N0 takes the form

ω(m)(xM(m) + w, x′M(m) + w′) = 〈f(w′), x〉 − 〈f(w), x′〉 (2.20)

for every x, x′ ∈ m, w, w′ ∈ N0, and f as in (iv). Indeed since yM(m) = 0 for every
y ∈ gm, the elements of T0 are of the form xM(m) with x ∈ m. Let x, x′ ∈ m and
w,w′ ∈ N0. As both T0 and N0 are Lagrangian in T0 ⊕N0,

ω(m)(xM(m) + w, x′M(m) + w′) = ω(m)(xM(m), w′) + ω(x′M(m), w)

which coincides with 〈f(w′), x〉 − 〈f(w), x′〉.

Since N1 is a Gm-invariant subspace, there is a well-defined action of Gm on
the product G×m∗ ×N1 given by

k · (g, ρ, ν) = (gk−1,Ad∗k−1ρ, k · ν). (2.21)

This action is free and proper by freeness and properness of the action on the first
factor. The orbit space Y is thus a smooth manifold whose points are equivalence
classes of the form [(g, ρ, ν)]. The group G acts smoothly and properly on Y , by left
multiplication on the first factor. Let m∗0 ⊂ m∗ and (N1)0 ⊂ N1 be Gm-invariant
neighbourhoods of zero in m∗ and N1, respectively. Then

Y0 := G×Gm (m∗0 × (N1)0) (2.22)

is a neighbourhood of the zero section in Y . It comes with a symplectic structure
ωY0 if it is chosen small enough ([52] Proposition 7.2.2). Define the Chu map
Ψ : M → Z2(g) associated to the G-action by

Ψ(m)(x, y) := ω(m)(xM(m), yM(m)). (2.23)
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Note that Ψ(m)(x, y) = −〈µ, [x, y]〉, and thus Ψ(m) coincides with the Kostant-
Kirillov-Souriau symplectic form on the coadjoint orbit G · µ whenever x, y ∈ n.

2.4.2 The Symplectic Tube Theorem

We can now state the symplectic analogue of the Tube Theorem 2.1.5.

Theorem 2.4.1 (Symplectic Tube Theorem). Let (M,ω,G,ΦG) be a Hamil-
tonian proper G-manifold. Let m ∈ M with momentum µ = ΦG(m). If the
neighbourhood Y0 defined in (2.22) is sufficiently small, it admits a symplectic
structure ωY0. In this case, there exists a G-invariant neighbourhood U ⊂M

of m and a G-equivariant symplectomorphism

ϕ : (Y0, ωY0)→ (U, ω
∣∣∣
U

)

such that ϕ ([e, 0, 0]) = m.

We call the triplet (ϕ, Y0, U) a symplectic G-tube atm and we also say that (Y0, ωY0)
is a symplectic local model for (U, ω

∣∣∣
U

). Besides the momentum map ΦG : M → g∗

can be expressed in terms of the slice coordinates:

Theorem 2.4.2 (Marle-Guillemin-Sternberg Normal Form Theorem). Let
(M,ω,G,ΦG) be a Hamiltonian proper G-manifold and let (ϕ, Y0, U) be a
symplectic G-tube at m ∈ M . Then the G-action on Y0 is globally Hamilto-
nian with associated momentum map Φ̃G : Y0 → g∗ defined by

Φ̃G([g, ρ, ν]) = Ad∗g−1(ΦG(m) + ρ+ ΦN1(ν)). (2.24)

It coincides with ΦG

∣∣∣
U
when pulled back along ϕ−1.



THE EQUIVARIANT
LYUSTERNIK-SCHNIRELMANN

CATEGORY

The Lyusternik-Schnirelmann category or LS-category of a topological space X is
the homotopical invariant Cat(X) defined to be the least number of open subsets
U ⊂ X, whose inclusion is nullhomotopic, that are required to cover X. Although
it is now the subject of a full theory in connection with algebraic topology, it was
originally introduced by Lyusternik and Schnirelmann in a course on the global cal-
culus of variations, when X is a smooth compact manifold without boundary [39].
In this case they show that any f ∈ C∞(X) has at least Cat(X) critical points.
The difference with Morse theory is that f is allowed to have degenerate critical
points. However this is in no way a generalization of Morse theory because a Morse
function determines entirely the topological structure of the underlying manifold.
Indeed in this case X has the homotopy type of a CW-complex and each cell is
determined by exactly one critical point in the sense that its dimension is the
Morse index of the critical point [49]. Rewiews on the Lyusternik-Schnirelmann
theory are for instance [29, 13, 4].

3.1 Terminologies

A topological space X is said to be completely regular if, for any closed subset Y
of X and any y /∈ Y , there is a continuous map f ∈ C(X) sending y to 0, and
Y to 1. In this section a pair (X,G), where X is a completely regular topological
space on which a topological group G acts continuously, is called a G-space. If
the action is proper, we refer to it as a proper G-space. The equivariant analogue

47
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of the LS-category has been introduced by Fadell [19] and Marzantowicz [46] for
compact groups, and by Colman [12] for finite groups. A substantial part of the
theory has been extended for non-compact Lie groups when (X,G) is a proper
G-space by Ayala, Lasheras and Quintero [3], thanks to the result of Palais [53]
on the existence of slices for proper Lie group actions.

3.1.1 G-categorical open subsets

Let (X,G) be a proper G-space. A homotopy H : X × [0, 1] → X which satisfies
H(g · x, t) = g · H(x, t) for every g ∈ G, x ∈ X and t ∈ [0, 1] is called a G-
homotopy. We write Ht(x) = H(x, t). Let A,B ⊂ X be two G-invariant subsets.
A G-deformation retract of A onto B is a G-homotopy H : A × [0, 1] → A such
that H0(x) = x, H1(x) ∈ B for every x ∈ A, and H1(b) = b for every b ∈ B.

Definition 3.1.1. A G-invariant subset U ⊂ X is called G-categorical if there
exists a G-deformation retract of U onto the orbit G · x of some x ∈ U .

Definition 3.1.2. Given a G-invariant subset A ⊂ X, the equivariant LS-category
of A in X, denoted CatG(A,X), is the least number of G-categorical open subsets
U ⊂ X that are required to cover A. If no such cover exists, we set CatG(A,X) =
∞. Furthermore we write CatG(X) = CatG(X,X) and CatG(X) = ∞ if such a
cover does not exist. The non-equivariant LS-categories Cat(A,X) and Cat(X)
are obtained by setting G = 1.

Observe that in particular a G-invariant subset A ⊂ X is G-categorical if and
only if CatG(A,X) = 1.

Proposition 3.1.3 ( Marzantowicz [46]). Let (X,G) be a proper G-space and let
A,B be G-invariant open subsets of X.

(i) (Subadditivity) CatG (A ∪B,X) ≤ CatG (A,X) + CatG (B,X).

(ii) (Invariance) If ϕ : X → X is a G-equivariant homeomorphism, then
CatG (A,X) = CatG (ϕ(A), X).

Example 3.1.4. The equivariant version of the LS-category is in general different
from its non-equivariant analogue, as shown in the examples below.
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(i) Let X = S1×R with cylindrical coordinates (θ, z). Define an S1-action on X
by φ · (θ, z) = (θ+ φ, z). The cylinder itself is an S1-categorical open subset
with S1-deformation retract H : X × [0, 1] → X given by H((θ, z), t) =
(θ, (1− t)z). Therefore, CatS1(X) = 1. However we require two contractible
open subsets to cover X, which yields

1 = CatS1(X) < Cat(X) = 2.

(ii) Consider the complex projective space X = CP 2 with the S1-action

θ · [z0 : z1 : z2] = [eiθz0 : z1 : z2].

For i = 0, 1, 2, the open subsets Ui = {[z0 : z1 : z2] | zi 6= 0} are S1-invariant.
On U0, an S1-deformation retract onto an orbit is given by

H([z0 : z1 : z2], t) = [z0 : (1− t)z1 : (1− t)z2].

The image H1(U0) is the single point [1 : 0 : 0] which is a fixed point of the
action, hence an S1-orbit. Similar homotopies can be found on U1 and U2,
respectively. Therefore CatS1(X) is at most three. The fact that we have an
equality follows from Proposition 3.2.3 below. We conclude that

CatS1(X) = Cat(X) = 3.

(iii) The group T acts on X = S2 as in Example 2.2.4 (iii). We construct a cover
of X by three T-categorical open subsets as follows:

Pick a point x1 ∈ X and its opposite point y1 ∈ X. The T-orbit of x1 forms
a spherical tetrahedron with vertices x1, x2, x3, x4. Similarly the T-orbit of
y1 forms another spherical tetrahedron with vertices y1, y2, y3, y4. For each
i < j denote by pij the middle point of the geodesic arc joining xi and xj.
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Figure 3.1: Spherical tetrahedrons on the sphere.

For each i, let Di ⊂ X be an open disk centered at xi such that

Di ∩Dj = {pij} ∀i < j.

In the same way, let for each i, an open disk Ei ⊂ X centered at yi with the
property

∀i < j Ei ∩ Ej = {pkl} where k, l /∈ {i, j} k < l

as shown in Figure 3.2.

Figure 3.2: Disk E4 centered at y4.

Finally we define for each i < j, an open subset Bij ⊂ X containing pij such
that
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xk ∈ Bij \Bij ∀k = i, j

yk ∈ Bij \Bij ∀k 6= i, j

We obtain the following T-categorical open subsets:

D =
4⋃
i=1

Di

which retracts in a T-equivariant way onto the orbit T · x1,

E =
4⋃
i=1

Ei

which retracts in a T-equivariant way onto the orbit T · y1, and

B =
⋃
i<j

Bij

which retracts in a T-equivariant way onto the orbit T · p12. Those three
subsets form a cover of X. This cover is in fact the smallest that we can
take, by Proposition 3.2.3 below. Hence

3 = CatT(X) > Cat(X) = 2.

3.1.2 LS-categories and orbit spaces

In this section, (X,G) is a properG-space. In [3] (Proposition 2.4), Ayala, Lasheras
and Quitero extended the result of Marzantowicz [46] for compact groups stating
that

CatG(X) ≥ Cat(X/G)

with equality under the additional assumptions that X is metrizable and G acts
with only one orbit type, in particular freely.
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Example 3.1.5. Let S5 ⊂ C3 be given by

S5 = {(z0, z1, z2) ∈ C3 |
2∑
i=0
|zi|2 = 1}.

We identify S1 with the complex numbers of length one and we let it act on S5 by
right multiplication on each factor. This action is free and proper. The orbit space
CP 2 is therefore a smooth manifold and the orbit map is a principal S1-bundle
π : S5 → CP 2. We thus have

CatS1(S5) = Cat(CP 2) = 3.

Example 3.1.6 (Real projective spaces). Let G = Z2 acting on Sn by the an-
tipodal map. The orbit space for this action is homeomorphic to RP n and the
quotient map π : Sn → RP n is a covering map. We make use of the following
result:

Theorem 3.1.7 ([46] Corollary 1.17). If G is a finite group acting freely on
the n-dimensional sphere Sn then CatG(Sn) = n+ 1.

Since G is a finite group acting freely on Sn, Theorem 3.1.7 yields

Cat(RP n) = CatG(Sn) = n+ 1.

Example 3.1.8 (Lens Spaces). Let S2n−1 ⊂ Cn be given by

S2n−1 = {(z1, . . . , zn) ∈ Cn |
n∑
i=1
|zi|2 = 1}.

Let ε = e2πi/p be a primitive pth root of unity and let q1, . . . , qn be integers rela-
tively prime to p. We let Zp = {1, ε, ε2, . . . , εp−1} act on S2n−1 by

ε · (z1, . . . , zn) = (εq1z1, . . . , ε
qnzn). (3.1)
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The orbit map π : S2n−1 → S2n−1/Zp is a covering map as a consequence of [9]
(Proposition 7.2). The orbit space S2n−1/Zp denoted L(p; q1, . . . , qn) is called the
(2n− 1)-dimensional lens space. By Theorem 3.1.7 we get

Cat (L(p; q1, . . . , qn)) = CatZp
(
S2n−1

)
= 2n.

3.2 G-tubular covers

If (M,G) is a proper G-manifold, the Tube Theorem 2.1.5 allows us to produce
G-categorical open subsets in the following way: any m ∈M admits a G-invariant
neighbourhood U ⊂ M such that the map ϕ : Y0 → U defined in (2.4) is a
G-equivariant diffeomorphism. Here

Y0 = G×Gm N0

where N0 is a fixed neighbourhood of zero in some subspace N ⊂ TmM , com-
plementary to g ·m in TmM , on which Gm acts linearly. The proper G-manifold
Y0 is a local model for U , in which m reads ϕ−1(m) = [e, 0]. The G-homotopy
F : Y0 × [0, 1]→ Y0 defined by

F ([(g, ν)], t) = [(g, (1− t)ν)].

is a G-deformation retract of Y0 onto the orbit G · [e, 0]. By using the fact that
ϕ is a G-equivariant diffeomorphism, the open subset U = ϕ(Y0) is G-categorical
since the G-homotopy H : U × [0, 1]→ U given by

H(p, t) = ϕ
(
F (ϕ−1(p), t)

)
(3.2)

is a G-deformation retract of U onto G ·m.

Definition 3.2.1. A G-categorical open subset U ⊂M as above, with associated
G-deformation retract as in (3.2), is called a G-tubular open subset of M . A cover
of M made of G-tubular open subsets is called a G-tubular cover of M .

Clearly, every m ∈ M admits a neighbourhood which is a G-tubular open
subset of M . Consequently, G-tubular covers of M always exist. The question is



THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY 54

whether they can be refined. Let U be any G-tubular cover of M . We know that
M can be decomposed into the disjoint union of its orbit-type strata {Mβ | β ∈ B},
which form themselves a smooth B-stratification of M . Let B′ ⊂ B be the biggest
subset of indices β ∈ B such that Mβ is minimal with respect to (2.8). Consider
the disjoint union A of all the strata Mβ with β ∈ B′. From U we extract a
subcover U ′, chosen as small as possible such that U ′ covers A. In particular U ′ is
a refinement of U . We ask the following:

(Q) Does it exist U ′ ⊂ U , obtained as above, which is still a cover of M?

The answer is in general negative (cf. Section 3.2.1). However it is positive
for all the proper G-manifolds listed in Example 3.1.4, where U ′ is constructed
explicitly.

Definition 3.2.2. Let (M,G) be a proper G-manifold. The subcover U ′ defined
above is called a minimal G-tubular cover if the following occur:

(i) U ′ is a cover of M .

(ii) For each minimal orbit-type stratum Mβ, the set

V ′β = {Vβ = U ∩Mβ | U ∈ U ′}

is the smallest cover by G-categorical open subsets ofMβ, where the topology
of Mβ is the subset topology.

We discuss the simplest example where such a cover exists. Let S2 ⊂ R3, on
which S1 acts by rotations about the z-axis. This action has two minimal orbit-
type strata, namely the North and South pole. Two small disks centered at those
points are S1-tubular open subsets and can be taken sufficiently big so that they
form a minimal S1-tubular cover of S2. In this example, a disk centered at the
North pole can be extended until its closure meets the South pole. The impossibil-
ity to extend it further relies on the fact that such neighbourhoods are constructed
by mean of the Riemannian exponential map. This map is no longer injective if
the disk contains two opposite points on the sphere. The next proposition gives
another answer to this fact by using the properties of G-tubular open subsets.
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Proposition 3.2.3. Let (M,G) be a proper G-manifold. If U ⊂ M is a G-
tubular open subset which intersects a minimal orbit-type stratum Mβ, then
U retracts onto the orbit G ·x of some x ∈Mβ. In particular G-tubular open
subsets intersect at most one minimal orbit-type stratum.

Proof . Let β = ((H), (b)) ∈ B such that Mβ is a minimal orbit-type stratum.
Let U ⊂ M be a G-tubular open subset of M such that U ∩Mβ 6= ∅, and let
H : U × [0, 1] → U be a G-deformation retract of U onto G · x for some x ∈ M .
By contradiction, assume that x ∈Mα for some α = ((Gx), (a)) 6= β.

Each point y ∈ U ∩Mβ has stabilizer Gy ∈ (H). By G-equivariance of the
homotopy, Gy is a subgroup of GH1(y) which is itself conjugate to Gx, as H1(y) and
x lie on the same orbit. In particular (Gx) ≺conj (H). Two cases occur:

(i) If Mβ ∩ Mα 6= ∅, then β ≺ α since β 6= α. By Lemma 2.2.8 we get
(H) ≺conj (Gx) which is a contradiction.

(ii) If Mβ ∩ Mα = ∅ we must use the assumption that U is G-tubular. Let
G×GxN0 be the local model for U . Given y ∈Mβ we define the G-equivariant
path y(t) = Ht(y), where t ∈ [0, 1]. In the local model, y reads [g, ν] and y(t)
reads [g, νt] where νt = (1 − t)ν. We can assume without lost of generality
that (Gx)ν = H. Observe that, by linearity of the Gx-action on N0, we have
(Gx)νt = (Gx)ν = H for all t 6= 1. Hence G[g,νt] = g(Gx)νtg−1 = gHg−1

for every t 6= 1. In particular, y(t) ∈ Mβ for all t 6= 1. Since the path y(t)
starts at y ∈Mβ and ends on G · x ⊂Mα, there is some t0 ∈ [0, 1] such that
y(t0) ∈ Mα. The parameter t0 is chosen the smallest such that this occurs.
If t0 6= 1, the previous argument shows that y(t0) ∈ Mβ ∩Mα, which is a
contradiction. Otherwise, since y(t) ∈ Mβ for all t < t0, there is a sequence
(yn)n∈N ⊂ Mβ which converges to y(t0). By closedness of Mβ, this yields
y(t0) ∈Mβ ∩Mα, which is again a contradiction. We conclude that x ∈Mβ.

�
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3.2.1 Non-examples

The answer to question (Q) is in general negative. In the examples below, (M,G)
is a proper G-manifold with M compact, and the action admits only one closed
orbit-type stratum Mβ.

Example 3.2.4. The first example discussed below is a compact S1-manifold
with only one closed orbit-type stratum, which is an S1-orbit.

(i) Think of M = S3 as the set of unit vectors (z1, z2) ∈ C2 equipped with the
S1-action

θ · (z1, z2) = (eiθz1, e
2iθz2).

This action has only one minimal orbit-type stratumMβ with β = ((Z2), (b))
for some index b ∈ BZ2 . Explicitly

Mβ =
{

(0, z2) ∈ C2 | |z2|2 = 1
}

which is diffeomorphic to a circle. In particular Mβ is the S1-orbit of the
point (0, 1) ∈ S3. The S1-invariant open subset

U =
{

(z1, z2) ∈ S3 | |z1|2 <
2
3

}

is an S1-invariant tubular neighbourhood of the minimal orbit-type stratum,
and is diffeomorphic to a solid torus (cf. Figure 3.3). Since Mβ is an S1-
orbit, U is an S1-tubular open subset. We may choose U ′ = {U}. This cover
satisfies (ii) of Definition 3.2.2 but it does not satisfy (i), since it does not
cover M . To cover M we require the additional open subset

V =
{

(z1, z2) ∈ S3 | |z1|2 >
1
3

}

which is also a solid torus, understood as an S1-invariant tubular neighbour-
hood of the S1-orbit of (1, 0) (cf. Figure 3.3). It is therefore S1-categorical
and then CatS1 (M) ≤ 2. There is in fact equality because otherwise it would
mean that S3 is contractible onto a circle, which is untrue.
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Figure 3.3: Representation in R3 of the sphere S3

with a point removed. The stratum Mβ is a circle
closing at infinity and the tori around it form a solid
torus, which is a tubular neighbourhood.

(ii) We discuss a more complicated example of an orientable compact smooth
manifold equipped with a canonical S1-action with only one closed orbit-type
stratum, which is not an S1-orbit. This example was found and suggested
to us by Eckhard Meinrenken.

Let S2 ⊂ R3 with cartesian coordinates (x, y, z). Consider the diffeomor-
phism τ1 : S2 → S2 sending a point m = (x, y, z) ∈ S2 onto τ1(m) =
(x, y,−z) ∈ S2. Similarly let S1 ⊂ R2 with cartesian coordinates (u, v) and
τ2 : S1 → S1 sending a point w = (u, v) ∈ S1 onto τ2(w) = (u,−v) ∈ S1.
Let

M = S2 × S1

and the orientation-preserving diffeomorphism f : M →M defined by

f(m,w) = (τ1(m), τ2(w)) ∀(m,w) ∈ S2 × S1.

The mapping torus of f is the 4-dimensional smooth manifold

Mf = M × [0, 1]
((m,w), 0) ∼ (f(m,w), 1) .
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It can be viewed as the total space of a smooth fiber bundle over S1 with
fiber M . Elements of Mf are equivalence classes of the form [(m,w), t]. We
define an S1-action on Mf as follows:

θ · [(m,w), t] = [(Rθ(m), w), t]

where Rθ denotes the rotation in R3 of angle θ about the z-axis. This is well-
defined since such rotations fix the z-axis and thus f above is S1-equivariant.
The minimal stratum has orbit-type (S1) and is the S1-orbit of

(Mf )S1 =
{

[(N,w), t] ∈Mf | N = (0, 0, 1) ∈ S2, w ∈ S1, t ∈ [0, 1]
}
.

The latter is diffeomorphic to a Klein bottle. We set β = ((S1), (b)). Since
the circle acts trivially on (Mf )S1 , the minimal stratum is Mβ = (Mf )S1 .

Let V1 ⊂ S2 be a disk centered at the North pole, which does not meet
the equator. Define V to be the union of V1 and τ1(V1). The subset U =
V ×S1× [0, 1] is open in M × [0, 1] and the corresponding mapping torus Uf
is an S1-invariant tubular neighbourhood of Mβ. Hence there is a projection
p : Uf →Mβ. Let V ′β be the smallest cover by G-tubular open subsets ofMβ,
for the subset topology. We can choose U ′ =

{
p−1(Vβ) | Vβ ∈ V ′β

}
. Then U ′

satisfies (ii) of Definition 3.2.2 but it does not satisfies (i).

3.2.2 Tubular covers of symplectic toric manifolds

In this section we show that symplectic toric manifolds admit a minimal tubular
cover. Such a cover is constructed explicitly in Theorem 3.2.6. Symplectic toric
manifolds form a particular class of algebraic toric varieties and their relations are
discussed in the book of Cannas da Silva (cf. [10] Section 6.6).

Definition 3.2.5. Let T be an n-dimensional torus with Lie algebra t and dual
Lie algebra t∗. A Hamiltonian T-manifold (M,ω,T,ΦT) is called a symplectic toric
manifold if (M,ω) is a 2n-dimensional compact connected symplectic manifold and
the Hamiltonian action of T on M is effective.

For symplectic toric manifolds, the image ΦT(M) of the momentum map is a
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Delzant polytope i.e. a convex polytope ∆ ⊂ (Rn)∗ which is simple i.e. each vertex
x meets exactly n edges, rational i.e. the edges meeting at a vertex x are of the
form x+tαx,i where αx,i ∈ (Zn)∗, smooth i.e. for each vertex x the isotropy weights
αx,1, . . . , αx,n form a Z-basis of (Zn)∗.

This observation is due to Delzant (cf. [16] Lemmas 2.2 and 2.4). Delzant also
proved that ∆ determines entirely the symplectic toric manifold (M,ω,T,ΦT), up
to T-equivariant symplectomorphisms (cf. [16] Theorem 2.1). His proof relies on a
well-known result of convexity obtained independently by Atiyah [2] and Guillemin
and Sternberg [25], which states that the image of a momentum map for the action
of a torus (not necessarily effective) on a compact symplectic manifold is a convex
polytope.

We recall some standard facts about Morse theory applied to a symplectic
toric manifold (M,ω,T,ΦT). The reader is referred to the book of Guillemin and
Sjamaar (cf. [24] Section 3.6) for details. Let MT be the fixed point set of T. For
every m ∈ MT, the torus acts on the tangent space at m. There is a T-invariant
complex structure onM such that TmM is a complex T-representation with weight
space decomposition

Cαm,1 ⊕ · · · ⊕ Cαm,n

where αm,1, . . . , αm,n ∈ t∗ are the weights of the representation. A generic compo-
nent of the momentum map ΦT : M → t∗ is a component φξ = 〈ΦT(·), ξ〉 where
ξ ∈ g is generic i.e. αm,i(ξ) 6= 0 for every m ∈ MT and i = 1, . . . , n. In this case,
the critical points of φξ are isolated and φξ is a Morse function whose critical set
is precisely MT. Moreover every critical point of φξ has even index. Therefore
symplectic toric manifolds possess an extra structure given by the properties of
the T-action. This structure is used to construct a minimal T-tubular cover of M .

Before proving this, we recall a standard fact of algebraic topology. Let X
be a topological spaces and let I = [0, 1]. We denote by C(I,X) the set of
continuous maps from I to X. The compact-open topology on C(I,X) is the
topology generated by the subsets of the form

OK,U = {f ∈ C(I,X) | f(K) ⊂ U}
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where K ⊂ I is compact and U ⊂ X is open. Then the map

C(X × I,X) −→ C(X,C(I,X))

f 7−→ {x 7→ fx : t 7→ f(x, t)}

is a bijection (cf. [72] Proposition 1.2.3.2).

Theorem 3.2.6. Let (M,ω, T,ΦT) be a symplectic toric manifold. Then M
admits a minimal T-tubular cover.

Proof . Let {Mβ | β ∈ B} be the B-stratification of M into orbit-type strata,
with strict partial order (2.9). Since T is compact, there are only finitely many
minimal orbit-type strataMβ1 , . . . ,Mβ` . By assumption on the T-action, eachMβi

is an isolated fixed point mi ∈ MT. Then there is ξi ∈ t such that φξi is a generic
component of the momentum map, which takes its minimum at mi. Let −∇φξi

be the gradient vector field associated to this component, with corresponding flow
ϕt. Since the image of the momentum map ΦT(M) is a Delzant polytope ∆, the
B′-stratification {

◦
F β′ | β′ ∈ B′} of ∆ by open faces (cf. Section 2.2.3) coincides

with the B-stratification by orbit-type ofM . In other words, for every i = 1, . . . , `,
we can associate to βi ∈ B a unique index β′i ∈ B′ such that ΦT(Mβi) is precisely
the zero-dimensional face

◦
F β′i

. For each other index α ∈ B there is a unique α′ ∈ B′

such that ΦT(Mα) =
◦
Fα′ . Define an open subset Vβ′i ⊂ t∗ by

Vβ′i =
⋃

β′i�α′

◦
Fα′ .

By continuity and T-invariance of ΦT, the subset Uβi = Φ−1
T (Vβ′i) is a T-invariant

open neighbourhood of mi in M . It reads

Uβi =
⋃
βi�α

Mα.

For every m ∈ Uβi \ {mi}, the flow line ϕt(m) is defined for every t ∈ R, by
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compacity of M . By construction of Uβi , the point m belongs to some orbit-type
stratum Mα with βi ≺ α. Since ϕt is stratum-preserving, ϕt(m) ∈ Uβi for every
t ∈ R. Moreover the only critical point of φξi in Uβi is mi, and it is a minimum.
Hence ϕt(m) tends to mi as t tends to infinity. Therefore the continuous map

fm : [0, 1[ −→ Uβi

t 7−→ ϕ t
1−t

(m)

extends by continuity into a map f̃m : [0, 1] → Uβi with f̃m(1) = mi. Then the
map

H : Uβi × [0, 1] −→ Uβi

(m, t) 7−→ f̃m(t)

is a T-deformation retract of Uβi onto the orbit T ·mi = mi. In particular Uβi is
T-categorical for every i = 1, . . . , `. It is clear that U = {Uβi}`i=1 is a cover of M
made of T-tubular open subsets, which are themselves tubular neighbourhoods of
the closed strata. By Proposition 3.2.3, this cover is the smallest that we can take
and then U is minimal. �

As a corollary we obtain the result of Bayeh and Sarkar (cf. [6] Theorem 5.1).
This result is also a direct consequence of the Localization Formula (Corollary
3.3.2) that we obtain in Section 3.3 below.

Corollary 3.2.7 ([6] Theorem 5.1). Let (M,ω, T,ΦT) be a symplectic toric
manifold. Then CatT(M) coincides with the cardinality of MT.

Our choice to consider symplectic toric manifolds makes the proof of Theorem
3.2.6 relatively straightforward for two reasons. The first reason is that the fixed
points of the T-action are isolated, and the second reason is that the stratification
by orbit-type strata of M coincides with the stratification by open faces of the
polytope. Whether this approach can be generalized to Hamiltonian manifolds
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equipped with an arbitrary Hamiltonian torus action is very likely to be true.
The conjecture below is the result of a discussion with Yael Karshon and Eckhard
Meinrenken, and its proof is still under construction.

Conjecture 3.2.8. Any Hamiltonian T-manifold (M,ω, T,ΦT) where T is
a torus admits a minimal T-tubular cover.

To close this section, we illustrate the steps of Theorem 3.2.6 on the standard
example of a symplectic toric manifold.

Example 3.2.9. Consider the symplectic manifold M = CP 2 on which the torus
T = S1 × S1 acts effectively by

(θ, φ) · [eiθz0 : eiφz1 : z2].

A momentum map for this action can be chosen of the form

ΦT([z0 : z1 : z2]) =
(

|z0|2

|z0|2 + |z1|2 + |z2|2
,

|z1|2

|z0|2 + |z1|2 + |z2|2

)

where the factor −1
2 is ignored. The image of the momentum map is the polytope

∆ ⊂ (R2)∗ whose vertices are the points x1 = (1, 0), x2 = (0, 1), x3 = (0, 0) (cf.
Figure 3.4). Those vertices are precisely the images under ΦT of the fixed points
of the T-action, namely m1 = [1 : 0 : 0], m2 = [0 : 1 : 0] and m3 = [0 : 0 : 1]. The
weight space decomposition at a fixed point mi ∈MT is

Cαmi,1
⊕ Cαmi,2

with weights αmi,1, αmi,2 ∈ (R2)∗ given in Figure 3.4.
It is easily checked that the vector

ξ =
2

1

 ∈ R2
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mi αmi,1 αmi,2
m1 (−1, 0) (−1, 1)
m2 (0,−1) (1,−1)
m3 (1, 0) (0, 1)

Figure 3.4: Weights of the torus action and moment polytope.

satisfies αmi,j(ξ) 6= 0 for every i = 1, 2, 3 and j = 1, 2. Therefore the component
φξ of the momentum map given by

φξ([z0 : z1 : z2]) = 2|z0|2 + |z1|2

|z0|2 + |z1|2 + |z2|2

is generic and takes its minimum at m3 = [0 : 0 : 1].
In this example we have five orbit-types (H), with H being either the full torus

T, the trivial group 1, or a subgroup diffeomorphic to a circle, namely S1 × 1,
1 × S1 and the diagonal subgroup S1

diag = {(θ, θ) ∈ T | θ ∈ S1}. There is only
one orbit-type stratum Mε with orbit-type (1), which is open and dense in M . All
the strata with orbit-type diffeomorphic to S1 are different copies of CP 1 in CP 2,
namely

• For α = ((S1 × 1), (a)) we have Mα = {[0 : z1 : z2] ∈ CP 2}.

• For δ = ((1× S1), (d)) we have Mδ = {[z0 : 0 : z2] ∈ CP 2}.

• For γ = ((S1
diag), (c)) we have Mγ = {[z0 : z1 : 0] ∈ CP 2}.

The three minimal orbit-type strata have orbit type (T). They form the fixed
point set of the torus T and are given by

• For β1 = ((T), (b1)) we have Mβ1 = {[1 : 0 : 0] ∈ CP 2}.

• For β2 = ((T), (b2)) we have Mβ2 = {[0 : 1 : 0] ∈ CP 2}.

• For β3 = ((T), (b3)) we have Mβ3 = {[0 : 0 : 1] ∈ CP 2}.
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The oriented graph associated to the strict partial order (2.9) is given below (cf.
Figure 3.5).

α

~~   
β3 ε

OO

�� ��

β2

δ

OO

��

γ

OO

��
β1

Figure 3.5: The oriented graph associated to the
strict partial order (2.9) on the orbit-type strata is
given on the left hand side. The image of the strata
are shown on the right hand side.

As in Example 2.2.10, we take B′ to be the set of subsets β′ ⊂ {1, 2, 3}. For
every i = 1, 2, 3 we define β′i = {k, j} ∈ B′ where k < j and k, j 6= i. The corre-
sponding zero-dimensional open face is the vertex

◦
F β′i

= xi. Following Example
2.2.10, we set α′ = {1}, δ′ = {2} and ε′ = ∅. Then for instance ΦT(Mα) =

◦
Fα′ .

With the notations of Theorem 3.2.6 the open subset Vβ′3 ⊂ (R2)∗ is

Vβ′3 =
◦
F β′3
∪
◦
Fα′ ∪

◦
F δ′ ∪

◦
F ε′

and the corresponding T-tubular open subset Uβ3 = Φ−1
T (Vβ′3) is

Uβ3 = Mβ3 ∪Mα ∪Mδ ∪Mε.

3.3 Localization Formula

In this section we obtain a localization formula (cf. Corollary 3.3.2) for proper
G-manifolds which admit a minimal G-tubular cover. This formula says in par-
ticular that the equivariant LS-category of a proper G-manifold is intrinsic to the
equivariant LS-category of its minimal orbit-type strata. The theorem below holds
in general, without any assumption on the proper G-manifold.
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Theorem 3.3.1. Let (M,G) be a proper G-manifold and write M as the
disjoint union of its orbit-type strata {Mβ | β ∈ B}. Let B′ be the biggest
subset of B such that Mβ is minimal for every β ∈ B′. Then

CatG(M) ≥
∑
β∈B′

CatG(Mβ).

Proof . Let U be a G-tubular cover of M . Choose U ∈ U such that U ∩Mβ 6= ∅
for some β ∈ B′, say β = ((H), (b)). By Proposition 3.2.3, U does not intersect
any other minimal stratum and the G-deformation retract H : U × [0, 1] → U

retracts onto an orbit G · x of some x ∈Mβ. The set Vβ = U ∩Mβ is open in Mβ

for the subset topology, and it is G-invariant because so are U and Mβ.

Let G ×Gx N0 be the local model for U . Given y ∈ Vβ we define the G-
equivariant path y(t) = Ht(y), where t ∈ [0, 1]. In the local model, y reads [g, ν],
and y(t) reads [g, νt] where νt = (1− t)ν. Since (Gx)ν ∈ (H), we use the linearity
of the Gx-action on N0, to obtain (Gx)νt = (Gx)ν = (H) for all t ∈ [0, 1]. Hence

G[g,νt] = g(Gx)νtg−1 ∈ (H) for all t ∈ [0, 1].

In particular, y(t) ∈ Mβ for all t ∈ [0, 1]. Because y ∈ Vβ is arbitrary and [0, 1] is
compact, the map F : Vβ × [0, 1] → Vβ given by Ft(y) = y(t) is a homotopy. It
is clearly G-equivariant by construction and defines a G-deformation retract of Vβ
onto G · x. It follows that Vβ is G-categorical.

Let Uβ ⊂ U be the subset of all U ∈ U such that U ∩Mβ 6= ∅. Then

Vβ = {Vβ = U ∩Mβ | U ∈ Uβ}

is a cover of Mβ by G-categorical open subsets, which is not necessarily a minimal
cover. This procedure associates to each β ∈ B′ a cover Vβ of Mβ.

Proposition 3.2.3 says that, if α, β ∈ B′ are distinct, then Uα ∩ Uβ = ∅. In
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particular, each Vβ ∈ Vβ is determined by a unique U ∈ Uβ. Therefore

CatG(M) ≥
∑
β∈B′

CatG(Mβ).

�

After this work was completed we found that the result of Theorem 3.3.1 had
already been obtained by Hurder and Töben (cf. [28] Theorem 3.7), by using
a method similar to ours. However with our construction involving minimal G-
tubular covers, we obtain the following:

Corollary 3.3.2 (Localization Formula). Let (M,G) be a proper G-manifold
which admits a minimal G-tubular cover. Decompose M into its orbit-type
strata {Mβ | β ∈ B}. Let B′ be the biggest subset of B such that Mβ is
minimal for every β ∈ B′. Then

CatG(M) =
∑
β∈B′

CatG(Mβ).

Proof . By Theorem 3.3.1, CatG(M) ≥ ∑
β∈B′ CatG(Mβ). The other inequality is

a direct consequence of the properties of a minimal G-tubular cover (cf. Definition
3.2.2). �

Proposition 3.3.3. Let (M,G) be a proper G-manifold which admits a min-
imal G-tubular cover. Assume Mβ is a minimal orbit-type stratum with
β = ((H), (b)). Then

CatG (Mβ) = CatNG(H) (MH,b) .
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Proof . Let U ′ be a minimal G-tubular cover ofM and letMβ be a minimal orbit-
type stratum. By definition of U ′, the set Vβ = {Vβ = U ∩Mβ | U ∈ U ′} is the
smallest cover by G-categorical open subsets of Mβ, where the topology of Mβ is
the subset topology.

For every Vβ ∈ Vβ, let Ṽβ = Vβ ∩ MH,b. Then Ṽβ is an NG(H)-invariant
open subset of MH,b, for the subset topology. Let H : Vβ × [0, 1] → Vβ be a
G-deformation retract of Vβ onto some orbit G · x of x ∈ Mβ. Then the NG(H)-
homotopy F : Ṽβ × [0, 1]→ Ṽβ defined by

Ft = Ht

∣∣∣
Ṽβ

for each t ∈ [0, 1]

is an NG(H)-deformation retract of Ṽβ onto the orbit NG(H) ·x. Therefore the set
Ṽβ = {Ṽβ = Vβ ∩MH,b | Vβ ∈ Vβ} is a cover of MH,b made of NG(H)-categorical
open subsets. This cover is minimal by assumption and because Mβ = G ·MH,b.
We thus get

CatG (Mβ) = CatNG(H) (MH,b) .

�

The reader is invited to compare the above result with [46] (Proposition 2.1).
By Theorem 3.2.6, every symplectic toric manifold satisfies the assumptions of
Corollary 3.3.2 and Proposition 3.3.3. Therefore Corollary 3.2.7 is a direct conse-
quence of the Localization Formula.

Example 3.3.4. We verify Theorem 3.3.2 on the other examples discussed
in this chapter.

(i) Let M = S2 ⊂ R3 on which S1 acts by rotations about the z-axis. The
minimal strata have orbit-type (H) where H = S1, namely

Mβb =
{

(0, 0, (−1)i−b)
}
, βb = ((S1), (b)) and b = 1, 2.

Then
CatS1 (Mβ1) + CatS1 (Mβ2) = 1 + 1 = CatS1 (M) .
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(ii) Let M = CP 2 equipped with the action of S1

θ · [z0 : z1 : z2] = [eiθz0 : z1 : z2].

The minimal strata Mβ1 and Mβ2 have orbit-type (H) = (S1). There is a
CP 1 and the single point [1 : 0 : 0], respectively. Therefore

CatS1 (Mβ1) + CatS1 (Mβ2) = 2 + 1 = CatS1 (M) .

(iii) Let M = S2 acted on by the group T as in Example 3.1.4 (iii). There are
three minimal orbit-type strata. Two of them, Mβ1 andMβ2 , have orbit-type
(Z3). The last minimal stratum Mα has orbit-type (Z2). We find

CatZ3 (Mβ1) + CatZ3 (Mβ2) + CatZ2 (Mα) = 1 + 1 + 1 = CatT (M)

3.4 Critical point theory

In their original paper [39], Lyusternik and Schnirelmann showed that if M is
a compact Riemannian C2-manifold, then any function f ∈ C1(M) has at least
Cat(M) critical points. The infinite dimensional case has been studied by Schwartz
[65] when M is a complete C2-manifold without boundary modeled on a separable
Hilbert space, i.e. each point of M has a neighbourhood homeomorphic to an
infinite dimensional Hilbert space, and f satisfies a suitable compactness condition.
Motivated by existence theorems in the calculus of variations, Palais extended
Schwartz’s result for complete Finsler C2-manifolds (cf. [54] Theorem 7.2) where
there is no Riemannian metric to define the gradient. The equivariant analogue has
been proved by Fadell [19] and Marzantowicz [46] in the case when G is compact.
The extension to proper Lie group actions can be found in Ayala, Lasheras and
Quintero [3]. In this section, we present Schwartz’s version of the Lyusternik-
Schnirelmann Theorem in the non-equivariant case (cf. Theorem 3.4.3) and explain
how to extend it to the equivariant case following the lines of [3]. Complete proofs
of the results presented below can be found in the book of Palais and Terng [57].
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3.4.1 Gradient vector field

Let (M, g) be a connected Riemannian manifold without boundary. For m1,m2 ∈
M we define

d(m1,m2) = inf
∫ 1

0
g(γ(t)) (γ̇(t), γ̇(t))1/2 dt (3.3)

where the infimum is taken over all the C1 paths γ joining m1 and m2. The metric
topology induced by d coincides with the original topology of M . We say that
M is geodesically complete if the Riemannian exponential Exp(m) : TmM → M

is defined on the whole TmM for all m. By the Hopf-Rinow Theorem, M is
geodesically complete if and only if it is complete as a metric space i.e. if the
metric (3.3) is complete. Given f ∈ C1(M) the gradient of f is the unique vector
field ∇f ∈ X(M) defined pointwise by

g(m) (v,∇f(m)) = df(m) · v for allv ∈ TmM. (3.4)

For v ∈ TmM we set ‖v‖2 = g(m) (v, v). Recall that m ∈M is a critical point of f
is df(m) = 0 or equivalently if ∇f(m) = 0. Otherwise, we say that m is a regular
point. The image by f of a critical point (resp. regular point) is called a critical
value (resp. regular value). If c is a regular value then f−1(c) is a codimension one
embedded submanifold of M . Denote by C(f) the set of critical points of f and
by Cc(f) the set of critical points m such that f(m) = c. Away from C(f), we can
define a normalized C1 vector field Xf by

X(m) = −∇f(m)
‖∇f(m)‖2 (3.5)

called the gradient vector field. Let ϕt be the flow generated by X. Since the
derivative of f(ϕt(m)) with respect to t is identically minus one, f is monotonically
decreasing along the flow lines of X i.e.

f(ϕt(m)) = f(m)− t.

The time-one map ϕ1 is the homeomorphism onM \C(f) that sends m ∈M \C(f)
onto ϕ1(m), obtained from m by flowing down along the flow ϕt of the gradient
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vector field for the time t = 1. To deal with the non-compactness of M , Schwartz
introduced the following condition on the manifold M and on the function f :

Definition 3.4.1 (Palais-Smale condition ). We say that a pair (M, f) satisfies
the Palais-Smale condition (PS) if the following holds.

(i) M is a complete C2-Riemannian manifold without boundary modeled on a
separable Hilbert space and f ∈ C1(M) is bounded below.

(ii) If (xn)n∈N ⊂ M is a sequence of points such that the sequence of images
f(xn) is bounded and ‖∇f(xn)‖ converges to zero, then (xn)n∈N contains a
convergent subsequence in M .

Condition (ii) is a compactness condition which implies that f restricted to its
critical set C(f) is a proper map. In particular for any real number c, the subset
Cc(f) is a closed bounded subset of M . Since M is complete, the Hopf-Rinow
Theorem implies that Cc(f) is compact in M .

3.4.2 Deformation Lemma

For c ∈ R we set Mc = f−1(] −∞, c]), the piece of the manifold below the level
f−1(c). If c is a regular value of f then Mc is a smooth submanifold of M with
boundary f−1(c). The hard part part of the Lyusternik-Schnirelmann Theorem
embodies in the First Deformation Lemma which states essentially that, away form
the critical points, the manifold M is a serie of submanifolds with boundary that
look like products that can be retracted onto the lower pieces by flowing down
along the flow of X. In other word, the topological information of the manifold is
essentially confined to the critical points of f .

Lemma 3.4.2 (First Deformation Lemma [57](Theorem 9.2.3)). Let U be
any neighbourhood of Cc(f) in M . Then for ε > 0 sufficiently small,
ϕ1 (Mc+ε \ U) ⊂Mc−ε.



71 THE EQUIVARIANT LYUSTERNIK-SCHNIRELMANN CATEGORY

Figure 3.6: Outside of the open set U , the manifold is
decomposed into products that can be retracted onto
the lower piece Mc−ε by flowing down along ϕ1. The
red lines indicate the flow lines of X.

3.4.3 Lyusternik-Schnirelmann Theorem

We may use the First Deformation Lemma to prove the Lyusternik-Schnirelmann
Theorem . We first define

cn(f) = inf {c ∈ R | Cat (Mc,M) ≥ n} . (3.6)

It is proved in [57] (Proposition 9.2.8) that cn(f) is a critical value of f for n =
0, 1, . . . ,Cat(M) and that

cn(f) ≤ cn+1(f) (3.7)

with possible equality. The proof below is taken from [57] but the original paper
of Palais is [55].

Theorem 3.4.3 (Lyusternik-Schnirelmann Theorem [65]). Let (M, f) be a
pair satisfying the (PS) condition. Then the number of critical points of f is
greater than or equal to Cat(M).

Proof . Since the theorem is trivial if f has an infinity of critical points, we assume
that there are only a finite number of critical points m1, . . . ,mk in f−1(c) where
c = cn+1(f) = . . . cn+l(f) for some positive integer l. In particular, the critical
points are isolated. Take neighbourhoods Ui of mi whose respective closure are
disjoint closed disks. Setting U = ∪ki=1Ui we obtain using the monotony condition
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and contractibility of Ui,

Cat(U,M) ≤
k∑
i=1

Cat(Ui,M) = k.

By the First Deformation Theorem, there is ε > 0 such that Mc+ε \ U can be
deformed onto Mc−ε by mean of the time-one map. Then

Cat (Mc+ε \ U,M) ≤ Cat (Mc−ε,M) .

Since c− ε < c = cn+1(f) and (3.7), we must have

Cat (Mc−ε,M) < n+ 1 and Cat (Mc+ε \ U,M) ≤ n.

By the subadditivity property

Cat (Mc+ε,M) ≤ Cat (Mc+ε \ U,M) + Cat (U,M) ≤ n+ k. (3.8)

Since cn+l(f) = c < c+ ε < cn+k+1(f) and (3.7) we conclude that n+ l ≤ n+k+ 1
and thus k ≥ l. Then there are at least l critical points in f−1(c). In particular
if 1 ≤ n ≤ Cat(M), f has at least n critical point at or below the level cn(f). In
total, f has at least Cat(M) critical points. �

3.4.4 Critical points on proper G-manifolds

The above discussion generalizes when (M,G) is a proper G-manifold. The reader
is refered to [3] for details. In this case we know by Proposition 2.1.7 that we
can construct a G-invariant Riemannian metric on M , by applying the averaging
method on each tangent space. Given a function f ∈ C∞(M)G the associated
gradient vector field ∇f is G-equivariant. Note that by G-invariance of f , if
m ∈ Cc(f) then G · m ⊂ Cc(f). The Palais-Smale condition is replaced by the
orbitwise Palais-Smale condition.

Definition 3.4.4 (Orbitwise Palais-Smale condition [3]). A proper G-manifold
(M,G) and a function f ∈ C1(M)G satisfy the orbitwise Palais-Smale condition
(OPS) if the following holds:
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(i) M is a complete Riemannian proper G-manifold of class C2, without bound-
ary, modelled on a separable Hilbert G-space.

(ii) f is bounded below.

(iii) If (xn)n∈N ⊂ M is a sequence such that the associated sequence of images
f(xn) is bounded and ‖∇f(xn)‖ converges to zero, then there exists a se-
quence

(gn)n∈N ⊂ G

such that the sequence (gn ·xn)n∈N contains a convergent subsequence in M .

Similarly to the non-equivariant case, condition (iii) is a compactness condition
which implies that f restricted to its set of critical orbits modulo G is a proper
map. Note that if G is compact [19], condition (PS) implies condition (OPS).
In [3], Alaya, Lasheras and Quintero proved an equivariant version of the First
Deformation Lemma and obtained:

Theorem 3.4.5 ([3, 4]). If a proper G-manifold (M,G) and a function f ∈
C1(M)G satisfy condition (OPS), then f has at least CatG(M) critical orbits.



EXPLICIT SYMMETRY BREAKING

This chapter embodies the central topic of this thesis. As already mentioned in
the introduction, a broad class of symmetric Hamiltonian systems can be viewed
as a perturbation of another Hamiltonian system having a bigger symmetry group.
For example, the motion of a spherical pendulum is governed by a Hamiltonian
defined on T ∗S2, which is invariant with respect to a circle action. It can be
viewed as a perturbation of the Hamiltonian governing the co-geodesic flow on
T ∗S2, which is invariant with respect to the full group of rotations in the three
dimensional Euclidean space. We start by specifying what we mean by explicit
symmetry breaking perturbations. Let (M,ω,G,ΦG) be a Hamiltonian proper G-
manifold. The non-degeneracy of ω implies that, associated to any Hamiltonian
h ∈ C∞(M)G, there is a unique vector field Xh defined by ιXhω = −dh. Since the
action of G on M is canonical and h is G-invariant, the integral curve ϕt(m) of
Xh starting at m ∈ M satisfies ϕt(g ·m) = g · ϕt(m) for all g ∈ G. The resulting
Hamiltonian equations

d

dt
ϕt(m) = Xh(ϕt(m)) (4.1)

are thus G-equivariant and we say that G is the symmetry group of (4.1). We
study the effect of a small Hamiltonian perturbation of these equations, which is
invariant with respect to a subgroup of G.

Definition 4.0.1. Let h ∈ C∞(M)G and H ⊂ G be a closed subgroup. An
H-pertubation of h is a family of functions hλ ∈ C∞(M)H such that the map
(m,λ) ∈M × R 7→ hλ(m) ∈M is smooth, and h0 = h.

74
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4.1 Symmetry breaking for equilibria

The aim of this section is to give an estimate of the number ofH-orbits of equilibria
that persist under a small H-perturbation of some G-invariant Hamiltonian. This
is the content of Corollary 4.1.3. A point m ∈M is an equilibrium of h ∈ C∞(M)G

if dh(m) = 0, or equivalently if Xh(m) = 0. Assume N is some vector space and
f : G×N → R is a smooth function. We denote by dNf the partial derivative(s)
of f with respect to the N -variables. By abuse of notations we write D2f for the
Hessian of f and D2

Nf for the Hessian with respect to the N -variables.

Definition 4.1.1. A G-nondegenerate equilibrium of h ∈ C∞(M)G is a point
m ∈M such that

(i) dh(m) = 0,

(ii) D2
Nh(m) is non-singular where N is any subspace of TmM complementary

to g ·m. In other words, the Hessian is non-singular in the directions normal
to the group orbit.

If m ∈ M is a G-nondegenerate equilibrium of h then so is any p ∈ G ·m, by
G-invariance. For the same reason, the tangent space Tp (G ·m) is contained in
ker (D2h(p)) for any p ∈ G ·m. Definition 4.1.1 is a particular case of Morse-Bott
non-degeneracy when G ·m is the critical manifold of h (cf. [14] Appendix E.2).
Note that Condition (ii) implies that the critical manifold G ·m is isolated in the
sense that there exists a tubular neighbourhood of G ·m that does not contain any
other critical points of h.

4.1.1 Persistence of equilibria

We say that a closed subgroup H ⊂ G is co-compact (in G) if the left multiplication
of H on G is co-compact i.e. the orbit space H \ G under this action is compact
(as a topological space). We can now state the main result of this section.
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Theorem 4.1.2. Let (M,ω,G,ΦG) be a Hamiltonian proper G-manifold and
let H ⊂ G be a co-compact closed subgroup. Assume that hλ ∈ C∞(M)H is an
H-pertubation of some h ∈ C∞(M)G and that m ∈M is a G-nondegenerate
equilibrium of h.

Then there is a G-invariant neighbourhood Ũ ⊂ M of m such that, if λ
is sufficiently small, there exists a function fλ ∈ C∞(G/Gm)H whose critical
points are in one-to-one correspondence with those of hλ in Ũ .

Proof . Let m ∈ M be a G-nondegenerate equilibrium of h whose stabilizer is
denoted by K := Gm. Following the notations of Section 2.4 the product space
N := m∗ × N1 is a K-vector space and it is isomorphic to some K-vector space
complementary to g · m in TmM . By the Symplectic Tube Theorem 2.4.1 and
G-nondegeneracy of m, we can choose a K-invariant neighbourhood N0 ⊂ N of
0 ∈ N , such that

(i) The associated bundle G ×K N0 is a symplectic local model of some G-
invariant neighbourhood U ⊂M of m.

(ii) The only critical points of h in U are on G ·m.

In that model the point m reads [(e, 0)] and the H-pertubation is identified with
hλ : G×K N0 → R. Let ρ : G×N0 → G×K N0 be the orbit map. We define the
lift of hλ by

h̃λ := ρ∗hλ : G×N0 → R

where ρ∗ is the pullback map. The critical points of hλ coincide with those of the
lift h̃λ. Indeed since ρ : G×N0 → G×K N0 is a surjective submersion, we have

dhλ ([(g, ν)]) = 0 ⇐⇒ (ρ∗dhλ) ((g, ν)) = 0 ⇐⇒ dh̃λ ((g, ν)) = 0.

We may thus work with h̃λ instead of hλ.
We define a (left) action of the direct product G×K on G×N0 by

(h, k) · (g, ν) = (hgk−1, k · ν).
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By hypothesis, the lift h̃ is G ×K-invariant whereas the perturbation h̃λ is only
H ×K-invariant. Since (e, 0) ∈ G×N0 is a G-nondegenerate critical point of h̃,

dh̃(e, 0) = 0 and D2
N h̃(e, 0) is non-singular. (4.2)

In particular the map
dN h̃ : G×N0 → N∗0 ' N0

satisfies dN h̃(e, 0) = 0 and its derivative with respect to the N0-variables, evaluated
at (e, 0), is non-vanishing. The Implicit Function Theorem implies the existence
of a neighbourhood V1×W1 of (0, e) in R×G such that, for any (λ, g) ∈ V1×W1,
there is a unique φ1

λ(g) ∈ N0 satisfying

dN h̃λ(g, φ1
λ(g)) = 0. (4.3)

By H-invariance1 of dN h̃λ, we can choose W1 to be H-invariant. This procedure
defines an H-invariant smooth function

φ1 : V1 ×W1 −→ N0

(λ, g) 7−→ φ1
λ(g).

By G-invariance of h̃, (4.2) holds when replacing (e, 0) by any (g, 0) ∈ G×N0. We
apply the previous argument for every (g, 0) with g /∈ H and use the compacity of
H \ G to extract a finite collection of open subsets {Vi ×Wi}ni=2 with associated
H-invariant smooth functions φi : Vi ×Wi → N0 satisfying (4.3). Let V ⊂ ∩ni=1Vi

be an open interval containing 0 ∈ R. By uniqueness of each φi, we can glue them
together to define an H-invariant smooth function

φ : V ×G −→ N0

(λ, g) 7−→ φλ(g)

such that
dN h̃λ(g, φλ(g)) = 0. (4.4)

1When we say that, we think of H as a subgroup of H ×K.
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For every fixed parameter λ ∈ V ,

h̃λ(hgk−1, φλ(hgk−1)) = h̃λ(g, φλ(g)) for any (h, k) ∈ H ×K.

It thus descends to a function fλ ∈ C∞(G/K)H given by

fλ ([g]K) := h̃λ ([g]K, φλ([g]K)) (4.5)

where [g]K denotes a coset in G/K. For any pair β = (λ, [g]K) ∈ V × G/K, we
define the shift h̄β : N0 → R by

h̄β(ν) := h̃λ([g]K, ν + φλ ([g]K))− fλ([g]K). (4.6)

This function has a non-degenerate2 critical point at 0 ∈ N0. Indeed by (4.4)
and K-invariance3 of h̃λ,

dh̄β(0) = dN h̃λ([g]K, φλ([g]K)) = 0.

Moreover, its Hessian D2h̄β(0) is non-singular, because non-degeneracy is a stable
condition4. By the Morse Lemma (cf. Lemma 2.2 in [49]) there is a local coordinate
system νβ = (ν1, . . . , ν`), defined in a neighbourhood Nβ ⊂ N0 of 0 with νβ(0) = 0,
such that

h̄β(ν) = h̄β(0) +
∑̀
i=1

εi(νi)2 =
∑̀
i=1

εi(νi)2 for all ν ∈ Nβ. (4.7)

where εi = ±1 and νβ(ν) = (ν1, . . . , ν`).
The Morse chart (Nβ, νβ) depends on β = (λ, [g]K). Since the functions defining

(4.6) are H-invariant, the identity (4.7) holds on (Nβ, νβ) when replacing h̄β by
h̄β′ where β′ = (λ, [hg]K) with h ∈ H. We repeat the previous argument for every
β = (λ, [g]H,K) ∈ V × (H\G/K), where [g]H,K denotes the double coset of g. We
thus obtain a collection of Morse charts (Nβ, νβ) indexed on V × (H\G/K). The
compacity of H\G is used next to extract a finite number of Morse charts (Nβi , νβi)

2in the Morse sense ([49] Section 2).
3When we say that we think of K as a subgroup of H ×K.
4We might have to take V smaller.
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for i = 1, . . . , r. Using a partition of unity, we construct a local coordinate system
ν̃ = (ν̃1, . . . , ν̃`), defined in a neighbourhood Ñ0 ⊂

⋂r
i=1 Nβi of 0 with ν̃(0) = 0,

such that

h̄β(ν) =
∑̀
i=1

εi(ν̃i)2 for every β ∈ V ×G/K, when ν ∈ Ñ0. (4.8)

We may define a smooth map ψ : V ×G/K × Ñ0 → Ñ0 by

ψ(λ, [g]K, ν) =: ψλ([g]K, ν) = ν + φλ([g]K). (4.9)

Replacing (4.9) in (4.6) yields

h̃λ([g]K, ψλ([g]K, ν)) =
∑
i

εi(ν̃i)2 + fλ([g]K) whenever ν ∈ Ñ0 (4.10)

where εi = ±1 and ν̃(ν) = (ν̃1, . . . , ν̃`). Therefore ([g]K, ν) ∈ G/K×Ñ0 is a critical
point of (4.10) if and only if

(∑̀
i=1

εiν̃
idν̃i

)
(ν) = 0 and dfλ([g]K) = 0.

Let Ũ ⊂M be the G-invariant neighbourhood of m whose symplectic local model
is G×K Ñ0. In particular if λ ∈ V , the critical points of hλ in Ũ are in one-to-one
correspondence with those of the function fλ ∈ C∞(G/K)H defined in (4.5). �

Corollary 4.1.3 (Persistence of Equilibria). If the manifold G/Gm and the
function fλ ∈ C∞(G/Gm)H of Theorem 4.1.2 satisfy condition (OPS), then
the number of H-orbits of equilibria that persist near G · m under a small
H-perturbation is bounded below by CatH(G/Gm).

Proof . If λ is sufficiently small, Theorem 4.1.2 implies that the H-orbits of equi-
libria of hλ in some neighbourhood of G ·m are in one-to-one correspondence with
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those of the function fλ ∈ C∞(G/Gm)H defined as in (4.5). By Theorem 3.4.5,
the number of H-orbits of equilibria of hλ is at least CatH(G/Gm). �

Note that if G is compact, the (OPS) condition is automatically satisfied.
Indeed, any compact manifold is automatically complete and the compactness
condition on fλ is fulfilled.

Example 4.1.4. Think of the cylinder M = S1 × R as embedded in R3 with
coordinates (θ, z) and endow it with the standard symplectic form ω = dθ ∧ dz.
The Lie group G = O(2) acts on M by Rϕ · (θ, z) = (θ + ϕ, z), if Rϕ ∈ O(2) is
a rotation of angle ϕ; and by rα · (θ, z) = (2α − θ, z), if rα ∈ O(2) is a reflection
about the line forming an angle α with the x-axis in R3. The action of G on M
is Hamiltonian with momentum map ΦG : (θ, z) ∈ M 7→ z ∈ R. Consider the
1-parameter family hλ : S1 × R→ R defined by

hλ(θ, z) = z2 + λ cos(nθ).

Then h = h0 is G-invariant and m = (0, 0) is a G-nondegenerate equilibrium of h
whose stabilizer is Gm = 〈r0〉. The perturbation hλ is invariant5 by H = Dn, where
Dn is the dihedral group of order 2n. The perturbed Hamiltonian hλ has 2n critical
points whose coordinates are (π

n
k, 0) for k = 0, . . . , 2n − 1, which form a regular

2n-gone as shown in Figure 4.1 for the case n = 3. Since G/Gm = O(2)/〈r0〉 is
topologically a circle, we find CatH(G/Gm) = 2, by Theorem 3.1.7. Since G is
compact, condition (OPS) of Corollary 4.1.3 is automatically satisfied. There are
thus two H-orbits of equilibria of h that will persist, and each of them is an n-gone
(cf. Figure 4.2).

5In fact, the full symmetry group should be Dn × Z2 since Z2 acts on the z-component by
swapping the sign. However such an action is not canonical in the sense that it does not preserve
the symplectic form. Since this discrete part does not contribute in the further application, we
do not take it into account.
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Figure 4.1: When n = 3,
h has a G-orbit (red circle)
consisting of G-nondegenerate
equilibria, on which the six
equilibria of hλ lie.

�

��

�

� �

D3-orbit

of equilibria

of hλ

Circle of equilibria of h0

Figure 4.2: At the level of
coordinate z = 0, the six equi-
libria of hλ form two different
D3-orbits. One orbit is stable
and one is unstable.

4.1.2 Dynamics of a 2D rigid body in a potential flow

We apply the result of Corollary 4.1.3 to the problem of a planar rigid body B
of mass m moving in a planar irrotational, incompressible fluid with zero vortic-
ity and zero circulation around the body. The motion is governed by Kirchhoff
equations [31]. Classical treatments of the problem can be found in Lamb [35]
and Milne-Thomson [48]. The configuration space of the body-fluid system is a
submanifold Q of the product SE(2)×Embvol (F0,R2), where SE(2) is the special
Euclidean group describing the motion of the body, and Embvol (F0,R2) is the
space of volume-preserving embeddings of the fluid reference space F0 in R2. The
symmetry group of this system is the direct product of SE(2) (group of uniform
body-fluid translations and rotations) and the particle relabeling symmetry group
(volume-preserving diffeomorphisms of F0). Since these actions commute, the sys-
tem can be reduced by the process of symplectic reduction by stages (cf. Marsden
et al. [43]).

The Hamiltonian of the system is invariant under the particle relabeling sym-
metry group. Geometrically, eliminating the fluid variables amounts to carry out
a symplectic reduction by this group. The particle relabeling symmetry group
acts on T ∗Q in a Hamiltonian fashion. The associated momentum map has two
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components corresponding to the vorticity and the circulation. The reduction at
zero momentum corresponds to a fluid with zero circulation and zero vorticity.
In this case, the symplectic reduced space is identified with T ∗SE(2), endowed
with the canonical symplectic form and the SE(2)-invariant reduced Hamiltonian
is the sum of the kinetic energy of the body-fluid system by the addition of the
so-called “added masses”, and the kinetic energy of the body. Those added masses
depend only on the body’s shape and not on the mass distribution. The reader is
refered to Kanso et al. [30] and Vankerschaver et al. [68] for details. Since SE(2)
acts symplectically on T ∗SE(2), the dynamics can be reduced a second time using
Poisson reduction and thereby the reduced motion is governed by the Kirchhoff
equations that are the Lie-Poisson equations on the dual Lie algebra se(2)∗ (cf.
Appendix A for details).

For the sake of simplicity we will assume that the body B is shaped as an
ellipse with semi-axes of length A > B > 0. We will use the formulae and follow
the notations of Fedorov et al. [20]. At the center of mass of B we attach a frame
{E1, E2} that is aligned with the symmetry axes of the body. Its position is related
at any time to a fixed space frame {e1, e2} by an element of SE(2). An element
of the Lie algebra ξ ∈ se(2) is identified with a vector

(θ̇, v1, v2) ∈ R3 (4.11)

where θ̇ ∈ R is the angular velocity of B and (v1, v2)T ∈ R2 is the linear velocity
of its center of mass, expressed in the body’s frame. In this setting the body has
kinetic energy

TB = 1
2ξ · IBξ (4.12)

with IB := diag(IB,m,m), where IB is the moment of inertia of the body about its
center of mass. The kinetic energy of the fluid is given by

TF = 1
2ξ · IFξ (4.13)

where IF = ρπ
4 diag((A2−B2)2, B2, A2) is the tensor of added masses, and ρ is the

fluid density. In the absence of external forces, the Lagrangian of the body-fluid
system L : TSE(2)→ R is given by L = TB + TF . It defines a Riemannian metric
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on SE(2) with respect to which the motion of the body B is geodesic. Since L does
not depend on the group variables, it is SE(2)-invariant and can thus be reduced
to the function ` : se(2)→ R given by

`(ξ) = 1
2ξ · (IB + IF)ξ (4.14)

with ξ as in (4.11). An element ν of the dual Lie algebra se(2)∗ is identified with
a one by three matrix (x, α1, α2). The dual pairing 〈·, ·〉 between se(2)∗ and se(2)
is thus given by

〈ν, ξ〉 := (x, α1, α2)(θ̇, v1, v2)T = xθ̇ + α1v1 + α2v2. (4.15)

We perform the Legendre transform FL : ξ ∈ se(2) 7→ ((IB + IF)ξ)T ∈ se(2)∗ to
obtain the reduced Hamiltonian h : se(2)∗ → R defined by

h(ν) = 1
2ν · (IB + IF)−1νT .

The Lie-Poisson equations on se(2)∗ that describe the motion of the body-fluid
system are

ν̇ = ad∗δh
δν
ν. (4.16)

where ad∗ξν is identified with (α1v2−α2v1, θ̇α2,−θ̇α1) as computed in Appendix A.
This problem turns out to exhibit symmetry breaking phenomena from different
points of view:

(i) One point of view consists in looking at the body B without the fluid (ρ = 0).
Adding the fluid amounts to seeing the fluid density ρ as a “parameter”.
The O(2)-symmetry of the kinetic reduced Hamiltonian breaks into a D2-
symmetry, where D2 is the symmetry group of an ellipse.

(ii) On the other hand we can consider the original system as being a circular
planar rigid body (A = B) in a fluid and the symmetry can be broken by
deforming the body into an elliptical shaped body. This case exhibits the
same pattern of symmetry breaking from O(2) to the subgroup D2.
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These two approaches are the same from a group theoretical point of view. Con-
trary to Example 4.1.4, the Hamiltonian in consideration will not be perturbed by
adding some potential energy. In this case, there is no potential energy involved,
only the metric is perturbed giving rise to a modified kinetic energy. Let us now
discuss the two cases mentioned above.

(i) The unperturbed system on the Poisson reduced space se(2)∗ is governed by
the Hamiltonian

h(ν) = 1
2ν · Iν = 1

2

(
x2

IB
+ α2

1 + α2
2

m

)
(4.17)

where ν := (x, α1, α2) and I := I−1
B . The Hamiltonian is invariant with

respect to the group G = O(2) 6. In particular, for each c ∈ R, the level sets
h(ν) = c describe spheroids in R3.

Adding a fluid to the system amounts to look at the variation of the param-
eter7

λ = dρ where d := A2 −B2

m
> 0 is fixed.

This gives rise to the perturbed Hamiltonian hλ(ν) = 1
2ν · Iλν with

Iλ = diag
( 1
IB + λc1

,
1

m+ λc2
,

1
m+ λc3

)
. (4.18)

where c1 = m2dπ
4 , c2 = π(A2−md)

4d and c3 = π(B2+md)
4d are fixed constants encod-

ing the datas of the system. The perturbed Hamiltonian reads

hλ(ν) = 1
2

(
x2

IB + λc1
+ α2

1
m+ λc2

+ α2
2

m+ λc3

)
(4.19)

6In fact, the full symmetry group should be O(2)× Z2 since Z2 acts on the x-component by
swapping the sign. However since this discrete part does not contribute in the further application,
we do not take it into account.

7We could simply consider ρ as being the parameter, but in this case the parameter would
not be dimensionless and we want to avoid this.
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and has symmetry H = D2, the dihedral group of order four8. This per-
turbation coincides with h when λ = 0 and the function (λ, ν) 7→ hλ(ν) is
smooth. Therefore, hλ is an H-pertubation of h. The symmetry is broken
because the fluid influences the motion of the body if it is elliptical. If the
body is circular (A = B), or if it moves in the vacuum, its center of mass
would move at constant velocity and it would rotate at constant angular
speed.

(ii) We carry out another kind of perturbation: rather than perturbing the rigid
body motion by adding a fluid to the system, we start with a circular planar
rigid body (A = B) in a fluid and break the symmetry by changing the body
shape into an ellipse. The unperturbed Hamiltonian is given by

h(ν) = 1
2ν · Iν = 1

2

(
x2

IB
+ α2

1 + α2
2

m+ d2

)
(4.20)

where d2 = ρπB2

4 , ν := (x, α1, α2), I := (IB + IF)−1 and A = B in the
definition of IF . The Hamiltonian is invariant with respect to G = O(2).
For each c ∈ R, the level sets h(ν) = c also describe spheroids in R3.

We perturb the body shape by setting λ = A2−B2

B2 where B > 0 is fixed and
A ≥ B > 0 varies. This gives rise to the perturbed Hamiltonian hλ(ν) =
ν · Iλν with

Iλ = diag
(

1
IB + λ2d1

,
1

m+ d2
,

1
m+ (λ+ 1)d2

)
(4.21)

where d1 = ρπB4

4 . The perturbed Hamiltonian is thus given by

hλ(ν) = 1
2

(
x2

IB + λ2d1
+ α2

1
m+ d2

+ α2
2

m+ (λ+ 1)d2

)
(4.22)

and is again symmetric with respect to the action of H = D2. In this case,
if there was no fluid (ρ = d2 = 0), no symmetries would have been broken.

8The group D2 is isomorphic to Z2 ×Z2 which leaves hλ invariant when acting on α1 and α2
by swapping the signs.
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Since the reduced motion is governed by the Lie-Poisson equations (4.16), it
is constrained to the coadjoint orbits of SE(2). As shown in [44] (Chapter 14.6),
almost all of them are cylinders (the singular orbits consist of points on the vertical
dashed line in Figure 4.3). In both cases, the level sets of hλ are ellipsoids and
those of h = h0 are spheroids. Their intersections with a coadjoint orbit are shown
in Figure 4.3. In particular, the circle of equilibria of h (in red in Figure 4.3)
breaks into four fixed points of hλ, two of which are connected by four heteroclinic
cycles.

Figure 4.3: The flow lines are given by intersecting
the level sets of hλ (the ellipsoids) and the coadjoint
orbits. On the left hand side, we see the flow lines of h
on a coadjoint orbit. On the right hand side, the flow
has been perturbed.

Let us go back to the first case we discussed above with hλ as in (4.19). We will
apply Corollary 4.1.3 to predict the existence of the four fixed points that persist
(cf. Figure 4.3). The Fréchet derivative of hλ is

δhλ
δν

=
(

x

IB + λc1
,

α1

m+ λc2
,

α2

m+ λc3

)
. (4.23)

Therefore, the Lie-Poisson equations (4.16) reduce to


ẋ = λ(c2−c3)
(m+λc3)(m+λc2)α1α2

α̇1 = xα2
m+λc1

α̇2 = − xα1
m+λc1

(4.24)

Setting λ = 0 in (4.24), we see that the fixed points of h = h0 are either of the
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form (0, α1, α2) with (α1, α2) ∈ (R2)∗, or of the form (x, 0, 0) which correspond to
points on the singular coadjoint orbit.

Let µ := (0, α1, α2) with α2
1 + α2

2 = 1 be a fixed point of the unperturbed
hamiltonian h. The stabilizer of µ is Gµ = 〈rϑ〉 where rϑ is a reflection in the plane.
The quotient G/Gµ = O(2)/〈rϑ〉 is topologically a circle yielding CatD2(S1) = 2.
The four fixed points appearing in Figure 4.3 are the two H-orbits that persist.

4.2 Symmetry breaking for relative equilibria

In this section, we extend Theorem 4.1.2 and Corollary 4.1.3 to the case of relative
equilibria which is more subtle for two reasons: firstly we must take into account
the conservation of momentum, and secondly for a non-zero velocity the so-called
augmented Hamiltonian no longer has symmetry G.

We start by briefly recalling some standard facts about relative equilibria, the
reader is invited to consult the book of Marsden [42] (Chapter 4) for a more
detailed exposition. Given a Hamiltonian proper G-manifold (M,ω,G,ΦG), a
relative equilibrium of a Hamiltonian h ∈ C∞(M)G is a pair (m, ξ) ∈ M × g such
that Xh(m) = ξM(m). Equivalently, if (m, ξ) is a relative equilibrium of h, then
m is a critical point of the augmented Hamiltonian

hξ := h− φξG ∈ C∞(M)Gξ

where φξG(m) := 〈ΦG(m), ξ〉, which is a Gξ-invariant function which depends lin-
early on ξ. A standard fact about relative equilibria is that the velocity ξ and the
momentum µ = ΦG(m) commute i.e. ξ ∈ gµ. Note that, if the stabilizer Gm is non
trivial and (m, ξ) is a relative equilibrium of h, then (m, ξ + η) is also a relative
equilibrium of h, for any η ∈ gm. Moreover if (m, ξ) is a relative equilibrium of h
then so is (g ·m,Adgξ) for every g ∈ G. In general a relative equilibrium is said to
be non-degenerate if the Hessian D2hξ(m) is a non-singular quadratic form, when
restricted to the symplectic slice N1 at m relative to the G-action. However, this
definition of non-degeneracy is not enough to guarantee that a relative equilibrium
of some h ∈ C∞(M)G persists under an H-perturbation. For that reason, one shall
cook up a slightly stronger definition of non-degeneracy.
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4.2.1 Induced momentum map

Let H be a closed subgroup of G. The dual of the inclusion of Lie algebras
ih : h ↪→ g is the projection i∗h : g∗ → h∗ and is given by i∗h(µ) = µ

∣∣∣
h
, which is the

restriction of the linear form µ to the subalgebra h. The action of H on M is still
both canonical and Hamiltonian. A momentum map for this action is given by
ΦH = i∗h◦ΦG : M → h∗ and is called the induced momentum map for the H-action.

Proposition 4.2.1. Consider the decomposition of TmM as in (2.19),
and define the subspaceM := {zM(m) + w ∈ T1 ⊕N0 | −ad∗zµ+ f(w) ∈ h◦}
where f denotes the isomorphism between N0 and m∗, and h◦ is the annihi-
lator of h in g∗. Then ker (DΦH(m)) = ker (DΦG(m))⊕M.

Proof . It is clear from the definitions that there is an inclusion of subspaces

ker (DΦG(m)) ⊂ ker (DΦH(m)) . (4.25)

Let (ϕ,G×Gm (m∗0 × (N1)0) , U) be a symplectic G-tube at m as in Theorem 2.4.1.
Linearising ϕ−1 at m yields a linear symplectomorphism

Tmϕ
−1 : T0 ⊕ T1 ⊕N0 ⊕N1 → Tϕ−1(m) (G×Gm (m∗ ×N1)) .

For x+ y ∈ gm ⊕m and z ∈ n we have

Tmϕ
−1 · ((x+ y)M(m) + zM(m) + w + ν) = T(e,0,0)ρ · (x+ y + z, f(w), ν)

where ρ : G × m∗ × N1 → G ×Gm (m∗ ×N1) is the orbit map. By definition, the
subspace ker (DΦH(m)) consists of the elements

((x+ y)M(m) + zM(m) + w + ν) ∈ T0 ⊕ T1 ⊕N0 ⊕N1
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satisfying D(ΦH ◦ ϕ ◦ ρ)(m) · (x+ y + z, f(w), ν) = 0. Equivalently

0 = d
dt

∣∣∣∣∣
t=0

ΦH ◦ ϕ ([(exp(t(x+ y + z)), tf(w), tν)])

= d
dt

∣∣∣∣∣
t=0

i∗h
(
Ad∗exp(−t(x+y+z)) (µ+ tf(w) + ΦN1(tν))

)
= i∗h (−ad∗zµ+ f(w))

where the normal form for the momentum map is given by Theorem 2.4.2. As
required −ad∗zµ+ f(w) ∈ h◦ since the kernel of i∗h is equal to h◦. �

4.2.2 Non-degeneracy condition and regularity condition

We now state a stronger version of non-degeneracy of a relative equilibrium.

Definition 4.2.2. Let (M,ω,G,ΦG) be a Hamiltonian proper G-manifold, H ⊂ G

be a closed subgroup, and ΦH : M → h∗ be the induced momentum map. Setting
α := ΦH(m), a relative equilibrium (m, ξ) ∈ M × g of h ∈ C∞(M)G is said to be
α-nondenegerate if D2hξ(m) is a non-singular quadratic form on N1⊕M withM
as in Proposition 4.2.1.

Definition 4.2.2 only depends on α and not on the underlying Witt-Artin de-
composition of TmM . If G is non-abelian, the spaceM might have an non-trivial
intersection with g ·m. This intersection is the subspace q ·m ⊂ g ·m where q is
an Hm-invariant complement to gµ in the “symplectic orthogonal”

h⊥µ :=
{
x ∈ g | xM(m) ∈ (h ·m)ω(m)

}
.

The non-singularity of D2hξ(m) along g · m depends only on that of D2φξG(m)
which has symmetry group Gξ. In the last chapter, we prove the following lemma:
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Lemma 4.2.3. Let (M,ω,G,ΦG) be a Hamiltonian proper G-manifold. Let
m ∈ M with momentum µ = ΦG(m) and an element ξ ∈ gµ. If g is semi-
simple then the Hessian D2φξG(m) restricted to g ·m is singular only along
(gξ + gµ) ·m.

Therefore if an equilibrium (m, ξ) ∈ M × g of some h ∈ C∞(M)G with mo-
mentum µ = ΦG(m) is α-nondegenerate in the sense of Definition 4.2.2, then gξ

has trivial intersection with q. In Theorem 4.2.5 we show that a number of orbits
of relative equilibria of h persist under H-perturbation. Such relative equilibria
must have their velocity ξ in hµ. We assume an additional regularity assumption

gµ ⊂ gξ (R)

This says essentially that µ needs to be “more regular” than ξ in the sense of
Definition 6.2.2, introduced in the last chapter. However if ξ ∈ hµ, this assumption
depends on the embedding of h ↪→ g as shown in the example below. This is not
a problem for us because isomorphic Lie algebras have different underlying Lie
groups.

Example 4.2.4. In this example we show when condition (R) holds for g = so(4)
and a subalgebra isomorphic to h = so(3). The Lie algebra g consists of the
matrices of the form  x̂ a

−aT 0

 =: (x, a)

where x, a ∈ R3. We use the hat notation x̂ ∈ h to mean the skew-symmetric
matrix

x̂ :=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 where x =


x1

x2

x3

 .
Given (x, a), (y, b) ∈ g, the expression for the Lie bracket is

[(x, a), (y, b)] = (x× y + a× b, x× b+ a× y). (4.26)
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Coadjoint action. The dual g∗ is computed using the standard pairing 1
2Tr(A

TB)
for square matrices A,B. The dual Lie algebra consists of pairs (χ, ρ) ∈ R3 × R3

which satisfy
〈(χ, ρ), (x, a)〉 = χ · x+ ρ · a.

With this identification the paring reduces to the standard dot product in R3. The
linearized coadjoint action of g on g∗ is given by

ad∗(x,a)(χ, ρ) = (χ× x+ ρ× a, χ× a+ ρ× x) (4.27)

Indeed, for (x, a), (y, b) ∈ g and (χ, ρ) ∈ g∗, we compute

〈ad∗(x,a)(χ, ρ), (y, b)〉 = 〈(χ, ρ), [(x, a), (y, b)]〉

= 〈(χ, ρ), (x× y + a× b, x× b+ a× y)〉

= χ · (x× y + a× b) + ρ · (x× b+ a× y)

= (χ× x+ ρ× a) · y + (χ× a+ ρ× x) · b

= 〈(χ× x+ ρ× a, χ× a+ ρ× x), (y, b)〉.

Lie subalgebras isomorphic to so(3). Elements of h = so(3) are identified
with vectors x ∈ R3 using the inverse of the hat map x ∈ R3 7→ x̂ ∈ h. There are
different ways to embed h into g as a Lie subalgebra. We restrict to the case when
the inclusion reads

ih : x ∈ h 7→ (tx, sx) ∈ g (4.28)

for some constants t, s ∈ R that have to be determined. In order for the image
ih(h) to have a Lie subalgebra structure, the closedness under the bracket (4.26)
has to be satisfied. Calculating

[(tx, sx), (ty, sy)] = ((t2 + s2)x× y, 2ts(x× y)),

this should satisfy ((t2 + s2)x × y, 2ts(x × y)) = (tx × y, sx × y), leading us to
solve the equations t2 + s2 = t and 2st = s. The only non-trivial solutions are
(t, s) = (1, 0) and (t, s) = (1

2 ,±
1
2). We conclude that g has three subalgebras

isomorphic to so(3) with inclusion as in (4.28), namely
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(i) The Lie algebra of rotations in R3 denoted so(3)r = {(x, 0) ∈ R6 | x ∈ R3}
with Lie bracket [(x, 0), (y, 0)] = (x× y, 0).

(ii) The diagonal elements denoted so(3)d =
{(

x
2 ,

x
2

)
∈ R6 | x ∈ R3

}
with Lie

bracket [(x2 ,
x
2 ), (y2 ,

y
2)] = (x×y2 , x×y2 ).

(iii) The anti-diagonal elements denoted so(3)ad =
{(

x
2 ,−

x
2

)
∈ R6 | x ∈ R3

}
with

Lie bracket [(x2 ,−
x
2 ), (y2 ,−

y
2)] = (x×y2 ,−x×y

2 ).

Question: How many different embeddings h ↪→ g do we have in total?

Note that the diagonal elements (x2 ,
x
2 ) ∈ so(3)d commute with the anti-diagonal

elements (x2 ,−
x
2 ) ∈ so(3)ad with respect to the bracket (4.26). Therefore there is an

isomorphism of Lie algebras (x, a) ∈ so(4) 7→
((

x
2 ,

x
2

)
,
(
a
2 ,−

a
2

))
∈ so(3)d×so(3)ad.

Regularity condition. Given a fixed momentum µ := (χ, ρ) ∈ g∗, the stabilizer
Lie subalgebra is

gµ = {(x, a) ∈ g | χ× x+ ρ× a = 0 and χ× a+ ρ× x = 0}

by (4.27). We show below whether condition (R) is satisfied for different choices
of Lie subalgebras isomorphic to h.

(i) Let h = so(3)r with inclusion map

ih : x ∈ h 7→ (x, 0) ∈ g.

To compute the dual of this inclusion i∗h : g∗ → h∗, we take (χ, ρ) ∈ g∗ and
x ∈ h and we compute

〈i∗h(χ, ρ), x〉 = 〈(χ, ρ), ih(x)〉 = 〈(χ, ρ), (x, 0)〉 = χ · x.

Then
i∗h((χ, ρ)) = χ ∈ h∗.
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The symplectic orthogonal is h⊥µ = {(x, a) ∈ g | χ× x+ ρ× a = 0} . Since
the velocity ξ ∈ h must commute with µ, it has to belong to the subspace
hµ = gµ ∩ h. Using equation (4.27),

hµ = {(x, 0) ∈ so(3)r | χ× x = 0 and ρ× x = 0} .

There are three cases to consider:

(a) If χ = ρ = 0 then gµ = g and hµ = h. We choose

ξ = (y, 0) ∈ h

where y ∈ R3 is arbitrary. Using (4.26) we get

gξ = {(λ1y, λ2y) ∈ g | λ1, λ2 ∈ R}

and clearly (R) does not hold.

(b) If χ and ρ are not collinear, hµ = {(0, 0)}. In this case, the only available
velocity is ξ = 0 and thus gξ = g. In particular (R) holds.

(c) If µ = (χ, ρ) is such that χ = sρ for some s ∈ R, we choose ξ of the
form

ξ := (λχ, 0) ∈ hµ for some λ ∈ R

and thus gξ = {(x, a) ∈ g | x× χ = 0 and a× χ = 0} . Note that in par-
ticular, gξ ⊂ gµ. To see whether gµ ⊂ gξ, pick an element (x, a) ∈ gµ.
By definition, it satisfies

x× χ = ρ× a and χ× a = x× ρ. (4.29)

Using (4.29) and the fact that χ = sρ we get,

x× χ = s(x× ρ) = s(χ× a) = s2(ρ× a) = s2(x× χ).
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Similarly

a× χ = s(a× ρ) = s(χ× x) = s2(ρ× x) = s2(a× χ).

Therefore, (x, a) ∈ gξ as long as s2 6= 1 i.e. (R) holds as long as
µ 6= (χ,±χ), as shown in Figure 4.4.

Figure 4.4: Condition (R) holds as long as µ
is away form the red dashed lines that are sub-
spaces of codimension three in R6.

(ii) Let h = so(3)d with inclusion map

ih : x ∈ h 7→
(
x

2 ,
x

2

)
∈ g.

To compute the dual of this inclusion i∗h : g∗ → h∗, we take (χ, ρ) ∈ g∗ and
x ∈ h and we compute

〈i∗h(χ, ρ), x〉 = 〈(χ, ρ), ih(x)〉 = 〈(χ, ρ),
(
x

2 ,
x

2

)
〉 = χ+ ρ

2 · x,

Then
i∗h((χ, ρ)) = χ+ ρ

2 ∈ h∗.

Set µ := (χ, ρ) ∈ g∗ and α := i∗h(µ) = χ+ρ
2 ∈ h∗. Using Equation (4.27) we

get
hµ =

{(
x

2 ,
x

2

)
∈ so(3)d | α× x = 0

}
.
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We thus choose a velocity of the form

ξ := (λα, λα) ∈ hµ

for some λ ∈ R. By (4.26) the stabilizer Lie algebra of ξ is

gξ = {(x, a) ∈ g | x× α + a× α = 0} . (4.30)

In particular, gµ ⊂ gξ and (R) is automatic for any choice of µ.

(iii) The case h = so(3)ad is similar to the previous one.

4.2.3 Persistence of relative equilibria

We are now ready to state an equivalent version of Theorem 4.1.2 for relative
equilibria. The proof follows the same steps as Theorem 4.1.2. For that reason
some details have been skipped.

Theorem 4.2.5. Let (M,ω,G,ΦG) be a Hamiltonian proper G-manifold.
Assume h ∈ C∞(M)G has a relative equilibrium (m, ξ) ∈ M × h with mo-
mentum µ = ΦG(m). Let α be the restriction of µ to h. We assume that

(i) Φ−1
H (α) is a smooth manifold,

(ii) (m, ξ) is α-nondegenerate and (R) is satisfied,

(iii) Gµ ⊂ Hα,

(iv) Hµ ⊂ Gµ is co-compact.

Then there is a Gµ-invariant neighbourhood Ũ ⊂ Φ−1
H (α) of m and a

neighbourhood V ⊂ R × h of (0, ξ) such that, for each (λ, η) ∈ V , there
is a function f ηλ ∈ C∞(Gµ/Gm)Hµ whose critical points are in one-to-one
correspondence with those of hηλ in Ũ .
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Proof . Let (m, ξ) ∈ M × h be an α-nondegenerate relative equilibrium h, where
α is the restriction of the momentum µ = ΦG(m) to h. By assumption Φ−1

H (α) is
a smooth manifold on which Gµ ⊂ Hα acts canonically and properly.

Let K = Gm and consider the K-vector space N := N1 ⊕M, where N1 is a
symplectic slice at m relative to the G-action, and M is as in Proposition 4.2.1.
By construction N is isomorphic to some K-vector space complementary to gµ ·m
in Tm

(
Φ−1
H (α)

)
. By the Tube Theorem 2.1.5 there is a K-invariant neighbourhood

N0 ⊂ N of 0 ∈ N , such that

(i) The associated bundle Gµ ×K N0 is a local model for some Gµ-invariant
neighbourhood U ⊂ Φ−1

H (α) of m.

(ii) The only critical points of hξ in U are on Gµ ·m.

In that model, the point m corresponds to [(e, 0)] and the augmented Hamiltonian
of an H-perturbation hλ ∈ C∞(M)H of h is identified with hξλ : Gµ ×K N0 → R.
According to the proof of Theorem 4.1.2, the critical points of hξλ are in bijective
correspondence with those of the lift

h̃ξλ := ρ∗hξλ : Gµ ×N0 → R

where ρ : Gµ × N0 → Gµ ×K N0 is the orbit map. We may thus work with h̃ξλ
instead of hξλ.

We define a (left) action of the direct product Gµ ×K on Gµ ×N0 by

(h, k) · (g, ν) = (hgk−1, k · ν).

As Gµ ⊂ Gξ by the (R) assumption, the lift h̃ξ is Gµ ×K-invariant whereas h̃ξλ is
only Hµ ×K-invariant. By α-nondegeneracy of (m, ξ),

dh̃ξ(e, 0) = 0 and D2
N h̃

ξ(e, 0) is non-singular.

As in the proof of Theorem 4.1.2, we can use the Implicit Function Theorem and
the compacity of Hµ\Gµ to get an Hµ-invariant smooth function φηλ : Gµ → N0,
depending on parameters (λ, η) taken in a neighbourhood V ⊂ R × h of (0, ξ),
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satisfying
dN h̃

η
λ(g, φ

η
λ(g)) = 0 for every g ∈ Gµ.

For every fixed parameters (λ, η) ∈ V , the Hµ ×K-invariance of h̃ηλ allows us
to define a function f ηλ ∈ C∞(Gµ/K)Hµ by

f ηλ ([g]K) := h̃ηλ([g]K, φ
η
λ([g]K))

where [g]K is a coset inGµ/K. An application of the Morse Lemma with parameters
gives us a Morse chart (Ñ0, ν̃) centered at 0 ∈ N0, where Ñ0 ⊂ N0 and ν̃ =
(ν̃1, . . . , ν̃n). Then there is a smooth map ψηλ : Gµ/K × Ñ0 → Ñ0, depending on
(λ, η) ∈ V such that

h̃ηλ([g]K, ψ
η
λ([g]K, ν)) =

n∑
i=1

εiν̃
2
i + f ηλ ([g]K) (4.31)

where εi = ±1 and ν̃(ν) = (ν̃1, . . . , ν̃n). Therefore ([g]K, ν) ∈ Gµ/K × Ñ0 is a
critical point of (4.31) if and only if

(
n∑
i=1

εiν̃
idν̃i

)
(ν) = 0 and dfηλ ([g]K) = 0.

Let Ũ ⊂ Φ−1
H (α) be the Gµ-invariant neighbourhood of m whose local model is

Gµ ×K Ñ0. In particular for (λ, η) ∈ V , the critical points of hηλ in Ũ are in
one-to-one correspondence with those of the function f ηλ . �

Corollary 4.2.6 (Persistence of relative equilibria). If the manifold Gµ/Gm

and the function f ηλ ∈ C∞(Gµ/Gm)Hµ of Theorem 4.2.5 satisfy condition
(OPS) then the number of Hµ-orbits of relative equilibria of h with velocity
close to ξ, that persist under a small H-perturbation in a neighbourhood of
Gµ ·m in Φ−1

H (α), is bounded below by CatHµ(Gµ/Gm).

Proof . We apply Theorem 3.4.5 to f ηλ ∈ C∞(Gµ/Gm)Hµ and we obtain that the
number of Hµ-orbits of critical points of f ηλ is bounded below by CatHµ (Gµ/Gm).



EXPLICIT SYMMETRY BREAKING 98

In other words, as long as (λ, η) ∈ V , the number of Hµ-orbits of relative equi-
libria of hλ with velocity η in a neighbourhood of Gµ · m in Φ−1

H (α) is at least
CatHµ (Gµ/Gm). �

Example 4.2.7 (Torus action). As a first application, we recover the result of
Grabsi, Montaldi and Ortega [23] for compact abelian groups and free actions. Let
(M,ω,Tn,ΦTn) be a Hamiltonian Tn space where Tn is a n-torus acting freely on
M and let Tr be a subtorus of Tn. Assume h ∈ C∞(M)Tn has an α-nondegenerate
relative equilibrium (m, ξ) ∈ M × tr with momentum µ = ΦTn(m) and where
α = µ

∣∣∣
tr
. As Tn and Tr are abelian, condition (R) always hold. By compactness

of Tn, condition (OPS) is automatic and then any Tr-perturbation hλ with λ

small enough has at least
CatTr(Tn)

Tr-orbit of relative equilibria with velocity closed to ξ in a neighbourhood of Tn ·m
in Φ−1

Tr (α). Since Tn acts freely on Tr by left multiplication,

CatTr(Tn) = Cat(Tn/Tr) = Cat(Tn−r).

Hence Cat(Tn−r) = (n− r) + 1.

4.2.4 The spherical pendulum

As an application of Corollary 4.2.6, we consider the case of the spherical pendulum
whose Hamiltonian is viewed as a perturbation of the Hamiltonian governing the
motion of an unit mass point constrained to move on the surface of S2. Endow
R3 with the standard inner product 〈·, ·〉 and let e1, e2, e3 be the standard basis.
The phase space for the spherical pendulum is the Hamiltonian proper G-manifold
(T ∗S2, ω,G,ΦG) where G = SO(3) acts on

T ∗S2 =
{

(x, y) ∈ S2 × R3 | 〈x, y〉 = 0
}

by matrix multiplication A · (x, y) = (Ax,Ay). The associated momentum map
ΦG : T ∗S2 → R3 is

ΦG(x, y) = x× y.
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Let H = SO(2) be the subgroup of rotations about the e3-axis with Lie algebra
h, the one-dimensional vector space generated by e3. We can think about the
Hamiltonian of the spherical pendulum

hλ(x, y) = 1
2‖y‖

2 + λ〈x, e3〉

as an H-perturbation of the G-invariant Hamiltonian h(x, y) = 1
2‖y‖

2.

The relative equilibria of hλ are the pairs ((x, y), ξ) ∈ T ∗S2 × h such that

dhλ(x, y) = dφξH(x, y) (4.32)

where φξH(x, y) := 〈x× y, ξ〉. We show that these satisfy

λ+ ‖ξ‖2〈x, e3〉 = 0 and y = ξ × x. (4.33)

Indeed the tangent space at (x, y) ∈ T ∗S2 is identified with

T(x,y)T
∗S2 = {(ẋ, ẏ) | 〈x, ẋ〉 = 0 and 〈x, ẏ〉+ 〈y, ẋ〉 = 0} .

Equation 4.32 holds if, for all (ẋ, ẏ) ∈ T(x,y)T
∗S2, there is some non zero ξ ∈ h

such that
〈y, ẏ〉+ λ〈ẋ, e3〉 = 〈ẋ× y + x× ẏ, ξ〉. (4.34)

By setting ẋ = 0, we obtain 〈(ξ × x) − y, ẏ〉 = 0 for all ẏ perpendicular to x. In
particular we choose ẏ = (ξ × x) − y and thus ‖(ξ × x) − y‖2 = 0 which implies
that

y = ξ × x. (4.35)

Replacing (4.35) in (4.34) yields

λ〈ẋ, e3〉 = 〈ẋ× y, ξ〉

which is equivalent to say that

〈λe3 − (y × ξ), ẋ〉 = 0 for all ẋ perpendicular to x.
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In other words, λe3 − y × ξ must be colinear to x. Using (4.35),

λe3 − y × ξ = −‖ξ‖2x+
(
λ+ ‖ξ‖2〈x, e3〉

)
e3

and thus (λ+ ‖ξ‖2〈x, e3〉) e3 must be colinear to x. One possibility is x = ±e3

which gives y = 0 by (4.35). The other possibility is

λ+ ‖ξ‖2〈x, e3〉 = 0 and y = ξ × x.

The relative equilibria ((x, y), ξ)) of the unperturbed Hamiltonian h are such that
x moves along a great circle on S2 and those of hλ are such that x describes a
circular trajectory at fixed height in the lower hemisphere of S2. Therefore the
only Hµ-orbit that has a chance to persist under hλ is the one when x moves along
the equator. Indeed the point m = (e1, se2) and ξ = se3, with s > 0, define
a G-nondegenerate relative equilibrium of the unperturbed Hamiltonian h, with
momentum µ = se3. Observe that Gµ = SO(2) is the group of rotations about
the e3-axis. Embedding S1 in S2 as the equator allow us to view the orbit Gµ ·m
as the set of perpendicular pairs (x, y) ∈ S1 × S1

s where S1
s is the equator of the

sphere of radius s. The (stable) relative equilibria of hλ are of the form ((x, y), η)
with η = re3 for some r ∈ R and with x ∈ S2 having uniform circular motion at
constant negative height − λ

r2 . Since x ∈ S2 we must have |λ| < r2. Given x we
can calculate y from (4.33). Setting α = s we get

(x, y) ∈ Φ−1
H (α) ⇔ r(1− λ2

r4 ) = s ⇔ r3(r − s) = λ2.

The last equation can be solved for r and we find two solutions, one positive and
one negative. The condition |λ| < r2 implies that the only valid solution is the
positive one. Since the distance |r− s| is controlled by λ, the velocity η is close to
ξ as λ is sufficiently small. We conclude that for λ small enough, hλ has exactly
one Hµ-orbit of relative equilibria in a neighbourhood of Gµ · m in Φ−1

H (α) with
velocity close to ξ. For this example, the assumptions of Theorem 4.2.5 are all
satisfied. As expected, we have

CatHµ(Gµ/Gm) = CatSO(2)(S1) = 1.
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Bifurcation diagram If (x, y) satisfies (4.33) for some ξ, then it is a critical
point of rank one of the energy momentum map Fλ = (hλ,ΦH). If we let ξ varies,
s is viewed as a parameter and the boundary of Fλ(T ∗S2) is the convex region in
R2 defined by the curve

γλ(s) =
(
s4 − 3λ2

2s2 , s− λ2

s3

)
. (4.36)

The critical points of rank zero (when ξ = 0) are sent on Fλ(±e3, 0) = (±λ, 0).
The point (−e3, 0) is of type elliptic-elliptic whereas the point (e3, 0) is of type
focus-focus (cf. Cushman and Duistermaat [15] and Vu Ngoc and Sepe [69]).

Figure 4.5: Bifurcation diagrams of the energy-momentum map Fλ when λ = 0 (left
hand side) and when λ > 0 (right hand side).



SYMPLECTIC SLICE FOR ACTIONS OF
SUBGROUPS

Stability properties and bifurcations of relative equilibria can be determined by a
method developed by Krupa [34], which states that the dynamics of an equivariant
vector field in a neighbourhood of a group orbit is entirely governed by the dy-
namics transverse to that group orbit by using the the so-called slice coordinates
introduced by Palais [53]. While Krupa proved this result for compact Lie groups,
Fiedler et al. [21] extended it to proper group actions. The Hamiltonian analogue
has been studied by Mielke [47] as well as Roberts and Sousa Dias [60], and it
was expanded in Roberts, Wulff and Lamb [61]. By “dynamics transverse to the
group orbit”, we mean that the vector field in question can be split into two parts,
one part is defined along the group orbit and the other part belongs to a choice of
normal subspace transverse to that group orbit. For Hamiltonian systems defined
on (M,ω,G,ΦG), the flow lines of a Hamiltonian vector field are confined to level
sets of the momentum map, reflecting the conservation of momentum. Therefore
the choice of normal space is more restrictive than for general dynamical systems
(Section 2.4). As constructed in Roberts, Wulff and Lamb [61], a space transverse
to G·m is isomorphic to m∗×N1 where m∗ is isomorphic to (gµ/gm)∗. A symplectic
slice N1 at m is a Gm-invariant subspace of (TmM,ω(m)) defined by

N1 := ker(DΦG(m))/gµ ·m. (5.1)

It is endowed with both a natural symplectic structure ωN1 coming from ω(m) and
a canonical linear Hamiltonian action of Gm. This subspace is of particular interest
for the study of stability, persistence and bifurcations of relative equilibria (cf. for
instance Patrick et al. [58], Lerman and Singer [38] and Ortega and Ratiu [51],

102



103 SYMPLECTIC SLICE FOR ACTIONS OF SUBGROUPS

Montaldi and Rodriguez-Olmos [50]).

5.1 The symplectic slice of a subgroup

Given a closed subgroup H ⊂ G we have seen that (M,ω,H,ΦH) is a Hamiltonian
H-space where ΦH : M → h∗ is the induced momentum map. In this case, we can
also consider a Witt-Artin decomposition of TmM relative to the H-action:

TmM = T̃0 ⊕ T̃1 ⊕ Ñ0 ⊕ Ñ1. (5.2)

In particular, the Hm-invariant subspace Ñ1 is a symplectic slice for the H-action.
It is chosen such that

Ñ1 := ker(DΦH(m))/hα ·m (5.3)

where α := ΦH(m). In general two arbitrary decompositions (2.19) and (5.2)
cannot be compared. In the study of explicit symmetry breaking phenomena, the
Hamiltonian equations are perturbed in a way that the symmetry group G breaks
into one of its subgroup H. The stability properties of the perturbed system rely
on a symplectic slice relative to the H-action on M , which is bigger than a slice
relative to the G-action. This leads us to find explicit relations between N1 and
Ñ1. It has been implicitly used in [23] that, when G is a torus and H is a subtorus
both acting freely on M , a symplectic slice Ñ1 at m can be chosen of the form

Ñ1 = N1 ⊕Xm, (5.4)

for some subspace Xm ⊂ TmM isomorphic to g/h × (g/h)∗. We generalize this
observation for non-abelian Lie groups and non-free actions with the assumption
Gm ⊆ NG(H), where NG(H) is the normalizer of H in G. We show that, under
this assumption, there is a Witt-Artin decomposition (2.19) at m relative to the
G-action and a Witt-Artin decomposition (5.2) at m for the H-action that are
compatible in the sense that the symplectic slice Ñ1 for H can be expressed in
terms of the symplectic slice N1 for G, and other subspaces of (2.19). Explicitly,

Ñ1 = N1 ⊕Xm ⊕ s(G,H, µ) ·m, (5.5)
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for some subspace Xm ⊂ T1 ⊕ N0 symplectomorphic to a canonical cotangent
bundle b× b∗, and where s(G,H, µ) ·m is some symplectic vector subspace of T1

(cf. Theorem 5.1.4 and Theorem 5.1.6). When G is a torus and H is a subtorus
both acting freely on M , we recover the equality (5.4). In this case, the vector
subspace b is isomorphic to g/h whereas the subspace s(G,H, µ) ·m is trivial (cf.
Example 5.1.8). In Perlmutter et al. [59], s(G,H, µ) ·m arises as a symplectic slice
at µ for the H-action on the coadjoint orbit G · µ. We give another proof of this
fact in Proposition 5.1.2. In our construction, s(G,H, µ) is defined as a subspace
of the “symplectic orthogonal”

h⊥µ := {x ∈ g | xM(m) ∈ (h ·m)ω(m)} (5.6)

which is present in the context of geometric quantization (cf. for instance Duval
and al. [18]). The construction holds only if we assume that h⊥µ is Gm-invariant
which is automatic if we assume that Gm ⊆ NG(H).

5.1.1 Lie algebra splittings

Let m ∈ M with momentum µ = ΦG(m) and assume that Gm ⊆ NG(H). In
particular Gm acts on the stabilizer subalgebras hm and hµ by mean of the Adjoint
action. We start by splitting the Lie algebra g into three parts

g = gm ⊕m⊕ n. (5.7)

for some Gm-invariant subspaces m and n that we shall choose in a specific way.
We use the following notations: if (V, ω) is a symplectic vector space and W ⊂ V

is a subspace, the symplectic orthogonal W ω of W in V is the set of vectors v ∈ V
such that ω(v, w) = 0 for all w ∈ W . Furthermore, if W,U are two subspaces
such that U ⊂ W ⊂ V , then U⊥W denotes a complement of U in W so that
U ⊕ U⊥W = W is a direct sum.

By properness of the G-action, the stabilizer Gm is compact. The Lie subal-
gebra gm can thus be decomposed into a direct sum of Gm-invariant subspaces
gm = hm ⊕ h⊥gm

m . Similarly hµ = hm ⊕ p for some Gm-invariant complement p.
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Then,
gm + hµ = hm ⊕ h⊥gm

m ⊕ p.

Since gm + hµ ⊂ gµ, we can choose a Gm-invariant complement

b := (gm + hµ)⊥gµ

so that
gµ = hm ⊕ p︸ ︷︷ ︸

hµ

⊕h⊥gm
m ⊕ b = hm ⊕ h⊥gm

m︸ ︷︷ ︸
gm

⊕p⊕ b. (5.8)

In particular we choose the Gm-invariant subspace m of (5.7) to be

m := p⊕ b.

By (5.8), it satisfies gµ = gm ⊕ m. To define the space n in the decomposition
(5.7), we introduce the “symplectic orthogonal”

h⊥µ := {x ∈ g | xM(m) ∈ (h ·m)ω(m)}. (5.9)

Since Gm ⊂ NG(H), this subspace is Gm-invariant. It is characterized as follows:

Proposition 5.1.1. The conditions below are equivalent:

(i) x ∈ h⊥µ

(ii) 〈µ, [x, η]〉 = 0 for all η ∈ h

(iii) ad∗xµ ∈ h◦ where h◦ := {λ ∈ g∗ | λ
∣∣∣
h

= 0} is the annihilator of h in g∗

Proof . Let m ∈M and µ = ΦG(m). We first show that (i) ⇐⇒ (ii).

x ∈ h⊥µ ⇐⇒ xM(m) ∈ (h ·m)ω(m)

⇐⇒ ω(m)(xM(m), ηM(m)) = 0 for all η ∈ h

⇐⇒ 〈µ, [x, η]〉 = 0 for all η ∈ h.
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Indeed,

ω(m)(xM(m), ηM(m)) = −dφxG(m) · ηM(m)

= −〈DΦG(m) · ηM(m), x〉

= − d
dt

∣∣∣∣∣
t=0
〈ΦG(exp(tη) ·m), x〉

= − d
dt

∣∣∣∣∣
t=0
〈Ad∗exp(−tη)ΦG(m), x〉

= −〈ΦG(m), d
dt

∣∣∣∣∣
t=0

Adexp(−tη)x〉

= −〈µ, [x, η]〉.

Finally, (ii) ⇐⇒ (iii) since

〈µ, [x, η]〉 = 0 for all η ∈ h ⇐⇒ 〈ad∗xµ, η〉 = 0 for all η ∈ h

⇐⇒ ad∗xµ ∈ h◦.

In particular, with the notations of Example 2.3.5, xg∗(µ) ∈ Tµ (G · µ) ∩ h◦. �

Consider the projection α := µ
∣∣∣
h
∈ h∗ and let

hα = {x ∈ h | ad∗xα = α} .

Let us show that gµ ∩ hα = hµ. Since gµ ∩ h = hµ, the only non-trivial inclusion is
gµ ∩ hα ⊃ hµ. Let x ∈ hµ and y ∈ h. Then

〈ad∗xα, y〉 = 〈α, [x, y]〉

= 〈µ, [x, y]〉 since [x, y] ∈ h

= 〈ad∗xµ, y〉

= 0 since x ∈ hµ

which shows that x ∈ gµ ∩ hα. We now choose a Gm-invariant complement a such
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that
gµ + hα = hµ ⊕ h⊥gm

m ⊕ b︸ ︷︷ ︸
gµ

⊕a = hµ ⊕ a︸ ︷︷ ︸
hα

⊕h⊥gm
m ⊕ b. (5.10)

Furthermore observe that hα ⊂ h⊥µ . Indeed, pick some element x ∈ hα, some
η ∈ h, and notice that

〈ad∗xµ, η〉 = 〈µ, [x, η]〉 = 〈α, [x, η]〉 = 〈ad∗xα, η〉 = 0. (5.11)

Clearly gµ ⊂ h⊥µ since gµ = {x ∈ g | ad∗xµ = 0}. We conclude that gµ + hα ⊂ h⊥µ .
Choose s(G,H, µ) to be a Gm-invariant complement to gµ + hα in h⊥µ . We can
thus express (5.9) as the direct sum of Gm-invariant subspaces

h⊥µ = gµ ⊕ a⊕ s(G,H, µ). (5.12)

In particular,
q := a⊕ s(G,H, µ) (5.13)

is a Gm-invariant complement to gµ in h⊥µ . Finally, choosing a Gm-invariant
complement (h⊥µ)⊥g of h⊥µ in g yields the decomposition

g = hµ ⊕ h⊥gm
m ⊕ b︸ ︷︷ ︸
gµ

⊕ q⊕ (h⊥µ)⊥g︸ ︷︷ ︸
n

. (5.14)

By (5.8) and (5.14), the Gm-invariant subspaces m and n of (5.7) can thus be
chosen as follows:

m := p⊕ b and n = q⊕ (h⊥µ)⊥g (5.15)

A Witt-Artin decomposition of M relative to the G-action can be chosen with the
subspaces in (5.7) taken as in (5.15). This yields

TmM = T0 ⊕ T1 ⊕N0 ⊕N1 (5.16)

with T0 = (gm ⊕ p ⊕ b) ·m and T1 = (q ⊕ (h⊥µ)⊥g) ·m. Note that we have some
freedom in the choice of Gm-invariant normal subspaces N0 and N1. As we did
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previously we set α := ΦH(m) = µ
∣∣∣
h
and we define T̃0 = hα · m. We shall give

a specific choice of subspaces T̃1, Ñ0, Ñ1 such that the tangent space of M at m
decomposes as

TmM = T̃0 ⊕ T̃1 ⊕ Ñ0 ⊕ Ñ1 (5.17)

which is compatible with (5.16).

5.1.2 Symplectic slice construction

In this section, we explain how to choose the symplectic slice (Ñ1, ωÑ1
) at m

appearing in (5.17). Explicitly we choose

Ñ1 = s(G,H, µ) ·m⊕Xm ⊕N1, (5.18)

where s(G,H, µ) was previously defined as a Gm-invariant complement to gµ + hα

in h⊥µ and Xm ⊂ TmM is some subspace symplectomorphic to b × b∗ endowed
with the canonical symplectic form. We show in Lemma 5.1.5 that s(G,H, µ) ·m
is a symplectic subspace of (TmM,ω(m)). This subspace depends on the choice of
group, subgroup, and on the momentum µ. However the space b = (gm + hµ)⊥gµ

also depends on the dynamics of the G-action on M as it involves the stabilizer
subalgebra gm. The next Proposition is a geometric description of the subspace
s(G,H, µ) ·m.

Proposition 5.1.2. The subspace s(G,H, µ) ·m is identified with a symplec-
tic slice at µ for the H-action on the coadjoint orbit Oµ.

Proof . The subgroup H acts on the coadjoint orbit Oµ = G · µ in the obvi-
ous way. Since the momentum map for the standard G-action on Oµ is just
the inclusion Oµ ↪→ g∗, the momentum map Φ : Oµ → h∗ for the H-action is
given by Φ(Ad∗g−1µ) = i∗h(Ad∗g−1µ). The kernel of its differential is ker(DΦ(µ)) =
(a⊕ s(G,H, µ)) · µ. Indeed, a straightforward calculation shows that

xg∗(µ) ∈ ker (DΦ(µ)) ⇐⇒ ad∗xµ ∈ h◦.
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Proposition 5.1.1 implies that x ∈ h⊥µ . Because of the identification

g∗ = n◦ ⊕ Tµ(Oµ)

and (5.12), we must have x ∈ a ⊕ s(G,H, µ). The momentum of µ is Φ(µ) =
i∗h(µ) = α and thus a symplectic slice for the H-action on Oµ is a complement to
hα ·µ in ker(DΦ(µ)). By construction, this complement is s(G,H, µ) ·µ which can
be identified with s(G,H, µ) ·m as s(G,H, µ) has trivial intersection with gm and
gµ. �

Proposition 5.1.3. Let (M,ω,G,ΦG) be a Hamiltonian G-manifold, H be
a closed subgroup of G and ΦH : M → h∗ be the induced momentum map.
Then

ker (DΦH(m)) = ker (DΦG(m))⊕M,

whereM⊂ TmM is isomorphic to q ·m× b∗ as defined in (5.15).

Proof . By Proposition 4.2.1

M = {zM(m) + w ∈ T1 ⊕N0 | −ad∗zµ+ f(w) ∈ h◦}. (5.19)

It remains to show thatM is isomorphic to q ·m× b∗. By construction

T1 = n ·m = (q⊕ (h⊥µ)⊥g) ·m

and N0 is isomorphic to
m∗ = p∗ ⊕ b∗.

An element zM(m) + w ∈M can thus be written uniquely as

uM(m) + vM(m) + w

for some unique elements u ∈ q and v ∈ (h⊥µ)⊥g . In addition, we set f(w) = π+β
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for π ∈ p∗ and β ∈ b∗. By definition ofM the following relation holds:

〈−ad∗u+vµ+ π + β, η〉 = 0 for all η ∈ h. (5.20)

From the decomposition
g∗µ = h∗µ ⊕ (h⊥gm

m )∗ ⊕ b∗,

we see that 〈β, η〉 = 0 for all η ∈ h since gµ ∩ h = hµ on which β vanishes. In
addition, 〈−ad∗u+vµ, η〉 = 〈−ad∗vµ, η〉 for all η ∈ h as u ∈ q ⊂ h⊥µ . Hence (5.20)
reduces to

〈−ad∗vµ+ π, η〉 = 0 for all η ∈ h. (5.21)

In particular, if η ∈ hµ, we are left with 〈π, η〉 = 0 and thus π = 0. Since
〈−ad∗vµ, η〉 = 0 for all η ∈ h, this implies that v ∈ h⊥µ ∩ (h⊥µ)⊥g = {0}. Therefore
the element zM(m) +w we started with is such that z = u ∈ q and f(w) = β ∈ b∗.
Conversely, it is straightforward to check from the argument above that an element

zM(m) + w ∈ q ·m⊕N0

such that f(w) = β ∈ b∗ satisfies −ad∗zµ+ β ∈ h◦. We showed that

M = {uM(m) + w ∈ q ·m⊕N0 | f(w) ∈ b∗}.

The isomorphism is F : uM(m) + w ∈M 7→ (uM(m), f(w)) ∈ q ·m× b∗. �

Theorem 5.1.4 (Symplectic Slice Reconstruction). Given the decomposition
(5.16), a symplectic slice Ñ1 at m relative to the H-action can be chosen of
the form

Ñ1 = s(G,H, µ) ·m⊕Xm ⊕N1, (5.22)

where Xm = b ·m⊕ Ym with Ym ⊂ N0 isomorphic to b∗.



111 SYMPLECTIC SLICE FOR ACTIONS OF SUBGROUPS

Proof . Let a Witt-Artin decompositin of M as in (5.16). Then by (5.8)

ker (DΦG(m)) = gµ ·m⊕N1

= (hµ ⊕ h⊥gm
m ⊕ b) ·m⊕N1

= hµ ·m⊕ b ·m⊕N1.

(5.23)

By Proposition 5.1.3, there is a subspace Ym ⊂ N0 isomorphic to b∗ such that

ker (DΦH(m)) = ker (DΦG(m))⊕ q ·m⊕ Ym
= hµ ·m⊕ b ·m⊕N1 ⊕ q ·m⊕ Ym from (5.23).

In (5.10) and (5.13) we obtained hα = hµ ⊕ a and q = a⊕ s(G,H, µ). Therefore

hµ ·m⊕ q ·m = hα ·m⊕ s(G,H, µ) ·m.

Setting Xm = b ·m⊕ Ym, we conclude that

ker (DΦH(m)) = hα ·m⊕ s(G,H, µ) ·m⊕Xm ⊕N1. (5.24)

A symplectic slice Ñ1 at m for the H-action must satisfy

ker (DΦH(m)) = hα ·m⊕ Ñ1.

Hence we choose Ñ1 = s(G,H, µ) ·m⊕Xm ⊕N1. �

Lemma 5.1.5. The subspace

s(G,H, µ) ·m = {xM(m) | x ∈ s(G,H, µ)}

is a symplectic vector subspace of (TmM,ω(m)). The restriction of ω(m) on
s(G,H, µ) ·m coincides with the Kostant-Kirillov-Souriau symplectic form.
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Proof . Using (5.13), the complement to gµ in g defined in (5.15) reads

n = a⊕ s(G,H, µ)︸ ︷︷ ︸
q

⊕(h⊥µ)⊥g . (5.25)

To show that s(G,H, µ) ·m is symplectic, we use that

n ·m = {zM(m) | z ∈ n}

is a symplectic vector subspace of (TmM,ω(m)). The restriction of ω(m) on n ·m
is non-degenerate and takes the form

Ψ(m)(x, y) = −〈µ, [x, y]〉.

Therefore ω(m) restricted to n · m coincides with the Kostant-Kirillov-Souriau
symplectic form. Let us show that it is also non-degenerate when restricted to
s(G,H, µ) · m. Assume x ∈ s(G,H, µ) is such that Ψ(m)(x, y) = 0 for all y ∈
s(G,H, µ). To show non-degeneracy we must show that xM(m) = 0. By (5.25)
any z ∈ n can be written uniquely as z = u+ y+ v with u ∈ a, y ∈ s(G,H, µ) and
v ∈ (h⊥µ)⊥g . This yields

Ψ(m)(x, z) = Ψ(m)(x, u) + Ψ(m)(x, v) (5.26)

as the term Ψ(m)(x, y) vanishes by assumption. Note that

Ψ(m)(x, u) = −〈µ, [x, u]〉 = 0

since x ∈ h⊥µ by (5.12) and u ∈ a ⊂ h by (5.10). Moreover the last term of (5.26)
vanishes. To see this we construct a Witt-Artin decomposition at m relative to
the H-action:

TmM = T̃0 ⊕ T̃1 ⊕ Ñ0 ⊕ Ñ1 (5.27)

with Ñ1 as in Theorem Theorem 5.1.4. Recall that

ker(DΦH(m)) = T̃0 ⊕ Ñ1.
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Furthermore since ker(DΦH(m)) = (h ·m)ω(m), we can write

h⊥µ = {x ∈ g | xM(m) ∈ T̃0 ⊕ Ñ1}. (5.28)

There are two possibilities:

(i) If v ∈ h then vM(m) ∈ T̃1 since v ∈ (h⊥µ)⊥g . The subspaces T̃1 and Ñ1 are
symplectically orthogonal. Hence Ψ(m)(x, v) = 0.

(ii) Otherwise vM(m) ∈ Ñ0. Indeed since v ∈ (h⊥µ)⊥g , it cannot belong to
T̃0 ⊕ Ñ1 by (5.28). Since xM(m) ∈ s(G,H, µ) ·m ⊂ Ñ1 and T̃0 ⊕ Ñ0 and Ñ1

are symplectically orthogonal, we conclude that Ψ(m)(x, v) = 0.

Therefore (5.26) reduces to

Ψ(m)(x, z) = 0 for all z ∈ n.

Since n ·m is symplectic we get xM(m) = 0 and we are done. �

Theorem 5.1.6. With respect to the splitting of Theorem 5.1.4, the sym-
plectic form ω

Ñ1
reads

Ψ(m)⊕ ωXm ⊕ ωN1

with Ψ(m) as in Lemma 5.1.5 and

ωXm (bM(m) + w, b′M(m) + w′) = 〈f(w′), b〉 − 〈f(w), b′〉

for all b, b′ ∈ b and w,w′ ∈ Ym.

Proof . We already know by Lemma 5.1.5 that the symplectic form on s(G,H, µ) ·
m is given by Ψ(m). Denote by ωXm the restriction of ω(m) on Xm. By 2.20 it
coincides with the pullback of the canonical symplectic form on b × b∗ along the
isomorphism

bM(m) + w ∈ Xm = b ·m⊕ Ym 7→ (b, f(w)) ∈ b× b∗.
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Therefore

ωXm (bM(m) + w, b′M(m) + w′) = 〈f(w′), b〉 − 〈f(w), b′〉

for all b, b′ ∈ b and w,w′ ∈ Ym. As stated, we obtain the decomposition

ω
Ñ1

(m) = Ψ(m)⊕ ωXm(m)⊕ ωN1 .

�

Proposition 5.1.7. With respect to the splitting of Corollary 5.1.4, the mo-
mentum map Φ

Ñ1
: Ñ1 → h∗m associated to the linear Hm-action on Ñ1

decomposes as

〈Φ
Ñ1

(ν̃), η〉 = −1
2〈(ad

∗
x)2µ, η〉+ 〈−ad∗bf(w), η〉+ 1

2ωN1 (ηN1(ν), ν)

for all η ∈ hm, where ν̃ = xM(m) + (bM(m) + w) + ν ∈ Ñ1 with x ∈
s(G,H, µ), b ∈ b, w ∈ Ym and ν ∈ N1.

Proof . By linearity of the Hamiltonian Hm-action on Ñ1, the momentum map
Φ
Ñ1

takes the form

〈Φ
Ñ1

(ν̃), η〉 = 1
2ωÑ1

(
η
Ñ1

(ν̃), ν̃
)

(5.29)

for all ν̃ ∈ Ñ1 and η ∈ hm. With respect to the decomposition of Ñ1 of Corollary
5.1.4, we write

ν̃ = xM(m) + (bM(m) + w) + ν ∈ Ñ1
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where x ∈ s(G,H, µ), b ∈ b, w ∈ Ym and ν ∈ N1. For η ∈ hm we get

η
Ñ1

(xM(m)) = d
dt

∣∣∣∣∣
t=0

exp(tη) · xM(m)

= d
dt

∣∣∣∣∣
t=0

(Adetηx)M (m)

= [η, x]M(m).

Similary η
Ñ1

(bM(m)) = [η, b]M(m). By Corollary 5.1.4, the symplectic form on Ñ1

decomposes as ω
Ñ1

(m) = Ψ(m)⊕ ωXm(m)⊕ ωN1 and then (5.29) reads

1
2ωÑ1

(
η
Ñ1

(ν̃), ν̃
)

= 1
2Ψ(m)([η, x], x)

+1
2ωXm(m)

(
[η, b]M(m) + η

Ñ1
(w), bM(m) + w

)
+1

2ωN1 (ηN1(ν), ν) .

By definition the second term of the above is 1
2

(
〈f(w), [η, b]〉 − 〈f(η

Ñ1
(w)), b〉

)
.

Since the linear map f is Hm-equivariant,

〈f(η
Ñ1

(w)), b〉 = 〈−ad∗ηf(w), b〉 = −〈f(w), [η, b]〉.

Finally

Ψ(m)([η, x], x) = −〈µ, [[η, x], x]〉

= −〈ad∗xµ, [x, η]〉

= −〈(ad∗x)µ, η〉.

We thus obtain

〈Φ
Ñ1

(ν̃), η〉 = −1
2〈(ad

∗
x)2µ, η〉+ 〈−ad∗bf(w), η〉+ 1

2ωN1 (ηN1(ν), ν) .

�
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Example 5.1.8 (Abelian groups). Let (M,ω,G,ΦG) be a HamiltonianG-manifold
where G is abelian and let H be a subgroup of G. For simplicity we assume that
this action is free i.e. all the stabilizers Gm are trivial. If m ∈ M has momentum
µ = ΦG(m), we then gµ = g and hα = hµ = h. In particular gµ + hα = g. Since G
is abelian h⊥µ = g, and thus s(G,H, µ) = 0 as it is the orthogonal complement of
gµ + hα in h⊥µ . On the other hand, b = h⊥g is isomorphic to g/h. Corollary 5.1.4
implies

Ñ1 = N1 ⊕Xm (5.30)

where Xm is isomorpic to g/h× (g/h)∗.

Example 5.1.9. Let (M,ω,G,ΦG) where G = SO(3) is the group of rotations in
R3. Assume that this action is free. Let H = SO(2) be the subgroup of rotations
about the axis defined by a vector x ∈ R3. The Lie algebra g is the space of 3× 3
skew-symmetric matrices. It is identified with R3 and so is its dual g∗ by using the
standard dot product. Let m ∈ M be a point with momentum ΦG(m) = µ ∈ g∗

where µ := χ ∈ R3. Similarly an element y ∈ g is identified with y := y ∈ R3.
Clearly

gµ := span(χ) ⊂ R3 and h := span(x) ⊂ R3.

Since ad∗yµ := χ × y ∈ R3 the symplectic orthogonal h⊥µ is the subspace of R3

defined by
h⊥µ := {y ∈ R3 | (χ× x) · y = 0}. (5.31)

There are three cases to be considered: when χ and x are not collinear, when they
are collinear, and when χ = 0.

(i) If χ and x are not collinear then there are no elements in H fixing χ. There-
fore hµ = 0. As H is abelian, hα = h and thus gµ + hα := span(χ, x).
Furthermore

h⊥µ := span(χ, x)

is a two-dimensional plane. We conclude that s(G,H, µ) = 0. The other
subspace of interest is b = (gm + hµ)⊥gµ . In this case, as gm + hµ = 0, we
deduce that b = gµ. By applying Corollary 5.1.4, the symplectic slice for the
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H-action is given by
Ñ1 = N1 ⊕Xm, (5.32)

where Xm is isomorphic to gµ × g∗µ.

(ii) When χ and x are collinear, all the elements of H will fix χ ∈ R3. Conse-
quently hµ = h = gµ and

h⊥µ = g := R3.

In this case s(G,H, µ) = n which is the orthogonal complement to gµ in g.
In R3, it is identified with the plane through the origin that is orthogonal to
χ. It is also naturally isomorphic to the tangent space at χ of the 2-sphere
of radius ‖χ‖ which corresponds to the coadjoint orbit Oµ. However, as
hµ = h = gµ, we find that b = 0. Therefore,

Ñ1 = N1 ⊕ s(G,H, µ) ·m (5.33)

where s(G,H, µ) ·m = n ·m.

(iii) When µ := χ = 0 we have gµ = g and hµ = h. As H is abelian, hα = h and
we find gµ + hα = g := R3. This implies that s(G,H, µ) = 0. The subspace
b is just h⊥g ' g/h which is the orthogonal complement to h in g. Therefore

Ñ1 = N1 ⊕Xm, (5.34)

where Xm is isomorphic to g/h× (g/h)∗.



ROOT SYSTEMS AND HESSIAN
DEGENERACY

This section is devoted to the proof of Lemma 4.2.3 which states that if (M,ω,G,ΦG)
is a Hamiltonian G-manifold with g semi-simple, m ∈ M is a point with momen-
tum µ = ΦG(m) and ξ ∈ gµ, then the restriction of the Hessian D2φξG(m) to g ·m
is degenerate only along

(gξ + gµ) ·m.

Our proof relies on the machinery of root systems and will be a straightforward
calculation using a specific basis of g known as the Weyl-Chevalley basis (Theorem
6.1.11). To understand a Lie algebra g with vector space basis {x1, . . . , xn}, we
need to know the structure constants which are the coefficient ckij such that

[xi, xj] =
n∑
k=1

ckijxk.

In particular, the Weyl-Chevalley basis of g is a basis with respect to which most
of the brackets [xi, xj] are zero. The idea is to first consider a basis of a Cartan
subalgebra of g which is in particular a maximal abelian subalgebra. Furthermore
this basis is extended to the whole g so that the associated root system of g encodes
entirely the structure constants. The references for this chapter are the books of
Taylor [67], Sattinger and Weaver [63] and Zhelobenko [71].

6.1 Weyl-Chevalley Normal Form Theorem

In this thesis we always assumed that g was a finite dimensional real Lie algebra.
However the result we need to prove relies on results that hold for complex Lie
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algebras. This is not a big deal because any real Lie algebra can be complexified
as shown below.

Definition 6.1.1. A complex Lie algebra is a complex vector space g equipped
with a bilinear Lie bracket [·, ·] : g × g → g which is antisymmetric and satisfies
the Jacobi identity.

A real Lie algebra k with Lie bracket [·, ·] can be turned into a complex Lie algebra
by the process of complexification. This means considering the complex vector
space kC = C ⊗R k whose elements are abbreviated 1 ⊗R x = x and i ⊗R x = ix.
We endow kC with the Lie bracket [·, ·]C defined by

[x1 + iy1, x2 + iy2]C = [x1, x2]− [y1, y2] + i ([x1, y2] + [y1, x2]) (6.1)

for all x1, x2, y1, y2 ∈ k.

Example 6.1.2. The complexification of the Lie algebras of the real compact
matrix Lie groups SU(3) and U(n) are sl3(C) and gln(C) respectively.

From now we assume that our Lie algebras are complex with Lie bracket as
above. The subscript C is omitted except stated otherwise.

6.1.1 Reductive Lie algebras

Generally a Lie algebra is called reductive if its adjoint representation is completely
reducible. Theorem 6 of Section 96 in [71] implies that all complex reductive Lie
algebra are obtained by complexification of a compact Lie group. We thus take
this characterization as a definition.

Definition 6.1.3. A complex Lie algebra g is called reductive if there exists a real
compact Lie group K with Lie algebra k such that g = kC. In this case k is called
a compact real form.

Proposition 6.1.4 (Inner product on reductive Lie algebras). Let g = kC

be a reductive Lie algebra. There exists an inner product 〈·, ·〉 on g with the
following properties:



ROOT SYSTEMS AND HESSIAN DEGENERACY 120

(i) 〈·, ·〉 restricted to k× k is real-valued.

(ii) 〈adxy, z〉 + 〈y, adxz〉 = 0 for all x ∈ k, y, z ∈ g. In particular the
endomorphisms adx ∈ End(g) are skew-symmetric for all x ∈ k.

(iii) 〈adxy, z〉 = 〈y, adx∗z〉 for all x, y, z ∈ g with x∗ = −x̄ where x̄ is
the complex conjugate of x i.e. the operators adx ∈ End(g) are skew-
hermitian.

Proof . Firstly we construct a K-invariant inner product on g. As k is the Lie
algebra of some compact Lie group K we can take any real valued inner product
on k and average it to obtain a new inner product 〈·, ·〉, invariant with respect
to the Adjoint representation Ad : K → Gl(k). We extend this inner product on
g = kC so that it defines an hermitian inner product

〈x1 + iy1, x2 + iy2〉 := (〈x1, x2〉 − 〈y1, y2〉)− i (〈x1, y2〉+ 〈y1, x2〉)

where x1, x2, y1, y2 ∈ k. It satisfies the following properties:

(i) Setting y1 = y2 = 0 in the above yields 〈x1, x2〉 ∈ R. Therefore the restriction
of 〈·, ·〉 on k× k is real.

(ii) Pick any x ∈ k, y, z ∈ g. The result follows by differentiating the relation
〈Adetxy,Adetxz〉 = 〈y, z〉 with respect to t ∈ R and evaluating it at t = 0.

(iii) Set x = x1 + ix2 and x∗ = −x1 + ix2 with x1, x2 ∈ k. Then

〈adxy, z〉 = 〈[x1, y], z〉+ i〈[x2, y], z〉

= −〈y, [x1, z]〉 − i〈y, [x2, z]〉 as x1, x2 ∈ k

= −〈y, [x1, z]〉 − 〈y, ī[x2, z]〉 by C-bilinearity of 〈·, ·〉

= 〈y, [−x1, z]〉+ 〈y, [ix2, z]〉

= 〈y, adx∗z〉.

�
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6.1.2 Semi-simple Lie algebras and the Killing form

Complex semi-simple Lie algebras are a particular case of complex reductive Lie
algebras for which there is a canonical choice of inner product as in Proposition
6.1.4. This inner product is given by the negative of the Killing form.

Definition 6.1.5. A reductive complex Lie algebra g is semi-simple if its center
z(g) = {x ∈ g | [x, y] = 0 ∀y ∈ g} is trivial.

The Killing form of a Lie algebra g is the symmetric bilinear form κ : g×g→ C
defined by

κ(x, y) = Tr (adxady)

where Tr(·) denotes the trace of a linear operator. Cartan’s second criterion ([67]
Theorem 14.4.7) states that g is semi-simple if and only if the Killing form κ is
non-degenerate. We show in Proposition 6.1.6 below that the negative −κ defines
a K-invariant inner product on the compact real form k of g. The negative of the
Killing form is then extended into an hermitian inner product on the whole g as
in Proposition 6.1.4.

Proposition 6.1.6. The Killing κ restricted to the compact real form k of g
has the following properties:

(i) κ is symmetric.

(ii) κ(Adky, Adkz) = κ(y, z) for every y, z ∈ k and k ∈ K.

(iii) κ([x, y], z) + κ(y, [x, z]) = 0 for every x, y, z ∈ k.

(iv) κ is negative definite.

Proof . The first statement (i) follows from the symmetry of the trace operator.
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To show (ii) notice that, given k ∈ K and y, z ∈ k, we have

[Adky, z] = d
dt

∣∣∣∣∣
t=0

AdetAdkyz

= d
dt

∣∣∣∣∣
t=0

AdkAdetyAdk−1z

= Adk[y, Ad−1
k z].

Hence

κ(Adky, Adkz) = Tr(adAdkyadAdkz)

= Tr(AdkadyadzAd−1
k )

= Tr(adyadz)

= κ(y, z).

To prove (iii) we use (ii) with k = etx for t ∈ R and x ∈ k. Differentiating (ii)
with respect to t yields κ([x, y], z) + κ(y, [x, z]) = 0. Finally (iv) follows because,
by (iii), the operators adx are skew-symmetric with respect to κ and the trace of
the square of a skew-symmetric operator is negative. In particular the negative of
the Killing form is a real inner product on k. �

If g is semi-simple, the Killing form is non-degenerate by Cartan’s second cri-
terion. It thus induces an isomorphism

κ] : g∗ → g (6.2)

where κ](λ) =: tλ is uniquely defined such that κ(tλ, x) = λ(x) for every x ∈ g.

This isomorphism satisfies the equivariance property κ](ad∗yλ) = [y∗, tλ] where
y∗ = −ȳ for every y ∈ g and λ ∈ g∗. Indeed by (iii) of Proposition 6.1.4,

κ
(
κ](ad∗yλ), x

)
= ad∗yλ(x)

= λ([y, x])

= κ (tλ, [y, x])

= κ ([y∗, tλ], x) where y∗ = −ȳ
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for any x, y ∈ g and λ ∈ g∗. The non-degeneracy condition implies that

κ](ad∗yλ) = [y∗, tλ]. (6.3)

6.1.3 Cartan subalgebras and root systems

In all generality, a Cartan subalgebra of a Lie algebra is a nilpotent subalgebra
which is its own normalizer. However for complex semi-simple Lie algebras, a
Cartan subalgebra is a maximal abelian subalgebra whose elements are semi-simple
(cf. (iii) below).

Definition 6.1.7. Let g be a complex semi-simple Lie algebra. A complex Lie
subalgebra h of g is called a Cartan subalgebra if

(i) [h1, h2] = 0 for all h1, h2 ∈ h,

(ii) If some x ∈ g satisfies [x, h] = 0 for all h ∈ h then x ∈ h,

(iii) The endomorphisms adh are diagonalizable for all h ∈ h.

Theorem 6.1.8 (Existence of Cartan subalgebras [67]). Assume g = kC

is a complex semi-simple Lie algebra for some compact real form k and let
t ⊂ k be any maximal commutative Lie subalgebra. Then h = tC is a Cartan
subalgebra. Furthermore every Cartan subalgebra arises that way.

Fix a Cartan subalgebra h of some complex semi-simple Lie algebra g. By (i)
of Definition 6.1.7 and the Jacobi identity of the Lie bracket, the operators adh
are pairwise commuting for all h ∈ h. Indeed if x ∈ g and h1, h2 ∈ h we have

adh1adh2x = [h1, [h2, x]] = −[x, [h1, h2]] + [h2, [h1, x]] = adh2adh1x.

Since in addition they are diagonalizable, there is a single basis of g consisting of
vectors which are simultaneously eigenvectors for all adh with h ∈ h, and whose
corresponding eigenvalues depend linearly on h.
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Definition 6.1.9. An element α ∈ h∗ is called a root if there exists a non-zero
vector x ∈ g such that [h, x] = α(h)x for all h ∈ h. The set of roots is denoted by
R and is viewed as a subset of h∗. Given a root α ∈ R, we call the subspace

gα := {x ∈ g | adhx = α(h)x, ∀h ∈ h}

the root space of α.

Theorem 6.1.10 (Cartan decomposition). A complex semi-simple Lie alge-
bra g admits a decomposition of the form

g = h⊕
(⊕
α∈R

gα

)
(6.4)

with the properties

(i) Two root spaces gα and gβ are orthogonal with respect to the Killing
form, as long as α + β 6= 0.

(ii) If α, β ∈ R then [gα, gβ] ⊂ gα+β.

Proof . Since g is semi-simple, elements h ∈ h give rise to linear operators adh ∈
End(h) that are simultaneously diagonalizable. The Lie algebra thus admits the
eigenspaces decomposition

g = g0 ⊕
(⊕
α∈R

gα

)
. (6.5)

The root space g0 corresponding to the trivial root is the centralizer

cg(h) = {x ∈ g | [h, x] = 0 for all h ∈ h} .

By the maximality assumption of the Cartan subalgebra, cg(h) = h.
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(i) Let x ∈ gα and y ∈ gβ. Write h = tC and let h ∈ t. Hence

0 = κ(adhx, y) + κ(x, adhy)

= κ(α(h)x, y) + κ(x, β(h)y)

= (α(h) + β(h))κ(x, y).

We use the C-linearity of α and β to obtain that (α(h) + β(h))κ(x, y) = 0
for all h ∈ h. Since α + β 6= 0 we get κ(x, y) = 0.

(ii) Let x ∈ gα and y ∈ gβ. If α + β ∈ R then we can use the Jacobi identity to
show that, for all h ∈ h,

adh([x, y]) = [h, [x, y]]

= [[h, x], y] + [x, [h, y]]

= [α(h)x, y] + [x, β(h)y]

= (α + β)(h)[x, y].

This shows that [gα, gβ] ⊂ gα+β. In particular, if x ∈ gα and y ∈ g−α, the
calculation above yields adh([x, y]) = 0 and thus

[gα, g−α] ⊂ h. (6.6)

If α + β is neither zero nor a root, then [x, y] = 0.

�

There are standard facts about root spaces that we do not prove. One of them
is that for each root α, the only multiples of α that are roots are α itself and −α.
Another fact is that each gα is one dimensional as a complex vector space (cf. [63]
Theorem 7.23).

Theorem 6.1.10 above can be used to show that the Killing form κ restricted to
a Cartan subalgebra h is non-degenerate. As g is semi-simple, κ is non-degenerate
on g. Let h ∈ h such that κ(h, x) = 0 for all x ∈ h. Since h is κ-orthogonal to all
the root spaces gα such that α 6= 0, we conclude that κ(h, y) = 0 for all y ∈ g using
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decomposition (6.4). Thus h = 0 by non-degeneracy of κ on g. The isomorphism
(6.2) reduces to an isomorphism κ] : h∗ → h. In particular to each root α ∈ R is
associated a unique element tα ∈ h which is a basis element of the one dimensional
subspace [gα, g−α] (cf. [67] Theorem 14.5.7).

6.1.4 The Weyl-Chevalley Normal Form Theorem

In this section, we construct a basis of a complex semi-simple Lie algebra g with
respect to which the Lie bracket has a specific normal form. Let h be a Cartan
subalgebra with basis {H1, · · · , Hk} orthogonal with respect to the Killing form.
In particular

[Hi, Hj] = 0 for all i, j.

Consider the decomposition into root spaces

g = h⊕
(⊕
α∈R

gα

)
.

Since each gα is one-dimensional as a complex vector space, we fix a basis element
Xα for each of them such that κ(Xα, X−α) = 1. Such a basis always exists. Indeed
if Xα ∈ gα is a non-trivial element, then κ(Xα, y) = 0 for every y ∈ gβ such
that β ∈ R \ {−α}. By non-degeneracy of the Killing form, the root space g−α

contains some non-trivial element X−α element satisfying κ(Xα, X−α) 6= 0. The
claim follows from a normalization process. We choose

{H1, . . . , Hk} ∪ {Xα | α ∈ R}

as a basis of g. Let us find the structure constants of the Lie bracket with respect
to this basis. By definition of gα,

[Hi, Xα] = α(Hi)Xα

and by (6.6),

[Xα, X−α] =
k∑
i=1

λiHi
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with coefficients

λi = κ([Xα, X−α], Hi)

= κ([Hi, Xα], X−α)

= α(Hi)κ(Xα, X−α)

= α(Hi)

since we chose an orthogonal basis. There is still to work out what is [Xα, Xβ]
when α+ β 6= 0. Of course, if α+ β is not a root, [Xα, Xβ] = 0 by (ii) of Theorem
6.1.10. For the same reason, if α + β ∈ R,

[Xα, Xβ] = λαβXα+β

for some coefficients λαβ sometimes referred to the Cartan integers, after a suitable
normalization of each Xα. Working out the coefficients λαβ is a bit tedious and is
done along the lines of [62] (Section 2.5) and [63] (Theorem 10.1). We partially
proved the following:

Theorem 6.1.11 (Weyl-Chevalley Normal Form). Let g be a complex semi-
simple Lie algebra, h be a Cartan subalgebra and R be its set of roots. Then
there is a basis of g

{H1, . . . , Hk} ∪ {Xα | α ∈ R}

with respect to which the structure constants read

[Hi, Hj] = 0 [Xα, X−α] = ∑k
i=1 α(Hi)Hi

[Hi, Xα] = α(Hi)Xα [Xα, Xβ] = λαβXα+β

where λαβ = 0 unless α+β is a root. Furthermore there is a normalization of
Xα such that all the structure constants are integers and λαβ = −λ(−α)(−β).
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6.2 Momentum map degeneracy along an orbit

This section is devoted to the proof of Lemma 4.2.3 where we assume that g is
semi-simple. For each ξ ∈ g a momentum map ΦG : M → g∗ defines a smooth
function φξG : M → R depending linearly on ξ

φξG(m) := 〈ΦG(m), ξ〉.

Assume that (m, ξ) ∈ M × g is a relative equilibrium of some Hamiltonian h ∈
C∞(M)G with momentum µ = ΦG(m). By definition of a relative equilibrium, ξ
and µ commute i.e. ad∗ξµ = 0. We would like to describe the space of degeneracy
of the Hessian D2φξG(m) along the orbit g ·m.

Proposition 6.2.1. If yM(m), xM(m) ∈ g ·m then

D2φξG(m) (yM(m), xM(m)) = 〈ΦG(m), [x, [y, ξ]]〉. (6.7)

Proof . Let yM(m) ∈ g ·m, then

dφξG(m) · yM(m) = d
dt

∣∣∣∣∣
t=0

φξG(ety ·m)

= d
dt

∣∣∣∣∣
t=0
〈ΦG(ety ·m), ξ〉

= d
dt

∣∣∣∣∣
t=0
〈ΦG(m), Ade−tyξ〉

= 〈ΦG(m), [ξ, y]〉.

For another element xM(m) ∈ g ·m, we get
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D2φξG(m) (yM(m), xM(m)) = d
dt

∣∣∣∣∣
t=0

dφξG(etx ·m) · yM(etx ·m)

= d
dt

∣∣∣∣∣
t=0
〈ΦG(etx ·m), [ξ, y]〉

= d
dt

∣∣∣∣∣
t=0
〈ΦG(m), Ade−tx [ξ, y]〉

= 〈ΦG(m), [x, [y, ξ]]〉.

�

Set µ = ΦG(m) and note that the Jacobi identity of the Lie bracket and the fact
that ad∗ξµ = 0 imply that 〈µ, [x, [y, ξ]]〉 = 〈µ, [y, [x, ξ]]〉, reflecting the symmetric
property of the Hessian. The non-degeneracy space ofD2φξG(m) along g·m consists
of the elements y ∈ g such that

〈µ, [y, [x, ξ]]〉 = 0 for all x ∈ g. (6.8)

Since µ and ξ commute, we can fix a maximal commutative Lie algebra t ⊂ g such
that ξ ∈ t and µ ∈ t∗. We complexify both of them as in Definition 6.1.1

gC = C⊗R g and tC = C⊗R t

and the Lie bracket extends into the bracket [·, ·]C as in (6.1). After this step
the velocity and momentum read ξ = 1 ⊗R ξ and µ = 1 ⊗R µ. There respective
stabilizer subalgebras are given respectively by

gξ := {x ∈ gC | [x, ξ]C = 0} and gµ := {x ∈ gC | ad∗xµ = 0} .

Consider the Cartan Lie subalgebra h = tC. Since ξ ∈ h and µ ∈ h∗, it is clear
that h is a subspace of both gξ and gµ. We thus write

gξ = h⊕

⊕
β∈Sf

gβ

 and gµ = h⊕

 ⊕
α∈Df

gα

 (6.9)
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for some finite subsets Sf and Df of R with the property:

α ∈ Sf (resp. Df ) =⇒ −α ∈ Sf (resp. Df ).

Definition 6.2.2. ξ (resp. µ) is regular if Sf = ∅ (resp. Df = ∅).

Since gC is semi-simple, the Killing form induces an isomorphism κ] : h∗ → h.

Let tµ ∈ h be the image of µ by this isomorphism and let Otµ be the adjoint orbit
of tµ. According to (6.9) and (6.4), there is an identification

TtµOtµ =
∑

α∈R\Df

gα.

By (6.3) the problem stated in (6.8), after complexification of the Lie algebra g,
reduces to find all the y ∈ gC satisfying

κ ([y∗, tµ]C, [x, ξ]C) = 0 for all x ∈ gC. (6.10)

Let {H1, . . . , Hk}∪{Xα | α ∈ R} be aWeyl-Chevalley basis of gC given by Theorem
6.1.11. Let y ∈ gC be an arbitrary element and let y∗ = −ȳ. With respect to the
Weyl-Chevalley basis, this element is expressed as

y∗ =
k∑
i=1

aiHi +
∑
α∈R

µαXα for some unique ai, µα ∈ C. (6.11)

Hence

[y∗, tµ]C = [
k∑
i=1

aiHi +
∑
α∈R

µαXα, tµ]C

=
∑
α∈R

µα[Xα, tµ]C as tµ ∈ h

= −
∑
α∈R

µαα(tµ)Xα

= −
∑

α∈R\Df

µαα(tµ)Xα
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where the last equality follows because

[y∗, tµ]C ∈ TtµOtµ .

Similarly (6.9) allows us to write an element [x, ξ]C ∈ TξOξ as

[x, ξ]C =
∑

β∈R\Sf

λβXβ with λβ ∈ C.

Solving (6.10) is equivalent to solve

∑
α∈R\Df

∑
β∈R\Sf

µαλβα(tµ)κ (Xα, Xβ) = 0 for any λβ ∈ C.

Using the fact that the gα’s appearing in the decomposition (6.4) are mutually
orthogonal with respect to κ (except for those corresponding to the same root
with opposite sign), we get

0 =
∑

α∈R\Df

∑
β∈R\Sf

µαλβα(tµ)κ (Xα, Xβ)

=
∑

α,β∈R\(Df∪Sf )
µαλβα(tµ)κ (Xα, Xβ)

=
∑

α∈R\(Df∪Sf )
µαλαα(tµ)κ (Xα, Xα)

+
∑

α∈R\(Df∪Sf )
µαλ−αα(tµ)κ (Xα, X−α)

=
∑

α∈R\(Df∪Sf )
µαα(tµ) (λακ (Xα, Xα) + λ−ακ (Xα, X−α)) .

This is true for any λα ∈ C if and only if µα = 0 for all α ∈ R \ (Df ∪ Sf ) as such
roots satisfy α(tµ) 6= 0 and both κ(Xα, Xα) and κ(Xα, X−α) do not vanish. We
conclude that y ∈ gC fulfils (6.10) for all x ∈ gC if and only if y∗ decomposes as

y∗ =
k∑
i=1

aiHi +
∑

α∈Df∪Sf
µαXα. (6.12)
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Therefore,

y∗ ∈ h⊕

 ⊕
α∈Df∪Sf

gα

 = gξ + gµ.

In particular this shows that the degeneracy set of the Hessian D2ΦG(m) along
g ·m belongs to gξ + gµ, by considering only the elements y ∈ gC which are real.
This proves Lemma 4.2.3 because the other inclusion is clear.



Appendix

This section is a complement to the example of Section 4.1.2 on the dynamics of
a 2D Rigid body in a potential flow. Full details of what follows are available in
the book of Marsden and Ratiu [44] in Chapters 13 and 14.6.

The special Euclidean group of the plane SE(2) consists of pairs

(Rθ, a) :=
Rθ a

0 1


where a = (a1, a2)T ∈ R2 is a vector, and Rθ is a rotation in the plane about
the origin of angle θ. The group multiplication is just matrix multiplication. In
particular, the inverse of (Rθ, a) ∈ SE(2), is given by

(Rθ, a)−1 = (R−θ,−R−θa).

To obtain the Lie algebra se(2), we just differentiate paths in this group which
start at identity. The velocities of those paths are the elements of the Lie algebra.
Therefore se(2) is made of the pairs

(θ̇, v) :=
−θ̇J v

0 0



where θ̇ ∈ R, v = (v1, v2)T ∈ R2 and J =
 0 1
−1 0

. The Lie bracket is then

obtained by a direct calculation

[(θ̇, v), (φ̇, w)] = (0, φ̇Jv − θ̇Jw).

133
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To figure out what the coadjoint representation of se(2) on se(2)∗ is, we need to
specify the elements of the dual se(2)∗. We claim that they are pairs of the form

(x, α) :=
x

2J 0
α 0


where x ∈ R and α = (α1, α2) ∈ (R2)∗. Since se(2) is a semi-simple Lie algebra, the
Killing form given by the trace of the produce of matrices defines a non-degenerate
pairing between se(2) and se(2)∗ and thus

Tr
x

2J 0
α 0

−θ̇J v

0 0

 = xθ̇ + α1v1 + α2v2.

Using our identifications, the pairing becomes

〈(x, α), (θ̇, v)〉 = xθ̇ + α1v1 + α2v2

which is the standard dot product in R3. It is now straightforward to compute the
coadjoint representation. Given (x, α) ∈ se(2)∗ and (θ̇, v), (φ̇, w) ∈ se(2), we get

〈ad∗(θ̇,v)(x, α), (φ̇, w)〉 = 〈(x, α), [(θ̇, v), (φ̇, w)]〉

= 〈(x, α), (0, φ̇Jv − θ̇Jw)〉

= α1(φ̇v2 − θ̇w2) + α2(θ̇w1 − φ̇v1)

= (α1v2 − α2v1)φ̇+ α2θ̇w1 − α1θ̇w2

= 〈(αJv,−θ̇αJ), (φ̇, w)〉.

Therefore ad∗(θ̇,v)(x, α) = (αJv,−θ̇αJ) ∈ se(2)∗.

We now show that the Lie-Poisson equations are nothing else than coadjoint
motion on se(2)∗. This is an application of the Lie-Poisson reduction Theorem
obtained by Marsden, Ratiu andWeinstein [45] (cf. also [44] Chapter 13). Consider
the cotangent bundle T ∗SE(2), equipped with the canonical symplectic structure.
The group SE(2) acts on T ∗SE(2) by cotangent lift of left multiplication and
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this action is canonical, free and proper. The left trivialization induces an SE(2)-
equivariant symplectomorphism

T ∗SE(2) −→ SE(2)× se(2)∗

where the action of SE(2) on the right hand side is given by left multiplication on
the first factor (cf. [45] Section 2). In particular the orbit space

T ∗SE(2)/SE(2)

is canonically isomorphic to se(2)∗, in the sense that there exists a Poisson dif-
feomorphism between them. Recall that T ∗SE(2) admits a canonical Poisson
structure coming from the symplectic structure and that the action of SE(2) is
canonical, free and proper. By the Lie-Poisson Reduction Theorem (cf. [45] The-
orem 2.1), the reduced space se(2)∗ admits a unique Poisson bracket1 such that
the quotient map T ∗SE(2)→ se(2)∗ is a Poisson map. Given ν ∈ se(2)∗ and two
smooth real-valued functions f, g defined on se(2)∗, this Poisson bracket takes the
form

{f, g}(ν) = −
〈
ν,

[
δf

δν
,
δg

δν

]〉
(A.1)

where δf
δν
∈ se(2) is the functional derivative Df(ν) regarded as an element of se(2)

rather than se(2)∗∗. Explicitly

Df(ν) · δν =
〈
δν,

δf

δν

〉
where δν ∈ se(2)∗.

If we assume that ν in (A.1) depends on the time t, differentiating f(ν) with
respect to t yields

Df(ν) · ν̇ =
〈
ν̇,
δf

δν

〉
.

1If we consider the cotangent lift of right multiplication rather than left multiplication, the
displayed Poisson bracket comes with a positive sign, rather than a negative sign.
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On the other hand, (A.1) also reads

{f, g}(ν) =
〈
ad∗δg

δν

ν,
δf

δν

〉
.

Therefore the general Lie-Poisson equations, determined by ḟ = {f, g} are given
by

ν̇ = ad∗δg
δν

ν.
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