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Imperfet Homolini BifurationsPaul GlendinningDepartment of Mathematis, UMIST, P.O. Box 88, Manhester M60 1QD, UKJan Abshagen & Tom MullinManhester Center for Nonlinear Dynamis, University of Manhester, Oxford Road, Manhester M13 9PL, UK(Dated: Marh 26, 2001)Experimental observations of an almost symmetri eletroni iruit show ompliated se-quenes of bifurations. These results are disussed in the light of a theory of imperfet globalbifurations. It is shown that muh of the dynamis observed in the iruit an be understoodby referene to imperfet homolini bifurations without onstruting an expliit mathematialmodel of the system.PACS numbers: 02.30.Oz,05.45.-a,05.45.GgKeywords: gluing bifurations, experiments, theory, almost symmetri systemsI. INTRODUCTIONThe rôle of symmetries in determining the behaviour ofnonlinear physial systems an be ruial. Reetion (orZ2) symmetry is relevant to a wide range of experiments,and in suh a system a pair of stable solutions may bereated by a superritial pithfork bifuration as a pa-rameter is varied. These new states break the originalsymmetry, but are symmetri images of eah other. Ofourse, perfet symmetry is never ahievable in any phys-ial system so in pratie the bifuration may beomedisonneted having one branh whih varies monotoni-ally with the parameter and a seond whih arises by asaddle{node bifuration. This is most easily modelled byadding an imperfetion term as a onstant in the modelnormal form and this appears to work well in desrib-ing the loal bifuration struture. However, a physialsystem will typially ontain many soures for this imper-fetion and some of them may be high{dimensional in na-ture. Therefore, it is reasonable to ask whether a modelwith a single imperfetion term provides a good repre-sentation of the system far from the bifuration point.Spei�ally, we are interested here in the e�ets of thisloal modelling on the global dynamis whih result fromhomolini bifurations.Our investigation is onerned with a lass of global bi-furations involving homolini orbits, i.e. orbits whihtend to a stationary point of the model ow in both for-wards and bakwards time. Typially, the existene of ahomolini orbit is not a persistent property of a di�eren-tial equation, but they our on lines in two-parameterfamilies (tehnially, they are odimension one bifura-tions). In the absene of symmetry, the net e�et of suhbifurations is to reate or destroy a periodi orbit, whoseperiod tend to in�nity at the bifuration point. This mayhappen in one of two ways: one-sided or two-sided. In theone-sided ase, the orbit apporahes the bifuration pointfrom one side of the bifuration point as its period tends

to in�nity. In the two-sided ase, suh as the Shil'nikovase [1℄, the lous of the orbit in parameter spae osil-lates about the bifuration value reating the so{alled`Shil'nikov wiggle' as the period of the orbit tends to in-�nity. Moreover, there are period-doubling and reverseperiod-doubling bifurations of the orbit together withmore ompliated homolini bifuations. This sequeneof events has been reported previously [2℄ in an experi-mental and theoretial study of a modi�ed van der Polosillator, and in a wide variety of other experiments in-luding Taylor{Couette ows [3, 4℄, optis, [5, 6℄, hemi-al osillators [7, 8℄ and liquid rystal ows [9℄.In the presene of simple symmetries, homolini bi-furations may involve two or more homolini orbits. Inthe simplest ases the net e�et is to destroy a pair of pe-riodi orbits whih are the image of eah other under thesymmetry and reate a single symmetri branh of peri-odi orbits. These symmetri periodi orbits annot un-dergo period-doubling bifurations in the two sided ase.The period-doubling and reverse period-doubling bifur-ations on branhes of the symmetri orbit are replaedby an initial symmetry-breaking (or reverse symmetry-breaking) bifuration. The asymmetri orbits reated inthis way may, of ourse, be involved in period-doublingbifurations. This distintion will be useful in the inter-pretation of the bifurations observed below.Whilst the e�et of small symmetry-breaking terms onthe bifurations of stationary solutions has a long history(the imperfetion theory of Golubitsky and Shae�er [10{12℄) there appears to have been no systemati attemptto desribe the equivalent modi�ations of global bifur-ations (although see [13, 14℄ for a speial ase). Our aimhere is to provide the foundations for suh an approah.We reonsider the experimental eletroni osillator [2℄whih exhibits a variety of almost symmetri global bi-furations and show how many features observed in theexperiments may be explained by reinterpreting some re-sults on odimension two homolini bifurations so as to



2obtain a general imperfetion theory for homolini bifur-ations. These results neessarily involve non-stationarysolutions, and so are likely to be appliable and observ-able in many more interesting situtations.The experiments were arried out using a van der Polosillator. The bifuration struture of this system hasbeen investigated in detail previously [2℄ but with theimpliit assumption of symmetry. It is the aim of thepresent study to investigate the global dynamis of theiruit and relate the observations to modern ideas ongluing bifurations where the mathematial abstrationof perfet symmetry is relaxed.II. EXPERIMENT IA. The eletroni osillatorThe experimental study was performed using a vander Pol osillator iruit, the details of whih are givenin Healey et al. [2℄. It omprises an autonomous LCRosillator with two nonlinear ondutanes in the feed-bak iruit. Preise variation of the two parameterswhih ontrol the behaviour of the system was providedby swithable deades resistane boxes. By this meansdetermination of the bifuration struture to a relativeauray of better than 0:1% was possible. The two pa-rameters are denoted by �1; �1 and they are nondimen-sionalised forms of the resistanes R1; R2 whih ontrolthe nonlinear elements. Details of the nondimensionali-sation are given in Healey et al. [2℄.The priniple set of observations were made usingan osillosope. Steady bifurations were observed ashanges in the level of the d.. output. On the otherhand dynamial states were best monitored as Lissajous�gures formed from a ombination of signals measuredover the nonlinear elements. In this way, limit yles,period doubling sequenes, haos et. were readily dis-played. Time-series were also reorded and stored on aomputer via a 12-bit A/D for further proessing. Thisinluded phase portrait analysis using the method of de-lay oordinates.The indutor used in the present iruit is 1.5269Hompared with 1.78H used by Healey et al. [2℄. Thisauses a shift of the bifuration points relative to thosepreviously reported, though the bifuration strutureremains qualitatively the same. The imperfetions inthe iruit are tiny and the resulting disonnetions areequally small. They arise from a variety of soures butwe will refer to them throughout as a single imperfetion.B. Bifuration setThe stability diagram for the eletroni iruit is shownin Figure 1. The overall struture shows lines of steadyand dynami bifurations all meeting at the top righthand orner of the �gure whih is a odimension{2 point.
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FIG. 1: Experimental bifuration set in the �1; �1 plane. SNdenotes the path of saddle-node bifurations, `Hopf' the Hopfbifurations to simple osillations and `Hom' the gluing bi-furations. The paramater region denoted by `P2' is whereforward and reverse period doubling is observed on the asym-metri orbits.The dynami bifurations (Hopf and homolini) arepairs of lines superposed and separated by the imperfe-tions in the iruit. This e�et is very small and annotbe resolved on the sale of the �gure but, as we will showbelow, it has a signi�ant e�et on the global dynamis.In the parameter range of interest, a perfetly sym-metri system would have a trivial zero volts �xed pointwhih would lose stability to a pair of non{zero d.. statesat a superritial pithfork bifuration. As expeted, inthe experiment we see that this bifuration is dison-neted to form a ontinuously onneted state and a sep-arate solution branh whih is terminated at its lower endby a saddle{node bifuration denoted by SN in Figure 1.The stable non-trivial asymmetri d.. states both be-ome time-dependent via Hopf bifurations; one on eahbranh. The imperfetion in the iruit is very small,so the loi of these bifurations almost oinide and aremarked 'Hopf' in Figure 1. The two asymmetri limityles whih arise at the Hopf bifurations appear toglue together leading to a large symmetri periodi or-bit. This transition is denoted by the line marked `Hom'in Figure 1 and will be disussed in detail below. Thissymmetri limit yle undergoes di�erent types of bifur-ation inluding symmetry-breaking and period doublingand may also beome haoti. Finally, within the osil-latory regime forward and reverse period doubling se-quenes have been observed and these an be related tothe Shil'nikov wiggle as shown by Healey et al [2℄. Theboundaries of this region are denoted by P2 in Figure 1.C. Imperfet gluing bifurationWe �rst examine the inuene of the imperfetion onthe gluing bifuration whih ours when the two asym-metri limit yles join without the presene of ompli-
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FIG. 2: Osillation period of di�erent periodi orbits at �1 =0:6000 plotted as a funtion of �1. `1' and `0' denote the orbitson the asymmetri branhes and `10', `01' are the glued orbits.
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FIG. 3: Phase portraits of oexisiting asymmetri (1; 0) andsymmetri (10) periodi orbits at �1 = 0:6041 and �1 =0:6000ated dynamis. We hose �1 suÆiently large (�1 � 0:59approximately) and �1 lose to �1 so that the haos whiharises from period-doubling sequenes on a Shil'nikovwiggle is avoided and the dynamis is almost planar. Wepresent a `typial' set of results for the orbit strutureof the osillator in this regime in Figures 2 and 3 whihwere taken at �1 = 0:6000. Figure 2 shows the periodof the various simple orbits observed as a funtion of theparameter �1, and Figure 3 shows the form of the or-responding orbits { the two small asymmetri orbits arelabelled by `1' and `0' respetively, and the large ampli-tude orbit is labelled by `10', for reasons whih will beexplained below.If the eletroni osillator were symmetri then the de-velopment of the orbits shown in Figure 3 for �1 = 0:6041would have a simple explanation in terms of gluing bifur-ations [15℄: two periodi orbits whih are the symmetri

image of eah other approah a stationary point and are`glued together' to form the single symmetri orbit withode `10'. At the bifuration the two smaller periodi or-bits touh at the stationary point, i.e. they are no longerperiodi (their period has diverged to in�nity) and theyform two homolini orbits, biasymptoti to the station-ary point.As is lear from Figure 2, and as should be expetedof a real physial system, the osillator is not perfetlysymmetri. Hene it is not surprising that the pair of ho-molini orbits whih exist at a single parameter value inthe symmetri system seem to our at di�erent param-eter values in the osillator. The results shown in Figure2 also suggest that there is a third homolini bifuration{ the bifuration whih reates the large amplitude `10'periodi orbit.It an be seen in Figure 2 that the period of both thesmall asymmetri orbits `1' and `0' inreases as �1 in-reases and they �nally lose stability and jump to the`10' orbit at �1 � 0:6045 i.e. where the graphs of thevariation of period are almost vertial. Moreover, the `0'orbit remains stable for slightly higher values of �1 thanthe `1' orbit, emphasising that the two orbits are not theimages of eah other under the symmetry. It should benoted that the `1' orbit results from a Hopf bifurationon the monotoni branh of the disonneted pithforkbifuration. Therefore it loses stability before the `0' or-bit. This is preisely what is predited by the addition ofa onstant term to the normal form. The orbits shownin Figure 3 all oexist at �1 = 0:6041 and are typialexamples of the limit yles involved in this gluing bifur-ation. The fat that they an all oexist explains whyhysteresis an be observed in the experiments.There are three features in Figure 2 whih we will seekto explain theoretially in the next setion: the break upof the gluing bifuration, hysteresis, and also the extrabifurations evident at larger values of �1. Before de-sribing the theory we shall look at this latter sequeneof bifurations in more detail.D. Symmetry-breaking bifuration of largeperiodi orbitIt is known that symmetri systems annot undergoperiod{doubling sequenes diretly [16℄ but must �rstbreak their symmetry. Hene, we would expet the largesymmetri orbit formed by the gluing of the two asym-metri ones will su�er a symmetry breaking bifuration,as predited for the symmetri Shil'nikov wiggle [17℄.This was observed at �1 = 0:6000 for �1 just above0:6059. The bifuration was deteted by measuring themean voltage averaged over 150 periods of the osillationand plotting this as a funtion of �1. The resulting bifur-ation diagram is shown in Figure 4 where we see that ithas the form of a disonneted pithfork. This diagramexplains the reation of the orbit labelled `01' in Figure 2.Note that the original `10' orbit has a larger period but
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FIG. 4: Bifuration diagram of symmetry-breaking bifura-tion of periodi orbits at �1 = 0:6000. The mean of V1 over5000 data points is plotted.
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FIG. 5: Phase spae portrait of oexisiting "large" periodiorbits 10 and 01 at �1 = 0:6000 and �1 = 0:6067smaller < V1 > than the newly reated `01' orbit and sothe branhes in Figures 2 and 4 are apparently reversed.Two typial asymmetri orbits on respetive branhes areshown in Figure 5 for (�1; �1) = (0:6067; 06000). It is ev-ident that the `10' orbit on the onneted branh displaysstrong variation in period for �1 > 0:6065 and then insta-bility. However, the `01' orbit is virtually onstant overthis range. Both orbits then show redution in periodfor high �1 values. Eah orbit undergoes period doublingsequenes to haos for �1 values greater than the rangedisplayed in Figure 2. The extra ompliations of perioddoubling and instability are topis for future researh.III. THEORYIt is natural to think of the bifurations observed inthe system in terms of two parameters. One of these,

� say, is the parameter of the (�tional) symmetri sys-tem whih has a gluing bifuration as desribed in se-tion II C. The seond parameter, � say, is a measure ofhow far the osillator is from being perfetly symmetri,i.e. it is some measure of imperfetion with � = 0 or-responding to the perfetly symmetri system. Just asthe standard imperfetion theory for the bifurations ofstationary points [12℄ allows one to desribe the e�et ofasymmetry in terms of � and �, our aim here is to give ananalogous desription for general global bifurations. Wenote that this is in the spirit of the work of Glendinning[14℄ and Cox [13℄ for the partiular ase of Lorenz-likebifurations. A. The basi pitureSuppose that (�; �) = (0; 0) denotes the point in pa-rameter spae at whih there are two symmetrially re-lated homolini orbits. Consider either one of these or-bits. Sine the existene of homolini orbits is odi-mension one, there will be a urve in parameter spaethrough (0; 0) on whih systems have a homolini or-bit whih is a ontinuation of the given orbit. Thus, fortypial two-parameter families of systems, there will betwo urves of homolini orbits in parameter spae, G0and G1 say, whih interset at the origin and whih donot interset the line � = 0 again loally. The urve G0(respetively G1) is the lous of a homolini bifurationwhih reates or destroys the periodi orbit with ode0 (respetively, 1). The one-parameter families of nearlysymmetri systems suh as the example onsidered in theprevious setion would then orrespond to some urve inthis two parameter spae whih has, for example, � > 0and whih passes lose to (�; �) = (0; 0). Suh a urve willinterset both G0 and G1, but at di�erent parameter val-ues, so there will be two simple homolini bifurationsat nearby parameter values on suh a path.The intersetion of the loi of two homolini bifura-tions (eah to the same stationary point) is a odimensiontwo phenomenon whih has been studied by a number ofauthors[15, 18{24℄. The most important feature whihall these bifurations have in ommon is that at leasttwo other urves of homolini orbits emanate from theintersetion of G0 and G1, one in � > 0, labelled G10,and the other in � < 0 labelled G01. The labelling de-sribes the order (in time) that the orbit passes throughneighbourhoods of the basi homolini orbits. Thesehomolini orbits are preisely the bifurations neededto destroy or reate (asymmetri) periodi orbits withode `10' or `01'. Thus a typial path lose to � = 0will interset G0, G1 and one of the urves G01 or G10.This explains the third homolini bifuration observedin Figure 2. Roughly speaking, the di�erene between or-bits reated by paths rossing G10 and those reated byrossing G01 is the di�erene between the orbits shownin Figure 5.The details of the two-parameter bifuration plane
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FIG. 6: The two parameter plane for the imperfet gluingbifuration in the planar ase. A one parameter family of(imperfet) systems, S, is indiated by a urve through theplane lose to � = 0. The arrows indiate the diretion inwhih orbits are reated.lose to the intersetion of G0 and G1 depends upon thenature of the stationary point, the on�guration of thehomolini orbits and a measure of the amount of twist-ing of solutions about these orbits. The nature of thestationary point is determined by the eigenvalues of theJaobian matrix of the ow whih are losest to the imag-inary axis. If, up to omplex onjugation, these are �1and �2 with Re �1 < 0 < Re �2 then the saddle index, Æ,de�ned by Æ = �Re �1=Re �2 (1)plays an important role. The two-parameter spae nearthe intersetion of G0 and G1 in the planar ase is shownin Figure 6 (�1 and �2 are real), where the symmetryis a point symmetry about the stationary point and thediretion of time may be hosen so that Æ > 1. Eahsimple homolini bifuration reates a periodi orbit inthe diretion indiated by the arrow on the bifurationurve. The parameter plane is divided into six regions bythe urves of bifurations, and the periodi orbits (fromthe loal theory) whih exist in eah region are indiatedby their odes. The bifurations observed on the one-parameter path S in Figure 6 are shown in Figure 7,whih is the more onventional representation.B. Relationship with the experimentThe urves skethed in Figure 7 are in reasonably goodagreement with the experimental ones in Figure 2 exeptfor the extra ompliations at larger parameter valuesdesribed in setion IID. Also the fat, mentioned at theend of setion II C, that all three of the orbits labelled`0', `1' and `10' oexist for some values of �1. However,even these aspets an be inorporated into our pitureof imperfet global bifurations. For smaller values of �1
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6tions. There are a number of possible interpretations forthe disonneted symmetry{breaking bifurations, andone of these is shown in Figure 8, although we make nolaim that it is the most likely. Note that the new ar-rangement of the homolini bifurations does provide aregion of parameters where the orbits `0', `1', and `10'oexist and are stable, as seen in the experiment.The important feature of the analysis above is that twoassumptions about the underlying mathematial modelare suÆient to explain the orbits observed in the ex-periment. It is worth emphasising that this an be donewithout onstruting the model equations expliitly, sim-ply be suggesting that any model equation must havevarious dynamial features.C. Other asesIn the literature, odimension two global bifurationsare generally desribed with G0 and G1 as the oordi-nate axes of the bifuration analysis. In this ase thesymmetri system may be assumed to lie on the diagonalof the parameter spae, with the asymmetry parameterperpendiular to the diagonal (just tilt the diagrams by45Æ to get an impression of the lous of bifurations). Itis, however, important to bear in mind that the urvesG0 and G1 appear to interset with a very small angleof intersetion in asymmetri perturbations of symmetrisystems, whereas the standard analysis depits the inter-setion angle to be at right angles. Provided the interse-tion is transversal the analysis is not a�eted, although itdoes mean that the true piture for the asymmetri per-turbation will be a very skewed version of the standardpitures.The basi feature ommon to all the relevant types ofbifuration we onsider is that as the bifuration param-eter � is varied, a (more or less ompliated) sequene ofbifuration is observed with the net e�et that a pair ofperiodi orbits (those we have labelled `0' and `1') is de-stroyed, and a single large periodi orbit is reated. Thepreise details of the bifurations depends on the system,but it is still possible to make a number of general state-ments. 1 The one-sided aseIf the diretion of time an be hosen so that �2 is realand Æ > 1 (f. (1)) then the odimension one bifurationson G0 and G1 are one-sided and fairly general statementsabout the bifurations involved in the range of validity ofthe rigorous argument: large period and parameters loseto the intersetion of G0 and G1 are possible [22℄. First,there are at most two periodi orbits, and seond, anyperiodi orbit has a very partiular desription in termsof the symbols `0' and `1' introdued above. Tehnially,the sequenes are rotation ompatible sequenes [22℄, but

in pratie a simple onsequene is that periodi orbitshave odes of the form01n101n201n301n401n5 : : : (2)where for all i, ni 2 fm;m+ 1g for some m > 0 (or thesame with the roles of 0 and 1 exhanged). Moreover, thelimit, �, of the number of 1s in the sequene to the lengthof the sequene exists and is alled the rotation numberof the orbit. In one ase (the so-alled stable orientableLorenz-like ase, see [21℄), there is an in�nite set of bi-furations along a typial path and at any one parame-ter after rossing the �rst bifuration urve, there is atmost one periodi orbit. Moreover, the rotation numbervaries ontinuously along the bifuration path, implyingthe existene of parameter values with non-periodi (butnon-haoti) attrators.If �1 is omplex then the range of bifurations ismore ompliated and depends on the preise path takenthrough the parameter spae. Here there are regionsof oexistene of ertain periodi orbits { those whoserotation numbers p1q1 and p2q2 are Farey neighbours, i.e.jp1q2� q1p2j = 1 { but typial urves in parameter spaedo not interset most of these regions. A more ompletelist of the possibilities an be found in [17, 18, 21℄.All the bifurations of the rigorous analysis involveone-sided global bifurations, and there are no loal bi-furations on the branhes of eah periodi orbit. If theseour it is neessary to appeal to e�ets outside the rigor-ous region of validity of the mathematial results { this ismade muh easier by an understanding of the two-sidedbifurations.2 The two-sided ase: Shil'nikov's wiggleThe symmetri bifuration diagram of the Shil'nikovase (�1 omplex, �2 real and Æ < 1) is given in [17℄.The lous of the pair of orbits (`0' and `1') in parameter-period spae osillates as the period inreases to in�n-ity, with period-doubling and reverse period-doubling bi-furations on every other branh. The symmetri orbitosillates in a similar way, but with symmetry-breakingbifurations on every other branh. Breaking the sym-metry of the system will have two e�ets { the globalbifurations whih oinide in the symmetri system willbe split apart and the symmetry-breaking bifurationswill typially beome disonneted as desribed above.In the two{parameter diagram lose to the intersetionof G0 and G1, urves of more ompliated bifurations(G01 and G10) osillate rapidly and interset eah other(there are in�nitely many other urves of homolini bi-furations to ompliate matters further). For a typialasymmetri path there will be a single intersetion withG0 and G1, but potentially several intersetions with G10and G01. The orbits reated in the bifurations involvingG0 and G1 will lie on the usual Shil'nikov wiggle in theparameter{period plane as observed experimentally (see
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FIG. 11: Time series and phase portraits of di�erent dy-namial states involved in imperfet gluing bifuration at� = 0:5317. (a) periodi orbit `0' on asymmetri branh at�1 = 0:56119, (b) haos at �1 = 0:56125, () period-3 or-bit `100' at �1 = 0:56136, (d) haos at �1 = 0:56146, (e)symmetri periodi orbit `10' at �1 = 0:56152in Figure 9 where the period is plotted as a funtion of�1 at �xed �1 = 0:5317. Here the period of the orbitapproahes in�nity through a sequene of folds where al-ternate branhes are unstable and indiated by dashedshemati lines in the �gure. The stable solutions un-dergo forward and reverse period{doubling sequenes onthe �rst two folds whereas the highest period orbits onlyexist over a tiny range of the parameter.In a perfetlysymmetri system these two wiggles would overlap om-pletely. The e�et of the imperfetion in the iruit is todisplae the two urves from one another.A Shil'nikov wiggle has also been observed on the sym-metri orbit and the results are shown in Figure 10.There we an see three levels of the wiggle with perioddoubling sequenes. The `10' orbits in this ase wereasymmetri but we were unable to �nd the mirror imagepairs of solutions in this ase. We were, however, able toobserve them at smaller values of �1. The gluing proesstakes plae on the third level with intervening sequenesof haos and a stable `100' orbit; as expeted from the dis-ussion at the end of setion III C. Note we also observedthe `10�' whih is an integral part of the gluing proess



8as disussed in setion III C above. A set of time{seriesand phase portraits are displayed in Figure 11. The `0'orbit on the disonneted branh glues to the `10' largesale orbit via two haoti phases with an intermediateperiod{3 `100' sequene.V. CONCLUSIONAlthough symmetri equations are frequently used tomodel almost symmetri systems, we have shown that amore areful examination of experiments an reveal fea-tures whih do not appear in the symmetri models. Inpartiular, we have foussed here on global bifurationswhih involve periodi states of the system, and we haveshown how a number of ompliated bifuration diagramsobserved in the experiments an be interpreted by ap-pealing to a theory of imperfet homolini bifurations.A standard approah to the modelling of physial phe-nomena is to onstrut a mathematial model of the ex-periment, and use this to either predit or explain fea-tures of the experiment. This entails both the onstru-tion of the model and the analysis of the model on-struted. It is notieable that in the approah taken herewe have appealed to properties of a model without havingto either onstrut or analyse the model. We have sim-ply said that any mathematial model of the experimentsmust have ertain features, and that these features leadto ertain onlusions by the appliation of global bifur-ation theory.Bifuration diagrams onsistent with those of se-tion III have now been observed in more physially in-teresting systems. Abshagen [25℄ has found bifurationdiagrams with a striking similarity to Figure 6 in exper-imental data from uid ow. We believe that the ap-proah taken here will �nd appliation in a broad varietyof experiments in whih symmetry, or rather, almost-symmetry, plays a role.REFERENCES[1℄ P. Glendinning `Stability, Instability and Chaos'(CUP) 1994.[2℄ J.J. Healey, D.S. Broomhead, K.A. Cli�e, R. Jonesand T. Mullin (1991) Physia D 48, 322-339.[3℄ T. Mullin and T.J. Prie (1989) Nature 340, 294-296.
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