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Mechanical ventilation is vital for the treatment of patients in respiratory inten-
sive care and can be life saving. However, the risks of regional pressure gradients
and over-distension must be balanced with the need to maintain function. For
these reasons mechanical ventilation can benefit from the regional information
provided by bedside imaging such as electrical impedance tomography (EIT).

In this thesis we develop and test methods to retrieve clinically meaningful
measures of lung function from EIT and examine the feasibility of closing the
feedback loop to enable EIT-guided control of mechanical ventilation. Working
towards this goal we develop a reconstruction algorithm capable of providing fast
absolute values of conductivity from EIT measurements. We couple the resulting
conductivity time series to a compartmental ordinary differential equation (ODE)
model of lung function in order to recover regional parameters of elastance and
airway resistance. We then demonstrate how these parameters may be used
to generate optimised pressure controls for mechanical ventilation that expose
the lungs to minimal gradients of pressure and are stable with respect to EIT
measurement errors.

The EIT reconstruction algorithm we develop is capable of producing low
dimensional absolute values of conductivity in real time after a limited additional
setup time. We show that this algorithm retains the ability to give fast feedback
on regional lung changes. We also describe methods of improving computational
efficiency for general Gauss-Newton type EIT algorithms.

In order to couple reconstructed conductivity time series to our ODE model
we describe and test the recovery of regional ventilation distributions through
a process of regularised differentiation. We prove that the parameters of our
ODE model are recoverable from these ventilation distributions apart from the
degenerate case where all compartments have the same parameters. We then test
this recovery process under varying levels of simulated EIT measurement and
modelling errors.

Finally we examine the ODE lung model using control theory. We prove that
the ODE model is controllable for a wide range of parameter values and link
controllability to observable ventilation patterns in the lungs. We demonstrate
the generation and optimisation of pressure controls with minimal time gradients
and provide a bound on the resulting magnitudes of these pressures. We then
test the control generation process using ODE parameter values recovered through
EIT simulations at varying levels of measurement noise.

Through this work we have demonstrated that EIT reconstructions can be of
benefit to the control of mechanical ventilation.
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Chapter 1

Introduction

In this thesis we develop novel methods for retrieving clinically meaningful mea-

sures of lung function from the use of electrical impedance tomography (EIT ).

Specifically these measures include the distribution of air flow and parameters

such as airway resistance and elastance. We also propose methods for incorpo-

rating these parameters into control schemes in an attempt to tailor mechanical

ventilation to the specific circumstances of individual patients. In the course of

developing these techniques we examine implementations of EIT reconstruction

and design a novel reconstruction algorithm capable of providing the required

absolute values of conductivity on a regional basis while retaining the speed and

flexibility of commonly used techniques.

The motivation for the work in this thesis comes from the vital role mechanical

ventilation strategies play for the treatment of patients in respiratory intensive

care units. The use of mechanical ventilation can be life saving for patients in

multiple situations, for example acute lung injuries such as acute respiratory

distress syndrome (ARDS ) [1] or acute complications to chronic conditions such

as chronic obstructive pulmonary disease (COPD). However, increased stress on

lung tissue can cause ventilator induced lung injury (VILI ) [2].

The need to increase recruitment and ventilation of the lungs while avoid-

ing the risks of mechanical ventilation has encouraged the development of lung

protective ventilation (LPV ) techniques. These techniques attempt to optimise

frequency, tidal volumes and pressure settings in order to balance the dual risks of

17
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alveolar collapse and over-distension. Despite the use of LPV, it is estimated that

33-55% of patients with ARDS still develop VILI [3]. Hence there is a pressing

need to develop patient specific LPV strategies, in this case through the use of

lung modelling and EIT.

Two related approaches to developing LPV strategies are to regulate both

the volume of air flow and driving pressures experienced by the patient. Larger

tidal volumes increase the variations in pressure between full inhalation and ex-

halation. One recent study [4] has shown that the magnitude of this driving

pressure is strongly adversely linked with the mortality rate of patients. Ad-

ditionally, modelling the process of airway opening has revealed that inducing

gradients of pressure within opening airways can cause damage [5]. Hence the

control procedures we use to test the feasibility of EIT guided control are focused

on minimising pressure magnitudes and gradients.

In addition to monitoring variations in pressure, it is also important to set

the end expiratory pressure level correctly. Because airway collapse or recruit-

ment can cause drastic changes in the ventilation pattern of the lungs [6], the

positive end expiratory pressure (PEEP) is set as the minimum pressure applied

during expiration to keep airways open. There are multiple ways to determine an

optimal PEEP setting [7], but generally a recruitment manoeuvre is performed,

followed by PEEP titration using measures such as lung compliance or blood

gas composition to determine when an acceptable pressure has been found [8].

These approaches, by necessity, rely upon taking measurements that can be eas-

ily accessed from the bedside, making it difficult to take into account regional

variations in the structure and health of the lungs.

Mechanical ventilation can result in some lung lobes being over-distended,

causing damage, while others are only partly recruited [9]. This, combined with

regional variations in perfusion, can cause areas of alveolar dead space which do

not assist in gas transfer [10]. It is therefore desirable to have some form of bed-

side imaging to recover regional ventilation distributions and inform ventilation

strategies. However, radiation concerns [11] limit the frequency with which X-ray

computerised tomography (CT) may be used for routine monitoring, while mag-

netic resonance imaging (MRI) requires expensive tracers to accurately monitor

air flow [12]. Additionally, neither CT nor MRI is practical at the bedside.



1.1. THESIS STRUCTURE 19

These practical limitations are not shared by EIT, which has high temporal

resolution and is safe to use at the bedside for extended periods [13]. It has been

shown that air content of the lungs causes a high contrast in the conductivity

levels of tissue [14] and so time series of EIT reconstructions can be used to

monitor the regional ventilation of the lungs [15]. This has enabled clinicians to

begin incorporating EIT into patient care, and techniques are being examined for

such purposes as monitoring lung fluid content [16], improving PEEP titration [17]

and verifying the efficacy of pressure controls [18].

For these reasons we examine the feasibility of converting high frequency re-

gional ventilation information into objective measures of lung function based on

widely known lung models. Once parameters have been recovered we examine

their utility in refining ventilation strategies for the patient. The structure and

content of this work is described in the following section.

1.1 Thesis structure

As described above the motivation for this thesis comes from a desire to incor-

porate EIT into the procedures used for mechanical ventilation. These efforts

centre around coupling EIT to a simplified model of lung function and using it to

modify pressure controls. One difficulty with this approach comes with the need

to repeatedly update the parameter estimations during the process of mechanical

ventilation. As mentioned above the actions of pressure controls can cause airway

collapse and recruitment which in turn changes ventilation parameters [6]. This

results in the need for a cyclical workflow, as shown in fig. 1.1, to account for

the feedback from EIT guided control. In this workflow the conductivity maps

generated from imaging during mechanical ventilation are combined with other

ventilator measurements and a linear lung model to enable recovery of the re-

gional ventilation distribution. This in turn is used to calculate parameters for

the model of lung function which can then be used to generate control profiles to

be used for further mechanical ventilation.

The first requirement of such a workflow is fast reconstruction of EIT imaging.

These reconstructions must occur within a time frame that allows the results to be

processed and controls to be generated at the bedside. The current algorithms

allowing reconstructions within such time frames only produce images of the

changes in conductivity distributions over time or are not capable of the 3D
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Figure 1.1: Flowchart showing a proposed procedural workflow for implementing
EIT guided control of mechanical ventilation.

imaging needed to capture the behaviour of the full lung system. Therefore, in

chapter 2 we propose a new technique to provide fast 3D imaging which is capable

of producing regional values of absolute conductivity. In this chapter we describe

the regularisation and constraints required for such reconstructions and compare

the resulting images to those produced by difference imaging when modelling

assumptions are incorrect.

The second requirement of the workflow in fig. 1.1 is a suitable lung model

and a method for recovering both ventilation states and parameters. In chapter 3

we describe a linear compartmental ordinary differential equation (ODE ) model

of ventilation for which ventilation changes occur on a scale observable through

EIT. We describe methods for generating conductivity images from ventilation

profiles as well as recovery of these profiles and lung parameters from the resulting

conductivity time series. We prove the model used has recoverable parameters

and test the recovery process under varying levels of voltage measurement noise

and modelling inaccuracy.

The final requirement for the workflow in fig. 1.1 is a method for generating

pressure control profiles from recovered ODE parameters. In chapter 4 we prove

the controllability of our ODE lung model under a range of parameter values.

We then discuss the generation of controls with minimised pressure gradients

and bounded magnitudes. We also outline methods for the optimisation of these

controls and perform tests of such procedures using parameters recovered from

EIT over a range of measurement noise levels.



Chapter 2

Electrical Impedance

Tomography

Electrical impedance tomography has been discussed as a safe method for moni-

toring lung function for over 30 years [19]. This stems from the fact that this is a

radiation free imaging modality for which air, with its low conductivity, provides

a large contrast to surrounding tissue. Additionally, despite its low spatial reso-

lution, EIT has the advantage of high temporal resolution while remaining safe

to use at the bedside for extended periods [13].

In the simplest terms, the process of EIT data acquisition may be described as

exciting a current through successive pairs of attached drive electrodes in order

to measure the voltage change across pairs of measurement electrodes. This

combination of drive and measurement patterns then allows reconstructions to

be made of the conductivity distribution within the domain.

To model the data acquisition process the equations governing voltages on

the interior of the domain can be derived from the time harmonic Maxwell’s

equations [20] to give Kirchhoff’s law,

∇ · σ(x)∇φ(x) = 0, x ∈ Ω, (2.1)

where σ ∈ L∞+ (Ω) is the conductivity distribution, φ ∈ H1(Ω) is the electrical po-

tential and Ω is the domain. Assuming that the domain has a sufficiently smooth

boundary, ∂Ω, the weak form of eq. (2.1) can be solved with given boundary con-

ditions to provide interior potentials for a given conductivity distribution. These

boundary conditions are given in terms of the current densities, j ∈ H− 1
2 (∂Ω), or

21
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voltages, φ ∈ H 1
2 (∂Ω), which obey both Ohm’s Law

j(x) = σ(x)∇φ(x) · n, x ∈ ∂Ω, (2.2)

where n is the outward facing unit normal, and the consistency condition∫
∂Ω

j dS = 0. (2.3)

Excitation of current and measurement of voltages then gives pairs of Dirichlet

and Neumann boundary conditions, φ|∂Ω and j, on the area of the domain bound-

ary covered by the electrodes. These pairs define a Dirichlet to Neumann map

Λσ : φ|∂Ω 7→ j and EIT reconstruction consists of recovering the conductivity

distribution σ that generates the correct mapping.

There are many different algorithms to perform this reconstruction. These

range from the early attempts with backprojection, as used by the Sheffield sys-

tem [21], to linearised methods such as the GREIT algorithm [22] and even ana-

lytic methods such as d-bar [23] for 2D reconstructions. Reviews of the available

algorithms and techniques for EIT reconstruction may be found in [20, 24, 25].

In this chapter we examine iterative techniques based on the Gauss-Newton opti-

misation algorithm. These techniques are widely used in commercial geophysics

applications of EIT [24]. Here they will be discussed in the context of the specific

requirements we have, both for the testing of techniques in later chapters and in

order to retain the utility of our reconstructions to other avenues of research.

A review of some of these avenues of research was given by Adler et al. [26].

This review broadly defined four interesting, achievable and relevant uses of EIT:

1. the recovery of clinically relevant diagnostic measures,

2. guidance for recruitment manoeuvres in mechanical ventilation,

3. fast feedback for regional lung changes,

4. warnings for dangerous conditions.

A review of some of the more recent attempts at developments in these areas can

be found in the 2016 TREND consensus paper [27].
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This thesis attempts to address the first two points in the list above directly.

In chapter 3 we describe our methods for recovering clinically relevant diagnostic

measures and chapter 4 describes the use of lung modelling and control theory

in conjunction with EIT to directly influence profiles used for control. However,

the post processing techniques in chapters 3 to 4 are designed to work best with

absolute values of bulk conductivity over a given 3D region. This poses a chal-

lenge for the development of a suitable reconstruction algorithm. Most iterative

methods for the recovery of absolute lung values require a prohibitive amount of

processing time reducing the utility of EIT for fast feedback. Similarly methods

of reducing the complexity of the problem to improve reconstruction times can

result in biased reconstructions, limiting the ability of EIT to provide warnings

for dangerous conditions.

Balancing the need for 3D, regionally-absolute, reconstructions with the need

for fast reconstruction times and maintaining the utility of the images for other

purposes provides the motivation for this chapter. In this chapter we discuss the

development of a pseudo-absolute reconstruction algorithm capable of providing

regional absolute values of conductivity. This combines a single-frame, iterative

absolute solve, constrained to a low-dimensional parameter space, with high-

dimensional difference imaging. We also investigate how the assumptions and

constraints involved in this combination change the reconstructions produced by

difference imaging and how to speed up reconstructions via code optimisation.

With this in mind, in section 2.1 we briefly review the well known Bayesian

approach to this inverse problem. This framework is frequently used as a jus-

tification for the use of regularisation techniques in direct methods for solving

inverse problems. However, it is also useful for analysing what assumptions are

being made when constraints and regularisation methods are used in reconstruc-

tion. In this section we also describe the finite element meshes used for data

generation and reconstruction in this thesis, as well as the grouping constraints

placed on parameters during the reconstruction. Finally we discuss the different

implementations of the discrete Laplacian for regularisation and propose modi-

fications for use when it is desirable to apply varying levels of regularisation in

different directions.
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In section 2.2 we review the Gauss-Newton algorithm, as applied to EIT, along

with its modification to provide fast difference imaging. We also describe the

proposed pseudo-absolute algorithm used in later chapters. Section 2.3 then tests

the effects of using pseudo-absolute reconstruction where the imposed grouping

constraints cannot accurately match the phantom used for data generation. This

section also proposes a general method for quantitative comparison of difference

reconstructions with the ability to account for varying quality criteria.

Finally section 2.4 discusses some additional implementation details which

improve the efficiency of iterative reconstruction algorithms. These efficiency

improvements have been reported at the EIT2017 conference [28].

2.1 Meshing, constraints and regularisation

One of the difficulties with EIT reconstruction, as with many inverse problems,

is the fact that it is an ill-posed problem. The definitions of well and ill posed

can be variable, although most agree that problems which have unique solutions

which depend continuously on input variables are well-posed [29]. In this case we

classify EIT as ill-posed due to the fact that, although existence and uniqueness

of solutions have been proven for EIT [30], small errors in the measured data can

result in large changes to the recovered conductivity distribution, exacerbating

the effects of measurement noise and modelling inaccuracies. This is due to

the existence of large, typically high spatial frequency, changes in conductivity

which do not produce observable changes in the measurements. We will refer to

this sensitivity as the ill-conditioning of the problem, a term derived from the

numerical properties of matrices used in numerically solving this inverse problem.

To counteract the ill-conditioned nature of this inverse problem, a priori infor-

mation is used to both constrain solutions and restate the inversion as a related

problem with better conditioning in a process called regularisation. As the mea-

surement noise and modelling errors can be modelled as random variables [31] it

is useful to examine how constraints and regularisation affect the inverse problem

from a Bayesian standpoint. Therefore in section 2.1.1 we review the Bayesian

formulation of the EIT reconstruction problem as a tool for understanding the

effects of assumptions in later sections.
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In section 2.1.2 we then discuss the constraints placed on the reconstruction

through definition of the finite element meshes used for both data generation and

inversion. This includes a description of the grouping constraint method used for

the iterative absolute solve component of our pseudo-absolute algorithm as de-

scribed in section 2.2. We then discuss implementations of the discrete Laplacian

operator in section 2.1.3. This is the operator used to provide a regularisation

term for difference reconstructions throughout this thesis. We also describe pos-

sible new implementations for use when it is desirable to apply varying levels of

regularisation in different spatial directions, known as anisotropic regularisation.

2.1.1 Bayesian formulation

To gain a greater understanding of this problem it is possible to pose EIT recon-

struction in terms of probability distributions and Bayesian conditional probabil-

ity. The first step in posing the problem this way is to define the sets of possible

realisations of the conductivity map and the measured data. These parameter

spaces are the model space (M) and the data space (D) respectively. These two

parameter spaces are then related via the forward solution operator F such that

F :M 7→ D. We can then understand realisations of the model and data spaces

to be vectors of scalar values which are applied to a basis of functions on the

modelled mesh and electrodes.

The probability density functions (PDF ) for different realisations of conduc-

tivity, m ∈ M ⊂ Rm, and measured data, d ∈ D ⊂ Rd, can then be denoted

by:

• PD(d) - the probability density over the data space of the data realisation d,

• PM(m) - the probability density over the model space of the conductivity

realisation m, called the prior distribution

• PD(d|m) - the conditional probability density over the data space of the

data realisation d given the model realisation m, called the likelihood,

• PM(m|d) - the conditional probability density over the model space of

the model realisation m given the data realisation d, called the posterior

distribution.
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In this notation solution of the inverse problem can be equated to choosing a

model realisation m based upon its relation to the posterior distribution. Com-

mon methods for making this choice include picking the model realisation with

the highest probability density or realisation corresponding to the mean of the

posterior distribution. Both these methods have their own advantages and draw-

backs depending on the structure of the posterior distribution itself and the cost

of evaluating individual probability densities.

For this work we examine the solution which has the maximum posterior

probability density of all possible reconstructions

mMAP ≡ arg max
x

PM(x|d). (2.4)

This is known as the maximum a posteriori probability estimate or MAP estimate.

It should be noted that this estimate may not be as accurate as other estimates

which can be found from an analysis of the full posterior distribution. For exam-

ple taking the mean of the posterior distribution may reduce the levels of random

reconstruction noise outside of regions of interest. However, due to the high di-

mensional model space, recovery of the full posterior distribution requires the

use of sampling techniques such as Markov chain Monte Carlo methods. While

these techniques allow quantification of uncertainty for features of the reconstruc-

tion [32], they are also computationally intensive. Conversely calculation of the

MAP estimate can be done much more quickly as required for bedside imaging.

Under the Bayesian formulation of conditional probability we can relate the

posterior distribution to the likelihood and prior [33] by the equation

PM(m|d) =
PD(d|m)PM(m)

PD(d)
. (2.5)

Commonly PD(d) is simply taken to be a scaling factor leaving just the likelihood

and prior to be examined. Looking first at the likelihood, it is possible to formu-

late the inverse problem without further information about the model space by

taking PM(m) to follow uniform distributions. In this case

PM(m|d) ∝ PD(d|m) (2.6)

giving the maximum likelihood estimate for which PD(d|m) is maximised.
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Assuming the measured data d is the mapping of some true conductivity

distribution mTRUE into the data space combined with additional noise we have

that

d = F (mTRUE) + ν, (2.7)

where ν is a random variable representing errors in measurement and modelling.

Under these assumptions for any given realisations d and m to be correct ν would

have to take the form

ν = d− F (m). (2.8)

In this way we can repose the problem of calculating the likelihood of a given

measurement as the problem of calculating the probability that the noise compo-

nent ν has taken a specific realisation. This requires some assumptions about the

distribution of noise inherent in the system. A list of possible errors in EIT mea-

surement is given by [34] and an in depth analysis of these errors for a particular

system is described by [35]. We note that EIT measurement systems do not mea-

sure voltage continuously but rather measurements consist of demodulation and

conversion from analogue to digital signals. This conversion process includes a

summation over time of the error sources within the analogue signal itself. There-

fore, for a well calibrated system where the noise sources can be assumed to be

independent and uncorrelated, the Central Limit Theorem (CLT) may be used

to suggest that the noise distribution converges to a Gaussian Distribution. This

assumes that the measurement time window is long enough to be able to discard

the initial few cycles of data in order to allow for transient effects to settle, while

still allowing enough remaining cycles to be averaged so that the CLT may be

applied.

Assuming the measurement noise is additive Gaussian with mean zero, we can

write that the conditional probability of a measurement given a specified model

realisation is

PD(d|m) ∝ exp
{
−‖F (m)− d‖2

W

}
, (2.9)
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where W is the inverse covariance matrix for the random variable ν and

‖d‖2
W := dTWd, in matrix vector notation. Combining this formulation with

eqs. (2.4) and (2.6) we see that finding the maximum likelihood estimate is equiv-

alent to the Least Squares optimisation problem

mL = arg min
x
‖F (x)− d‖2

W . (2.10)

The ill-posed nature of this problem then becomes apparent under further ex-

amination of the forward operator F . This is due to the fact that for any given

level of accuracy ε > 0 there exists an arbitrarily large perturbation to the model

space δ such that ‖F (x + δ)−F (x)‖ < ε as has been shown in the literature [36].

To describe the optimisation problem for the MAP estimate more information

must be given about the prior distribution. There are many way to set this

distribution, varying from a focus on reducing ill-conditioning of the problem

[37] to focusing on anatomical detail [38]. A common approach, which we use in

this thesis, is a condition on how smooth the reconstructions should be. In this

generalised Tikhonov regularisation approach the prior distribution is taken to

be

PM(x) ∝ exp
{
−λ‖L(x− xp)‖2

}
, (2.11)

where λ is a regularisation hyperparameter, L is a differential operator and xp

is the mean of the distribution often simply called the prior. Both the choice

of differential operator and the hyperparameter affect the regularity enforced

on members of the model space. Larger hyperparameters restrict the variance

of the prior distribution ensuring that the derivatives of model space members

are more closely matched to those of the prior. Similarly increasing the degree

of the differential operator used enforces additional smoothness on the model.

For reconstructions performed in this thesis, L has been defined as a discrete

approximation to the Laplacian, which is a second order differential operator.

Using eq. (2.5) to combine the formulation of the likelihood in eq. (2.9) with

the prior distribution in eq. (2.11) we arrive at a new formulation for the posterior

distribution

PM(m|d) ∝ exp
{
−‖F (m)− d‖2

W − λ‖L(x− xp)‖2
}
, (2.12)
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resulting in an optimisation problem for the MAP estimate of the form

mMAP = arg min
x

{
‖F (x)− d‖2

W + λ‖L(x− xp)‖2
}
. (2.13)

This formulation will be used in later sections to interpret the consequences of

meshing, constraints and regularisation decisions. In section 2.1.3 we will discuss

some implementations of the discrete Laplacian used for the Tikhonov regular-

isation stated above. In section 2.1.2 we will discuss how the definition of the

reconstruction mesh and constraints on the model space can affect reconstruction

accuracy and processing time.

2.1.2 Hard priors and meshing

Having established the need for the use of prior information in the formulation

of the inverse problem we now discuss regularisation techniques which we define

as belonging to the categories of hard and soft priors.

As discussed by Borsic [39] we define hard and soft priors based upon the level

of bias they introduce into the reconstruction. Using soft priors involves modify-

ing the prior distribution PM(m) to incorporate modelling information about the

domain with a level of uncertainty. This increases the probability of a reconstruc-

tion matching modelling assumptions, but does not constrain the reconstruction

to these assumptions. This freedom to vary from modelling assumptions is the

basis for calling these regularisation techniques soft. However, as the variance

of the prior distribution is lowered these priors introduce more bias and become

harder.

The limiting case of this distribution narrowing comes when the prior distri-

bution becomes a delta measure on a set of reconstruction realisations resulting

in constraints to the reconstruction. At this point we incorporate prior knowledge

into the formulation of the likelihood PDF itself through the model. It is possible

to force the inverse problem to be well posed by defining a small enough span-

ning set of basis functions for the model space, incorporating known information

about the reconstruction domain. This results in a strong bias in reconstruction

towards images following the modelling assumptions, so unexpected changes or

modelling errors can result in reconstructions being highly inaccurate reducing

image utility for early warnings. This increased bias is the basis for calling these

regularisation techniques hard.
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This concept of incorporating prior information into the formulation of the

model space leads to our next topic of discussion. An important step in both

modelling the forward problem and setting up the inverse problem is the process

of assigning a discretisation of the model domain, otherwise known as meshing.

In modelling of the forward problem, both the size and positioning of elements

within the mesh can have an effect on the calculated potentials. For example

standard results from Finite Element Analysis relate maximum edge length, h,

to the convergence of the finite element solution and its derivatives towards the

true function. In particular, measured potentials are highly sensitive to changes

near or on electrodes, resulting in a need for both a finer mesh and increased

accuracy of modelling in these areas. Generally this results in increased mesh

refinement near the electrodes and has prompted the description of models for

the contact impedance of electrodes which will be discussed further in section 2.4.

Additionally EIT has been shown to have a high sensitivity to the shape of

the domain [40], requiring an accurate description of the external boundary to

increase the fidelity of the models. This poses difficulty for both forward modelling

and inversion, as during ventilation the shape of the chest is continually changing.

This problem has lead to many different approaches to tracking the movement

of the chest and incorporating it into both forward and inverse modelling. These

attempts include, but are not limited to, modification of the inverse problem

to include a Fréchet derivative with respect to changes in the boundary, design

of EIT measurement systems to include shape tracking and external monitoring

of the boundary with additional equipment. Even with these techniques large

changes in the shape of the domain require the construction of a completely

separate mesh, however for small changes in shape the effects may be modelled by

small deformations of the mesh leading to an additional matrix in the formulation

of the inverse problem.

We have not investigated solutions to the boundary shape problem in this

work. However, as shape is such an important factor in EIT we have attempted

to incorporate shape information in our modelling. For this reason all the post

processing procedures in this work have been tested on meshes created by extrud-

ing the outline of human thorax taken from the segmentation of a chest CT, and

refining the mesh more towards electrodes as shown in fig. 2.1. The model space

1The CT image is licensed under creative commons attribution 3.0 unported license (C)
2010 Josef X Brunner and segmented in EIDORS.
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Figure 2.1: Human adult male thorax CT outline1(left) and extruded mesh
(right).

M defined in section 2.1.1 then consists of the space spanned by basis functions

which are piecewise constant on mesh elements representing the discretisation of

the domain. Using this method of discretisation, the forward problem is consid-

ered well-posed so long as the mesh is sufficiently fine in regions with high gra-

dients of electrical potential to ensure that discretisation errors are significantly

lower than measurement errors. This results in higher levels of mesh refinement

in the regions around electrodes, where the gradients are highest [40, 41].

It should be noted at this point that the electrode positioning, shown in

fig. 2.1, places electrodes close to the upper and lower boundaries of the mesh.

For the purposes of reconstructing real data this would cause inaccuracies. It

does not allow for field lines to pass outside of the region between the electrodes,

as would occur on a real patient. For reconstructions of real measurements this

results in the need to either extend the finite element mesh or compensate with

appropriate boundary conditions on the truncated boundaries [42, 43]. However,

as all testing in this thesis is performed on simulations using the same meshed

volume and boundary conditions, we believe this is a reasonable first approxima-

tion to performing EIT on a patient assuming that all shape changes could be

accurately modelled.

We have also explicitly defined cylindrical regions in the construction of our

test meshes to represent lung regions for the tests in chapter 3 and chapter 4.

Explicitly defining the lung regions in the reconstruction meshes, as shown in
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Figure 2.2: Extruded mesh with highlighted cylindrical regions representing lung
regions.

fig. 2.2 allows us to use a grouping constraint method (GCM ) for the single-frame

absolute solve required for our pseudo-absolute algorithm described in section 2.2.

Using GCM, regions of the domain are constrained to have the same con-

ductivity based on the assumption that organs or specific divisions of organs

will have homogeneous electrical properties [44]. In this way the dimensional-

ity of the optimisation problem can be reduced significantly allowing the least

squares formulation in eq. (2.10) to become overdetermined. This reduces the

ill-conditioning of the inverse problem as well as the required computation time,

but it also prevents variation over different divisions of the domain and does not

account for shape changes in organs. Both of these present a problem in medical

imaging where organs are likely to move and unexpected changes may indicate

a medical problem. For these reasons we only use GCM in this work for sin-

gle frames of reconstructions under the assumption of a high degree of model

accuracy.

It should be noted that the fact the lung regions are explicitly segmented

in our reconstruction mesh will also affect reconstructions where GCM has not

been used. This is similar to the use of basis constrained methods (BCM ). Basis

constrained methods differ from GCM in that they do not constrain regions to

the same value but rather limit the model space to the span of a set of basis

vectors which are constructed to encode useful information about likely states

of domain during the course of imaging [45]. This set of basis vectors can be
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designed to encode both variations in conductivity values and changes in organ

shape within the thorax, reducing the problems of a static domain segmentation.

However, this method still suffers from a hard bias towards those states which

have been included in the modelling of the basis vectors.

Unlike in BCM, the difference reconstructions described in section 2.2 allow

the values assigned to each mesh element to vary individually. This means that

the problem is not overdetermined reducing the risk of a hard bias in recon-

structions. However, concern over the possible effects of bias produced by this

segmentation and the GCM method used in our absolute solves makes it neces-

sary to test the accuracy of our reconstructions when the lung regions have not

been segmented accurately. This will be examined further in section 2.3.

2.1.3 Discrete Laplacian

As mentioned in the previous two sections, when performing difference imaging

we use Tikhonov regularisation with a discrete approximation to a differential

operator giving the regularisation term

−λ‖L(x− xp)‖2. (2.14)

A common discrete differential operator used for this purpose, which we use

for reconstructions in this thesis, is the discrete graph Laplacian matrix. To

generate this matrix L we define the dual of the reconstruction mesh to be the

graph generated by replacing elements with nodes as shown in fig. 2.3. We can

then define the graph Laplacian based on the connected edges in this dual mesh.

Entry L(i, i) is then defined to be the degree of node i, equal to the number

of connections it has, and entry L(i, j) is set to −1 when elements i and j are

connected by an edge [46]. For the small mesh shown in fig. 2.3 this would produce

the matrix

L =


3 −1 −1 −1

−1 1 0 0

−1 0 1 0

−1 0 0 1

 . (2.15)
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Figure 2.3: Diagram showing a dual mesh of a regular triangulation.

Efficient implementations for generating this matrix can be written by gen-

erating an ordered list of all element edges, or faces in 3D, along with which

elements they are adjacent to. This list of adjacent elements can then be used to

generate the matrix. It should be noted however that the implementation of L

used for reconstructions in this thesis is actually a multiple of the graph Laplacian

described here due to the implementation used in EIDORS 3.9 [47].

The rest of this section represents a discussion on possible additional methods

for approximating a second order differential operator to be used in eq. (2.14).

While use of the graph Laplacian operator has advantages over more complex

approximations to the continuous Laplacian operator it doesn’t incorporate in-

formation about the relative size of elements. Instead the same penalty is applied

for variations across element boundaries in areas of high mesh refinement, such

as near electrodes, as in more central regions of interest.

Another possible implementation can be derived from the formulation of Finite

Volume solutions to PDEs [48]. In this implementation, for a discrete approxi-

mation σ ∈ Rn of a smooth conductivity map σ(x) ∈ H2(Ω) the operation of L

on σ gives

(Lσ)k ≈
∫
Ek

∇2σdV, (2.16)
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where Ek is mesh element number k. To generate this matrix the divergence

theorem is used to generate an equivalent boundary integral∫
Ek

∇2σdV =

∫
∂Ek

n · ∇σdS, (2.17)

where n is the outward pointing unit normal for the boundary of element Ek.

This can then be approximated numerically by defining the conductivity entries

of σ to act on the nodes of the dual mesh.

Using the dual mesh in fig. 2.3 as an illustrative example, we denote the edge

linking the dual mesh nodes x0 and xi by the vector r(i) ∈ R2, the edge of the

element crossing r(i) as ∂E(i) and the normal to ∂E(i) as n(i). We can then

approximate the value of ∇σ on ∂E(i) by

∇σ|∂Ek
≈ A(i)σ(i)

≈

 1

r
(i)
1

− 1

r
(i)
1

1

r
(i)
2

− 1

r
(i)
2

(σ0

σi

)
, (2.18)

where r
(i)
j is coordinate number j of vector r(i) and σi is the conductivity value

acting at node i. This allows the boundary integral to be approximated by

∫
∂Ek

n · ∇σdS ≈
3∑
i=1

|∂E(i)|n(i) · A(i)σ(i). (2.19)

This can be generalised to larger triangular meshes and tetrahedral meshes by

assembling the A(i) into the matrix L.

This formulation of a finite volume Laplacian [49] has the potential to be

a useful and flexible regularisation operator. For example it could be used to

introduce anisotropy into the regularisation term by introducing an anisotropy

matrix M into the integral in eq. (2.16) giving

(Lσ)k ≈
∫
Ek

∇ ·M∇σdV. (2.20)
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Alternatively it can be used to give an estimate of the H2 semi-norm. Defining a

diagonal vector W containing the elemental volumes and using ‖ · ‖W−1

‖Lσ‖2
W−1 ≈

n∑
k=1

∫
Ek

|∇2σ|2dV (2.21)

which can be shown to be equal to the H2 semi-norm [50].

As mentioned above these finite volume Laplacian implementations incor-

porate the length scales of the mesh elements used for reconstruction. This is

emphasised by the comparison shown in table 2.1 of the units of the quantities

produced by their action on the conductivity distribution. However, there are

Table 2.1: Table comparing the units of the quantities provided by three imple-
mentations of a Laplacian regularisation term. Units are given as L to denote
length and σ to denote conductivity.

Dimension Graph-Laplacian
∫
Ek

∆σdV
∫
Ek
|∆σ|2dV

2D σ σ
L2 × L2 = σ

(
σ
L2

)2 × L2 = σ2

L2

3D σ σ
L2 × L3 = σL

(
σ
L2

)2 × L3 = σ2

L

additional implementation issues. For instance the choice of spatial coordinates

for nodes in the dual mesh, which is complicated by the existence of multiple

definitions for the centres of triangles and tetrahedra [51]. Some of these centres

are shown in fig. 2.4.

Due to these implementation difficulties we have produced several versions of

the Matlab code required to construct these finite volume Laplacians in EIDORS.

However, because of time constraints we have not yet been able to devise and

run an appropriate test to properly highlight reconstruction differences caused by

their use.
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Figure 2.4: Diagram showing the finite difference lines between the different
centre types of two connected irregular tetrahedra. These centre types are the
Circumcenter (Ocrc), the Centroid (Ocnt), the Incenter (Oin) and the Symmedian
point (Os).

2.2 Gauss-Newton based reconstruction

In this section we describe three methods for reconstructing conductivity dis-

tributions from measured voltages. These method all aim to minimise the cost

functional

f(x) =
1

2
‖F (x)− d‖2

W +
1

2
α‖L(x− xp)‖2, (2.22)

where x, F (x) and d denote a model realisation, forward solution and measured

data respectively in general inverse problems notation. Equation (2.22) is derived

from the formulation of the MAP estimate given by eq. (2.13) in section 2.1.1.

The work in sections 2.2.1 to 2.2.2 represents a review of commonly used

algorithms. In section 2.2.1 we describe the full iterative Gauss-Newton algo-

rithm for reconstruction of the absolute values of conductivity for a single frame

reconstruction. This is a technique which is commonly used in commercial geo-

physics applications of EIT [24]. In section 2.2.2 we describe a commonly used

difference reconstruction algorithm based on a single step in the Gauss-Newton

algorithm [37].
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In section 2.2.3 we provide a novel combination of both the full iterative Gauss-

Newton algorithm, using GCM as described in section 2.1.2, and the single step

difference imaging technique. This combined pseudo-absolute algorithm is able

to provide a regional estimate of absolute conductivity values in real time after a

limited initial processing time.

2.2.1 Gauss-Newton iterative absolute

The Gauss-Newton algorithm for reconstructing absolute values of conductivity

aims to minimise the cost functional in eq. (2.22) by using a linearisation of the

forward operator

F (x+ δx) = F (x) +DFx(δx) +O(‖δx‖2), (2.23)

where DFx(δx) denotes the Fréchet derivative of F at the point x composed with

the increment δx. The calculation of this derivative will be examined further

in section 2.4. This linearisation is used to estimate the gradient of the cost

functional at a given conductivity distribution and look for a direction which

reduces f(x) using the necessary condition that the gradient of the cost functional

must be zero at a minimum.

As both the voltages, F (x) and d, and the conductivity distributions, x, are

represented by vectors we can expand the cost functional in terms of vector and

matrix products giving

f(x) =
1

2
(F (x)− d)TW (F (x)− d) +

1

2
α(x− xp)TLTL(x− xp). (2.24)

To take the gradient of this functional with respect to x, we use the fact W

is symmetric inverse covariance matrix and denote the derivative of F by the

Jacobian matrix J giving

∇f(x) =
1

2
{∇(F (x)TWF (x))− 2∇(F (x)TWd)

+ α∇(xTLTLx)− 2α∇(xTLTLxp)}

= JTWF (x)− JTWd+ αLTL(x− xp). (2.25)
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Using matrix vector notation eq. (2.23) can be used to relate two successive

estimates xi and xi+1 giving the relation

F (xi+1)− F (xi) ≈ (Ji)(xi+1 − xi), (2.26)

where Ji = DFxi
. Substituting this linearisation into eq. (2.25) and setting the

gradient equal to zero at point xi+1 gives

JTi WF (xi+1)− JTi Wd+ αLTL(xi+1 − xp) = 0,

JTi W (F (xi) + Jiδx)− JTi Wd+ αLTL(xi + δx− xp) = 0.

This can be rearranged to give the search direction

(JTWJ + αLTL)δx = JTW (d− F (xi))− αLTL(xi − xp)

δx = (JTWJ + αLTL)−1(JTW (d− F (xi))− αLTL(xi − xp)).

However, as δx is derived from a linearisation of the forward operator, xi+1 =

xi+δx is unlikely to be a minimum for the cost functional. Therefore we perform

an additional line search to find the point xi+1 = xi + βδx such that

β = arg min
γ
f(xi + γδx) (2.27)

With this the algorithm becomes: linearise the cost functional with the Jaco-

bian, calculate a descent direction, perform a line search and check the residual

for convergence. This is shown in algorithm 2.1.

Modifications to this algorithm provide the basis for all reconstructions per-

formed in this thesis. The reduction of the method to work with difference EIT

data is examined in section 2.2.2 and a new fast algorithm for estimating regional

conductivity is shown in section 2.2.3.
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Algorithm 2.1 Absolute Imaging: Gauss-Newton

1: Set initial guess x0

2:

3: % Calculate residual
4: R = 1

2
‖F (x0)− d‖2

W + 1
2
α‖L(x0 − xp)‖2

5:

6: % Iterate to convergence
7: while R > tol do
8: % Calculate new Jacobian
9: Ji = J(xi)

10:

11: % Calculate descent direction
12: δx = (JTi WJi + αLTL)−1(JTi W (d− F (xi)) + αLTL(xp − xi))
13:

14: % Line-search. Find β such that
15: β = arg minγ{‖F (xi + γδx)− d‖2 + α‖L(xi + γδx− xp)‖2}
16:

17: % Update estimate
18: xi+1 = xi + βδx
19:

20: % Calculate residual
21: R = 1

2
‖F (xi+1)− d‖2

W + 1
2
α‖L(xi+1 − xp)‖2

22: end while

2.2.2 Difference Imaging

As mentioned in the introduction to this chapter, much of the important infor-

mation in clinical uses of EIT comes from its ability to quickly indicate temporal

changes occurring in the patient. However, the convergence of iterative absolute

reconstruction algorithms is currently too slow for real-time imaging. For func-

tional imaging and ventilation monitoring in later chapters something faster is

needed.

Difference imaging is a technique for focusing on the changes in conductivity

distribution over time rather than converging to the absolute conductivity. In this

technique the relevant data is the difference between two voltage measurements.

A reference measurement is chosen from the measurements and subtracted from

successive measurements to provide the temporal data. This gives the equation

F (xt) = V0 + Jbδx+O(‖δx‖2) (2.28)
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where V0 is the reference voltage, δx is the change in conductivity and Jb is the

Jacobian calculated for a background conductivity. Using the same Tikhonov

formulation of the MAP estimate as in section 2.2.1, the cost functional becomes

f(δx) =
1

2
‖V0 + Jbδx− d‖2

W +
1

2
α‖L(x0 + δx− xp)‖2,

=
1

2
‖Jbδx− δV ‖2

W +
1

2
α‖L(x0 + δx− xp)‖2. (2.29)

Here δV is the voltage difference measurement and there are three assumptions

made for the process of linearisation and regularisation, giving rise to the three

points:

• reference conductivity x0 - is the assumed conductivity distribution at the

reference voltage, such that F (x0) ≈ V0,

• background conductivity xb - is the conductivity distribution used to calcu-

late the Jacobian Jb

• prior conductivity xp - is the assumed prior for regularisation.

The minimiser of the cost functional in eq. (2.29) can then be found by dif-

ferentiating with respect to δx and setting the derivative equal to zero as in the

full Gauss-Newton method. This gives the equation

(JTb WJb + αLTL)δx = JTb WδV − αLTL(x0 − xp). (2.30)

This formulation of the optimisation problem leads to algorithm 2.2 which is

equivalent to performing a single step of the Gauss-Newton algorithm for each

successive frame.

The major advantage of this algorithm is found in its speed. Pre-computation

of the regularised inverse J†α,L allows successive solutions to be found using a sin-

gle matrix vector multiplication and a vector-vector addition. This multiplication

and addition may be achieved rapidly compared to other optimisation techniques

or even the more complex matrix-matrix operations. Additionally there exist

efficient implementations of these forms of products to take advantage of vec-

torisation, parallelism and cache memory. In particular this kind of operation

falls under the category of level 2 basic linear algebra subprogram (BLAS ) [52]

for which efficient implementations are available, for example in LAPACK [53].
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Algorithm 2.2 Difference Imaging: GN one-step

1: Set estimate of linearisation conductivity x0

2: Set background for Jacobian calculation xb
3: Set prior information xp
4:

5: % Calculate Jacobian
6: Jb = J(xb)
7:

8: % Calculate generalised inverse
9: J†α,L = (JTb WJb + αLTL)−1JTW

10:

11: % Calculate correction for regularisation
12: xr = α(JTb WJb + αLTL)−1LTL(x0 − xp)
13:

14: % Loop over time steps
15: for each time step i do
16: % Calculate difference data
17: δVi = Vi − V0

18:

19: % Calculate difference image
20: δxi = J†α,LδVi − xr
21: end for

It should be noted that this speed comes at the cost of numerical stability as

we have computed the inverse matrix J†α,L rather than solving from a factorisa-

tion. However, as the required reconstruction frame-rate increases factorisation

methods will not be as efficient as matrix vector multiplication.

In algorithm 2.2 it is important to note that x0, xb and xp can all be selected

independently. This is most evident when thinking about the difference between

the reference x0 and the prior xp. Here changing the prior from the reference

distribution enforces a change in the prior distribution, PM(m), based on exter-

nal information such as co-registered MRI or CT scans, or information on the

breathing cycle. Examining the prior in this way raises the possibility of using a

prior which varies in time to match the current state of the patient.

The difference between the reference distribution and the background distri-

bution is less immediately obvious. Equating the linearisation in eq. (2.28) to the

linear terms in the Taylor series expansion of voltage these would appear to refer

to the same point. However, some iterative methods for non-linear optimisation

problems choose to use different values for these two points, particularly where
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calculation of the Jacobian is computationally intensive. One such example of

this is the modified Newton-Kantarovich method [54, section 2.1] in which the

Jacobian is kept constant between iterations despite updating the reference dis-

tribution. However, it is important to note that for iterative methods using a

separate reference and background point can adversely affect convergence rates.

In many applications of this method the x0, xb and xp are all set to be

the closest fitting homogeneous distribution. This is a constant conductivity h

normalised such that

〈F (h), V0〉
〈V0, V0〉

= 1,

which allows the resulting images to be computed quickly. However, it also means

that the images include a component of error due to non-convergence and so do

not represent a pure difference image. This makes the combination of these

images with other information inaccurate for estimation of absolute conductivity

and motivates the development of a pseudo-absolute reconstruction algorithm in

section 2.2.3.

2.2.3 Pseudo-Absolute

The speed with which difference imaging can be reconstructed is vital for many

applications of EIT to lung monitoring. Under the assumption of a linear rela-

tionship between bulk lung impedance and air volume content, difference imaging

allows an understanding of where air is moving within the lungs. However, this

does not allow us to identify the amount of air in the lungs at any given time. For

this we require an absolute value of conductivity and some way of calibrating the

linear relationship of air to impedance. This relationship will be examined fur-

ther in chapter 3 but first we need to identify a method of obtaining an absolute

reconstruction in real-time.

One simple approach to finding absolute values from difference imaging is to

combine the reference value with the difference image. This is equivalent to taking

the value from the end of the first iteration in algorithm 2.1 at which the level of

the residual is still high. This gives a quick estimate of the absolute values but

the accuracy of this method will depend entirely upon the initial choice of x0.



44 CHAPTER 2. ELECTRICAL IMPEDANCE TOMOGRAPHY

An example of a similar method to this in practice has been given by Nebuya

et al. [55]. In their paper they employed a technique proposed by Brown et al.

[56] to choose x0 by comparing V0 to a look-up table of anatomically modelled

forward solutions. These forward solutions were based on the CT scans of healthy

patients and were performed with varying tissue parameters to provide a range of

possible voltage measurements. The model parameters for the closest matching

forward solved voltage were then added to difference images produced through

filtered back projection to provide an estimate of functional absolute conductivity.

However, this method does not fully account for differences between a clinical

patient and the healthy reference model and cannot take into account changes in

the electrode placement and contact impedance.

We propose that the natural next step in this approach is to find a more

accurate approximation to the reference conductivity using a quick method of

absolute imaging. This will require more time for the initial frame but allows

further frames to be produced at the same rate as difference imaging. For this

purpose we propose the use of strict grouping constraints for the initial absolute

reconstruction to drastically reduce the dimensionality of the problem faced by

algorithm 2.1. Following this full non-linear reconstruction, algorithm 2.2 can

be used with a much higher spatial resolution to provide temporal information.

This results in algorithm 2.3 which we call the pseudo-absolute reconstruction

algorithm

Algorithm 2.3 Pseudo-absolute imaging: partially converged Gauss-Newton

1: Segment domain into regions of interest (ROI)
2: Constrain mesh elements to have piecewise constant values in ROIs
3:

4: Reconstruct a single absolute frame xa using algorithm 2.1
5:

6: Set x0 = xa
7: Set xb = xa
8: Set prior information xp
9:

10: Recover δx(t) from algorithm 2.2
11:

12: x(t) = xa + δx(t)
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The use of grouping constraints for the absolute reference frame is motivated

by the required use cases of the algorithm. As discussed in the introduction

to this chapter we want to develop a reconstruction algorithm which is capable

not only of fast feedback and early warnings, but also guidance for recruitment

and recovery of clinically relevant measures. In chapters 3 to 4 we will discuss

how these parameter recovery and recruitment procedures only require absolute

conductivities as a bulk quantity over a region of interest. These are calculated

by aggregating values from the high spatial resolution reconstructions using a

volume weighted average. Hence restricting the reference reconstruction to bulk

quantities should provide the required information with minimal effect on these

post processing techniques.

However, as mentioned in section 2.1.2 the use of grouping constraints can be

described as imposing a hard prior and introducing bias to the reconstruction. We

believe that this should be acceptable in the reconstruction of the single absolute

frame under the condition that the segmentations used are modelled accurately

for that single frame. Ideally a second imaging modality would be used to verify

these grouping constraints. The difficulty comes in identifying how the difference

reconstruction may be biased by use of the converged low-dimensional absolute

frame as a reference value.

It is common practice in EIDORS to set the prior equal to the reference

conductivity

xp = x0.

This results in the prior distribution for the difference imaging being set as

PM(δx) ∝ exp
{
−λ‖Lδx‖2

}
, (2.31)

resulting in the minimisation of the derivatives approximated by the operator

L. Using this method with the new reference reconstruction should provide the

same prior distribution for the difference imaging step as would be provided by

any other reference value.

Instead the main difference is found in the log-likelihood function

‖V0 + Jbδx− d‖2
W . (2.32)
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In this function the only variable that has changed is the Jacobian, Jb, which

is now calculated at a point closer to the true conductivity distribution at the

reference frame. This convergence should increase the accuracy of the reconstruc-

tion and, as the grouping constraints are removed for the difference imaging they

should not directly produce additional bias in the reconstruction.

We will verify in the next section that the grouping constraints do not pre-

vent the difference imaging algorithm from detecting un-modelled changes in the

domain.

2.3 Comparison of difference reconstructions

In this section we try to assess how well the pseudo-absolute reconstruction

method performs compared to standard difference imaging when modelling as-

sumptions are incorrect. To do this we examine reconstructions with inaccu-

rate segmentations of the thorax and vary the background conductivities used

to calculate the Jacobian. To aid in assessment of reconstructions we describe a

quantitative method of measuring error based on inner product angles. This is

used to highlight features of the reconstruction algorithm and choose frames for

comparison.

When assessing the merits of different reconstruction algorithms it is useful

to have some method to quantitatively rank the methods. This can be difficult

with imaging methods, and inverse problems in general, as the quality of a re-

construction is highly subjective and dependent on how the resulting images will

be used. In the case of EIT reconstructions some of the criteria that should be

considered when judging the quality of the reconstruction are:

1. How well the reconstruction fits the measured data,

2. How closely the reconstruction follows assumptions made by any prior in-

formation included in the reconstruction method,

3. How well the algorithm reconstructs a known image,

4. How easily the reconstruction can be interpreted for its intended use.
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The first two criteria already play a role in iterative reconstruction algorithms.

For example when performing iterative or linearised reconstructions the data-fit

can be measured as a residual by performing a forward solve of the resulting

image. This residual is then part of the criteria for choosing a step length in

iterative methods using a line-search. It is also important to note when calcu-

lating the data residual that different measurement electrode pairs will produce

measurement errors following different distributions. This motivates the use of

a covariance matrix in the Gauss Newton formulation to emphasise the more

reliable measurement data.

The prior information is also included when using a generalised Tikhonov

regularisation method with a differential operator to formulate the cost functional.

The prior information includes assumptions about the smoothness of the resulting

images. This is the method used for most of the reconstructions in this work,

The third criteria is more difficult to use for reconstructions of measured

data as it requires a separate imaging modality to obtain concurrent results for

comparison. However, it can be a useful tool when evaluating methods used on

simulated data as in this case. When working with simulations we know what

the ground truth state is for the reconstruction and can use it for comparison.

Even when a reliable ground truth can be obtained there may be problems

with direct comparison as a means of assessing the merits of a reconstruction

scheme. In comparing the recovered image to the ground truth a decision has

to be made as to how the concept of “closeness” will be defined. In many use

cases this may reduce to a visual confirmation, including borders or gradients for

distinct features, but in more rigorous cases a norm may be defined to provide a

numerical scale. Deciding upon this norm then becomes a problem as different

norms will emphasise different features and qualities of the reconstruction.

Finally, quantifying the useful data content is the most subjective criteria for

assessing a reconstruction method. This is often a problem with inverse problems

in general as specialising a reconstruction method for certain applications can

affect how good the reconstruction looks visually or how it performs for other

uses. This can be particularly difficult with EIT, where the reconstructions may

be used for multiple purposes such as respiratory monitoring, alerts for medical

emergencies or in our case respiratory parameter fitting.
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The quality of a reconstruction can also be dependent on the expertise of

the user. For example, changes in conductivity around the electrodes may not

be found in the ground truth but they may produce large improvements in the

data residual meaning these two measures of quality provide very different re-

sults. However, if experience suggests ignoring these potential artefacts, the re-

construction in regions of interest may have completely different properties and

so a quantitative measure of quality could be weighted to consider these regions

more strongly.

For this work our main focus is whether the reconstruction algorithms provide

useful information for respiratory curve fitting, parameter fitting and control and

these aspects will be investigated in chapter 3. However, while these may be

our main aims for the use of these EIT algorithms, to be acceptable in a clinical

setting we must show that these algorithms also reveal potentially dangerous

changes outside of the criteria they have been optimised for.

As the functional EIT in this work is performed using difference imaging,

providing reconstructions in arbitrary units, we decided that the quantitative

measure used should be invariant for scalar multiples of the reconstruction. This

is due to the fact that detection of irregular changes are more dependent on

contrasts from the background in each frame than an absolute measurement of

the conductivity. This leads to our choice of angles in inner product spaces to

define the quality of a reconstruction as described in the following section.

2.3.1 Inner products and angles

In this section we describe methods for producing a measure of difference recon-

struction quality using inner product angles. This measure is used in section 2.3.2

to compare the accuracy of reconstructions performed using different Jacobian

calculations and extensions to the method are discussed in appendix A. These

measures are not used in chapter 3 or chapter 4 where EIT is assessed on its

ability to retrieve ventilation distributions and parameters, as well as its utility

in producing custom ventilation controls.
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When we perform a linearised difference reconstruction or find the next up-

date for an iterative reconstruction the vector of elemental conductivity changes

produced is a vector in Rn. This vector is comprised of conductivity values for

each of the n elements in a coarse reconstruction mesh. These conductivity val-

ues can then be thought of as acting upon some basis function defined on the

reconstruction elements. In this work the conductivity basis functions used are

defined to be piecewise constant functions, given the value one for an individual

element and zero for all other elements.

It would be useful to know not only how well the update fits the data but how

close this vector is to the optimal descent direction in some quantifiable sense.

A useful tool for calculation of such a measure is the definition of an angle in

an inner product space. An inner product on a vector space X over a field F

such that 〈·, ·〉 : X × X → F defines both an associated natural norm and the

definition for angles between two vectors in the space by the formulae

‖u‖2
X = 〈u, u〉, ∠(u, v) = arccos

(
〈u, v〉

‖u‖X‖v‖X

)
. (2.33)

Inner products themselves are frequently used to assess how well two elements

of a vector space match with each other, for example in the calculation of the

Gaussian likelihood function described in section 2.1 using an inner product norm

defined by an inverse covariance matrix. In this case we will focus on using the

definition of the inner product angle due to its invariance under scalar multipli-

cation. We do this because the reconstruction algorithms we are examining are

derived from a single step of the Gauss-Newton iterative algorithm as detailed

in algorithm 2.2. Use of this algorithm means that resulting images not only

include components due to the change in conductivity from the reference frame

as required, but also a component due to the use of an inaccurate Jacobian back-

ground. This results in a change in the relative magnitudes of reconstructions

based upon the point used for Jacobian calculation. Another reason these inner

product angles can be useful is the ability to adjust the inner product in order to

emphasise desired qualities in the reconstructions.
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In fact as this angle definition is a quality of an inner product space, rather

than a Banach or Sobolev space, the conditions on which inner products may be

used are relatively unrestrictive. For example, as the conductivity maps have been

equated to vectors in Rn, many acceptable inner products may be formulated as

〈u, v〉 = uTAv, u, v ∈ Rn, (2.34)

where A is a symmetric positive definite matrix. Additionally it is possible to

combine two indefinite inner products 〈·, ·〉A and 〈·, ·〉B in the form

〈u, v〉C = α〈u, v〉A + β〈u, v〉B, u, v ∈ Rn, α, β ∈ {x ∈ R|x > 0}, (2.35)

to provide an acceptable inner product 〈·, ·〉C obeying the uniqueness axiom, so

long as the null spaces of 〈·, ·〉A and 〈·, ·〉B do not intersect. This freedom in defin-

ing the inner product to use for our measure allows us to incorporate desirable

information about data-fit and modelling assumptions into our comparison with

ground truth images and is discussed further in appendix A.

For the comparisons in the next section we define a diagonal matrix D whose

entries are the element volumes corresponding to the conductivity values from

the reconstruction mesh. Using this matrix we can compute the inner product

〈u, v〉D = uTDv. (2.36)

While this formulation does not measure any differences with respect to mod-

elling assumptions of smoothness or gradients it does have the advantage that

it generalises well with respect to mesh refinement. As the mesh is refined fur-

ther this inner product approaches the inner product on the infinite dimensional

function space L2,

〈u, v〉L2 =

∫
Ω

u(x)v(x)dV. (2.37)
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As this inner product is a discrete approximation to the continuous L2 inner

product it is possible to compare measures taken on different meshes. However,

it should be noted that differing levels of discretisation error will affect both the

quality of the reconstruction and the calculation of the inner product angle. To

minimise these effects, the angles in the next section are only compared for recon-

structions performed using the same Jacobian and reconstruction discretisation

meshes.

There are some additional discretisation error effects in generating an approx-

imation of the true changes in conductivity on these meshes. This is due to the

fact that voltage generation is performed on meshes with a much higher number

of elements to improve the accuracy of the forward problem and avoid inverse

crimes. However, as the true conductivity maps are known explicitly, it is possi-

ble to generate best fitting conductivity maps on these reconstruction meshes by

volume averaging for elements which are not entirely contained within a volume

of constant conductivity. This represents the best possible reconstruction using

these combinations of discretisations.

2.3.2 Testing procedure and results

To verify that the pseudo-absolute reconstruction algorithm allows the detection

of changes not accounted for in the model, we have applied two separate testing

procedures. In both of these procedures the pseudo-absolute algorithm has been

applied to a set of images in which changes occur outside of the pre-segmented

lung regions. Like with the parameter fitting tests described in chapter 3, we

extrude a thorax CT to provide the background domain and four rings of 16

electrodes are added with the same current and measurement patterns described

in section 3.2.

The first test we performed was designed to show the effects on the recon-

structions of changing the linearisation conductivity distribution. For this test

an ultra-fine mesh of 1.02 million elements was produced, with two cylindrical

regions defined to represent lungs. These two regions were assigned a constant

conductivity linked to a simple two compartment ODE lung model, described in

section 3.1.1, acting under a sinusoidal pressure profile over the course of 30 sec-

onds. At time t = 10s a growing spherical inclusion was introduced with increased

conductivity to represent a bleed which had not been included in the prior mod-

elling. To produce voltage measurements for these conductivity patterns, EIT
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was simulated at 20 frames per second. To do this 4 rings of 16 electrodes were

meshed onto the boundary of the thorax shape and indexed from 1 to 64, where

electrodes in the top ring are numbered from 1 to 16 and the further 3 rings are

indexed beginning at 17, 33 and 49 respectively. EIT was simulated with pair-

wise current driven at an amplitude of 0.1mA and voltages measured on pairwise

electrodes both with a skip of 23 so that current is driven and measurements are

recorded across rings.

Reconstructions were then performed on the resulting voltage measurements

using a fine mesh of 222 thousand elements to generate the Jacobian and a coarse

mesh of 10 thousand elements to discretise the resulting reconstruction. These

meshes also included segmented lung regions and were used for all reconstructions

of this voltage dataset. To test the effect of modifying the Jacobian background

xb, as described in section 2.2, reconstructions were performed using a range

of background distributions. In each case the region outside the cylinders was

held at the correct value of 1, while the lung region conductivities were varied

independently for each lung from 0.1 to 1 in increments of 0.1. A reconstruction

was also performed using an accurate background conductivity, using lung values

of 0.16 and 0.21, retrieved through absolute reconstruction of the reference frame.

To calculate errors in the reconstructions the inner product angle described

in eq. (2.33) was calculated using the inner product in eq. (2.36). Denoting the

true change in the phantom as δσ and the reconstructions as δx this angle can

be calculated as

arccos

(
〈δσ, δx〉D
‖δσ‖D‖δx‖D

)
(2.38)

providing a number between 0 and π radians where a smaller number indicates

closer agreement of the vectors. The errors in reconstructions using a homoge-

neous background and at the absolute reconstructed background are shown in

fig. 2.5. Errors are shown for 30s of reconstructions at 20 frames per second.

The first thing to note in understanding this graph is that the angle errors

begin at slightly above 0.5 radians and become quite large for some frames. The

high angles can be explained by the use of the GN one-step algorithm detailed in

algorithm 2.2 for these reconstructions. This is a single step in an iterative recon-

struction algorithm, providing a linear solution for a non-linear inverse problem

and imposing smoothing on the solution through the use of regularisation. Hence
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Figure 2.5: Comparison of the error in difference reconstructions performed with
a homogeneous Jacobian background and an absolute reconstructed Jacobian.
Errors are measured by taking an inner product angle.

there will be errors in the reconstruction which become worse as large changes in

conductivity occur taking the inverse problem further outside the linear regime.

In this case this is due to the large conductivity of the growing spherical inclu-

sion. However, the measure could possibly be improved by modifying the inner

product used and is still useful for comparing the two reconstruction types. This

graph shows that, as expected, the more accurate Jacobian results in a more

accurate reconstruction. However this effect is not constant for all reconstructed

frames, with the difference between homogeneous and pseudo-absolute difference

reconstructions becoming less pronounced at t = 15s.

To understand why this is the case we can examine the reconstructions them-

selves. Figure 2.6 shows a comparison between these two reconstructions and

the true change in the phantom for three frames. Each of the nine images in

fig. 2.6 is comprised of six 2D slices through the volume, which have been ar-

ranged to produce a representation of the 3D image using the EIDORS function

show 3d slices. These slices consist of:

• one vertical slice in the x− z plane, cutting through both lung regions and

the growing spherical inclusion,

• three vertical slices in the y − z plane, two arranged to cut through the

respective lung regions and one arranged to cut through the spherical in-

clusion,
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Figure 2.6: Comparison between the true difference in the phantom (left), recon-
structions performed with a homogeneous background (middle) and a pseudo-
absolute difference reconstruction (right). Images shown for frames number 5,
330 and 585 with colormaps scaled by show 3d slices.

• two horizontal slices in the x − y plane, arranged to show the upper and

lower ends of each lung.

These slices are each shown with a black outline denoting their intersection with

the mesh boundary. Changes in conductivity are shown for the intersected mesh

elements on a colormap ranging from negative changes in blue to positive changes

in red. This representation has been used to give a sense of the 3D positioning

of features in the reconstructions without obscuring them.

The frames shown in this comparison correspond to the initial flat section of

the graph in fig. 2.5, the peak at time t = 16s and the final few seconds where the

absolute background appears to improve in accuracy. Comparison of these frames

reveals that the pseudo-absolute background Jacobian is able to more accurately

capture the shape, position and magnitude of the spherical inclusion. This is
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important as EIT generally has difficulty recovering changes in the centre of the

domain especially with positive changes. This has been demonstrated by the

inability of EIT to detect pleural effusion formation despite its ability to detect

fluid withdrawal after treatment [57].

The additional reconstructions for other background conductivity distribu-

tions have been used to generate the surface plot in fig. 2.7 showing the errors

produced by different Jacobians for frame number 330. The surface plot for this
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Figure 2.7: Surface plot showing the error, measured as an inner-product angle,
for a single frame difference reconstruction as the Jacobian background conduc-
tivities are varied for the left and right lung. The left and right lung axes show
the conductivity values assigned to these regions for calculation of the Jacobian
in each test. Values of conductivity are normalised such that the conductivity of
regions outside the lungs is set to 1.

.

frame highlights the fact that, although an accurately modelled Jacobian pro-

duces better reconstructions in general, in specific situations Jacobians for other

distributions can produce more accurate reconstructions in some measures. Here

this is highlighted by the drop in error for the reconstructions in which the right

lung was given a value of 0.1. This could be due to the particular use of regular-

isation in this case or the non-linear nature of the inverse problem in general.
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The second testing procedure was designed to highlight the effects of model

mismatching on pseudo-absolute reconstruction with grouping constraints. For

this test we generated an ultra-fine forward solve mesh with 1.03 million ele-

ments, including four circular cylindrical regions to approximate lung regions

and segmentation. For the generation of voltage measurements the conductivity

in these four lung regions is varied in proportion to the solution of the ODE lung

models for a four compartment lung system as with the two compartment test

above. However, in order to add modelling mismatches for the inverse problem

the conductivities in these regions have been given a gradient according to the

function

σ(x, y, z, t) = σ0(t)f(x, y, z), (2.39)

f(x, y, z) =

(
1

2(0.1 +
√
x2 + 2y2)

)(
1

1 + 0.1
√

(z − 0.5)2 + 1

)
, (2.40)

where σ0(t) is the conductivity given by the ODE lung model at time t and x, y

and z are Cartesian coordinates of lung mesh elements with respect to the thorax

frame of reference. This results in oval shaped level sets at a given plane through

the lungs and a slight gradient in the z direction. Additionally a non-segmented

spherical inclusion is introduced to the mesh at t = 10 which grows until the final

frame at t = 30. This inclusion has a conductivity 50% greater than that of the

background and grows to intersect with the lower lung regions, simulating the

growth of a bleed in the thorax.

Two sets of reconstructions were then performed using meshes where the radii

of the lung cylinders had been increased by 10%. Both sets of reconstructions

used the same fine mesh of 221 thousand elements to generate the Jacobian and

a coarse mesh of 10 thousand elements to discretise the reconstruction, each of

which had the same cylindrical regions with increased radii. The first reconstruc-

tion was a difference reconstruction using a homogeneous Jacobian background

conductivity and the second was a pseudo-absolute reconstruction. The errors for

the difference reconstruction and the difference component of the pseudo-absolute

reconstruction are shown in fig. 2.8.

As with the plot in fig. 2.5 the angles produced for these reconstructions

begin at a level above 0.5 radians. In this case these angles are higher due to

the inclusion of measurement noise and modelling mismatches. Peaks in fig. 2.8

also approach, but do not reach, π/2 radians indicating that they are close to
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Figure 2.8: Comparison of the error in difference reconstructions performed with
a homogeneous Jacobian background and an absolute reconstructed Jacobian for
reconstructions with modelling errors and an SNR of 100 (40 dB).

being perpendicular in this inner product space. This is due to the relative

magnitudes of signal and noise for these frames. For the frames where the angles

peak the magnitude of the voltage signal Vt − V0 is comparable to the level of

measurement noise used for these reconstructions. In this case it is expected that

the level of inaccuracy will be high, but this is offset by the low magnitude of

the reconstructions for these frames. This is not shown due to the scale invariant

nature of angles as an error measure.

Using fig. 2.8 to compare the two reconstruction methods, we see that the

errors in the difference imaging component of the pseudo-absolute reconstruction

were worse than those from homogeneous difference imaging for most of the re-

constructed time period. However, it should be noted that this increased error

is offset by the added utility of providing a regional absolute conductivity value

as will be discussed in chapter 3. Additionally the pseudo-absolute reconstruc-

tion becomes more accurate than the difference imaging as the spherical inclusion

begins to grow as shown in the final 10 seconds.

To gain further insight into these errors we have to compare the reconstruc-

tions as shown in fig. 2.9. These images use the same 3D slice plotting arrange-

ment as the reconstructions shown in fig. 2.6. The frames shown in this compar-

ison correspond to the initial low error section of the graph in fig. 2.8, the dip

at time t = 14s and the final few seconds where the pseudo-absolute appears to

improve in accuracy. Looking at the first two reconstruction frames, for which the
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Figure 2.9: Comparison between the true difference in the phantom (left), recon-
structions performed with a homogeneous background (middle) and a pseudo-
absolute difference reconstruction (right). Images shown for frames number 10
(top), 280 (middle) and 585 (bottom).

error shown in fig. 2.8 appear worse than the homogeneous, the reconstructions

appear visually similar. In fact for frame 10 at t = 0.5s the pseudo-absolute re-

construction shows a better separation of the lung regions than the homogeneous

difference reconstruction. However, there does appear to be a higher incidence of

obvious noise artifacts in the pseudo-absolute reconstruction as seen in the higher

number of small blue regions on the boundary. This could mean that a different

inner product would be a better choice for comparison in this case as discussed

in appendix A or that a comparison of the reconstructions after processing to

remove noise would show a different pattern.

Comparison of the last frame shown in fig. 2.9 is more encouraging for the

use of pseudo-absolute reconstructions. Here the spherical inclusion has a higher

contrast and is closer to the correct positioning than in the homogeneous differ-

ence reconstruction. This again highlights the increased accuracy in the interior

of the domain offered by resolving the Jacobian.
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2.4 Improving reconstruction efficiency

In section 2.2 we described a new algorithm for producing fast, regionally-absolute,

EIT reconstructions through the use of the pseudo-absolute algorithm in algo-

rithm 2.3. In section 2.3 this was then shown to produce observable features

with a similar quality to the general difference imaging algorithm shown in algo-

rithm 2.2 and in section 3.5.2 we will show that regional absolute values produced

are accurate enough to allow recovery of regional ventilation profiles. However,

the initial frame of pseudo-absolute still requires an iterative solve which can be

time consuming. Reducing the dimensionality of the problem through group-

ing constraints does increase the efficiency of the reconstruction algorithm, but

additional software engineering techniques can improve the reconstruction time

further.

To make these improvements we have identified some of the bottlenecks in ex-

ecution of the Gauss-Newton reconstruction algorithm described in algorithm 2.1.

In decreasing order of time consumption these are:

• forward solving to generate both boundary and interior potentials,

• generating the Jacobian matrix,

• generating a descent direction through a dense matrix inversion.

In section 2.4.1 we discuss simple modifications to the formulation of the finite

element matrix for the forward solution to increase efficiency in interpreted lan-

guages such as Matlab. In section 2.4.2 we describe efficiency savings available to

speed up the Jacobian calculations. Finally in section 2.4.3 we describe a possible

difficulty in performing the dense matrix solve and compare the computation time

for a full pseudo-absolute solve with and without these software improvements.

All timings presented in this section were measured on a 2.8GHz Intel Core

i7 with 16 GB 1.6 GHz DDR3 RAM. Comparisons were made using code from

EIDORS 3.8 [58] running in Matlab 2016a. The improvements described in sec-

tion 2.4.1 have been incorporated into the recent EIDORS 3.9 release [47] and

the other improvements described in this section have been reported in conference

proceedings [28].



60 CHAPTER 2. ELECTRICAL IMPEDANCE TOMOGRAPHY

2.4.1 Forward solve

In order to produce the internal potentials and boundary voltage measurements

require to both perform line search checks and build the Jacobian needed for

algorithm 2.1 eqs. (2.1) to (2.3) must be solved numerically. This is generally

done by the use of the finite element method (FEM ).

The EIDORS default scheme for calculating the forward problem uses piece-

wise linear basis functions defined on a mesh such as the one shown in fig. 2.10.

These basis functions φi are defined to be 1 on node i of the mesh, 0 on all other

Figure 2.10: Diagram showing a simplified triangular mesh. The shaded mesh
elements are those required for construction of the (1, 2) element of the stiffness
matrix AM .

nodes and vary linearly across mesh elements. Electrode modelling complicates

the formulation of the FEM system matrix as boundary conditions under the elec-

trodes must be taken into account. In this work we use the complete electrode

model (CEM ) [59], producing the matrix system

A

(
u

v

)
=

[
AM + AZ AV

ATV AD

](
u

v

)
=

(
0

I

)
, (2.41)
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where u contains the nodal values of potentials on the mesh, v contains the

effective voltages on electrodes and I contains the applied current pattern, also

known as the stimulation pattern. The submatrices shown in eq. (2.41) are then

defined by the equations

AM(i, j) =

∫
Ω

σ∇φi · ∇φjdV AZ(i, j) =
L∑
l=1

∫
el

1

zl
φiφjdS

AV (i, l) = −
∫
el

1

zl
φidS AD(s, l) =

{
1
zl
|el| s = l

0 s 6= l
, (2.42)

where i and j are indices numbering the nodal basis functions within the mesh, s

and l are indices numbering the electrodes zl and el refer to the contact impedance

and the area under electrode l respectively [60].

This formulation produces a sparse symmetric positive-definite system to be

inverted to provide the potentials and boundary voltages required. However,

to allow the efficient construction of system matrices for multiple conductivity

distributions on the same mesh EIDORS does not form this matrix elementwise,

instead a factorisation method is used [61, 62]. This allows the CEM system

matrix A to be calculated as

A = F TCF, (2.43)

where F is a connectivity matrix defined by the mesh and C is a diagonal matrix

containing the elemental conductivities. This formulation can cause the resulting

system matrix A to loose its symmetry property as matrix multiplication is not

associative in floating point arithmetic. This results in the matrix containing a

small antisymmetric part as shown in fig. 2.11.

Efficient solution of the system in eq. (2.41) has been examined [63] and

a review of direct methods for sparse linear systems is given by Davis et al.

[64]. In general for a symmetric positive definite system such as this a Choleski

decomposition method will be the most efficient direct method. However, when

implemented in an interpreted language, the default solver will perform checks on

the matrix to determine which algorithm will be used and may choose incorrectly.

In Matlab the most efficient sparse solver for this problem is the CHOLMOD

algorithm [65], however, Matlab will only use this algorithm when the matrix is

perfectly symmetric with positive entries on the diagonal. This is prevented by
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Figure 2.11: Sparsity pattern for the full CEM system matrix of a 6 k node
mesh. Values shown are for a 256 × 256 tiling of the matrix with the maximum
value taken within each sub-matrix. Non-zero sub-matrices with maximum values
less than 10−2 are shown in orange. The antisymmetric part of the matrix has
maximum entries of order 10−12.

the antisymmetric contribution shown in fig. 2.11. Correcting this asymmetry

can be performed by simply taking the symmetric part of the matrix A

As =
1

2
(AT + A) (2.44)

and performing all further calculations with As. Using this symmetry correction

was found to provide a significant speed up for the solution of the forward problem

as shown in table 2.2 and has been incorporated into EIDORS 3.9.

Table 2.2: Forward solve timings for two meshes of the same domain.

N. nodes Unsymmetric Symmetric Speedup Unsymmetric Symmetric Speedup
(CPU time s) (CPU time s) (CPU time ×) (elapsed time s) (elapsed time s) (elapsed time ×)

46k 9.83 3.47 2.83 6.55 1.09 6.03
190k 281.06 91.45 3.07 146.77 28.01 5.24
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2.4.2 Jacobian

A significant component of the construction time for the Jacobian is taken up in

performing multiple forward solves. Each element in the Jacobian requires the

integral of a forward solved potential over a given element [20]

J(σ)ij =

∫
∆j

∇ui(σ) · ∇vi(σ)dV (2.45)

Here the ui and vi are interior potentials from forward solutions using specific

current patterns. In matrix notation from the definition of the CEM forward

problem, the discrete representations of ui and vi for piecewise linear basis func-

tions are the vectors u and v produced by solving the equations[
AM + AZ AV

ATV AD

](
u

y

)
=

(
0

IS

)
,

[
AM + AZ AV

ATV AD

](
v

z

)
=

(
0

IM

)
, (2.46)

where IS is the stimulation pattern applied for measurement i, IM consists of a

1 and a -1 on the measurement electrodes for measurement i, and y and z are

unused electrode voltages.

The sparse system solves for each of these stimulation and measurement pat-

terns can be completed simultaneously by grouping all the required right hand

sides into a single matrix. Performing the solve in this way only requires the

Choleski factorisation step to be performed once while allowing the forward and

back substitutions to be performed simultaneously. However, in cases where there

are a large number of stimulation or measurement patterns this can still result

in long computation times. It is therefore desirable to perform the inversion on a

limited basis of vectors which span both the stimulation and measurement pat-

terns. The implementation of the forward solve in EIDORS 3.9 determines this

basis through use of a QR factorisation on the matrix of stimulation patterns.

However, in the calculation of the Jacobian the stimulation and measurement

patterns were being solved separately.

By performing both the stimulation and measurement solves simultaneously

using the symmetry corrected system matrices from section 2.4.1 a significant

time saving was achieved as shown in table 2.3.
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Table 2.3: Jacobian build timings for two meshes. Both Jacobians were calculated
using the dual mesh method, aggregating onto the same mesh.

N. nodes Unsymmetric Symmetric Speedup Unsymmetric Symmetric Speedup
(CPU time s) (CPU time s) (CPU time ×) (elapsed time s) (elapsed time s) (elapsed time ×)

46k 74.7 61.3 1.2 41.7 31.7 1.3
160k 733.9 280.0 2.6 394.5 141.3 2.8

2.4.3 Pseudo-absolute reconstruction times

The final efficiency saving listed here relates to the calculation of the generalised

inverse

J†α,L = (JTb WJb + αLTL)−1JTW, (2.47)

used to determine a descent direction. The implementation issue for this dense

matrix solve stems from the same associativity issue noted in section 2.4.1. Again

this should be a symmetric positive-definite system but numerical errors prevent

default solvers from choosing symmetric algorithms. The timings in table 2.4

demonstrate the efficiency savings available by forcing this symmetric solve.

Table 2.4: Dense solve timing comparison for symmetry correction.

N. elements Unsymmetric Symmetric Speedup Unsymmetric Symmetric Speedup
(CPU time s) (CPU time s) (CPU time ×) (elapsed time s) (elapsed time s) (elapsed time ×)

10k 162.5 124.9 1.3 42.9 35.1 1.2

Combining this dense solve efficiency saving with the techniques in sections 2.4.1

to 2.4.2 provides a large speed up to the absolute reconstruction performed in the

pseudo-absolute algorithm. As shown in table 2.5 this allows a 3D regionally-

absolute reconstruction to be performed in under 3 minutes with further succes-

sive frames reconstructed in real time at the same frame rate as regular difference

imaging.

Table 2.5: Comparison of a pseudo-absolute reconstruction times for a 4 com-
partment lung model.

N. elements Unsymmetric Symmetric Speedup Unsymmetric Symmetric Speedup
(CPU time s) (CPU time s) (CPU time ×) (elapsed time s) (elapsed time s) (elapsed time ×)

10k 702.9 439.5 1.6 407.4 169.4 2.4



2.5. CONCLUSION 65

2.5 Conclusion

In this chapter we have developed and tested a novel pseudo-absolute reconstruc-

tion algorithm. This algorithm is capable of producing reconstructions of EIT at

the same rate as difference imaging with limited initial processing time. However,

unlike difference imaging, these reconstructions are regionally-absolute. That is to

say, the aggregate value of conductivity over regions of the reconstruction follow

the absolute values of conductivity, allowing recovery of regional ventilation as

will be shown in sections 3.2.2 to 3.5.4. This algorithm was developed not only to

enable the recovery of clinically relevant diagnostics and provide guidance for me-

chanical ventilation but also to retain the ability of EIT to provide fast feedback

and warnings.

We have also examined the effects of regularisation, including possible bias

from constraints used. This discussion of regularisation led to the description pos-

sible modifications to the matrices used in Tikhonov regularisation to allow more

meaningful spatial priors including the possibility of anisotropic regularisation in

section 2.1.3.

Using inner-product based error measures we have provided useful quantita-

tive information on the reconstruction quality. Crucially this comparison between

difference imaging and pseudo-absolute reconstruction provided evidence that re-

solving the Jacobian can increase the accuracy of reconstructions in areas shad-

owed by the lungs, even with modelling mismatches. This will require further

testing to validate, but increased sensitivity in these interior regions could have

additional implications for further post processing of EIT. For example separation

of the conductivity signal produced by cardiac changes [15].

Finally we have provided useful efficiency saving techniques for implementa-

tion of EIT. This allowed the reconstruction time of pseudo-absolute images to

be reduced to a 3 minute setup with further reconstruction produced in real time

making the use of 3D absolute EIT feasible in a clinical setting.



Chapter 3

Lung Modelling and Parameter

Recovery

In this chapter we will describe models and techniques to both generate EIT

measurements from ventilation models and recover ventilation distributions and

parameters for those models from EIT reconstructions. This is an important

innovation due to the dynamic way in which the behaviour of the lung can change

as lung regions are recruited [6]. Such behaviour necessitates fast parameter

recovery procedures that are capable of being repeated multiple times during

recruitment manoeuvres.

In section 3.1 we derive an ordinary differential equation (ODE ) model for

lung function and describe how it may be solved to produce regional conductivity

values for sections of lung. In section 3.2 we discuss the sources of error in

EIT reconstructions and describe two methods for generating noisy conductivity

timeseries for use in testing post-processing procedures. In section 3.3 we describe

how to recover regional air volumes and flows which may be used by the techniques

in section 3.4 to fit parameters for the ODE lung model. Finally section 3.5

examines how errors in EIT measurement and modelling can affect how well our

post processing techniques work.

66
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3.1 Lung Modelling

There are many different approaches to modelling air flow through the lungs which

vary greatly in their levels of complexity and fidelity to the true structure of the

lungs. At the most complex end of the spectrum are large scale computational

fluid dynamics (CFD) models of lung function linked to co-registered 4D MRI or

CT images [66]. These models attempt to accurately capture large portions of the

structure and dynamics of the lungs to give general insight into their behaviour

under different modes of ventilation. Even models which do not resolve the

full lung system but only part of it can provide valuable insight into how the

fluid structure interactions in sections of the lungs can produce damage [67].

For example the effects of pressure gradients on epithelial damage during lung

recruitment [5] or how surfactant levels affect the tendency of airways to buckle

and collapse [68].

Less complex approaches attempt to incorporate the general dyadic branch-

ing tree structure of the lungs without fully resolving bronchiolar and alveolar

structures. For example using low dimensional models of alveolar response as

termination boundary conditions for a CFD model of the bronchiolar tree [69].

Another example of attempts at this are large scale compartmental models such

as the one developed by [70]. This model consists of thousands of coupled com-

partment models each of which solve simplified models to find ventilation levels

as well as quantities such as blood gas composition and pH by finding a new equi-

librium at each time step. These models, when combined with parameters from

general population studies, are useful for testing new pressure control profiles

numerically [71–73] due to their reduced computational complexity.

At even lower complexities there are simple ODE models with one or two

parameters for lumped lung models or compartmental models with low numbers

of compartments. Such models have been studied in detail [74] and expanded

since they were proposed over sixty years ago [75]. Despite their low level of

fidelity to the structure of the lungs they do provide qualitative insight into

lung behaviour making them prevalent in standard physiology text books [76].

Their low complexity also mean that it is easier to fit parameters to them from

measurements accessible at the bedside such as air volume flow at the airway

opening. Hence ODE parameters such as lumped lung compliance can be used

to aid in clinical procedures such as determining optimal positive end expiratory

pressure (PEEP) during recruitment manoeuvres [77].
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There have been attempts to couple large scale CFD models to imaging

through EIT. For example Roth et al. [18] were able to simulate data acquisi-

tion and reconstruction of 2D EIT images for a 4D finite element model of lung

function. Using this method they proposed testing lung ventilation profiles on

the CFD model and comparing the simulated EIT to measurements taken on

the patient to verify that treatment is working as expected [78]. However, the

complexity of these systems combined with the high number of parameters com-

plicates the process of in-vivo parameter recovery.

This desire to recover regional lung parameters at the bedside motivates our

choice of lung model for the techniques described in this chapter. The lumped

lung ODE parameters mentioned above are recoverable from current ventilator

measurements so we have chosen to extend these models to incorporate regional

information as a natural first step in demonstrating that additional information

from EIT allows regional parameter recovery. The derivation for the extended

model is described in sections 3.1.1 to 3.1.2 demonstrates the numerical solution

of these models for our specific test parameters and section 3.1.3 describes how the

ventilation distributions generated by these ODEs are converted into conductivity

values to be used in simulations of EIT.

The parameter recovery process has been examined by Crabb [79, chapter 6]

under the assumption that time series of compartmental lung volumes is known

explicitly. We extend this with a proof in section 3.4 that parameters are recover-

able when the ventilation distribution is known and examine how the ventilation

distribution may be recovered from EIT.

3.1.1 ODE model derivation

One of the most basic ODE lung models consists of a single expanding com-

partment with an associated elastance and resistance [75] as shown in fig. 3.1.

In this model air is taken to be an incompressible fluid forced into an elastic

compartment with volume V under the action of an applied pressure P . Acting

against this pressure are the assumed linear elastic recoil of the lung provided by

an elastance E, an airway resistance R to air flow in or out of the compartment

and the pressure in the pleural cavity P0. As the air flow can be seen as the time

derivative of the volume this results in the linear first order ODE

EV (t) +RV̇ (t) = P (t)− P0. (3.1)
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Figure 3.1: Diagram of a single compartment, lumped lung ODE model.

There are many possible ways to extend this basic model to more accurately

describe the lungs. For example some models add a further inertance term [80,

chapter 9], which describes the force required to accelerate the mass of air in

the lungs. Addition of this term results in a second order ODE. Similarly an

additional term may be added to modify the action of resistance in the lungs.

In particular terms are added to more accurately capture the hysteresis of the

lungs resulting in a quadratic [81] or flow direction dependent [82] resistance term.

Modifications can be also made to incorporate gas exchange in the alveoli [83] or

the effects of spontaneous breathing [84]. However, these methods all complicate

the process of parameter recovery so they have not been implemented for this

initial testing.

Instead, to add spatial information to the ODE in eq. (3.1) we have con-

structed a model with additional compartments. Bates [80, chapter 7] examines

the case in which two lumped lung compartments branch off from a single airway.

For that model each compartment has its own elastance and a resistance which

acts only on the airflow into the compartment. A single resistance parameter is

then applied to all air flow through the top airway. This arrangement allows the

two compartments to be assigned to the two separate lungs giving some regional

information. Bates notes that it is not possible to accurately recover parameters

for two or more compartments when only the air flow at the top of the system is
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known so models with further compartments are not examined. However, with

the addition of regional information from EIT we gain the ability to recover pa-

rameters for a larger number of compartments. This novel approach allows us to

increase the number of compartments in our ODE model.

In section 3.4 we will prove that models with one top level resistance in series

have recoverable parameters so long as the ventilation distribution can be found

at multiple points in time. As EIT provides regional information, which we

will convert into ventilation distributions in section 3.3, we are able to recover

parameters for models with a larger number of compartments. This means that

we are able to increase the number of compartments so long as each compartment

can be assigned to physically distinct lung regions fed by a single branch of the

airway structure.

The maximum number of compartments could feasibly be between 5 and 20.

This is due to the branching dyadic tree structure of the lungs shown in fig. 3.2.

In total there are five distinct regions of the lungs, known as lobes, that are fed

Figure 3.2: Diagram of the dyadic branching tree structure of the lungs. The
parameter Ri

j denotes the airway resistance for bronchiole number j at bifurcation
level i.

by a single branch of the airway tree. Similarly these lobes can be split into a

total of 20 bronchopulmonary segments which are fed by individual segmental

bronchi and comprise the functional anatomical unit of the lung [76, chapter 25].

Practically however, segmentation of CT images has only been achieved down

to lobe level [85, 86], especially in the case of patients with lung problems [87],

reducing the maximum feasible number of compartments to 5. Due to difficulties

in meshing 5 lung compartments for later EIT simulations, we will be using an
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ODE model with four compartments which correspond to upper and lower airways

for the left and right lungs. This reduction from five lobes to four corresponds

to treating two of the lobes from the right lung as a single compartment. This

is reasonable as the airways feeding into these lobes diverge further down the

bronchiolar tree structure than the split for the upper lobe. The result is that

each compartment is fed from an airway starting at the second bifurcation in the

tree structure shown in fig. 3.2, increasing the fidelity of the model, and the mesh

generation process is simplified for the EIT simulations in section 3.2.

A diagram of our four compartmental model can be seen in fig. 3.3. This model

treats air as an incompressible fluid passing through a central airway into four

compartments under the action of a pressure difference. In the model, pressure

drops occur as air passes through the central airway and the airways leading into

each compartment under the action of airway resistance. Each airway has its

own resistance parameter denoted by Ri, where i denotes the number assigned

to the compartment each airway leads to and R0 refers to the central airway,

or tracheal, resistance. Once airway pressure drops have been accounted for the

pressure difference between air within each compartment and the pleural pressure

outside the lungs is counteracted by the elastance of each compartment denoted

by Ei.

Figure 3.3: Compartment layout for ODE model. Compartments are labeled in
the order top right, top left, bottom right, bottom left to align with an extruded
chest model used to simulate EIT reconstruction.
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Using the assumption of incompressibility the volume of air in each compart-

ment at time t is denoted as vi(t) and the volume flow at the top of the airway

is taken to be the sum of the rates of change in each of these volumes due to

conservation of mass. The difference between the driven pressure at time t, P (t),

and the pleural pressure P0 can be formulated as the equation

P (t)− P0 = R0

4∑
j=1

v̇j(t) +Riv̇i(t) + Eivi(t). (3.2)

Equation (3.2) holds true for each of the compartments and can therefore be

reformulated into the matrix ODE system

Rv̇(t) + Ev(t) = p(t), (3.3)

where v(t) is a vector containing the air volumes in each compartment at time t,

p(t) is a vector of pressure drops, P (t)− P0, across the system and E and R are

now matrices with the structures

E =


E1 0 0 0

0 E2 0 0

0 0 E3 0

0 0 0 E4

 ,

R =


R1 +R0 R0 R0 R0

R0 R2 +R0 R0 R0

R0 R0 R3 +R0 R0

R0 R0 R0 R4 +R0

 . (3.4)

We can then solve this ODE using numerical methods as described in the next sec-

tion.

3.1.2 ODE test parameters

To generate test data for the ventilation and parameter recovery techniques in

section 3.3 and section 3.4, we use a fourth order explicit Runge-Kutta method to

solve the ODE system in eq. (3.3). This scheme was chosen as it is fourth order

convergent for smooth inputs such as the sinusoidal pressure profile used in this

chapter. That is to say that local truncation errors in the resulting ventilation
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profiles should be O(dt5) where dt is the step length. In the solution of general

ODE systems this high degree of accuracy is often offset by an increased com-

putational cost over other methods. However, as our system consists of a linear

ODE in four variables, the cost of solving the ODE is low compared to other

steps in the testing procedures. In this case each step requires 4 matrix-vector

multiplications, 9 vector-vector additions, 10 scalar-vector additions and 9 scalar

operations. Hence, on a 2.8GHz Intel Core i7 with 16 GB 1.6 GHz DDR3 RAM

running Matlab solution of 3,000 time steps with a step length of 10 ms took

approximately 25 ms. We will refer to this from now on as a ventilation forward

solve.

For all ventilation forward solves in the rest of this work we use the ODE

parameters shown in table 3.1. These parameters were chosen to be of a sim-

Table 3.1: Model parameters

Elastance Resistance

cmH2OL
−1 cmH2OL

−1s

Compartment 1 10 10

Compartment 2 10 20

Compartment 3 15 5

Compartment 4 25 10

Trachea - 5

ilar magnitude to those provided in [80] and [82], which quote an elastance of

10cmH2OL
−1 (centimetres of water per litre) and resistances of 15cmH2OsL

−1

(centimetres of water seconds per litre). Parameters were chosen to ensure that

the parameters could be recovered, as discussed in section 3.4, and that the ODE

system is controllable as will be discussed in section 4.1.

Originally testing was performed using parameters with arbitrary units as all

quantities were normalised to achieve tidal breathing variations consistent with

filling factor values given in the literature [88]. Here filling factor (F ) is defined

as the ratio of air content in a region (vi) to the volume of the rest of the matter

in a given compartment(Vc),

F =
vi
Vc
.
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This normalisation was performed by choosing a non-dimensional maximum pres-

sure value of 20 for which compartments with the lowest elastance value of 10

would attain a filling factor of F = 4 when held at a steady state pressure.

This pressure was chosen as [89] states that the average resulting pressure after

a maximal recruitment manoeuvre is 40 cmH2O and [90] states that pressures

above 28 cmH2O result in an increased inflammatory response. The result of

this normalisation is compartments with a maximum inflation volume of vi = 2

and a condensed matter volume of Vc = 0.5 in generalised units. However, when

these pressures are stated in cmH2O and the volumes are stated in litres they

correspond to a lung system with capacity of 8 L. For comparison the average

total lung capacity of a human male is 6 L [76], so these pressures stated in units

of cmH2O and L are roughly consistent with a large mammal.

For the rest of the tests in this chapter the ventilation pattern from eq. (3.3)

were generated for the parameters in table 3.1 under the action of a sinusoidal

pressure pattern with values chosen such that the most compliant compartments

would reach full exhalation and inhalation filling factor values if held at minimum

or maximum pressures respectively. The initial conditions were chosen such that

each compartment started with a filling factor of 1, simulating a lung collapsed

beyond normal exhalation being re-inflated by mechanical ventilation. As the

elastance values of these compartments would not usually result in these volumes

at the starting pressure of 15 cmH2O, these initial conditions correspond to an

instantaneous change in ventilation parameters from E = 30 cmH2OL
−1 to the

values in table 3.1. This is feasible through the use of clinical interventions

such as a change in patient positioning. Both the pressure profile and resulting

compartmental air volumes can be seen in fig. 3.4.

In order to produce a time series with a sample rate achievable through EIT

the results of the ventilation forward solve, provided at 100 frames per second for

a 30 s period, were sampled at 600 time steps. This corresponds to an EIT acqui-

sition rate of 20 frames per second, which is achievable for a 64 electrode system

using a current injection frequency of 100 kHz. These 600 volume samples were

then used to generate compartmental effective conductivity values as discussed

in section 3.1.3.
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Figure 3.4: Graphs showing the test pressure profile (left) and the resulting com-
partmental air volumes (right). The volume graphs are positioned according to
the compartmental layout shown in fig. 3.3.

3.1.3 Conductivity generation

Solving eq. (3.3) as described in 3.1.2 gives the compartmental volumes as the

pressure is varied. However to test the post processing techniques in sections 3.3

to 3.4 these air volumes must be converted to an aggregate measure of the tissue

conductivity within the compartment so that the reconstructed signal from EIT

may be simulated as described in section 3.2.

In the literature it has been shown that the change in impedance for a region

of the lungs as measured by EIT follow an approximately linear relationship to

the air content change [16]. However this relationship will be used in section 3.3

so use of this relationship to define the conductivity in this conductivity forward

solve step would constitute an inverse crime. Inverse crimes occur when the same

model is used to both generate and invert simulated data [91] leading to better

reconstructions with simulated data as opposed to measured data. To avoid this

testing bias we will use a different homogenisation method in this conductivity

forward solve step. There are many possible candidates for this homogenisation

method ranging from mixing laws based on simple spherical inclusions [92] up

to full finite element simulations of sections of lung structure [18]. To strike a

balance between accuracy and ease of implementation we have used the model

described by Nopp et al. [88].
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This method requires as inputs the current injection frequency for EIT, taken

here to be 100 kHz, and the filling factor for the specified region as described

above. The equations used are then generated by modelling alveoli as cubes

with consideration of blood, cellular membrane, endothelial and epithelial cells,

and extracellular and intracellular fluids. The complete equations for this model

are described by Nopp in [88] where they were first developed. These equations

provide estimates for both the bulk conductivity and permittivity of the lungs

and the resulting estimates of bulk resistivity have a near linear relationship with

filling factor at inflation levels likely within the lungs.

Applying these equations to the air volumes shown in fig. 3.4 results in the

conductivity patterns shown in fig. 3.5. These conductivity values are then used in

section 3.2 to generate both voltage data and the noisy reconstructed conductivity

values used to test our post processing techniques.
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Figure 3.5: Graphs bulk conductivity values resulting from compartmental air
volumes. The graphs are positioned according to the compartmental layout shown
in fig. 3.3.
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3.2 EIT conductivity measurements

Using the model and homogenisation formulae from section 3.1 we can perform

both a ventilation and conductivity forward solve to generate time series of effec-

tive conductivities for each compartment in our model. This constitutes what we

will call the conductivity signal for our post processing ventilation and parameter

recovery techniques in sections 3.4 to 3.3. However, to truly test how effective

these techniques can be we will need to test them on conductivity time series

which approximate those recoverable through EIT.

This process of generating conductivity measurements requires an examination

of the sources of error in EIT reconstructions. In general this is a difficult task

due to:

• the range of EIT reconstruction algorithms available

• the sensitivity of EIT to modelling errors and movement [40, 93],

• the sensitivity of EIT to voltage measurement noise.

These are also complicated by the need for 3D reconstructions to capture the

ventilation of all functional compartments in our lung model.

Additionally we would prefer to reconstruct absolute values of conductivity.

This is motivated both by the increased accuracy of the estimation of changes in

bulk resistivity (ρ) assumed to be the reciprocal of conductivity as well as the

approximate affine relationship between air content and bulk resisitivity

V = αρ+ β (3.5)

assumed in section 3.3. This affine relationship allows the conductivity time se-

ries to be normalised to external ventilator measurements in order to provide

estimates of air flow by estimating α. However, recovery of the volume within

the lungs requires co-registration to other imaging modalities to calibrate β which

becomes simpler when conductivity measurements from two separate EIT acqui-

sition sessions can be compared.

In this section we propose two approaches to estimating errors in conductivity

measurements as recoverable from EIT by separating out the causes of errors in

EIT reconstructions. In section 3.2.1 we propose separating out the conductivity

errors due to voltage measurement noise from the modelling, movement and algo-

rithm dependent errors. This can be done using difference imaging techniques to
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reconstruct measurement noise to be added to the conductivity signal. Modelling

error in this way allows comparison of the volume and parameter recovery tech-

niques under varying levels of voltage measurement error assuming ideal absolute

EIT reconstruction. For this reason this conductivity noise estimation technique

has been used to provide examples for sections 3.3 to 3.4 as well as sensitivity

analysis in section 3.5.

In section 3.2.2 we propose a second method for generating noisy conductiv-

ity measurements. This is done using simulated EIT measurements reconstructed

using the pseudo-absolute algorithm described in section 2.2.3. These reconstruc-

tions provide a reasonable approximation to feasible EIT time-series recovery un-

der the assumption that movement is accounted for. This technique allows the

ventilation and parameter recovery methods to be tested under varying levels of

modelling mismatch in section 3.5.

3.2.1 Difference imaging

This section describes the method used to generate conductivity measurements

for ventilation and parameter recovery where all conductivity measurement er-

rors are due to the inaccuracy of voltage measurements in the acquisition of EIT.

Using these assumptions allows results to be independent of reconstruction algo-

rithms and modelling techniques and is a necessary first step in testing our post

processing procedures as they are unlikely to work for practical EIT if they can’t

work for ideal EIT. The method from this section will be used in sections 3.3

to 3.4 to generate demonstrative results and in section 3.5 to test the sensitivity

of the techniques to noise.

To generate these ideal EIT conductivity measurements we use difference

imaging, as described in chapter 2, to generate conductivity noise directly from

measurement noise values. This reconstructed conductivity noise is then added

directly to the conductivity signal time series as generated in section 3.1.3. This

gives a reasonable approximation to the level of reconstruction error produced

under the assumptions that the shape of a patient’s thorax can be modelled and

tracked accurately through the course of ventilation [40], electrode positioning

and impedance is modelled accurately [93] and the noise in each of the voltage
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Figure 3.6: Human adult male thorax CT outline (left) and extruded meshes used
for voltage generation (right)

measurements follow independent, identical distributions (IID). Both the sim-

ulated voltage measurements and reconstructions are produced using modified

code from EIDORS version 3.9 [47, 94] and reconstructions were performed using

the dual mesh reconstruction method [95].

The first step in this process is to generate full 3D meshes of a thorax geometry.

As it has been shown that a leading contributor to EIT inaccuracies is error in

the boundary shape [40], the mesh is generated by using Netgen [96] to extrude

the boundary of an adult male chest CT image shown on the left in fig. 3.6.

Three meshes were produced including the ultra-fine voltage generation mesh

shown in fig. 3.6 as well as the fine and coarse meshes shown in fig. 3.7. These

are composed of 1.03M, 221K and 10K volume elements respectively and each

contain four cylindrical inclusions. For the purposes of testing our post processing

techniques and to simplify the mesh generation process the cylinders represent

the four compartments in the lung model from section 3.1.

To generate a reference voltage we assign conductivities to the cylindrical

inclusions corresponding to the air volume in each compartment at mid inhalation

in order to perform a voltage forward solve. To calibrate the ratio of conductivities

between lung and background tissues, the values given in [97] are used providing a

ratio of 0.125 at full inhalation. The mid inhalation conductivities are generated

by normalising the Nopp conductivity values for full inhalation, at a filling factor

of 4 [88], to 0.125 and then calculating the normalised conductivities expected if

the lung model were held at the median ventilation pressure.
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Figure 3.7: Extruded meshes used for Jacobian calculation (left) and reconstruc-
tion aggregation (right). The finer mesh includes electrodes and both meshes
show cylindrical inclusions to represent the lungs.

The fine and ultra-fine meshes include 4 rings of 16 electrodes meshed onto

the outer thorax shape in order to simulate EIT. The electrodes are indexed

from 1 to 64, where electrodes in the top ring are numbered from 1 to 16 and

the further 3 rings are indexed beginning at 17, 33 and 49 respectively. EIT is

simulated with pairwise current driven at an amplitude of 0.1mA and voltages

are measured on pairwise electrodes both with a skip of 23 so that current is

driven and measurements are recorded across rings. The voltages are computed

on the ultra-fine mesh for the mid inhalation reference frame through a piecewise

linear FE method using the complete electrode model [59].

Once these reference frame voltage measurements have been calculated they

are copied with the addition of normalised IID noise for each time step at the

correct signal to noise ratio (SNR). Noise values are generated using a normal

distribution with a signal to noise ratio of

SNR = ‖φ‖/‖ε‖

where φ is a vector of measured voltage differences between electrodes for a

single frame and ε is the vector of noise values. The errors in conductivity

caused by these voltage noise values are calculated using the EIDORS func-

tion inv solve diff GN one step. This reconstructs conductivity using a single

Gauss-Newton step with a Jacobian calculated using the fine mesh of the domain.
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The values from this inversion are mapped to the coarse mesh to aggregate

the reconstruction and reduce the dimensionality of the problem to produce re-

constructions similar to the one shown in fig. 3.8. The reconstructed conductivity
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Figure 3.8: Single frame of reconstructed noise from pure noise voltages.

values are then aggregated into four compartmental noise values by taking a vol-

ume weighted average within the regions of interest. These four averaged values

are then added to the Nopp generated values to give a noisy sampled time series

of conductivities. An example of the noisy conductivity time series at an SNR of

100 is shown on the left of fig. 3.9 along with the equivalent noisy resistance time

series on the right. An SNR of 100 equates to a 1% noise level but the convention
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Figure 3.9: Conductivity and resistivity profiles generated from the difference
imaging noise method.

is to measure noise in decibels (dB). The formula relating SNR to dB is

dB = 20 log10(SNR)
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so in decibels 100 SNR equates to a 40 dB signal, which is significantly worse than

the practical upper range of accuracy in EIT measurements of approximately

100 dB [98].

To test the sensitivity of our post-processing procedures to measurement noise

sections 3.3.2, 3.4.3 and 3.5.1 use the technique outlined in this section to produce

noisy conductivity and resistivity profiles like those in fig. 3.9 at varying SNR

levels. For each SNR level 1000 individual tests are performed, requiring the

generation of a full noisy conductivity profile. Hence for each SNR the total

number of draws from the random number generator is 1000 multiplied by the

number of ODE time samples, multiplied by the number of voltage measurements

needed for a full EIT reconstruction of a single frame.

3.2.2 Pseudo-absolute EIT

This section describes the method used to generate conductivity measurements for

ventilation and parameter recovery where both the signal and noise components

of the conductivity measurements are generated through EIT reconstructions.

This is done through the use of a pseudo-absolute reconstruction algorithm as

developed in section 2.2.3. This is a novel method of reconstruction allowing

absolute values of conductivity to be produced at the same rate as difference

imaging. Unlike the ideal EIT difference imaging noise generated in section 3.2.1,

this pseudo-absolute method allows us to test our post-processing techniques with

incorporated modelling and algorithmic bias. The method from this section will

be used in section 3.5 to test the sensitivity of the post processing techniques to

absolute conductivity reconstructions with incorporated errors in mesh segmen-

tation.

For this measurement generation method a voltage forward solve is performed

not only at the mid inhalation reference frame but at every time step in the

conductivity time series. These forward solves are performed using the same

ultra-fine mesh, stimulation and measurement patterns as used in section 3.2.1.

Noise is then added to the reference frame and each frame of data acquisition

individually to be used in reconstructions.

The reference voltages are then used in a low dimensional iterative absolute

reconstruction algorithm in which grouping constraints have been placed on the

four cylindrical lung regions and the background resulting in a five parameter re-

construction as described in section 2.2.3. A comparison of the original reference
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frame lung phantom to the reconstructed absolute image is shown in fig. 3.10.

These reconstructed values are then used in the calculation of the Jacobian for

Figure 3.10: Comparison of the phantom reference frame (left) to its grouping
constrained absolute reconstruction (right). The maximum relative error in re-
constructed values was 1.5%

difference imaging of the remaining time series of voltage measurements. A com-

parison between the conductivity change in the phantom and the reconstructed

difference image is shown for one frame in fig. 3.11.

Figure 3.11: Comparison of the conductivity difference from the phantom refer-
ence frame (left) to the reconstructed difference image (right).

The values from the difference reconstruction at each time step are then added

to the corresponding elemental conductivities from the grouping constrained ab-

solute reconstruction and a volume weighted average is taken for each cylindrical

region of interest. This volume average is then taken to be the measured conduc-

tivity for the corresponding compartment at that time step. An example of the

noisy conductivity time series at an SNR of 100 (40 dB) is shown on the left of

fig. 3.12 along with the equivalent noisy resistance time series on the right.
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Figure 3.12: Conductivity and resistivity profiles generated from the pseudo-
absolute imaging noise method.

The method from this section will be used in section 3.5 to test the sen-

sitivity of the post processing techniques the process of absolute conductivity

reconstruction and errors in mesh segmentation. This is done by using a different

segmentation of compartments in the fine and coarse meshes than is used in the

ultra-fine voltage generation mesh. As with the ideal EIT noise generated by

difference imaging, the tests with this imaging modality will be performed using

a thousand realisations of IID voltage noise for each acquisition frame.
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3.3 Ventilation Recovery

This section describes the recovery of the ventilation distribution, i.e. compart-

mental flows and volumes for the ODE model in section 3.1, from EIT images.

Recovery of these ventilation distributions not only allows the recovery of re-

gional lung parameters, as will be discussed in section 3.4, but also presents the

opportunity for an easily comprehensible interface with clinicians.

The techniques in section 3.2 generate time series of homogenised or effective

conductivities σi, that are related to air volume vi, for each compartment but

converting these back to volumes requires fitting them to measurements of air

flow available from the ventilator. To do this, in section 3.3.1 we describe the

recovery of interior flow and volumes by reducing the process to differentiation

of the conductivity time series and fitting it to the measured flow data at the

ventilator. In section 3.3.2 we test these techniques against the conductivity time

series generated in section 3.2.1 at an SNR of 100.

Recovery of these ventilation distributions not only provides useful regional

information about the operation of the lungs qualitatively but also provides an

opportunity to recover lung model parameters to analyse their function quanti-

tatively. The parameter recovery process will be described in section 3.4 using

the volume and flow time series produced in this section.

All timings presented in this section were measured on a 2.8GHz Intel Core

i7 with 16 GB 1.6 GHz DDR3 RAM.

3.3.1 Numerical differentiation and normalisation

Our examination of the recovery of ventilation distribution and model parameters

when compartmental volumes are known up to a Gaussian noise distribution has

been reported both in conference proceedings [99] and by Crabb [79, chapter 6].

However, we would like to be able to do the same when we only have conductivity

time series data.

In [100] and [18] it is shown that there is an approximate linear relationship

between the effective electrical resistivity ρi, and filling factor F . Here ρi is

approximated as the reciprocal of effective conductivity, ρi ≈ 1
σi

, and F is defined

as the ratio of air volume content to tissue volume. So for compartment i the
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filling factor Fi is given by

Fi =
vi
Vi
, (3.6)

where vi is the volume of air in compartment I and Vi is the volume of lung tissue

for the same compartment. Combined with the linear relationship mentioned

above this results in a formula for vi of the form

vi = αViρi + β, (3.7)

where α and β are constants independent of ρi. It is assumed that Vi can be

determined from another imaging modality, and β requires co-registration of an-

other imaging modality at a single reference frame to calibrate air volumes. When

testing these procedures with the pseudo-absolute conductivity time series gen-

erated in section 3.2.2 we assume that the absolute reconstructed reference frame

was acquired in conjunction with another imaging modality allowing calibration

of β. To test these procedures with the difference imaging noise generated in

section 3.2.1 we estimate β by computing a linear fit of values from the equations

used in section 3.1.3 to generate conductivity maps.

Under the assumption of incompressibility the volume flow measured at the

ventilator Q is equal to the sum of the compartmental flows. This allows α to be

determined by performing a least squares fit on the equation

Q = α
∑
i

d

dt
(Viρi) = α

∑
i

Vi
d

dt
ρi, (3.8)

once the ρi have been differentiated. Differentiation amplifies the effects of noise

so the time derivative of ρi is posed as the inversion of an integration operator to

allow explicit regularisation of the solution [101]. This gives the equation

d

dt
ρi = arg min

u
‖Au− ρi‖2 + λi‖Lu‖2, (3.9)

where A is an integration matrix used in a data-fit term, λi is a regularisation

hyperparameter and L is a second order central difference operator used to enforce

a level of smoothness on the solution.
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The regularisation hyperparameters for each compartment are found using

an L-curve method. L-curve methods aim to balance the data misfit with the

regularisation penalty by plotting the resulting values of the residual and reg-

ularisation norms on a log-log plot [102, 103].This graph has a characteristic L

shape, as shown in fig. 3.13, and the value of λi corresponding to the point of

maximal negative curvature, or corner, is typically used due to the transition at

this point between the two straight sections. The rationale behind this is that

when λi corresponds to the straight horizontal section of the plot, any increase in

its value will cause large increases in the datafit residual without providing benefit

in terms of the model’s fit to the prior. Similarly, on the straight vertical section

any decrease in λi will drastically reduce the model’s fit to the prior without

benefit to the datafit residual. Therefore a good candidate for λi is likely to be

found in the interval of hyperparameters with increased curvature, corresponding

to the smooth corner of the L-curve graph.
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Figure 3.13: L-curve for regularisation parameter of compartment 3 (λ3) during
first test. Parameters labelled with crosses are the hyperparameters for which
the Regularization toolbox evaluates curvature. These values increase exponen-
tially and the curvature between each evaluation point is interpolated to find the
hyperparameter corresponding to the desired curvature.
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Modified versions of the functions cgsvd and l curve from the Regularization

Tools Matlab toolbox [104] are used to choose the regularisation parameter for

this problem automatically. As mentioned above, in this case parameters within

an interval correspond to points on the graph with negative curvature, producing

a rounded corner. As such, λi is chosen to be the lower of the two values in this

interval at points with half the maximum curvature. This is to emphasise the

data-fit for the use of reconstructed flows in parameter estimation.

Once the regularisation parameter has been found for each compartment a

Tikhonov regularised inverse can be found for the problem in eq. (3.9) allowing

the derivative to be computed quickly. The result is a smooth approximation

to the time derivative of the electrical resistivity in a given compartment. These

derivatives are then summed and normalised against the volume flow measured at

the mouth to give a measure of regional flow. Integrating these values with respect

to time, using the matrix A from eq. (3.9), then gives a smooth approximation to

the resistivity of the compartment as a function of time, which can be converted

into an approximation for the air volume within a compartment.

3.3.2 Ventilation recovery from EIT at 100 SNR

In this section we demonstrate the process of ventilation distribution recovery

using conductivity timeseries with noise added through the difference imaging

noise techniques outlined in section 3.2.1. To do this tests were performed on the

conductivity timeseries generated for ventilation by a sinusoidal pressure profile

of the 4 compartment ODE lung model outlined in section 3.1. The parameters

used for this ventilation and conductivity forward solve can be found in table 3.1,

the pressure and ventilation profiles can be found in fig. 3.4 and the resulting

conductivity timeseries can be found in fig. 3.5.

To demonstrate the behaviour of the ventilation recovery procedure outlined

in section 3.3.1, 1000 tests were performed and the minimum, maximum, mean

and standard deviation of error norms on the recovered ventilation profiles were

examined. For each test noise was added to the conductivity signal by performing

difference EIT reconstructions on measurement noise for each successive time step

at an SNR of 100 (40 dB), producing noisy conductivity and resistivity timeseries

as shown in fig. 3.9. For clarity, an outline of the testing procedure is shown in

algorithm 3.1.
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Algorithm 3.1 Ventilation recovery testing procedure

1: Set number of time samples S
2: Set number of tests N
3:

4: Solve ODE for air volumes
5: Generate conductivity time series from volumes
6: Generate reference voltage V0

7:

8: % Perform tests
9: for i ≤ N do

10: for j ≤ S do
11: Generate noisy voltage Vn from V0

12: Perform difference EIT on Vn − V0

13: Add reconstructed noise to conductivity sample j
14: Take reciprocal to generate noisy resistivity
15: end for
16: recover ventilation distribution i from noisy resistivity samples
17: end for

In each test, the recovered flows and volumes were qualitatively close to the

original simulated values as shown in figs. 3.14 to 3.15. However, differences can

be seen at the edges of the flow graphs in fig. 3.14 and the vertical offsets of

the graphs in fig. 3.15. These errors and their positioning in the time series flow

pattern highlights one weakness in this approach to recovering flow parameters.

By using Tikhonov regularisation and a high regularisation parameter additional

smoothness is enforced on the flows which may obscure features that are highly

localised or occur at higher frequencies. In this case the initial transient behaviour

of the flows inflating compartments from a partially collapsed state is dampened

during the initial frames. However, decreasing the regularisation hyperparameter

too far can result in highly oscillatory solutions, motivating our use of the L-curve

method to choose the hyperparameter.

This effect on the transient is demonstrated further by examining the norms

of errors in the flow recovery. To examine these errors quantitatively we will look

at the L2 norm applied to the errors in both flows and volumes. This will be

done for the full ventilation recovery time as well as a time interval excluding

an initial transient relaxation time. We will show the distributions of these error

norms including the maximum, minimum, mean and standard deviation (STD) as

produced by the thousand realisations of voltage noise described in algorithm 3.1.
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Figure 3.14: Graphs comparing the simulated and recovered flows in each com-
partment. True simulated values are shown as a dashed blue line, while recon-
structed values are a solid black line.

Table 3.2 shows the distribution of the rescaled L2 norm applied to the flow

for the whole simulated time period

Error =

[∫ 30

0
(v̇i − ẏi)2dt

] 1
2

[∫ 30

0
(ẏi)2dt

] 1
2

, (3.10)

where v̇i is the recovered flow and ẏi is the simulated flow for compartment i.

Examining the errors in this way it appears that there is a much greater level

of relative error in compartments 3 and 4 than compartments 1 and 2. This

corresponds well to the observation that the transients in these compartments

were not recovered as shown in fig. 3.14. Comparing these error values to those

of the flow limited to exclude the first 2.5 s emphasises that the flow recovery

errors are dominated by the transient behaviour. Table 3.3 shows the distribution

of the rescaled L2 norm applied to the flow after the initial 2.5 s in which the
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Figure 3.15: Graphs comparing the simulated and recovered volumes in each
compartment. True simulated values are shown as a dashed blue line, while
reconstructed values are a solid black line.

transient effect dominates

Error =

[∫ 30

2.5
(v̇i − ẏi)2dt

] 1
2

[∫ 30

2.5
(ẏi)2dt

] 1
2

. (3.11)

While the relative errors and standard deviations appear to rise in some compart-

ments, this can be attributed to the removal of high flow volumes in the first 2.5

seconds. In these compartments high flow volumes in the initial relaxation time

disproportionately contribute to the L2 norms of the simulated flows, which are

used for normalisation. Excluding the relaxation window for the transient drops

the total error in compartments 3 and 4 down to the same order of magnitude as

errors in the other compartments.
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Table 3.2: Distribution of the L2 error norm applied to the recovered flows for
full simulated time frame. Values have been normalised against the norm of the
simulated flows for each respective compartment to aid in comparison as described
by eq. (3.10).

Comp. No. Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

1 4.04 10.45 6.70 1.09

2 4.06 16.60 8.73 1.80

3 14.68 19.77 16.66 0.86

4 45.03 54.63 49.48 1.55

Table 3.3: Distribution of the L2 error norm applied to the recovered flows exclud-
ing reconstructions from relaxation time. Values have been normalised against
the norm of the simulated flows for each respective compartment to aid in com-
parison as described by eq. (3.11).

Comp. No. Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

1 2.89 12.98 7.13 1.74

2 2.74 19.87 7.64 2.07

3 2.81 13.61 6.41 1.57

4 3.84 15.45 8.45 1.75

This transient error effect is not so pronounced on volume reconstructions.

Table 3.4 shows the distribution of the rescaled L2 norm applied to the volumes

for the whole simulated time period

Error =

[∫ 30

0
(vi − yi)2dt

] 1
2

[∫ 30

0
(yi)2dt

] 1
2

, (3.12)

where vi is the recovered volume and yi is the simulated volume for compartment i.

The table shows that the errors in the volume recovery are much lower than

the errors found in flow recovery. This could be due to the fact that the flows
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Table 3.4: Distribution of the L2 error norm applied to the recovered volumes
for full simulated time frame. Values have been normalised against the norm of
the simulated volumes for each respective compartment to aid in comparison as
described by eq. (3.12).

Comp. No. Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

1 0.46 4.72 1.38 0.61

2 0.51 4.65 1.39 0.62

3 0.49 4.96 1.40 0.67

4 1.37 5.89 2.42 0.62

are integrated to produce the volumes, meaning that the error values shown in

table 3.4 are equivalent to a rescaled evaluation of the datafit term in eq. (3.9).

As the datafit term is an explicit part of the differentiation step it is expected that

the errors in volume recovery should be smaller than those for flow reconstruction.

The speed with which these flows can be computed is more encouraging. Al-

though the initial differentiation step took 0.52 seconds, possibly due to Matlab’s

just-in-time compilation, this dropped to between 113 and 198 milliseconds for all

subsequent runs. Similarly the time taken to normalise the differentiated values,

converting to volumes and flows, was initially 49 milliseconds but dropped to

between 3.8 and 6.9 milliseconds. This implies that clinicians could be presented

with visual representations of a period of regional ventilation within around 0.2

seconds of post processing time.

Both the levels of accuracy and processing time are also encouraging for the

further development of the parameter recovery described in the next section as

well as providing an opportunity to examine ventilation control in chapter 4.

3.4 Parameter recovery

The link between regional ventilation parameters and EIT reconstructions has

been examined before. Czaplik et al. [105] compared regional tidal variations in

EIT to measurements taken through endoscopic microscopy. Through comparison

to regional pressure volume loops they found a link to regional compliance, which

is the reciprocal of the elastance values used in this chapter. However, despite
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demonstrating a correlation between regional compliance changes and impedance

measurements they did not attempt to use impedance to recover compliance.

Therefore, given the recovered ventilation distributions found by techniques in

section 3.3, the next obvious step is to attempt recovery of not only elastance but

also resistance to allow patient specific modelling of mechanical ventilation.

In section 3.4.1 we present the model specific linear regression matrix re-

quired to recover parameters in the model from section 3.1. This formulation has

been reported in conference proceedings [99] and by Crabb [79, chapter 6]. In

section 3.4.2 we discuss the conditions under which parameters should be recover-

able from EIT measurements. Specifically we present a proof that the regression

matrix has full rank when at least one compartment in the model ventilates out of

phase with the others. In section 3.4.3 we demonstrate the recovered parameters

obtained through difference imaging modelled EIT at 100 SNR.

3.4.1 Linear regression matrix

The smoothed flows and volumes generated in section 3.3 can be used in a param-

eter estimation problem to find the mechanical ventilation parameters Ei and Ri

for each compartment and airway through a process of multiple linear regression

similar to that described in [80, section 3.2.1].

As in section 3.1 the governing equations for this inversion can be derived from

eq. (3.2). However, unlike in eq. (3.3), the parameters of resistance and elastance

are treated as the dependent variables while the values of compartmental flow

and resistance are known parameters. This allows the system to be reformulated

as a single matrix multiplication Mx = P, in which the matrix M is composed

of copies of the time series values of flows and volumes while entries of the target

vector x are the desired parameters and P contains copies of the pressure series.

Using over-tilde notation to denote quantities which have been recovered in

section 3.3, denote Q̃ as a vector of length S containing the sum of the smoothed

compartmental flows, and build matrices M̃i, with dimension S × 2, and vectors

P̃ of length S in the form

M̃i =


ṽi(t1) ˙̃vi(t1)

...
...

ṽi(tS) ˙̃vi(tS)

 P̃ =


P (t1)− P0

...

P (tS)− P0

 , (3.13)
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with S denoting the number of time samples. Using Q̃, M̃i and P̃ and block

matrix notation, eq. (3.2) can be reformulated as a 4S×9 overdetermined system

Mx = P with the form

M =


Q̃ M̃1 0 0 0

Q̃ 0 M̃2 0 0

Q̃ 0 0 M̃3 0

Q̃ 0 0 0 M̃4

 , x =



R0

E1

R1

E2

R2

E3

R3

E4

R4


, P =


P̃

P̃

P̃

P̃

 , (3.14)

which can be solved by a Moore-Penrose generalised inverse to give a least squares

solution

x̃ = (MTM)−1MTP, (3.15)

motivated by the assumption of gaussian noise in measurements of voltage and

pressure.

This formulation provides a framework for recovering parameters from venti-

lation measurements using a general pressure control for mechanical ventilation.

However, it still remains to be determined under what circumstances this method

will be guaranteed to produce a unique solution. This question is examined in

section 3.4.2 which specifies criteria on the model parameters to ensure recover-

ability.

3.4.2 Recoverability discusion

As mentioned in section 3.1.2 one of the criteria for choosing the values of resis-

tance and elastance used for the ventilation and parameter recovery tests in this

chapter was that they be recoverable through the method in section 3.4.1. To

do this they have been chosen such that the matrix in eq. (3.14) has full column

rank. To find such values we have defined the following theorem.
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Theorem 1. For periodic pressure profiles the system matrix M shown in eq. (3.14)

has linearly independent columns so long as the parameter pairs (Ri, Ei) are not

all multiples of each other.

This theorem is important and novel as it provides the first evidence that

dynamic, region-specific parameters of elastance and resistance may be recovered

for lung ventilation through a non-invasive bedside imaging modality.

Proof. The simplest way to prove parameters are recoverable is to show that the

system matrix retains full column rank for all possible ventilation profiles. In the

case of a compartmental model with N compartments this full rank is 2N + 1. It

is simple to show that the rank of this matrix must be at least N by the block

structure of the matrix. We split the matrix into a tracheal section, containing

copies of the time series flow at the ventilator to produce a vector of length NS

Q̃

Q̃
...

Q̃

Q̃


, (3.16)

where S is the total number of time samples, and a blockwise diagonal section

containing regional flow and volume series in each block

M̃1 0 · · · 0 0

0 M̃2 · · · 0 0
...

...
. . .

...
...

0 0 · · · M̃N−1 0

0 0 · · · 0 M̃N


(3.17)

Due to this block structure we see that at least N columns of the matrix must

be linearly independent so long as none of the submatrices M̃i are equal to zero.

These degenerate cases correspond to compartments with resistance and elastance

values so high that no air can be forced into the compartment, in which case the

compartment can be identified easily and excluded from the model. In such a case

N now refers to the number of recruited compartments. This argument shows

that the rank of the full matrix M is at least N .
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To go further it is necessary to make assumptions on the structure of the time

series samples themselves. Namely that:

1. the volumes and flows have components which are periodic in nature,

2. the sample rate is high enough to capture this periodicity and to allow us

to consider each time series as approximately equal to a smooth periodic

function of time.

Under these assumption, for two columns within a block M̃i to be linearly depen-

dent the time functions would have to satisfy the equation

avi + bv̇i = 0, (3.18)

for real valued a and b not equal to zero. This produces a contradiction as the

vector vi correspond to samples of a non-zero periodic function which cannot

satisfy eq. (3.18). Therefore under the assumptions above the rank of the system

matrix must be at least 2N.

Finally, using the assumptions above, it is possible to obtain conditions for

the system matrix to have full rank. Under these assumptions, the equations

aj

N∑
i=0

v̇i + bjv̇j + cjvj = 0,

where vj is the time series vector for air volume in compartment j, cannot all hold

for j = 1 : N with aj, bj and cj not all zero for the columns of the system matrix

to be linearly independent. By Fourier transforming this equation it can be shown

that the constants cj must always be zero as the air volumes are non negative,

meaning that the functions vj have non trivial zero frequency components while

the other functions are derivatives and do not.

So for the columns of the system matrix to be linearly dependent the equations

aj

N∑
i=0

v̇i + bjv̇j = 0,

must hold for all j = 1 : N. This implies that the only situation in which the

system matrix does not have full rank is when all the regional flows are multiples

of each other. However, this only occurs when the ODE parameters are also

proportional to each other.
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Theorem 1 means that, although there is not always a unique solution to

eq. (3.14), we will always be able to find the regional elastance values and obtain

ratios between resistances in different compartments, using any periodic pressure

profile. It also means that in the most dangerous situations for lung health, where

successive compartments are out of phase with each other, there will always be a

unique least squares solution.

Once the system matrix is built from reconstructed flows, the problem in

eq. (3.14) becomes a total least squares problem (TLS ). TLS problems arise

where a least squares solution is needed to a system with unknown errors in both

the measured data vector and the system matrix. Unconstrained solutions to

this type of problem can be computed using singular value decompositions [106].

However, applying these techniques to the problem in eq. (3.14) was found to

produce larger errors in reconstructed values. This is possibly due to the block

structure and sparsity of the system matrix in this case. It is possible that the

use of constrained total least squares (CTLS ) techniques [107, 108] may improve

the parameter recovery.

In TLS techniques, the least squares estimation problem is posed on a matrix

system of the form

(M + ∆M)x = b+ ∆b,

where ∆M and ∆b are errors in the formulation of the system matrix and mea-

sured data respectively. In CTLS techniques, ∆b and the columns of ∆M are

assumed to be linear combinations of some common noise vector, with this linear

relationship known explicitly. Therefore in this formulation the zero entries in

our regression matrix could be specified to have no noise component, while the

relationship between the errors for volumes and their derivatives could be explic-

itly specified. However, implementation of these techniques was deemed beyond

the scope of this thesis.
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3.4.3 Parameter recovery from EIT at 100 SNR

In this section we demonstrate the process of parameter recovery using conductiv-

ity timeseries with noise added through the difference imaging noise techniques

outlined in section 3.2.1. To do this tests were performed on the conductivity

time series generated for ventilation by a sinusoidal pressure profile of the 4 com-

partment ODE lung model outlined in section 3.1. The parameters used for this

ventilation and conductivity forward solve can be found in table 3.1, the pressure

and ventilation profiles can be found in fig. 3.4 and the resulting conductivity

timeseries can be found in fig. 3.5.

As with the ventilation distribution recovery tests in section 3.3.2, 1000 tests

were performed in which a noisy conductivity series was generated using difference

EIT at an SNR of 100 (40 dB) and the air volumes and flows were reconstructed.

The testing procedure for this ventilation reconstruction is shown in algorithm 3.1.

To generate the results in this section, in each test the reconstructed volumes

and flows were used to generate the system matrix shown in eq. (3.14), which in

turn was used to generate recovered ventilation parameters through eq. (3.15).

For clarity, an outline of the testing procedure is shown in algorithm 3.2. This

testing procedure resulted in the generation of 1000 recovered parameter sets.

Algorithm 3.2 Parameter recovery testing procedure

1: Set number of time samples S
2: Set number of tests N
3:

4: Solve ODE for air volumes
5: Generate conductivity time series from volumes
6: Generate reference voltage V0

7:

8: % Perform tests
9: for i ≤ N do

10: for j ≤ S do
11: Generate noisy voltage Vn from V0

12: Perform difference EIT on Vn − V0

13: Add reconstructed noise to conductivity sample j
14: Take reciprocal to generate noisy resistivity
15: end for
16: recover ventilation distribution i from noisy resistivity samples
17: generate regression matrix i from recovered ventilation distribution
18: generate recovered parameter set i using the regression matrix
19: end for
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Both the simulated parameters and the distribution of the recovered parame-

ters are shown in fig. 3.16. Elastance values were generally recovered much more
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Figure 3.16: Charts showing the simulated parameter values (bars) and the dis-
tribution of their recovered values (lines). The vertical lines are marked at the
minimum, maximum and mean values recovered as well as points two standard
deviations from the mean.

accurately than compartmental resistance values, while the resistance values were

harder to recover in compartments with higher elastance. In order to compare

the recovery of these different parameters a time constant was calculated for each

compartment as the total recovered series resistance leading to a compartment,

including tracheal resistance, divided by the recovered compartmental elastance,

R0 +Ri

Ei
. (3.19)

These time parameters have clinical relevance, as time constant ratios of flow rate

to lung volume can be used as a measure of lung health [109]. The distribution

of these recovered time constants is shown visually in fig. 3.17 and numerically

in table 3.5.

Due to the systematic overestimation of the compartmental resistances, these

time constants were overestimated by between 0.14 - 0.17 seconds. It is not clear

why this overestimation has occurred as tests at higher SNR levels display the

same behaviour, implying that this is not solely due to measurement errors. How-

ever, it is encouraging that the overestimation of time constants appears relatively
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Figure 3.17: Time constants for SNR 100 recons.

Table 3.5: Table showing the errors in recovery of the time constant for each
compartment. The standard deviation for the recovered parameters is shown as
a percentage of the true values.

Comp. No. True Value Mean Error STD

1 1.5 1.64 0.14 0.058

2 2.5 2.63 0.13 0.074

3 0.67 0.84 0.17 0.060

4 0.6 0.75 0.15 0.066

consistent. The distributions of these recovered parameters display standard de-

viations lower than 0.08 s, less than 11% of the values for each compartment.

Hence, while time constants were not recovered perfectly, the near constant bias

in recovery allows the compartments relative health to be compared.

The low error ranges for elastance recovery are also encouraging as they may

be easily converted to the more common measure of compliance, which is currently

used for guiding recruitment manoeuvres. These regional measures were again

recoverable within a short time, taking between 0.3 ms and 6.6 milliseconds to

compute after the flows had been recovered. This implies that the parameter

recovery technique is a natural choice for extending the volume and flow recovery

in a clinical setting. However, before further development of these methods it is

necessary to see how they behave with higher levels of measurement noise and

increased errors in EIT reconstruction. These will be discussed in section 3.5.
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3.5 Sensitivity to EIT changes

In sections 3.3 to 3.4 we have demonstrated techniques to recover both ventila-

tion distributions and ODE model parameters from ideal EIT at an SNR of 100

(40 dB). This testing provides a first proof of concept in the coupling of EIT to

ventilation modelling. The next step in verifying the feasibility of this work flow

is to test its behaviour as the quality of the EIT reconstructions is lowered.

To perform this sensitivity analysis we have tested the ventilation and param-

eter recovery techniques against increasing levels of voltage measurement noise as

well as changes to the EIT reconstruction algorithm and model segmentation. In

section 3.5.1 we show the effects of changing noise levels on conductivities recov-

erable through the idealised EIT noise generation methods from section 3.2.1. We

then focus on the conductivity time series recoverable through pseudo-absolute

imaging as described in section 3.2.2.

In section 3.5.2 we show the recovered ventilation and parameter distributions

from pseudo absolute reconstructions where the segmentation of compartments

for the reconstruction exactly matches the mesh used for voltage generation.

We then examine how errors in this segmentation effect the recovery process in

sections 3.5.3 to 3.5.4.

3.5.1 Signal to Noise Ratio

In this section we test the sensitivity of the ventilation and parameter recovery

techniques to EIT modelled noise. To do this, tests were performed at signal

to noise ratios of 50-100 in increments of 10 SNR. Despite an SNR of 40 dB

being considerably lower than the practical limit of EIT measurement accuracy

of roughly 100 dB [98], the choice was made to examine lower signal qualities in

order to determine when the post-processing techniques are likely to fail. While

an SNR interval of 50-100 corresponds to a range of 34-40 dB it also corresponds

to a doubling in the magnitudes of the noise values applied.
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To perform this sensitivity analysis, at each SNR reconstructions were per-

formed for each time sample of conductivities as described in section 3.2.1. This

was repeated for one thousand realisations of voltage noise for each time sample

at each noise level using the Matlab pseudo-random number generator. The re-

sulting noisy conductivity time series were used in the ventilation and parameter

recovery procedures from sections 3.3 to 3.4 and we compare the resulting distri-

butions here. Outlines of these testing procedures for individual SNR levels can

be found in algorithms 3.1 and 3.2

As shown in fig. 3.18 the change between 100 SNR, as used in previous sec-

tions, and 50 SNR noise in EIT voltage measurements has a marked effect on the

resulting bulk resistivity time series. However, as described in section 3.3.1, the
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Figure 3.18: Comparison of the noisy resistance time series produced by recon-
struction of difference EIT at both 100 SNR (left) and 50 SNR (right).

numerical differentiation techniques we are using have been designed to account

for varying levels of noise through the use of L-curve methods to determine the

correct regularisation hyperparameters. The effect of the rising levels of noise on

the parameters chosen by this L-curve method can be seen in table 3.6. This

table shows the mean hyperparameter value chosen for each compartment across

the thousand tests at each noise level. As expected the higher the level of noise

the more regularisation was required.

The increase in regularisation results in similar qualitative behaviour for the

recovered ventilation profiles of both the volumes and flows at the varying noise

levels. The qualitative behaviour of these recoveries can be seen in figs. 3.19

to 3.20 which show volume and flow recoveries for each compartment for one

realisation of voltage noise. As with the ventilation recovery at 100 SNR shown
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Table 3.6: Comparison of mean differentiation hyperparameters required for each
compartment at varying levels of noise.

SNR Compartment number

1 2 3 4

100 1.506 1.416 1.373 1.434

90 1.581 1.485 1.440 1.499

80 1.668 1.565 1.519 1.566

70 1.771 1.663 1.611 1.642

60 1.893 1.779 1.728 1.732

50 2.055 1.936 1.873 1.830

in section 3.3.2 the qualitative behaviour of these recovered distributions appears

similar to that of the distributions generated in the ventilation forward solve. The

magnitudes of tidal variations appear similar as does the period of ventilation.

Similarly to the 100 SNR tests the most apparent qualitative error is the inabil-

ity of the method to accurately track the initial few seconds of large transient

behaviour.

The differences between ventilation distributions recovered at each noise level

become more apparent when examined quantitatively. Table 3.7 shows the distri-

bution of the L2 errors in the recovered volumes at each noise level. These error

Table 3.7: Comparison of L2 errors in recovered volumes for different SNR lev-
els. Values have been normalised against the norm of the simulated volumes as
described in eq. (3.20).

SNR Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

100 0.91 4.64 1.51 0.52

90 0.96 5.02 1.61 0.56

80 1.01 5.49 1.74 0.62

70 1.08 6.06 1.92 0.69

60 1.15 7.15 2.19 0.80

50 1.34 8.80 2.62 0.98
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Figure 3.19: Graphs comparing the phantom and recovered volumes in each com-
partment for ideal EIT at 50 SNR. Volume values generated in the ventilation
forward solve are shown as a dashed blue line, while reconstructed values are a
solid black line.

norms are calculated as

Error =

[∑4
i=1

{∫ 30

0
(vi − yi)2dt

}] 1
2

[∑4
i=1

{∫ 30

0
(yi)2dt

}] 1
2

, (3.20)

where vi are the recovered volumes and yi are the simulated volumes for com-

partment i. As expected the overall errors measured in this way show an increase

as the SNR is lowered.

One encouraging feature of the values shown in table 3.7 is that the mean,

standard deviation and maximum errors shown for the 50 SNR reconstructions do

not reach twice the values for the 100 SNR reconstructions. In moving between

100 SNR and 50 SNR the level of voltage noise doubles so the fact that the L2

errors don’t attain that level of increase emphasises how effective the increased
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Figure 3.20: Graphs comparing the phantom and recovered flows in each compart-
ment for ideal EIT at 50 SNR. Flow values generated in the ventilation forward
solve are shown as a dashed blue line, while reconstructed values are a solid black
line.

regularisation has been in reducing recovery errors. However, it should be noted

that the effect may become less pronounced if a larger number of voltage noise

samples is taken to generate the recovered distribution or could be due to the

inclusion of the transient relaxation periods in these measures.

The parameter recovery from section 3.4 behaves similarly to the ventilation

recovery under increasing levels of noise. As expected from the results in sec-

tion 3.4.3 the recovery of elastance values was most stable under the increasing

noise values. The mean and standard deviation for each compartmental elastance

value can be found in table 3.8. As expected the mean values remain close to the

values used in the ventilation forward solve but the standard deviation increases

from approximately 1% of the value to approximately 2% emphasising that this

parameter is stable under the proposed recovery method.

A similar pattern can be seen in the recovery of the resistance parameters

shown in table 3.9. Again the mean recovered values remain close to the correct

value while the standard deviation nearly doubles. However, this is more of a

problem with resistance than with elastance as, for the least resistive compart-

ment, the standard deviation increases from 22% of the true value to 42%. In fact



3.5. SENSITIVITY TO EIT CHANGES 107

Table 3.8: Comparison of recovered elastances from difference runs for different
levels of noise.

E1 E2 E3 E4

SNR mean STD mean STD mean STD mean STD

True 10.00 - 10.00 - 15.00 - 25.00 -

100 9.94 0.10 9.92 0.11 14.91 0.16 25.38 0.29

90 9.94 0.12 9.93 0.12 14.92 0.18 25.40 0.32

80 9.95 0.13 9.94 0.14 14.94 0.20 25.44 0.36

70 9.96 0.15 9.95 0.16 14.96 0.23 25.49 0.41

60 9.98 0.17 9.98 0.19 15.01 0.27 25.59 0.48

50 10.01 0.21 10.03 0.22 15.09 0.33 25.76 0.59

one instance of measurement noise produced a single negative value of resistance

for this compartment. This emphasises that the recovery of resistances from these

methods can be much more inaccurate than for elastance and may require more

advanced parameter fitting techniques.

This does not mean that the resistance parameters cannot be useful. As

mentioned in section 3.4.3 another useful measure in gauging the relative health

and behaviour of compartments can be found in the time constant ratio between

elastance and resistance. A comparison of these values between reconstructions

at 100 SNR and 50 SNR can be seen in fig. 3.21. Similarly to the results in
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Figure 3.21: Charts comparing Time constant recovery at 100 SNR (left) and
50 SNR (right).



108 CHAPTER 3. LUNG MODELLING AND PARAMETER RECOVERY

Table 3.9: Comparison of recovered resistances from difference runs for different
levels of noise.

R0 R1 R2 R3 R4

SNR mean STD mean STD mean STD mean STD mean STD

True 5.00 - 10.00 - 20.00 - 5.00 - 10 -

100 4.14 0.25 12.18 0.78 22.00 0.92 8.35 1.12 14.83 1.92

90 4.16 0.28 12.09 0.86 21.89 1.01 8.24 1.24 14.63 2.13

80 4.20 0.31 11.98 0.97 21.75 1.14 8.09 1.39 14.35 2.39

70 4.26 0.35 11.83 1.09 21.55 1.29 7.88 1.57 13.97 2.71

60 4.34 0.41 11.60 1.25 21.27 1.49 7.56 1.81 13.40 3.13

50 4.47 0.48 11.24 1.47 20.84 1.75 7.07 2.12 12.51 3.68

section 3.4.3 the time constants remain close to the correct values and most

importantly stay within similar ratios to each other. Which is encouraging for

the use of recovered elastance and resistance values in further modelling of lung

function.

From this analysis we can see that the recovery of ventilation distributions

remains stable under increasing levels of voltage measurement noise as does the

recovery of both elastance values and time constants. However, the recovery of

ventilatory resistance values is less stable and may impact their use in further

lung modelling. This will be discussed further in section 4.5.

3.5.2 Pseudo-absolute signal recovery

This section shows the results of ventilation and parameter recovery when both

the conductivity noise and signal are reconstructed through the use of pseudo-

absolute EIT at an SNR of 100 as described in section 3.2.2. As with the ideal

simulations of EIT in the last section the results in this section all three meshes

used had four matching cylindrical inclusions defined explicitly in the mesh. This

corresponds to performing EIT with an exact segmentation of the lung regions.

Therefore the grouping constraints on the absolute solve and the regions used for

aggregating the difference imaging match the compartments exactly.



3.5. SENSITIVITY TO EIT CHANGES 109

Comparing the bulk resistivity time series produced by ideal EIT and pseudo-

absolute EIT at 100 SNR in fig. 3.22 it appears that the process of pseudo-

absolute reconstruction actually reduces the effect of random measurement noise

on the recovered time series. However, it can be seen that the time series no
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Figure 3.22: Comparison of the noisy resistance time series produced by difference
EIT at 100 SNR (left) and pseudo-absolute EIT at 100 SNR (right).

longer all start at the same value for time zero. This is due to the fact that the

absolute reconstructed frame used as a reference was simulated at mid inhalation.

Therefore errors in the linearised difference solve for the first reconstructed frame

produce different aggregated values for the compartments.

Examining the qualitative behaviour of the recovered volumes and flows from

these resistance time series can see similar features to the recovered flows from

ideal EIT. Figures 3.23 to 3.24 show recovered volumes and flows respectively.

As with ideal EIT many of the general qualitative features have been captured,

the magnitudes of the tidal volumes appear to have been recovered well in two

of the four compartments and the relative magnitudes of the volumes in each

compartment are close. We also see that, in a similar way to the ideal EIT tests,

the first few seconds of transient behaviour in the compartmental flows do not

appear to have been captured.

Unlike the ideal absolute EIT however, some features are different in the

recovered ventilation distributions. For example the peaks of the volumes in

some compartments seem to have been shifted slightly and the volumes in two

compartments appear to differ in magnitude from the correct values. Both of

these changes could be explained by the use of a smoothing Laplace prior in

the difference imaging step as described in section 2.1.3. Due to this prior the
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Figure 3.23: Graphs comparing the simulated and recovered volumes in each
compartment for pseudo-absolute EIT with exact segmentation. True simulated
values are shown as a dashed blue line, while reconstructed values are a solid
black line.

relative values in neighbouring compartments can affect each other causing the

phase shift. Similarly some of the conductivity changes may be moved outside of

the regions used to aggregate compartmental values. These qualitative errors in

the ventilation recovery result in the overall increase in the quantitative errors,

as shown in table 3.10, despite the apparent noise seen in fig. 3.22.

Table 3.10: Comparison between reconstruction types of errors produced in re-
construction of compartmental volumes measured in the L2 norm as described in
eq. (3.20).

Recon Type Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

Ideal 0.91 4.64 1.51 0.52

Absolute 1.60 12.38 4.93 1.89

As expected this increased error in the recovered ventilation distribution does

affect the recovery of parameters as shown in fig. 3.25. As with the ideal re-
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Figure 3.24: Graphs comparing the simulated and recovered flow rates in each
compartment for pseudo-absolute EIT with exact segmentation. True simulated
values are shown as a dashed blue line, while reconstructed values are a solid
black line.

constructions described in the previous section the elastance values were again

recovered comparatively well. The range and standard deviation of the recov-

ered elastances was increased as expected but they remain distributed around

the correct values relatively tightly. However, the resistance values were not as

well recovered with Resistances less than 10% of the correct value given for R3 in

1.6% of tests and R4 in 1% of tests.

Even with this large error in resistances though the distribution of the time

constants was still relatively well recovered as shown by the comparison of time

constants recovered from ideal and pseudo-absolute EIT in fig. 3.26. As expected

the range of recovered parameters for each of these time constants was increased

when using pseudo-absolute reconstruction. However, the values for each com-

partment retain clear differences from each other allowing the relative health of

compartments to be assessed with both ideal and pseudo-absolute EIT.
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Figure 3.25: Charts showing the distribution of recovered elastances (left) and
resistances (right).
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Figure 3.26: Chart comparing the time constant recovered from ideal EIT at
100 SNR (left) and from pseudo-absolute reconstructions with exact segmentation
at 100 SNR (right).

These results are encouraging for the development of ventilation and param-

eter recovery from EIT. The general qualitative behaviour of the recovered ven-

tilation was captured well while elastance values and time constants were recov-

erable using multiple linear regression. The errors in resistance recovery is less

encouraging, however, improvements could be possible under changes to the EIT

reconstruction algorithm or a more advanced parameter fitting method.

We will examine some of the effects of changing the EIT reconstruction in the

next section.
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3.5.3 Changes to mesh segmentation

In practical EIT it is unlikely that it will be possible to exactly segment and

mesh the lungs accurately for reconstruction. For this reason we examine what

happens to the recovered ventilation distributions and parameters under errors

in this segmentation. In particular we describe two possible segmentation errors.

The first is a segmentation which has the correct shape, in this case circular

cylinders, but is larger in radius by 10%. The second segmentation error is in the

shape itself. To test this case we have used elliptic cylinders for the reconstruction

segmentation.

Using the circular cylinder segmentation with increased radius the recon-

structed ventilation distributions appear largely similar to the reconstructions

with exact segmentation. The volumes shown in fig. 3.27 again follow the correct

ventilation pattern quite closely. In fact, as can be seen from table 3.11, the
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Figure 3.27: Graphs comparing the simulated and recovered volumes in each
compartment for pseudo-absolute EIT with inexact segmentation consisting of
the correct shape estimation but a radius increased by 10%.

mean and standard deviation of the L2 errors in the volumes is decreased for

this segmentation. This improvement in the volume recovery suggests that the

smoothing action of the Laplace prior may be responsible for some of the errors

as mentioned in the previous section.
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Table 3.11: Comparison of errors produced in reconstruction of compartmental
volumes as measured in the L2 norm, described in eq. (3.20), when changing the
radius of the lung segmentation for reconstruction.

Radius Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

Exact 1.60 12.38 4.93 1.89

+10% 2.35 10.25 4.82 1.39

Some improvement can also be seen in the distributions of the recovered pa-

rameters. Figure 3.28 shows modest improvement in the distributions of the

recovered elastances but the improvement is more apparent in fig. 3.29 compar-

ing recovered resistances. While these recovered resistance values are still not
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Figure 3.28: Charts comparing the elastance values recovered with exact segmen-
tation (left) and with an inexact segmentation consisting of the correct shape with
increased radius (right).

accurate, they now have a lower variance and do not become negative allowing

them to more accurately show the health of the lung region. This is emphasised

by the time constant values shown in fig. 3.30 which now show a more consistent

bias and lower variance.
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Figure 3.29: Charts comparing the resistance values recovered with exact segmen-
tation (left) and with an inexact segmentation consisting of the correct shape with
increased radius (right).
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Figure 3.30: Charts comparing the time constant values recovered with exact
segmentation (left) and with an inexact segmentation consisting of the correct
shape with increased radius (right).
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Figure 3.31: Comparison of extruded meshes with correct segmentation and in-
correct segmentation consisting of elliptical cylinders.

The second change we tested to the segmentation used in the pseudo-absolute

reconstructions replaced the circular cylindrical regions with elliptic cylinders.

These cylinders, shown in the mesh on the right hand side of fig. 3.31, were

extruded from ellipses with a minor axis equal to the radius of the true cylindrical

lung region and a major axis which was 20% larger. This ensured that the

segmented region included the true lung regions.

Unlike with the previous segmentation the qualitative behaviour of the vol-

umes recovered with this elliptic segmentation, shown in fig. 3.32 appears more

noticeably different from the correct ventilation profile. Examining the L2 er-

ror distributions for the ventilation profiles recovered using this segmentation

scheme, shown in table 3.12, reveals that as expected it is less accurate than an

exact segmentation as measured by the mean error. However, the decrease in

Table 3.12: Comparison of errors produced in reconstruction of compartmental
volumes as measured in the L2 norm, described in eq. (3.20), when changing the
shape of the lung segmentation for reconstruction.

Segmentation Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

Exact 1.60 12.38 4.93 1.89

Elliptic 4.02 10.89 5.99 1.18

the standard deviation and the reduction in the difference between the maximum

and minimum errors suggests that this is a more stable segmentation for the EIT

reconstruction step.
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Figure 3.32: Graphs comparing the simulated and recovered volumes in each
compartment for pseudo-absolute EIT with inexact segmentation consisting of
elliptic cylinders completely enclosing the true circular cylindrical lung region.

This stability is supported further by the recovered parameters. As with

the increased radius cylinder the large elliptic segmentation produced a modest

improvement in elastance values and more stable estimates of resistance values.

This resulted in the time constant values shown in fig. 3.33 which again show

a more constant bias and greater stability than those recovered from an exact

segmentation.
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Figure 3.33: Charts comparing the time constant values recovered with exact seg-
mentation (left) and with an inexact segmentation consisting of elliptic cylinders
(right).

3.5.4 Segmentation size comparisons

The increase in stability of recovered ventilation distributions and parameters

shown in the previous section indicates that the size of the segmented region

rather than the shape may be the more important factor when determining if

a good segmentation has been found. To confirm this further tests of both the

circular and elliptic cylinder segmentations were performed.

Table 3.13 shows a comparison of the L2 errors in recovered air volumes using

circular cylinders with varying radii. As expected from the test in the previous

Table 3.13: Comparison of the errors in recovered volumes, measured in the L2

norm described in eq. (3.20), for different circular cylinder segmentation sizes

Recon Type Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

’ExactSegmentation’ 1.60 12.38 4.93 1.89

’IncrRad10pct’ 2.35 10.25 4.82 1.39

’IncrRad20pct’ 3.42 9.63 5.18 1.07

’DecrRada10pct’ 5.66 21.83 9.77 2.62

’DecrRad20pct’ 17.58 3341.50 40.31 116.60

section the reconstructions from segmentations with increased radii showed in-

creased errors but greater stability, implying that overestimating the size of the

lung regions may be advantageous. However, decreasing the radii of the cylinders
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Figure 3.34: Graphs comparing the simulated and recovered volumes in each
compartment for pseudo-absolute EIT with inexact segmentation consisting of
the correct shape estimation but a radius decreased by 10%.

produced large errors in the recovered ventilation. This also resulted in loss of

much of the qualitative accuracy as shown in figs. 3.34 to 3.35. Similarly decreas-

ing the minor and major axes of the elliptic cylindrical segmentation produced

larger errors as well as shown in table 3.14.

Table 3.14: Comparison of the errors in recovered volumes, measured in the L2

norm described in eq. (3.20), for different elliptic cylinder segmentation sizes.

Recon Type Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

’ExactSegmentation’ 1.60 12.38 4.93 1.89

’EliptLarge’ 4.02 10.89 5.99 1.18

’EliptSmall’ 7.25 20.66 10.80 2.08

The effect these segmentation size changes had on the recovery of parameters

can be seen in the time constant values shown in tables 3.15 to 3.16 Again the

larger segmentations showed some decrease in accuracy but improved stability

while smaller segmentations produced wildly inaccurate parameters.
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Figure 3.35: Graphs comparing the simulated and recovered volumes in each
compartment for pseudo-absolute EIT with inexact segmentation consisting of
the correct shape estimation but a radius decreased by 20%.

This demonstrates that, while the techniques in sections 3.3 to 3.4 are ca-

pable of producing qualitatively useful ventilation distributions and informative

ventilation parameters, the size and shape of the segmentations used will affect

how accurate and stable the results are. In particular, slight overestimation of

the lung region produced more stable ventilation and parameter recovery. This

is encouraging information for the practical implementation of pseudo-absolute

EIT, as it will not be possible to exactly segment and track the position of the

lungs throughout the breathing cycle.
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Table 3.15: Comparison of recovered time constants from absolute runs using as
size of segmented region changes.

T1 T2 T3 T4

Recon Type mean STD mean STD mean STD mean STD

TrueValues 1.50 - 2.50 - 0.67 - 0.60 -

’Exact’ 1.35 0.08 2.14 0.10 0.67 0.10 0.59 0.12

’IncrRad10pct’ 1.70 0.07 2.60 0.09 1.07 0.06 1.00 0.06

’IncrRad20pct’ 1.76 0.08 2.67 0.10 1.10 0.06 0.99 0.06

’DecrRad10pct’ -0.03 0.25 0.51 0.21 -3.60 0.72 -7.12 1.11

Table 3.16: Comparison of recovered time constants from absolute runs using as
shape of segmented region changes.

T1 T2 T3 T4

Recon Type mean STD mean STD mean STD mean STD

TrueValues 1.50 - 2.50 - 0.67 - 0.60 -

’EliptLarge’ 1.68 0.09 2.56 0.11 0.97 0.06 0.82 0.05

’EliptSmall’ -1.30 0.31 0.38 0.15 -5.03 0.76 -10.38 1.43

3.6 Conclusion

In this chapter we have described models and techniques to both generate EIT

measurements from ventilation models and recover ventilation distributions and

parameters for those models from EIT reconstructions. We derived an ODE

model for lung function which we used to produce time series values of conduc-

tivity. We demonstrated how both ideal absolute EIT and pseudo-absolute EIT

could be simulated on these conductivity values to generate noisy conductivity

time-series for use in testing post processing procedures. In section 3.3 we de-

scribed how to recover regional air volumes and flows and proved that they could

be used by the techniques in section 3.4 to fit parameters for our ODE lung

model. Finally the results in section 3.5 show that our post processing tech-

niques are stable enough under both measurement and modelling errors in EIT

to provide useful information for clinicians monitoring care.



Chapter 4

Control

In the previous chapters we have demonstrated two important techniques for the

real time monitoring of lung function. First we showed that it is possible to

produce pseudo-absolute reconstructions of functional EIT in real time after a

limited setup time in chapter 2. Development of this technique was motivated

by the desire to couple EIT reconstructions to models of lung function in an at-

tempt to make the use of EIT more useful to clinicians working in respiratory

intensive care. This lead to the second important technique, discussed in chap-

ter 3, whereby we recover not only regional ventilation distribution but also widely

used and accepted measures of lung function in the form of regional pulmonary

elastance and resistance.

In this chapter we investigate how our lung model and recovered parameters

may be incorporated into control of mechanical ventilation. The recovery of these

ventilation distributions and parameters are of themselves useful to clinicians.

For example the fact that the magnitude of tidal volumes has been linked to

patient mortality [4] implies that regional data on lung volume could be a useful

indicator. Similarly the current use of compliance during PEEP titration [77],

where an acceptable positive end expiratory pressure (PEEP) is determined by

successive lowering of the PEEP level, implies regional compliance and resistance

would be useful during recruitment manoeuvres. However, use of parameters in

this manner would require experience and skill on the part of the clinician. Ideally

we want to provide a procedural mechanism for incorporating our information into

automatic controls.

122
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To begin incorporating EIT into the control of mechanical ventilators we first

examine existing control procedures. Modern ventilators rely on both user input

and feedback control techniques from control theory. Chatburn lists a hierarchy

for the levels of user input and feedback control in his review of computer control

systems [110]. The lowest level in this hierarchy is set-point control, in which the

user defines a set pressure to be experienced by the patient. Due to the interaction

between the patient’s lung and the ventilator, the applied pressures may not be

the same as those experienced by the patient’s airways, so the ventilator uses

measurements of the airway pressure as feedback to adjust the applied pressures

accordingly.

A more advanced approach in Chatburn’s hierarchy is to allow the computer

to modify this pressure set-point based on optimising mathematical models of

lung function in a scheme known as optimal control. There are many different

approaches to building these optimal control schemes, however the one we exam-

ine here is known as model predictive control. In these techniques a simple model,

often a linearisation, is used to predict the behaviour of a nonlinear system. A

control is generated to optimise the behaviour of the linearised system over a

limited time frame ignoring the likely changes in lung parameters between the

start and end of the control procedure.

One example of such a model is given by Li and Haddad [82], where they

track changes in pressure, volume flows and states between breathing periods for

a simulated lung system. They then use a linear compartmental reference model

for the lungs to adapt their pressure control using a repetitive model predictive

control scheme. However, model based approaches such as this are limited by the

availability of patient specific model parameters and in particular regional differ-

ences within the patient. This highlights the novelty and utility of the parameter

recovery procedures we described in chapter 3. Using these regional parameters

from our observable EIT lung model, we test the feasibility of a patient-specific

model-based control scheme in this chapter.

In section 4.1 we examine the model from chapter 3 to determine under what

circumstances we may use control theory to produce pressure controls. In sec-

tion 4.2 we describe some practical methods for building controls numerically.

In section 4.3 we demonstrate that control techniques can be applied quickly

to reduce gradients of pressure over small sections of existing controls. This is

desirable as high gradients of pressure have been linked to increased epithelial
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stresses in the lungs by Bilek et al. [5]. In section 4.4 we design a framework for

optimising the H1 minimal controls with respect to clinically relevant outcomes.

Finally in section 4.5 we perform a sensitivity analysis on the control methods to

determine how they behave with parameters recovered through EIT at varying

signal to noise ratios (SNR).

Throughout chapter will use (·∗) to denote conjugate transpose as well as the

transpose of real valued matrices and vectors to avoid confusion with exponents

of time.

4.1 Controllability

Our aim is to develop techniques from control theory to incorporate the param-

eters and models from chapter 3 into control schemes for mechanical ventilation.

However, before these can be examined it is necessary to confirm the controlla-

bility of the system of ODEs we are using. An important and novel result we will

demonstrate in this section is that the system of ODEs from chapter 3 is control-

lable under a wide range of parameter values. This controllability tells us how

effective control theory techniques can be for the given model and parameters.

As the lung models we are using consist of a linear system of ODEs we will use

the following two equivalent definitions of controllability throughout this chapter.

Definition 1. A controllable linear system of ODEs

ẏ = Ay +Bu, (4.1)

is not algebraically equivalent to any linear system in which the state variables

may be separated into one set of state variables which are directly affected by an

input term and one set which is not affected by this input or the other set of state

variables [111].

Definition 2. A controllable system can be steered from any state y0 at time

t = 0 to any other state yT at time t = T by a control u. In this general case y

is an n-dimensional function, A is an n × n state space matrix, B is an n ×m
state space matrix and u is an m-dimensional control function [112, section 1.2].
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As we will explore further in the later sections of this chapter, control theory

also provides techniques for generating the controls mentioned in the definition

above. The controls corresponding to given initial conditions, target states and

time constraints are not unique, but there exist closed form solutions providing

the controls which are optimal under a given norm. For example the control

which has minimal L2 norm,

‖u‖L2 =

(∫ T

0

|u(s)|2ds

) 1
2

, (4.2)

is specified at every time s as

u(s) = −B∗ exp{(T − s)A∗}Q−1
T (exp{TA}y0 − yT), (4.3)

where QT is a Gramian matrix [112, proposition 1.1], which will be described in

section 4.2.2.

The combination of formulae such as the one in eq. (4.3) with definition 2

appears to have strong implications for the application of control theory to venti-

lator control. However, controllability as described above does not mean that we

can design useable pressure controls to take the lungs to any arbitrary inflation

state. In fact some target states and control time periods cause the generated

profiles to include large variations and gradients in pressure and can violate safety

constraints. For this reason we will examine options for choice of the target state

in later sections in order to demonstrate the feasibility of providing benefit to

mechanical ventilation through the use of EIT guided control.

In this section we show that the system of ODEs produced in chapter 3 follows

definition 2 of controllability under a wide range of parameter sets. In particular

we link the controllability of these equations to what can be inferred about the

qualitative behaviour of the lungs for particular parameter sets and examine the

extension of controllability to time derivatives of the inflation states.
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4.1.1 Determining Controllability

Controllability of the system in eq. (4.1) can be determined for a given set of

parameters by examining the Kalman controllability matrix [112], which has the

block matrix structure

K = [ B AB · · · An−1B ]. (4.4)

A necessary and sufficient condition for the system in eq. (4.1) to be controllable

is for matrix K to have rank n, where n is the length of the vector y [112,

theorem 1.2], or in this case the number of separate compartments in the model.

To determine if the lung model in chapter 3 is controllable, eq. (3.3) is refor-

mulated as

v̇ = −R−1Ev +R−1b(P (t)− P0), (4.5)

where v is a vector containing the compartmental volumes, b is a vector of ones,

R and E are the airway resistance and elastance matrices described in eq. (3.4)

and P (t) − P0 gives the difference between the applied pressure and the pleural

pressure at time t. The controllability matrix K can then be formed from eq. (4.4),

using

A = −R−1E, B = R−1b, u = (P (t)− P0). (4.6)

The rank of

K = [ R−1b −R−1ER−1b · · · (−R−1E)n−1R−1b ] (4.7)

may then be calculated to determine if the system is controllable.

As an example of this, the parameters for the four compartment model tested

in chapter 3 give

A =


−0.846 0.077 0.462 0.385

0.077 −0.462 0.231 0.192

0.308 0.154 −2.077 0.769

0.154 0.077 0.462 −2.115

 , B =


0.031

0.015

0.062

0.031

 . (4.8)
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Using this matrix and vector to build the Kalman controllability matrix produces

K =


0.031 0.015 −0.066 0.144

0.015 0.015 −0.033 0.056

0.062 −0.092 0.175 −0.369

0.031 −0.031 0.026 0.013

 (4.9)

which has full rank. Therefore, for the parameters used in chapter 3 this model

is controllable.

For a low dimensional system, corresponding to few compartments with spec-

ified parameters, this rank calculation may be completed using standard tech-

niques and packages. However, the process of finding the rank of a matrix is

itself ill-posed. For example the matrix[
1 1

0 ε

]
,

has full rank for all |ε| > 0 and is rank deficient for ε = 0, this violates the

continuity condition for problems to be well posed. This ill-posedness, combined

with the numerical difficulty of taking large powers of matrices, leads to difficulty

determining the controllability of larger systems in this way.

To get around this rank determination problem it is possible to examine the

controllability of systems which are equivalent to the ODE system in question.

That is to say checking the controllability of the system

ż = Cz +Dw,

where, for real valued systems, the vectors z and w are related to y and u by the

nonsingular matrices P ∈ Rn×n and S ∈ Rm×m,

z = Py, w = Su.

This gives the equivalent matrices

C = PAP−1, D = PBS−1.
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In order to relate controllability to the structure of the compartmental model

and general relations of parameters within individual models it is necessary to

look at an equivalent formulation of the ODE formed using the eigenvalues of the

system.

4.1.2 Controllability from eigenvalues

In this subsection we examine the ODE lung model in the basis of eigenvectors to

determine general conditions for the controllability of the system. We will show

that model parameters which cause regions of the lung to inflate out of phase with

each other also increase the likelihood of the system being controllable. This is

an important result as ventilating out of phase could cause additional strain on

lung tissue.

To determine these conditions for a general set of lung parameters we will

be looking at the equivalent ODE system produced by transforming to the basis

of eigenvectors for the matrix A = −R−1E defined in eqs. (4.5) to (4.6). The

equivalence is then given by the equations

−R−1E = UDU−1, R−1b = U b̄, (4.10)

where D is a diagonal matrix of eigenvalues, λ, and U is a matrix whose columns

are the associated eigenvectors. This results in an ODE of the form

U−1v̇ = U−1UDU−1v + U−1R−1bu

ẏ = Dy + b̄u. (4.11)

The Kalman controllability matrix for this system can now be calculated as

K̄ =
[

b̄ Db̄ · · · Dn−1b̄
]
,
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which may be separated into a multiplication of two matrices

K̄ =


b̄1 0 · · · 0

0 b̄2 0
...

. . .
...

0 0 · · · b̄n




1 λ1 λ2
1 · · · λn−1

1

1 λ2 λ2
2 · · · λn−1

2
...

...
...

...

1 λn λ2
n · · · λn−1

n

 ,
= diag(b̄)Λ. (4.12)

Using a decomposition of the Kalman controllability matrix in this form, condi-

tions for rank deficiency can be posed dependent on the relations between eigen-

pairs of the system. The rank of K̄ must obey Sylvester’s inequality [113]. In the

case of two n× n square matrices this inequality states that

rank(diag(b̄)) + rank(Λ)− n ≤ rank(diag(b̄)Λ).

This implies that the matrix K̄ is only rank deficient when diag(b̄), Λ or both

are rank deficient. From example 5 given by Kalman [111] it can be seen that

diag(b̄) can be assumed to have full rank, hence the remaining condition for

controllability is that the Vandermonde matrix Λ has full rank.

As it is well known that the determinant of the Vandermonde matrix may

only be zero if one or more of the λi are repeated, we can see that the condition

for a loss of controllability of our model is that there is at least one repeated

eigenvalue for our model. To see how this condition relates to the structure and

parameters for the compartmental model it is necessary to examine the eigenpairs

themselves.

Finding the decomposition shown in eq. (4.10) is equivalent to solving the

generalised eigenvalue problem

−RUD = EU. (4.13)
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Solving this system for U and D is made simpler by the structure of R and

E. Examining their definitions in eq. (3.4), E is a diagonal matrix with strictly

positive entries, meaning that it is trivially positive definite, while the matrix R

can be written as

R1 0 · · · 0 0

0 R2 · · · 0 0
...

...
. . .

...
...

0 0 · · · Rn−1 0

0 0 · · · 0 Rn


+R0



1

1
...

1

1


(

1 1 · · · 1 1
)
, (4.14)

which is a rank-1 perturbation to a diagonal positive definite matrix in the form

diag(Ri) +R0bb∗.

Without the perturbation of a series resistance R0 from the trachea, both

matrices R and E are diagonal so the eigenvalues are given by

λi = −Ei/Ri, (4.15)

while the eigenvectors are given by the Euclidean basis vectors. In this unper-

turbed case it is easy to see that the eigenvalues will all be negative, which is

desirable as it ensures that initial conditions of the system will decay over time

and not cause instabilities. It also means that the only reason for a system to

not be controllable is if there are two compartments i and j for which

Ei/Ri = Ej/Rj.

This is to say that when the time constants for these compartments are the same

and they are ventilating in phase with each other it will not be possible to control

them independently.

One approach to extend these observations to the perturbed system is to

examine the effects on the properties of R and E themselves. For example writing

R as shown in eq. (4.14) it becomes apparent that

x∗Rx = x∗ diag(Ri)x +R0x
∗bb∗x,

= x∗ diag(Ri)x +R0(x∗b)2, (4.16)

so the matrix R must be positive definite.
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By taking λ = −µ and noting that symmetric positive definite matrices may

be split using the Cholesky decomposition, the eigenvalue problem in eq. (4.13)

now becomes

Ex = µRx,

= µLL∗x, (4.17)

where L is a non-singular lower triangular matrix. Equation (4.17) can then be

rearranged using the substitution

C = L−1E(L∗)−1 y = L∗x, (4.18)

to become

L−1Ex = µL−1Rx,

Cy = µy. (4.19)

From its definition it can be seen that C is a symmetric positive definite matrix

so the eigenvalues must be real valued with µ > 0, implying λ < 0 to retain the

original negativity constraint.

This negativity property is encouraging but to place bounds on how the per-

turbation affects the eigenpairs it is again necessary to reformulate the eigenprob-

lem. Taking ν = −λ−1 the problem becomes

E−1(diag(Ri) +R0bb∗)x = νx.

This allows bounds to be placed on the disturbance in the eigenvalues using

the work of Kahan [114], which states that for a Hermitian matrix H and rank

deficient matrix W the eigenvalues, ν, of H + W are within the union of the

regions

ν ∈ {z ∈ C : |z − γi| ≤ ‖W‖2 and | Im(z)| ≤ ‖(W −W ∗)/2‖2} , (4.20)

where γi are the eigenvalues of matrix H. In this case, due to the equivalence with

a real valued and symmetric positive definite matrix the imaginary component

must be Im(ν) = 0.
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The bound on the regions containing the new eigenvalues can be made explicit

by examining the form of the low rank perturbation,

W = R0E
−1bb∗. (4.21)

Hence the value of ‖W‖2 can be found by calculating the value of

W ∗W = R2
0bb∗E−∗E−1bb∗,

= R2
0 Tr (E−2)bb∗,

where Tr (·) denotes the trace of the matrix. As b is a vector of ones we can

substitute the value of ‖bb∗‖ =
√
n so the bound on variations from the initial

eigenvalues becomes

‖W‖2 = R0

√
nTr (E−2). (4.22)

Defining the smallest difference between an eigenvalue γi and its nearest neigh-

bour to be

Gapi := min
j
|γi − γj|,

It becomes apparent that, for systems where

min
i

Gapi > 2R0

√
nTr (E−2),

the perturbed eigenvalues will not be able to overlap and the repeated eigenvalue

condition cannot be satisfied.

It should also be noted that a stricter bound can be defined dependent upon

the separation of eigenvalues. The work of Ipsen and Nadler [115] states that if

Gapi > 3‖W‖2,

then the region surrounding eigenvalue γi in which νi may be found is given by

the bound

|νi − γi| ≤
√

5‖Wvi‖.
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In this case the resulting bound is

|νi − γi| ≤ R0

√
5 Tr (E−2),

which becomes stricter than the original bound as the number of compartments

increases.

This dependence of controllability on the separation of the values Ri/Ei makes

it more likely that a lung system will be controllable when compartments have

differing time constants. These results are encouraging as compartments with

largely different time constants will inflate to different extents at any given time

increasing the stresses on lung tissue. Therefore, as conditions become worse for

lung health, examination of the system’s eigenvalues shows it is more likely that

the lung model will be controllable and an improved control may be generated

for non-degenerate target states.

The conclusion taken from this analysis is that there is evidence that the

ODE lung system should be controllable when compartments are inflating out

of phase with each other. Even in the cases where the system is not completely

controllable some degree of control is still possible. If some eigenvectors of the

system are unaffected by the control input there is still a subproblem which is

controllable. As all the eigenvalues are negative for this system the uncontrollable

eigenmodes will decay and the others may be controlled, allowing states in their

span to be attained [112, theorem 1.5]. Alternatively, as controllability is only

lost when compartments come closer to ventilating in unison with each other,

the model could be modified to merge the compartments and control them as a

single unit. As such it is worthwhile to calculate the controllability of systems

recovered through the use of EIT.

Analysis of these eigenpairs also becomes useful for the generation of refined

controls, described in section 4.2, as some calculations benefit from a change of

basis to that of the eigenvectors. The analysis above proves that for controllable

lung systems there will be a basis of eigenvectors spanning the whole of Rn and

a full set of non-repeating negative eigenvalues.
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Unfortunately the analysis above also proves that the eigenvectors will not be

orthogonal. From eq. (4.18) and eq. (4.19) it can be seen that the eigenvector

matrix U can be obtained from the eigenvector matrix Y of a symmetric positive

definite matrix C by the relation

Y = L∗U.

As the eigenvectors of a symmetric positive definite matrix are orthogonal for U

to be orthogonal L∗ would have to be orthogonal. However, L is the Cholesky

decomposition of matrix R and is strictly lower triangular. Hence the matrix of

eigenvectors, U , cannot be orthogonal and calculations in section 4.2 requiring

its inverse will require a matrix system to be solved.

4.1.3 Controllability of gradient

The procedures in section 4.1.1 confirm the controllability of the ODE lung system

when driving the system with a variable pressure, both for general lung systems

and the specific test parameters we are using. This allows use of the formula

in eq. (4.3) to design a control pressure function which is minimal with respect

to the L2 norm. Minimality in this norm ensures the lung system experiences

reduced exposure to high pressures on average. However, this condition does not

guarantee the generated control will be suitable, as upper and lower limits are

not enforced and there are no conditions placed on the continuity or gradients of

pressure.

An example of this is shown in fig. 4.1. These graphs show a comparison of

ventilation of the compartmental lung model using a linear increase in pressure as

compared to a L2 minimal pressure profile designed to steer the ODE to the same

target state. Due to the emphasis in this norm on absolute values of pressure the

L2 minimal pressure begins at a much lower pressure and only increases towards

the end of the control period. At this point the control oscillates, achieving higher

pressures than the linear control with much higher gradients. If this profile were

applied to a real lung it would result in lung collapse and would be likely to cause

damage to the lungs.
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Figure 4.1: Graphs comparing ventilation states (right) of four compartment
model under ventilation by two different pressure controls (left). Black line in-
dicates ventilation by linear pressure increase while blue line indicates an L2

minimal control for the same initial and target conditions.

These problems with the L2 formula necessitate a modification of the control

refinement procedure. This is possible due to the fact that the controllability

test can be extended to include time derivatives of the control. The result of the

controllability tests in section 4.1.1 can be generalised such that if the system in

eq. (4.1) is controllable then so is the system

ẏ = Ay +Bu,

u̇ = w, (4.23)

where w is treated as the new input control [112, Exercise 1.7]. This allows

controls to be found which minimise the H1 semi-norm of the applied pressures,

‖w‖L2 = ‖u‖H1 =

(∫ T

0

|u̇(s)|2ds

) 1
2

. (4.24)

This means that a pressure profile can be constructed, which takes a linearised

model of the lungs to a specified state, at a given pressure with minimised jumps

and oscillations. These minimisation properties are desirable as both high fre-

quency oscillations and large driving pressure jumps have been shown to be dam-

aging [4, 5].
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The proof of this generalisation is a consequence of writing the new system in

eq. (4.23) in block matrix form(
ẏ

u̇

)
=

[
A B

0 0

](
y

u

)
+

[
0

I

]
w, (4.25)

where I is the matrix identity corresponding to the dimension of both the control

u and its time derivative w. To check the controllability of this system it is

necessary to compute the rank of the Kalman control matrix, modified to use the

new state space matrices. Calculating the Kalman controllability matrix from

the formulation in eq. (4.25) gives the matrix

K1 =

[
0 B AB · · · An−1B

I 0 0 · · · 0

]
,

=

[
0 K

I 0

]
. (4.26)

From the structure of this matrix it is evident that when matrix K has rank n

then the rank of K1 will be n+m, so both the system in eq. (4.1) and the one in

eq. (4.23) will be controllable.
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Figure 4.2: Graphs comparing ventilation states (right) of four compartment
model under ventilation by two different pressure controls (left). Black line indi-
cates ventilation by an L2 minimal control while blue line indicates an H1 minimal
control for the same initial and target conditions at specified pressures.



4.1. CONTROLLABILITY 137

The result of generating this H1 minimal pressure profile is shown in fig. 4.2.

These graphs show a comparison between ventilation of the compartmental lung

model using an L2 minimal pressure profile and using an H1 minimal pressure

profile. Both profiles are designed to steer from the same initial volume conditions

to the same target, but the design of the H1 control allows the initial and target

pressures to be specified as well. The initial and target states and pressures were

taken to be the same as those in fig. 4.1. However, as the majority of the non-zero

entries for the L2 minimal control in fig. 4.1 occurred in the second half of the

control period, the control time period has been halved to 15 s. It can be seen

from these graphs that the pressures and volumes stay within a more feasible

region for the purposes of ventilator control. Pressures do not drop too low or

vary too widely within short periods. The volumes do not decrease and so a level

of recruitment could be maintained.

4.1.4 H1 control eigenpairs

In this section we note a practical simplification of the process to generate the

eigendecomposition for eq. (4.23). As discussed briefly in section 4.1.1 both the

confirmation of controllability and the construction process for controls benefit

from knowledge of the eigenpairs of the matrix A for the equation

v̇ = Av +Bu,

= −R−1Ev +R−1b(P (t)− P0).

So far the eigenpairs for this base system have been used to imply controllability

conditions on the system, but they may also be used to simplify calculation of

the controllability Gramian as well as reformulating the optimal control formula

as a matrix equation. In order to use these methods for the H1 control procedure

in addition to the L2 procedure it becomes necessary to find the eigenpairs for

the new system in eq. (4.25), specifically the eigenpairs for the matrix[
A B

0 0

]
.
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The first n of these may be taken directly from calculation of the L2 eigenpairs.

The eigenpair (λ,q) satisfying the equation

Aq = λq,

will also satisfy the equation[
A B

0 0

](
q

0

)
= λ

(
q

0

)
.

Hence there is only one additional eigenpair which must be calculated for the H1

system.

This final eigenpair may also be calculated directly rather than through stan-

dard eigenproblem solvers. Noting that the matrix now has a zero row, it is

evident that the final eigenvalue must be zero, so any member of the null space

for the matrix may be used as the final eigenvector. An explicit formula for

this can be found by examining the matrix again in terms of the Resistance and

elastance matrices. In this form it can be seen that the vector(
E−1b

1

)

is a member of the null space as[
−R−1E R−1b

0 0

](
E−1b

1

)
= −R−1b +R−1b = 0.

Here the new eigenvector has not been normalised to unit length in order to

maintain the unit value of its final entry for stability of back substitution in

Gaussian elimination for the inversion steps in section 4.2.

4.2 Control generation

In section 4.1 we confirmed the controllability of our lung model under a large

range of parameter values, including the specific values being used for testing

purposes in chapter 3. Additionally we discussed some of the technical aspects of

calculating eigenpairs that may be used to generate pressure profiles for control.
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In this section we discuss further the specifics of generating both L2 and

H1 minimal controls numerically. Specifically we show how generation of the

controllability Gramian may be simplified as well as a formulation of the optimal

control formula in eq. (4.3) which relies upon efficient matrix vector operations.

This matrix formulation may be used to formulate an optimisation problem for

such quantities as compartmental recruitment levels and ventilation to perfusion

ratios as shown in section 4.4. The clinical reasoning behind the development of

these minimal and optimal control techniques is discussed in section 4.2.1.

4.2.1 Clinical control requirements

Before designing patient specific controls from our lung model it is necessary

to identify the clinical criteria that must be met to ensure the pressure profiles

provide benefit. For the controls outlined in this chapter there have been three

major considerations when examining possible control designs. Motivated by

links to ventilator induced lung injury (VILI ) and patient mortality, these are:

the magnitude of applied pressure, gradients of pressure and relative ventilation

states of different sections of lung.

The first of these considerations was the pressure applied by the ventilator

during mechanical ventilation. While it has been shown that pressures above

28 cmH2O result in an increased inflammatory response within the lungs [90] it

has also been found that the average resulting pressure after a maximal recruit-

ment manoeuvre is 40 cmH2O [89]. This current reliance on damaging levels of

pressure motivates our analysis of pressure mode controls which are minimal in

the L2 norm, as they apply the lowest magnitude pressures on average for the

resulting ventilation state. It also motivates our analysis of bounds on pressure

for H1 minimal pressures in section 4.3.2.

Another important risk factor we have considered is linked to the time gradi-

ents of pressures applied by the ventilator. It has been found that tidal variations

in pressure, that is the difference between inspiratory and expiratory pressure,

are strongly adversely linked with mortality rates of patients [4]. In addition to

this, models of airway opening have revealed that inducing gradients of pressure

within opening airways can also cause damage [5]. This is evidence that not

only must we be careful of damaging, high-magnitude pressures but must also
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minimise how much pressure varies over a breathing cycle as well as the rate of

this variation. Therefore we have examined the H1 minimal pressures profiles

discussed in section 4.3, which apply the lowest average gradients of pressure for

the resulting ventilation states.

The final set of criteria we have considered when designing these controls re-

late to the recruitment of regions of the lung, that is the extent to which lung

regions have been inflated reducing the number of collapsed airways. Increasing

the level of recruitment in partially collapsed regions can improve the mechan-

ical parameters of the lungs [6]. However, mechanical ventilation can result in

some regions becoming over-distended, causing damage, while others are only

partly recruited [9]. This heterogeneity in the ventilation profile across the lungs

is one of the factors attributed with the occurrence of VILI despite the use of

lung protective ventilation [90, 116]. For this reason we have examined the pos-

sibility of optimising the inflation state of the lung through the techniques in

section 4.4. These not only look at improving recruitment and optimising to-

wards a homogeneous ventilation state but also raise the possibility of including

other optimality conditions. Specifically we mention reducing the occurrence of

alveolar dead space, which does not assist in gas transfer [10], through the use of

regional perfusion information.

These considerations lead us to examine L2 minimal, H1 minimal and op-

timised controls in the following sections. The H1 and optimised controls are

examined in sections 4.3 and 4.4 respectively. However, before these techniques

can be defined it is necessary to outline some practical implementation details

for optimal controls. We begin with details of how to generate the controllabil-

ity Gramian as described in section 4.2.2. This is followed in section 4.2.3 by a

description of the matrix formulation for the optimal control formula we use to

generate both minimal and optimised controls in later sections.
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4.2.2 Gramian calculation

In this section we discuss some practical calculations we have performed to sim-

plify the process of generating the controllability Gramian. The first step in

generation of the two minimal controls mentioned above through use of eq. (4.3)

is calculating the controllability Gramian

QT :=

∫ T

0

exp {Ar}BB∗ exp {A∗r}dr, (4.27)

where A and B are taken from eq. (4.6). This calculation may be done analyt-

ically in the basis of eigenvectors using the definitions from eq. (4.10). In these

calculations the matrix exponential is defined as

exp{A} :=
∞∑
k=0

Ak

k!
. (4.28)

Using the definition of the eigenvalue matrix D and the decomposition of A this

exponential can be re-written as exp{A} = U exp{D}U−1, with D and exp{D}
given by

(D)ij =

{
λi i = j,

0 i 6= j,
, (expD)ij =

{
eλi i = j,

0 i 6= j.
(4.29)

Hence the Gramian may be calculated as

QT = U

[∫ T

0

exp {Dr}U−1BB∗U−∗ exp {Dr}dr
]
U∗,

= U

[∫ T

0

exp {Dr}G exp {Dr}dr
]
U∗,

=: UQ̄TU
∗, (4.30)

where G is the matrix given by

G = b̄b̄∗. (4.31)
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Formulation of the Gramian in this way allows coefficients and exponents to

be calculated separately for an element-wise integration process. Re-writing the

expression to be integrated as a single matrix

Γ = exp {Dr}G exp {Dr}, (4.32)

elements of Γ may be calculated explicitly, giving

(Γ)ij = (G)ij exp {(λi + λj)r}. (4.33)

These elements may then be integrated explicitly with respect to time to give

elements of the Gramian in the basis of eigenvectors

(Q̄T )ij =

∫ T

0

(G)ij exp {(λi + λj)r}dr,

=
(G)ij
λi + λj

(exp {(λi + λj)T} − 1).

This form of the Gramian may then be used in the calculation of the L2 refined

control pressure.

In order to calculate the H1 minimal control it is necessary to note that there

is now an additional eigenvalue associated with the derivative of the control,

λn+1 = 0. This additional eigenvalue and associated eigenvector means that the

Gramian will now be an (n + 1) × (n + 1) matrix. The zero valued eigenvalue

also changes one part of the integration so that a constant value is integrated

over time rather than an exponential value. This changes the general form of the

Gramian to become

(Q̄T )ij =

{
(G)ij
λi+λj

(exp {(λi + λj)T} − 1) i, j 6= n+ 1,

(G)ijT i = j = n+ 1.

4.2.3 Matrix formulation

In this section we describe a practical reformulation of the analytic control formula

to allow fast calculation of a desired control as well as enabling us to set up an

efficient optimisation problem for control in section 4.4.1.
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Once the Gramian has been computed the formula for each time step (s),

u(s) = −B∗ exp{(T − s)A∗}Q−1
T (exp{TA}y0 − yT), (4.34)

may be used to calculate a control which is minimal for the target state in either

the L2 or H1 norm [112, proposition 1.1]. In order to take advantage of implicit

parallelism and vectorisation the above formula can be re-written as a matrix

formula to compute all timesteps in one calculation. This reformulation also

assists with a process of optimisation which will be explored further in section 4.4.

The first step in reformulating eq. (4.34) is to write all components and indi-

vidual vector operations in the basis of eigenvectors. In this way the pressure at

each time s becomes

u(s) = b∗R−∗U−∗eD(T−s)Q̄−1
T U−1(yT − exp{TA}y0),

= b̄∗eD(T−s)Q̄−1
T U−1(yT − exp{TA}y0),

= m∗Q̄−1
T U−1(yT − exp{TA}y0), (4.35)

where m = eD(T−s)b̄ is the only component which depends on s. Noticing that

each element of this vector m is

mi = b̄ie
λi(T−s)

the time step dependent part of the formula may be written as a matrix M such

that

M =



eλ1(T−0) eλ2(T−0) eλ3(T−0) eλ4(T−0)

eλ1(T−s1) eλ2(T−s1) eλ3(T−s1) eλ4(T−s1)

eλ1(T−s2) eλ2(T−s2) eλ3(T−s2) eλ4(T−s2)

...
...

...
...

eλ1(0) eλ2(0) eλ3(0) eλ4(0)




b̄1 0 0 0

0 b̄2 0 0

0 0 b̄3 0

0 0 0 b̄4

 Q̄−1
T U−1.

(4.36)

Hence, the control may be written as a time series vector

u = M(yT − exp{TA}y0), (4.37)
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which gives the optimal L2 control for the initial condition y0, target condition

yT and target time T . The full procedure to generate an L2 minimal control

pressure for this four compartment model can be seen in algorithm 4.1. In this

algorithm Matlab notation has been assumed for the concatenation of vectors

and matrices, so

[A,B] = [A|B]

and

[A;B] =

[
A

B

]
.

Algorithm 4.1 Control: L2 minimisation

1: Retrieve parameters R0, Ri and Ei for i = 1 : 4
2: Set control time T and initial and target states y0 and yT
3: Generate timestep vector s = 0 : dt : T
4:

5: % Find eigenvectors, U , and eigenvalues, D = diag(λi)
6: A = −R−1E = UDU−1

7:

8: % Find b̄ such that
9: B = R−1b = U b̄

10:

11: % check controllability matrix K̄
12: K̄ = [b̄, Db̄, D2b̄, D3b̄]
13:

14: if rank K̄ = 4 then
15:

16: G = b̄b̄∗

17:

18: % Generate gramian Q̄T

19: (Q̄T )ij =
(G)ij
λi+λj

(exp{(λi + λj)T} − 1)
20:

21: %Generate time exponential vectors
22: ei = exp{λi(T − s)}
23:

24: % Calculate matrix formulation M
25: M = [e1, e2, e3, e4] diag(b̄)Q̄−1

T U−1

26:

27: % Calculate control time series pressures
28: u = M(yT − exp{TA}y0)
29: end if
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To modify eq. (4.37) to produce the H1 optimal control requires the target

and initial conditions to be extended to include the starting and ending pressure

as well as calculations of the Gramian and vector b̄ to be performed using the

extended eigenbasis. It also requires that the end result be integrated with respect

to time giving a pressure vector in the form

u = M̃(yT − exp{TĀ}y0) + p0, (4.38)

where M̃ can be calculated by applying a discrete integration operator to a matrix

M calculated as above in the extended basis of eigenvectors for

Ā =

[
A B

0 0

]
.

This implementation of the analytic control formula to allow fast calculation of

a desired control as well as enabling us to set up an efficient optimisation problem.

However, it still remains to analyse how the H1 minimal control profiles will affect

ventilation. This is the focus of the next section.

4.3 Analysis of H1 minimal controls

We demonstrated in the previous two sections that the lung model described in

chapter 3 not only has parameters which are recoverable from EIT but is also

controllable. We also discussed some of the technical details in generating controls

for given initial conditions and target states.

Having presented this information, the next step to showing that the appli-

cation of EIT and control theory to mechanical ventilation can provide benefit

is to demonstrate the kind of profile which can be generated using these meth-

ods. There are some further issues with this, for example as mentioned above

some target states and control periods can produce unacceptable profiles. One

solution is to formulate a further optimisation problem as will be demonstrated

in section 4.4, another is to pick a target which we know is achievable with an

acceptable pressure profile.
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A simple method for choosing an acceptable control is to use numerical so-

lutions to the lung model to predict the lung state after a desirable profile has

been applied. For the purposes of this demonstration we will call this desirable

test profile the original profile and then replace a section with a control segment

generated to have minimal H1 norm, which was shown to be preferable to L2

minimal controls in section 4.1.3. This H1 minimal profile will have the same

initial state and target state but will have improved gradients. An outline of the

procedure to generate this H1 minimal profile is shown in algorithm 4.2.

After demonstrating this process in section 4.3.1 we will discuss the effects of

the H1 minimisation on the pressure magnitudes by examining the full H1 norm

in section 4.3.2.
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Algorithm 4.2 Control: H1 minimisation

1: Retrieve parameters R0, Ri and Ei for i = 1 : 4
2: Set control time T , initial state y0 and initial pressure p0

3: Generate timestep vector s = 0 : dt : T
4:

5: Set original pressure control profile p
6: Numerically solve ODE with control p to find target state yT
7: Set target pressure pT to final pressure entry in p
8:

9: % Find eigenvectors, U , and eigenvalues, D = diag(λi)
10: A = −R−1E = UDU−1

11:

12: % Find b̄ such that
13: B = R−1b = U b̄
14:

15: % check controllability matrix K̄
16: K̄ = [b̄, Db̄, D2b̄, D3b̄]
17:

18: if rank K̄ = 4 then
19: % Reformulate to control gradient
20: λ5 = 0
21: Ũ = [U,E−1b; 0, 1]
22: Ã = [A,B; 0, 0]
23: b̃ = Ũ−1[0; 0; 0; 0; 1]
24:

25: % Generate gramian Q̄T

26: G = b̃b̃∗

27: (Q̄T )ij =
(G)ij
λi+λj

(exp{(λi + λj)T} − 1)

28: (Q̄T )55 = (G)55T
29:

30: %Generate time exponential vectors
31: ei = exp{λi(T − s)}
32:

33: % Calculate matrix formulation M̃
34: M = [e1, e2, e3, e4, 1] diag(b̃)Q̄−1

T Ũ−1

35: Construct a numerical integration matrix L, eg. composite trapezium
36: M̃ = LM
37:

38: % Calculate control time series pressures
39: set ỹ0 = [y0; p0] and ỹT = [yT ; pT ]
40:

41: u = M̃(ỹT − exp{TÃ}ỹ0) + p0

42: else
43: use control profile p
44: end if
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4.3.1 H1 minimisation example

For this example volumes and flows were generated under the action of a sinu-

soidal pressure profile with a simulated increase in pressure at 20 seconds using

the techniques in chapter 3. This profile was chosen to resemble the action of a

PEEP increase step common in recruitment manoeuvres, where the PEEP level

is increased between breaths after a period of regular ventilation at the initial

PEEP level. For this demonstration the response of the lung system to this

pressure profile was calculated using the parameters from chapter 3.

To generate the new H1 minimal pressure profile the pressure patterns for first

5 and last 2 breaths were retained. The ventilator pressure and compartmental

volumes taken at time 15 as initial condition for H1 control, while the pressure

and volumes taken at time 25 were taken as a target for steering.

Figure 4.3 shows both the original and H1 optimised pressure profile for this

increase in PEEP. Figure 4.4 shows the responses of the system to both PEEP in-
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Figure 4.3: Original (solid line) and H1 minimal (dotted line) pressure profile
including an increase in PEEP level.

creases, where the initial volumes of each compartment correspond to the steady

state volumes of these compartments when held at the initial pressure. As ex-

pected the initial five and final two breaths proceed exactly the same under the

action of both pressure profiles. The only differences are found during the con-

trolled section. In the controlled case, the rate of pressure increase is slower, while

the flow spikes visible for the original pressure profile are smoothed out reducing

stress on the lungs.
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Figure 4.4: Flow (left) and volume (right) responses of the system to both a step
increase in pressure (solid lines) and H1 minimal control pressure (dashed line).

The process of predicting a flow for the given pressure profile, obtaining initial

and target conditions, generating a control and recombining to give an optimised

pressure profile took 10.9 milliseconds on a 2.8GHz Intel Core i7 with 16 GB 1.6

GHz DDR3 RAM.. This demonstrates that by combining regional information

with control theory, it may be possible to derive patient specific pressure controls

which attain the same results as classical techniques while reducing exposure to

the pressure gradient risk factor.

The fact that this kind of profile may be constructed so quickly and provide

noticeable changes to the ventilation control is encouraging. However, it is still

necessary to check both the sensitivity of the controls generated to noise in pa-

rameters recoverable through EIT and also that the magnitude of the pressures

produced is in some way bounded. The sensitivity of these profiles to noise will

be examined in section 4.5 but we provide an analysis of the pressure magnitudes

in section 4.3.2 by examining the equivalences between the H1 semi-norm and

H1 norm.

4.3.2 H1 seminorm and norm equivalence

In previous sections it has been shown that we can reduce exposure of the lungs

to pressure gradients by generating an H1 minimal control profile. In this section

we show that the magnitudes of these pressure profiles are also bounded.
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As there are many control functions taking the state of a controllable ODE

to a target state in time T we can define a set S of control functions taking the

system in the ODE from state x0 at time t = 0 to xT at time t = T. We can

also define that every element of S must have a specified initial value p0 and a

specified final pressure pT giving the relation

S ⊂ {f ∈ H1([0, T ])|f(0) = p0, f(T ) = pT}.

The result of the H1 optimised control procedure, u, must then be an element of

this set. However, we have so far only proven that this function is minimal in the

H1 semi-norm. This means that for any other control function f ∈ S

‖u′‖L2 ≤ ‖f ′‖L2 . (4.39)

This only allows us to ensure that the time derivatives of our applied pressures will

be minimised in a least squares sense, but it does not directly enforce conditions

on the magnitude of the pressures applied.

To relate this result to a measure taking into account both magnitudes and

time derivatives we must introduce the full H1 norm for the function,

‖f‖H1 =

(∫ T

0

[(u(t))2 + (u′(t))2]

) 1
2

. (4.40)

While the H1 control method does not ensure that

‖u‖H1 ≤ ‖f‖H1 (4.41)

for f ∈ S, we will show that it does ensure

‖u− v‖H1 ≤ K‖f − v‖H1 (4.42)

where v(t) is defined as the linear function passing through p0 at time t = 0 and

pT at time t = T,

v(t) = at+ p0,

a =
(pT − p0)

T
. (4.43)
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and K is a constant dependent only on T . This forces our control to be the

pressure profile taking x0 to xT which is closest, in gradient, to a linear increase

in pressure between p0 and pT with a bounded difference in magnitude.

To prove that this is true, for any function f ∈ S we define the H1 seminorm

for the difference between f and v as

‖f ′ − v′‖2
L2 =

∫ T

0

(f ′ − v′)2dt. (4.44)

The expression in eq. (4.44) can be expanded to give

‖f ′ − v′‖2
L2 =

∫ T

0

[(f ′)2 − 2f ′v′ + (v′)2]dt,

= ‖f ′‖2
L2 −

∫ T

0

[2f ′v′ − (v′)2]dt. (4.45)

This can be simplified further by noting that v′ = a for the linear function v,

giving

‖f ′ − v′‖2
L2 = ‖f ′‖2

L2 − a
∫ T

0

[2f ′ − a]dt,

= ‖f ′‖2
L2 − a

∫ T

0

[f ′ − a]dt− a
∫ T

0

f ′dt,

= ‖f ′‖2
L2 − a

∫ T

0

f ′dt, (4.46)

as f(0) = v(0) = p0 and f(T ) = v(T ) = pT . Furthermore, by these definitions,

eq. (4.46) can be reduced further to

‖f ′ − v′‖2
L2 = ‖f ′‖2

L2 − a(pT − p0),

= ‖f ′‖2
L2 − a2T,

= ‖f ′‖2
L2 − ‖v′‖2

L2 . (4.47)

As u ∈ S and ‖v′‖L2 is a constant, dependent only on the boundary conditions

and target control time, eq. (4.47) shows that eq. (4.39) directly implies

‖u′ − v′‖L2 ≤ ‖f ′ − v′‖L2 , (4.48)
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for the optimal control u ∈ S and any other f ∈ S. To extend this to the stronger

H1 norm inequality given in eq. (4.42) it must be noted that for u, f ∈ S, the

functions ū = (u− v) and f̄ = (f − v) are in the space

H1
0 ([0, T ]) = {g ∈ H1([0, T ])|g(0) = g(T ) = 0}.

This allows the Poincaré-Friedrichs inequality [117] to be used to show that

‖f̄‖L2 ≤ C‖f̄ ′‖L2 , (4.49)

for some constant C which is only dependent on the domain [0, T ]. Combining

this with the fact that

‖f̄‖2
H1 = ‖f̄‖2

L2 + ‖f̄ ′‖2
L2 , (4.50)

we have that

‖f̄ ′‖2
L2 ≤ ‖f̄‖2

H1 ≤ (C2 + 1)‖f̄ ′‖2
L2 , (4.51)

so by definition the H1 seminorm and H1 norm are equivalent on H1
0 . Therefore

we have the three inequalities

‖ū‖H1 ≤ K‖ū′‖L2 , ‖ū′‖L2 ≤ ‖f̄ ′‖L2 , ‖f̄ ′‖L2 ≤ ‖f̄‖H1 , (4.52)

which can be combined to give

‖ū‖H1 ≤ K‖f̄‖H1 , (4.53)

where K = (C2 + 1)1/2.

The value of K can be found using techniques from [118]. To do this we use

eq. (4.49) and the definitions of the above norms to set

1

C2
= min

f̄ |0,T =0

∫ T
0

(f̄ ′)2dt∫ T
0

(f̄)2dt
. (4.54)
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This can be reformulated using integration by parts and written in terms of inner

products to give

1

C2
= min

f̄ |0,T =0

−〈f̄ ′′, f̄〉
〈f̄ , f̄〉

. (4.55)

This is equivalent to the smallest value of λ such that

f̄ ′′ = −λf̄ , f̄(0) = f̄(T ) = 0. (4.56)

Solving this differential equation, we find that the smallest valid value of λ is

π2/T 2, so K is given by

K =

(
T 2

π2
+ 1

) 1
2

, (4.57)

and eq. (4.42) becomes

‖u− v‖H1 ≤
(
T 2

π2
+ 1

) 1
2

‖f − v‖H1 . (4.58)

While the bound in eq. (4.58) holds for any f ∈ S, we can be more specific

when examining how the norm of the minimal control will relate to the norm of the

reference control. As one step in calculating the optimal control is numerically

integrating its derivative, it is simple to calculate its H1 seminorm. We can

therefore calculate the ratio between the seminorms of the refined and unrefined

controls as

β =
‖u′ − v′‖L2

‖f ′0 − v′‖L2

, (4.59)

where f0 is the pressure waveform used to generate the target state for our control.

This value of β will always be less than or equal to 1 due to the optimality of the

generated control.

Combining eq. (4.59) with eq. (4.53) and eq. (4.58) we get that

‖u− v‖H1 ≤ β

(
T 2

π2
+ 1

) 1
2

‖f0 − v‖H1 . (4.60)
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Therefore, if the H1 seminorm of control u decreases enough from that of f0, ū

will have a smaller H1 norm than f̄0 as well. Hence, while the pressure gradients

applied are guaranteed to be minimal in the least squares sense, the magnitudes

of pressure controls generated in this way will be also be bounded reducing the

likelihood of damaging excessive driving pressures.

4.4 Control Optimisation

One issue with the H1 minimal control formula is its dependence on the target

state the control function is steering towards. The controllability of the system

implies that any target state is achievable within a defined time period, however,

some target states will require control pressures with higher magnitudes and

greater variability than others.

For example the same target state achieved in a shorter time will require a

higher pressure gradients. This can be seen in fig. 4.5 which shows ventilation

states of the same four compartment model over three different time scales. The
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Figure 4.5: Graphs comparing ventilation states (right) of four compartment
model under ventilation by pressure controls (left) over 15 seconds (blue) 30
seconds (black) and 45 seconds (red).

H1 minimal pressure controls in these graphs are designed to raise in pressure

from a value of 15 to a value of 20 over the course of 15, 30 and 45 seconds

respectively, while the target inflation state is that achieved by a linear increase

in pressure over 30 seconds. The L2 norm and H1 seminorm of these pressures
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can be seen in table 4.1 along with the measures

‖u‖L2√
T

=

(
1

T

∫ T

0

u2(r)dr

) 1
2

,
‖u‖H1√

T
=

(
1

T

∫ T

0

u̇2(r)dr

) 1
2

, (4.61)

which give a description of the average norm over the control period. This table

Time T (s) ‖ · ‖L2 ‖ · ‖L2/
√
T ‖ · ‖H1 ‖ · ‖H1/

√
T

15 71.46 18.45 1.59 0.41
30 96.26 17.57 0.91 0.17
45 115.86 17.27 0.77 0.12

Table 4.1: Table comparing the H1 minimal controls for the same target state
over varying time scales. Both the L2 norm and H1 seminorm are shown, both
unnormalised and weighted by control time.

shows that increasing the control time lowers the average L2 as well as both the

averaged and un-averaged H1 norms. However, moving from 15 to 30 seconds

has a much larger impact on these measures than moving from 30 to 45 seconds.

This, in combination with the need to complete ventilation manoeuvres within a

specified time frame, suggests there may be some room to optimise the control

time frame.

The magnitude and time derivatives of an optimal control also depend on

how feasible a target state is. If a target state is chosen which requires too much

energy to be added to one mode of the system while reducing the energy in others

then all controls achieving the target state will have high L2 and H1 norms and

instantaneous values may exceed safe or feasible bounds on pressure. An example

of this is shown in fig. 4.6. These graphs compare the ventilation profiles generated

by optimal controls aiming at two different target inflation states. The straight

line indicates a linear increase in pressure from 15 to 20 while the curved lines

indicate an H1 optimal control aimed at bringing all compartments to the same

volume. This target is possible to achieve due to the controllability of the ODE

model, but all pressure controls achieving this result lie outside of the feasibility

set for clinically acceptable pressures, resulting in both negative pressures and

pressures thousands of times the magnitude for a feasible target.
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Figure 4.6: Graphs comparing ventilation states (right) of four compartment
model under ventilation by two different pressure controls (left). Black line indi-
cates ventilation by an linear increase in pressure while blue line indicates an H1

minimal control for an infeasible target condition at specified pressures.

One solution to this difficulty is to use the optimal control formulae to improve

upon an existing control as stated in section 4.3. By using the optimal control

formula to minimise a given naive pressure control the problem of choosing a

feasible target point is removed. However, it is desirable to not only refine the

controls for a specified target inflation, but also to improve the level of recruitment

and limit the generated pressure controls to be within some feasibility set. This

leads to a formulation of the problem as an optimisation of some cost functional

F (xT ) subject to inequality constraints.

4.4.1 Compartment weighted optimisation

When optimising the targets for a control procedure, it is necessary to choose an

optimality criteria. Two possible candidate are the mismatch of compartmental

filling factors (FF ) from ideal values or the ratio of ventilation to perfusion, known

as the VQ ratio, in a region. The ratio of air volume to tissue content gives a

measure of both the recruitment and stress present in the compartment. Both

low and high VQ ratios are undesirable. A low ratio results in low gas transfer

and a high value results in alveolar dead space and increased risk of overdistension

without accompanying gas transfer.

Optimising towards either optimal FF or VQ ratios results in a cost functional

of the form

F =
∥∥V −1xT − r

∥∥2
(4.62)
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where xT is the target ventilation state, V is a diagonal matrix of compartmental

weightings and r is a vector of target ratios. In FF optimisation the entries in

V will be compartmental tissue volumes while they will be perfusion values for

VQ optimisation. In an unconstrained problem the minimiser of this functional

is trivial, however, as shown in fig. 4.6, the pressure profiles required to attain

these solutions may be infeasible.

Constraining the problem to targets attained through feasible pressure con-

trols may be performed in one of two ways. The first is to reformulate the cost

functional in eq. (4.62), substituting xT with the pressure profile u using the

formula

xT = eATx0 +

∫ T

0

e(T−s)Abu(s)ds,

and optimise with respect to the time samples of u. This approach has the

advantage of simplifying the constraints to the linear inequalities

max(u) ≤ Pmax,

min(u) ≥ Pmin, (4.63)

with the possible equality constraint

u(T ) = p(T ) (4.64)

in the case that a final pressure has been defined. However, this approach also

increases the dimensionality of the optimisation problem, does not ensure any

smoothness properties of the resulting pressure profile and solvers will not be

guaranteed to find a global minimum to the cost functional as multiple pressure

profiles may attain the same final inflation state.

Instead the approach we use is to reformulate the constraints in terms of the

inflation target xT . This can be done using the matrix form of the H1 refined

control from eq. (4.38), resulting in the new inequality constraint

Pmin ≤ M̃

[(
xT

pT

)
− exp

{
T

(
A b

0 0

)}(
x0

p0

)]
+ p0

(
1

1

)
≤ Pmax.

(4.65)
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This inequality may now be rearranged into the single linear matrix inquality[
M̃

−M̃

](
xT

pT

)
≤

(
pmax − p0

p0 − pmin

)
+

[
M̃

−M̃

]
exp

{
T

(
A b

0 0

)}(
x0

p0

)

where pmax and pmin are vectors with dimensions corresponding to the number

of time steps in the pressure control, containing the maximum and minimum

allowable pressures respectively.

Hence the optimisation problem becomes

xT = arg min
x

[
x∗V −2x− r∗V −1x

]
,(

M̃x

−M̃x

)
x ≤

(
pmax

−pmin

)
+ f(x0, p0, pT , T ), (4.66)

where M̃x is the component of matrix M̃ which corresponds to the entries in xT

and f is a vector function of the control time, initial conditions and target pres-

sure. This is a classic quadratic programming problem with inequality constraints

and may be solved using standard techniques such as interior point methods for

convex problems [119, Chapter 16]. An outline of the procedure to generate this

optimised profile is shown in algorithm 4.3.

The reformulated bounds approach has the advantages that it reduces the

dimensionality and ensures the convexity of the problem. Also, using the H1

refinement formula for the pressure control combines the pressure limits of the

optimisation approach with the guarantee of reduced pressure gradients of the

refinement approach. However, it does not guarantee that there isn’t another ac-

ceptable pressure profile which would not achieve a better end inflation state. For

example a ventilation state generated by an acceptable pressure profile may have

an optimal H1 control which requires pressures to move outside of the acceptable

range.

The results of this method can be seen in fig. 4.7. These graphs compare the

ventilation profiles of the four compartment model under three different pressure

controls. The first of these is a sinusoidal ventilation profile with a PEEP step

simulated by a smoothed Heaviside function shown as a solid black line. The

second is a profile, shown as a blue dashed line, in which a section of the original

profile has been replaced with an H1 minimal control. In this profile a 10 s
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Figure 4.7: Graphs comparing ventilation states (right) of four compartment
model under ventilation by three different pressure controls (left): smoothed
Heaviside increase in pressure (black), H1 refined control (blue), Target opti-
mised control (red).

section of the first profile, shown between two vertical dashed lines in the figure,

have been replaced with the H1 minimal profile attaining the same pressures and

volumes as the original profile at times t = 15 and t = 25. This is the same

profile as was shown in figs. 4.3 and 4.4 and discussed in section 4.3.1.

The final profile shown as a red dotted line in fig. 4.7 is a control in which

the 10 s control period has been replaced with an optimised control produced

using algorithm 4.3. For the generation of this 10 s control, the initial pressure

and volume conditions were set to be those achieved by the original profile as

was the final pressure. The minimum allowable pressure was set at Pmin = 14

and the maximum allowable pressure was set at Pmax = 20 in accordance with

the minimum and maximum pressures attained by the orriginal profile. Finally

the matrix V was set as a diagonal matrix containing the compartmental tissue

volumes and the target ratio vector r was a filling factor vector with each entry

set to 4. This corresponds to optimising the final compartmental filling factors

towards a maximum inhalation filling factor of 4.

The choice to optimise each compartment to the same filling factor was taken

as inhomogeneity in the pattern of lung ventilation is considered a significant fac-

tor contributing to ventilator induced lung injury (VILI ) and is one of the factors

attributed with the occurrence of VILI despite the use of lung protective venti-

lation [90, 116]. However, as shown in fig. 4.6 simply setting each compartment

to the same volume in the target ventilation state for H1 control can result in

pressures greatly exceeding safe levels. Therefore this technique appears to have
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great utility as it is able to optimise towards this state while staying within safe

bounds of pressure and guaranteeing that no other profile could attain the same

ventilation state with lower gradients in pressure. In fact, fig. 4.7 demonstrates

that this optimal control attains a greater recruitment in every compartment dur-

ing the PEEP step, as shown by the higher volumes in these compartments. This

effect persists past the end of the control segment and is beneficial as greater

recruitment in under-recruited regions can improved the mechanical parameters

of the lungs in a clinical setting [6].
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Algorithm 4.3 Control: Target Optimisation

1: Retrieve parameters R0, Ri and Ei for i = 1 : 4
2: Set control time T , initial state y0, initial pressure p0 and target pressure pT
3: Set minimum and maximum allowable pressures Pmin and Pmax
4: Set compartmental weighting matrix V and target ratio vector r
5: Generate timestep vector s = 0 : dt : T
6:

7: % Find eigenvectors, U , and eigenvalues, D = diag(λi)
8: A = −R−1E = UDU−1

9:

10: % Find b̄ such that
11: B = R−1b = U b̄
12:

13: % check controllability matrix K̄
14: K̄ = [b̄, Db̄, D2b̄, D3b̄]
15:

16: if rank K̄ = 4 then
17: % Reformulate to control gradient
18: λ5 = 0
19: Ũ = [U,E−1b; 0, 1]
20: Ã = [A,B; 0, 0]
21: b̃ = Ũ−1[0; 0; 0; 0; 1]
22:

23: % Generate gramian Q̄T

24: G = b̃b̃∗

25: (Q̄T )ij =
(G)ij
λi+λj

(exp{(λi + λj)T} − 1)

26: (Q̄T )55 = (G)55T
27:

28: %Generate time exponential vectors
29: ei = exp{λi(T − s)}
30:

31: % Calculate matrix formulation M̃
32: M = [e1, e2, e3, e4, 1] diag(b̃)Q̄−1

T Ũ−1

33: Construct a numerical integration matrix L, eg. composite trapezium
34: M̃ = [M̃x,mp] = LM
35:

36: % Solve quadratic optimisation problem
37: yT = arg minx[x∗V −2x− rV −1x]
38: % Subject to linear constraints
39: [M̃x;−M̃x]x ≤ [Pmax − po; p0 − Pmin] + [M̃,−M̃ ] exp{TÃ}[y0; p0] + pT [−mp;mp]

40:

41: % Generate control
42: u = M̃([yT; pT ]− exp{TÃ}[y0; p0]) + p0

43: end if
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4.4.2 Breath to breath optimisation

The techniques mentioned in section 4.4.1 are not limited to isolated individual

segments of pressure control generation. The same approach can be applied to

the generation of multiple connected control segments and even the optimisation

of individual breaths. To do this the first step is to define when breathing sections

will occur and what the pressures should be at the beginning and end of these

segments. The next step is to optimise the target volumes of the first segment,

after which the results of the preceding optimisation can be used as the initial

conditions for the next segment and another optimisation. By specifying that

the target pressure is the same as the initial pressure within a given segment the

resulting control can be made to cause a single inhalation and exhalation. An

outline for this procedure is shown in algorithm 4.4.

Algorithm 4.4 Control: Multiple Optimisation

1: Set number of control periods N
2: Set times for beginning and end of control sections ti for i = 0, 1, . . . , N
3: Set desired pressures at these times p(ti) = pi
4: Set initial volume as v(t0) = v0
5:

6: for i = 1, 2, . . . , N do
7: Set initial volume conditions for optimisation to vi−1

8: Set initial pressure conditions for optimisation to pi−1

9: Set final pressure conditions for optimisation to pi
10:

11: % Generate next target volume vi
12: Generate volume using algorithm 4.3
13: end for
14:

15: Generate full control pressure with targets given by pi and vi

Figure 4.8 shows a demonstration of this multiple optimisation process, com-

bining optimised regular breathing with an optimised PEEP step as demonstrated

in the previous section. For this figure a sinusoidal pressure profile with smoothed

PEEP step is compared to a fully optimised breathing cycle. To generate the

optimised pressure control shown in blue on the figure, 10 separate control opti-

misation intervals were defined for use in algorithm 4.4. For the first 6 and last

3 intervals the initial pressure, target pressure and minimum bound for pressure

were set to the minimum value attained by the sinusoidal pressure for the same
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Figure 4.8: Graphs comparing a sinusoidal pressure profile with smoothed heavi-
side PEEP jump to a fully optimised breathing cycle with optimised PEEP step.

time periods. At the same time the maximum bound on the pressure was set to

the maximum pressure attained by the sinusoidal profile. This choice was made

to allow the optimisation algorithm to pick target states corresponding to raises

in pressure which would not exceed the range of the sinusoidal profile and would

return to PEEP level giving an inhalation and exhalation phase. The seventh in-

terval was the longest, taking place over the length of 3 breaths in the sinusoidal

profile. The target pressure for this interval was set to the new PEEP level to

generate an optimised PEEP step as demonstrated in fig. 4.7.

As with the example in the previous section the optimisation of each segment

in this profile required a choice of compartmental weighting given in matrix V

and target ratio r. These were chosen to be the same weighting and ratio as used

to generate fig. 4.7. For each breath the optimisation was performed using the

resulting target from the previous breath as the next initial condition.

The optimisations performed for the regular breathing segments, excluding

the PEEP step in segment 7, resulted in pressures rising quickly in each segment

to achieved the upper boundaries placed on pressure. This rise was followed

by a small oscillation and a quick return to exhalation pressure. The fact these

optimisations achieved the bounds placed on pressure is unsurprising. These con-

trols result from a quadratic minimisation problem for which the true minimum is

known to be outside of the feasibility set, implying that the constrained minimum

will be on the boundary.
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Of more interest is the similarity between these optimised breaths and a form

of ventilation currently in use in clinical settings called airway pressure release

ventilation (APRV ). In this mode of ventilation, pressures are held at a constant

positive airway pressure (CPAP) for a large proportion of each breath followed by

a short period in which the pressure is dropped sharply to PEEP level before being

returned to CPAP [120]. It is also common during CPAP to have small oscillations

in pressure which are attributed to the need for spontaneous breathing [121].

The pressures and resulting ventilation profiles in fig. 4.8 are encouraging

for the use of these control optimisation procedures in a clinical setting. The

ventilation profiles show increases in recruitment even during regular breathing

phases. This combined with the fact that they can be optimised to reduce risk

factors such as lung heterogeneity [90, 116], through filling factor optimisation,

and alveolar dead space [10], through VQ optimisation, suggests they can provide

benefit to ventilator patients. Finally, the fact that the resulting profiles show

similarities to currently used techniques raises the prospect that further research

will be able to modify the optimisation algorithms to include further, clinically-

required features.

4.5 Control from recovered parameters

Through this chapter we have addressed many of the concerns which may prevent

the use of EIT as a feedback mechanism for mechanical ventilation in a clinical

setting. In section 4.1 we deduced that the model in chapter 3 is controllable for

a wide range of lung parameters, hence it is feasible to start designing control

schemes from EIT recoverable parameters. In section 4.3 we demonstrated that

control techniques can be applied quickly to improve gradients of pressure over

small sections of existing controls through a process of H1 minimisation. In

section 4.4 we designed a framework for optimising the H1 minimal controls

with respect to clinically relevant outcomes. The largest remaining obstacle to

declaring EIT guided control feasible in this setting is an analysis of the controls

under varying levels of error.

The two forms of error most likely to affect the resulting state of the ODE

lung model are errors in the pressure controls applied to the system, due to

mechanical limitations of the ventilators, and errors in the formulation of the

pressure controls, caused by using inaccurately recovered lung parameters. All
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modern ventilators use closed-loop control to adjust their applied pressures and

flow rate towards the set point, in this case a pressure waveform, defined by the

clinician [110]. This means that measurements are taken at the airway to monitor

pressure and flow, and the ventilator compensates to ensure the pressures do not

deviate too far from the desired profile. Hence, for our sensitivity analysis we

have focussed on errors in the generation of the pressure profiles themselves.

In this section we examine the quantitative and qualitative changes to gen-

erated control profiles when they are constructed not from the parameters used

for numerically solving the governing ODEs, but from the parameters recovered

through EIT. To do this we use the EIT difference imaging set up from chapter 3

to simulate best case EIT for six noise levels ranging from 50-100 SNR. At each of

these noise levels we take one thousand realisations of the noise distribution and

recover the model parameters as shown in chapter 3 then analyse both the dis-

tribution of recovered eigenvalues and the subsequent generated control profiles.

Section 4.5.1 examines the difference in eigenvalues, controls and resulting venti-

lation distributions between using the true parameters and those recovered from

EIT at 100 SNR as shown in section 3.4.3. Section 4.5.2 compares the successive

changes in control as the noise level increases.

4.5.1 Control from EIT at 100 SNR

First we examine the construction of both H1 minimal and optimised pressure

controls from parameters recovered through EIT at 100 SNR. The recovery of

these parameters and their sensitivity to noise and other changes are examined

in section 3.5.

Before constructing the controls themselves it is important to check that the

controllability property still holds. As discussed in section 4.1 this controllability

relies on recovering distinct negative eigenvalues for the lung ODE model. The

distribution of the eigenvalues produced from the parameters at this noise level are

shown in fig. 4.9. This chart shows the minimum, maximum and mean absolute

values of the recovered negative eigenvalues and indicates the range containing

two standard deviations from the mean. The algorithm used to generate these

values listed them in descending order, this means that the absolute value of

eigenvalue 2 was always smaller than that of eigenvalue 1.
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Figure 4.9: Chart comparing the distribution of recovered eigenvalues at 100 SNR
to the values used in the forward problem. The bars indicated original values
while the vertical lines are marked at the minimum, maximum, mean and two
standard deviations from the mean.

From the chart in fig. 4.9 it is apparent that the less negative eigenvalues were

recovered more accurately than the more negative ones. However, crucially, the

eigenvalues remained distinct for each of the thousand tests at this noise level

and all parameter sets were found to be controllable.

As the new recovered parameters were controllable we were able to compare

their H1 minimal and optimised pressure controls to those produced by true

values from the system. To do this the PEEP step H1 minimisation process from

section 4.3 and a perfusion weighted PEEP step optimisation process, described

in section 4.4, were repeated for each recovered parameter set. Quantitative

comparisons of these recovered parameter control profiles can be found in table 4.2

and table 4.3.
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Table 4.2 shows the difference between the pressure controls, p̄, generated

with recovered parameters from the corresponding controls p generated with the

accurate parameter set. This error is measured in the L2 norm and is normalised

against the L2 norm of p,

Error =
‖p̄− p‖2

‖p‖2.
(4.67)

The maximum and minimum deviations from the accurate controls are given

along with the mean change and standard deviation over the thousand recon-

structions. The values in this table show that, at this noise level, it is possible to

Table 4.2: Errors in controls generated from recovered parameters relative to
controls generated from accurate parameters. Errors are given measured using
the L2 norm as described in eq. (4.67).

Control Type Min Mean Max STD

(×10−2) (×10−2) (×10−2) (×10−2)

H1 0.10 1.70 2.98 0.53

Optimised 0.01 0.41 1.00 0.18

generate pressure controls which are quantitatively close to the accurately calcu-

lated controls. However it is evident from the difference between the error values

for the H1 minimisation and the optimisation process that the optimised pressure

controls are more stable with respect to noise in the recovered parameters.

This relative stability is emphasised further when we examine the change in

the gradients present in the generated pressure controls. Table 4.3 shows the

relative changes in the H1 semi-norm for the generated controls. These changes

are normalised against |p|H1 to emphasise where using the wrong parameters can

make large differences to the gradients of generated controls, giving the measure

Change =
|p̄|H1 − |p|H1

|p|H1

. (4.68)

In this table it is evident that both methods of control generation from recovered
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Table 4.3: Distribution of changes to the H1 semi-norm of produced controls due
to using the wrong eigenvalues. Values are given as calculated by the formula in
eq. (4.68).

Control Type Min Mean Max STD

(×10−2) (×10−2) (×10−2) (×10−2)

H1 -0.93 14.67 28.72 5.50

Optimised -3.21 -2.15 0.59 0.55

parameters can get close to the minimal H1 properties of the accurately calculated

controls. In some cases the gradients produced were in fact lower than those of

the accurate controls, offsetting the fact that the resulting ventilation states will

be changed. However, the optimised control gradients stay substantially more

stable than the H1 minimised gradients.

The relative stabilities of both approaches to control are also demonstrated

when examining the qualitative behaviour of controls when constructed with re-

constructed parameters. Figure 4.10 compares the H1 minimal control generated

using the true parameters to four other pressure controls generated from recov-

ered parameters. These comparison controls are the controls which attained the

minimum and maximum recruitment levels when used to steer the ODE lung

models, along with the profile which came closest to the mean recruitment and

the profile which was most different to the true profile as measured in the L2

norm.

Qualitatively the profile attaining the maximum recruitment appears closest

to the true profile, while both the minimum and mean recruitment levels appear

similar. However, fig. 4.11 shows the ventilation pattern generated by the final

profile which was most different from the true control as measured in the L2

norm. Examining, these ventilation graphs show that even this profile results in

a similar ventilation profile towards the end of the control period.

Figure 4.12 shows a similar qualitative comparison for the optimised controls.

As the true parameter control generated by this method was calculated to have

the optimum possible ventilation to perfusion ration, the comparison profiles for

this figure were chosen to have the minimum, mean and maximum deviation from

the optimised recruitment. The final profile again shows the maximum change in

the profile as measured in the L2 norm.
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Figure 4.10: Graph comparing the generated H1 minimal control profiles for
different realisations of EIT at 100 SNR.

All the profiles shown here appear much more qualitatively similar than those

shown for the H1 minimisation process. This is demonstrated further by the

ventilation pattern, shown in fig. 4.13, produced by the control with the largest

deviation from the accurately optimised control. This ventilation profile only

deviates slightly from the true optimum profile, emphasising the stability of this

control generation method.

This analysis confirms that both the H1 minimised and optimised control pro-

cesses can produce acceptable controls when using recovered parameters. How-

ever, the controls generated through an optimisation process appear much more

robust when it comes to EIT generated parameter noise. For this reason in sec-

tion 4.5.2 we will primarily use the optimised control profiles to compare the

effectiveness of control procedures at successively decreasing signal quality.
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Figure 4.11: Graphs comparing the air volumes in each compartment under the
action of H1 minimal controls generated from true and recovered parameters. The
blue dotted line was generated from the true parameters and the black line from
the noise realisation generating the most different control profile as measured in
the L2 norm.
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Figure 4.12: Graph comparing the generated optimised control profiles for differ-
ent realisations of EIT at 100 SNR.
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Figure 4.13: Graphs comparing the air volumes in each compartment under the
action optimised controls generated from true and recovered parameters. The
blue dotted line was generated from the true parameters and the black line from
the noise realisation generating the most different control profile as measured in
the L2 norm.
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4.5.2 Noise level comparisons

The analysis in section 4.5.1 shows that the optimised controls generated using

parameters recovered by EIT at 100 SNR are not substantially changed from those

generated using accurate parameters. This is encouraging for the development

of EIT guided control, especially considering the fact 100 SNR is considerably

lower than the practical maximum accuracy of EIT measurements. However, it is

still necessary to examine the behaviour of our control generation schemes under

rising levels of measurement noise in order to determine when they will no longer

be feasible. To do this we used the same arrangement as in section 4.5.1 at 6

equispaced noise levels from 50-100 SNR. For each noise level parameters were

recovered for one thousand realisations of measurement noise using a simulation

of best case EIT from difference imaging as examined in section 3.5.

As in section 4.5.1 the first step in analysing the controls at these noise levels

is to check eigenvalues and controllability. Through all the noise tests there was

only a single instance of a negative recovered resistance. With this parameter

set the system was in fact still analytically controllable as tested by the Kalman

rank condition. However, the separation of eigenvalues was so small that the

condition numbers for matrices requiring inversion were too high to numerically

generate an optimised control. Every other test provided a system with good

enough conditioning for the optimisation process.

The mean and standard deviation of the calculated eigenvalues at each noise

level are shown in table 4.4 excluding the single experiment at 50 SNR for which a

negative resistance value was recovered. This table shows that the mean recovered

values for each eigenvalue remain separated and even become closer to their true

values as the signal level decreases. However, the increased variance at successive

noise levels is less encouraging. At 50 SNR the separation between eigenvalues

can become small in the worst cases. Even in these cases the controllability of

the system was maintained and optimised controls were generated.

The quantitative differences between these generated controls and the accurate

optimal control can be seen in 4.5. This table shows the minimum, maximum,

mean and standard deviation for the L2 difference between the optimised controls

generated with recovered parameters and the control generated with accurate

parameters. All values are calculated and normalised according to the formula in

eq. (4.67).
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Table 4.4: Eigenvalue recovery from noisy difference data at varying SNR

Eigenvalue 1 Eigenvalue 2 Eigenvalue 3 Eigenvalue 4

SNR mean STD mean STD mean STD mean STD

TRUE -2.698 - -1.740 - -0.721 - -0.341 -

100 -1.774 0.236 -1.307 0.118 -0.638 0.027 -0.340 0.005

90 -1.809 0.275 -1.323 0.134 -0.642 0.030 -0.340 0.006

80 -1.861 0.332 -1.345 0.156 -0.647 0.034 -0.341 0.006

70 -1.940 0.423 -1.378 0.188 -0.654 0.040 -0.342 0.007

60 -2.079 0.609 -1.431 0.238 -0.665 0.048 -0.344 0.008

50 -2.352 1.025 -1.523 0.321 -0.684 0.059 -0.346 0.010

Table 4.5: Comparison of computed optimal controls as measured in the L2 norm
according to the formula in eq. (4.67).

SNR Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

100 0.01 1.00 0.41 0.18

90 0.02 0.98 0.40 0.19

80 0.03 1.05 0.38 0.20

70 0.02 1.14 0.36 0.21

60 0.02 1.26 0.35 0.22

50 0.01 2.28 0.36 0.26

The fact that the minimum and mean changes in the optimised controls re-

main near constant across the noise levels is encouraging. This implies that the

desirable properties of control from section 4.4 may be achieved even at lower

signal levels. However, as expected the maximum error and variance generally

increase with noise level.

To check how effective the optimised controls will be at decreased signal qual-

ities we need to check the resulting ventilation profiles for the controls generated

at these noise levels. As the optimisation process used optimised towards a tar-

get VQ ratio we will use the difference from this optimal ratio to measure control

quality. To do this we calculate the VQ ratio vector at the end of the control
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segment as

r =

(
v1

q1

,
v2

q2

,
v3

q3

,
v4

q4

)
, (4.69)

where vi is the air content of compartment i at the end of the control segment

and qi is the perfusion level for the compartment as provided for the optimisation

process. The reduction in quality between the VQ ratio for the accurate param-

eter set, r, and the ratio for the recovered parameter set r̄, is then measured

as

Error =
‖r̄− r‖2

‖r‖2

, (4.70)

where values have been normalised against ‖r‖2. to aid in comparison. The

minimum, maximum and mean values for this measure are shown in table 4.6.

Table 4.6: Comparison of attained ventilation perfusion levels. Values given are
calculated according to eq. (4.70).

SNR Min Max Mean STD

(×10−2) (×10−2) (×10−2) (×10−2)

100 0.001 0.209 0.105 0.039

90 0.005 0.226 0.100 0.043

80 0.006 0.239 0.095 0.046

70 0.003 0.248 0.089 0.048

60 0.002 0.253 0.085 0.051

50 0.004 0.623 0.086 0.058

Similarly to the previous measure of control quality, the small percentage

changes shown in this table emphasise the stability of the control optimisation

process to EIT measurement noise. As expected both the maximum reduction

in VQ ratio and the standard deviation increase as the signal quality decreases.

However, the mean VQ reduction appears to decrease for lower SNR values.
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To try and explain these VQ results we examine the qualitative behaviour

of the controls. Both fig. 4.14 and fig. 4.15 compare optimised control profiles

generated at the 6 SNR levels to the optimised control generated with accurate

parameters. Figure 4.14 shows the profile for each SNR level which decreased the

VQ ratio the most. Figure 4.15 shows the profile at each SNR which came closest

to producing the mean VQ ratio for the level.
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Figure 4.14: Graph comparing profiles generated in a control optimisation pro-
cedure from EIT at 6 levels of SNR. The profiles shown are those which deviated
the most from the true optimal profile as indicated by the black dotted line.

Both graphs show that the controls appear to follow a similar profile to the

accurate control which has been shifted slightly. The distribution in fig. 4.15

appear to follow the accurate control more closely confirming the results shown

in table 4.5 and table 4.6. The plots of the mean profiles for SNR levels 50 and

60 are plotted on top of each other and appear to more closely follow the path of

the final few seconds of the accurate control. This could account for the improved

mean VQ ratios at these noise levels.
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Figure 4.15: Graph comparing the mean profiles generated in a control optimisa-
tion procedure from EIT at 6 levels of SNR. The Black dotted line indicates the
pressure control generated from the true parameters.

A possible explanation for this behaviour is the increased mean magnitudes of

the recovered eigenvalues as shown in table 4.4. These larger negative eigenvalues

would result in faster decaying eigenmodes and would require greater change to

the ventilation pattern to occur towards the end of the control sequence.
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4.6 Conclusion

This chapter has addressed many of the concerns which may prevent the use of

EIT as a feedback mechanism for mechanical ventilation in a clinical setting. In

section 4.1 we deduced that the model in chapter 3 is controllable for a wide

range of lung parameters, hence it is feasible to start designing control schemes

from EIT recoverable parameters.

In section 4.3 we demonstrated that control techniques can be applied quickly

to improve gradients of pressure over small sections of existing controls through a

process of H1 minimisation. In section 4.4 we designed a framework for optimising

the H1 minimal controls with respect to clinically relevant outcomes. Finally

in section 4.5 we confirm that optimised controls may be generated from EIT

recovered lung parameters at a range of signal qualities and still provide benefit

to the ventilation of the patient.

There remain several hurdles before attempting practical implementation of

these techniques in a clinical setting. For example the sensitivity analysis in

section 4.5 was performed using simulated best case EIT, these techniques will

have to be tested with more practical implementations of EIT. Similarly for these

tests the ventilation profiles used to generate the EIT signal were produced using

the same model used for parameter recovery, control and control testing. An

important next step in testing this workflow is to attempt parameter recovery

on ventilation profiles which have been generated using a more advanced lung

model. Additionally work could be done on determining the best optimisation

criteria for the techniques in section 4.4 to more closely link control objectives

with desirable clinical outcomes.

Even though these further steps will be required before clinical testing may

begin, this chapter represents an important step in determining the utility of EIT

to not only inform patient care but actively design ventilator controls. We have

shown that EIT can be combined with simple modelling and standard control

theory techniques to actively optimise patient care.



Chapter 5

Conclusion

The work in this thesis was motivated by an observed need for improved bedside

monitoring and control of ventilation in respiratory intensive care. The use of

EIT for this monitoring has been studied for over 30 years due to its ability to

safely provide long term monitoring at the bedside. Building on this work we

have produced a novel framework to not only retrieve regional ventilation profiles

and meaningful lung parameters, but also include EIT directly into the control

of mechanical ventilation. This represents the first time that the feedback loop

between ventilation and EIT has been closed.

With the aim of providing a framework for the retrieval of lung parameters and

production of pressure control profiles three important tasks have been achieved.

The first, described in chapter 2, was to produce an EIT reconstruction algorithm

capable of providing 3D, regionally-absolute values of conductivity in real time.

The second, described in chapter 3, was to design a coupling method between

EIT and lung modelling allowing the recovery of ventilation distributions and

lung parameters in a clinically meaningful capacity. The final task, described in

chapter 4, was to determine under what conditions recovered parameters could be

used to procedurally construct pressure controls and determine how they might

produce clinical benefits to the patient.

The novel pseudo-absolute algorithm developed in chapter 2 is a fast, regionally-

absolute reconstruction method for clinical EIT. In chapter 2 we additionally

showed that, despite a reliance on grouping constraints, the pseudo-absolute al-

gorithm still provides benefit when there are errors in the segmentation, meshing

and modelling assumptions. In particular the increased accuracy in reconstruc-

tion of interior conductivity changes in between the lungs merits further research.

178
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In chapter 3 we developed a lung model for which ventilation states are observ-

able on a scale which is feasible for segmentation and reconstruction through EIT.

We were able to show in chapter 3 that, with extremely limited post-processing

time, it is possible to estimate not only regional air volumes and flows but also

regional measures of elastance and airway resistance from EIT. This parameter

estimation was proven to be feasible for periodic pressure controls so long as there

are regional phase differences in the ventilation distribution. We also showed that

the recovered elastance parameters and time constants are reasonably robust with

respect to both EIT measurement noise and modelling errors in the reconstruction

process.

Finally in chapter 4 we used the same ventilation model as above to demon-

strate a method generating pressure controls for mechanical ventilation. These

profiles were shown to have minimal gradients as measured in the H1 semi-norm

and could be used to define an optimisation scheme to maximise recruitment

while constraining tidal pressure variations. The ability to produce these pres-

sure controls was linked to the controllability of the parameters for the ODE lung

model. Crucially we proved that the system is more likely to be controllable the

more regions of the lung ventilate out of phase with each other.

5.1 Further work

The work in this thesis highlights many further avenues for research. In the first

instance there are smaller improvements to the current work. For example testing

the post-processing techniques in chapters 3 to 4 with a larger range of parameter

values, or modifying the parameter recovery process to more accurately model

error in the reconstructed ventilation distributions through the use of constrained

total least squares [107, 108].

Similarly there are interesting potential directions of research opened up by

the formulation of the pseudo-absolute reconstruction algorithm. For example the

evidence of greater sensitivity to interior changes shielded by the lungs suggests

it may be useful for separating out cardiac signals in EIT. However, the research

directions we find of particular interest are further performance enhancements

for Gauss-Newton type EIT reconstructions, validation of the pseudo-absolute

algorithm on a wider range of datasets and verification of the post-processing

techniques on more advanced lung models.
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The efficiency savings described in section 2.4, while useful, do not represent a

complete list of available performance enhancements for Gauss-Newton type EIT

reconstructions. Savings may still be made by balancing the need for accuracy

at specific stages of the algorithm with the need for speed. For example during

the line search forward solves require less accuracy, allowing the use of itera-

tive methods with relaxed convergence tolerances. Such techniques include the

conjugate gradient method [122] or other Lanczos-type Krylov subspace meth-

ods [123, 124] in the case of complex admittance. Alternatively, solutions using

different formulations of the problem can allow the same level of accuracy with

lower computational cost. For example higher order FEM solutions to the for-

ward problem have been shown to generate the same level of accuracy in different

norms in less computational time for 2D reconstructions [125].

Additionally, testing of the pseudo-absolute reconstruction algorithm in this

thesis was performed without including deformation of the chest or movement

of the lungs and electrodes. This was a reasonable simplification of the system

to allow for testing of the post-processing techniques under the assumption that

domain deformation and electrode movement could be measured and modelled

during data acquisition. However, it does raise the question of how the algorithm

will perform on models including these additional parameters and ultimately how

it will perform on real data. Further work could therefore consist of testing the

pseudo-absolute reconstruction algorithm on animal datasets or patient datasets

for which there exist general lung shape models.

The most important piece of further work is to test how the parameter recovery

and control procedures behave under changes to the underlying lung model. In

this thesis the same ODE model has been used for the ventilation forward solve

as for the parameter recovery and control generation. Therefore these techniques

still need to be validated against more accurate models of lung function such as

those with a much higher number of compartments or CFD models.



Appendix A

Additional inner-product spaces

The freedom in defining the inner product to use for our measure allows us to

incorporate desirable information about data-fit and modelling assumptions into

our comparison with ground truth images. Additionally the measure can be

weighted depending on the intended use of the reconstructions. Hence, by careful

choice of the inner products used we can incorporate all four criteria for judgement

of a reconstruction as mentioned in section 2.3.1.

Three examples of interesting inner products are:

1. the matrix inner product on Rn with the diagonal matrix containing volume

of each element,

2. a combination of the previous inner product with a matrix inner product

approximating a differential operator,

3. an inner product defined by the objective function used in formulating the

linearised difference reconstruction.

The first inner product listed has been discussed in section 2.3.1. The main

issue with inner product one is the lack of any modelling information. This can

be addressed by introducing an approximate differential operator matrix R such

that the inner product becomes

〈u, v〉DR = 〈u, v〉D + αuTRTRv, α ∈ {x ∈ R|x > 0}

= uT (D + αRTR)v. (A.1)
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The choice of operator R then depends on the modelling assumptions of the

reconstruction. Emphasis on the smoothness of the solution can be increased

or decreased by adjusting the regularisation hyper-parameter α. The difficulties

and advantages of implementing different matrix approximations to differential

operators have been discussed in another section. The two which have been

examined in this thesis are the Adjoint Graph Laplacian and the Finite Volume

Laplacian.

The Adjoint Graph Laplacian operator works by taking the difference be-

tween two nodes on the adjoint graph to the reconstruction mesh but does not

take into account the varying sizes of neighbouring elements. As such, where an-

other differential operator might penalise variations between elements differently

depending on the length scale at that point in the mesh, this operator applies

the same weighting to changes in areas of both high and low mesh refinement.

Depending on the assumed regularity of the problem this can be advantageous for

regularisation especially when the mesh is assumed to be deformed as in recon-

structions accounting for domain shape changes. This operator has been used to

regularise many of the reconstructions in this work, making it the natural differ-

ential operator to use as part of our inner product. However, this inner product

relies explicitly on the discretisation of the domain and does not directly relate to

biological qualities or assumptions on the spatial smoothness of the conductivity

maps.

The Finite Volume approximation to the Laplacian has the advantage that it

approximates a spatial Laplacian in Cartesian coordinates rather than the Graph-

Laplacian. Application of this operator R to the vector of conductivity values u

gives a vector containing the integrals of the Laplacian on each element of the

mesh,

(Ru)k ≈
∫
Ek

∆u(x)dV. (A.2)

So formulating the inner product as above we get

〈u, v〉DR = 〈u, v〉D + αuTRTRv,

= 〈u, v〉D + α

n∑
k=1

[∫
Ek

∆u(x)dV

] [∫
Ek

∆v(x)dV

]
. (A.3)
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This formulation of the inner product now explicitly contains information on

the length scales over which the conductivity maps are changing. However, this

measure is not the only possible use of the Finite Volume Laplacian to define an

inner product.

It is possible to find a formulation of the inner product which approximates

the L2 inner product acting on the Laplacian function,

〈∆u,∆v〉L2 =

∫
Ω

(∆u(x))(∆v(x))dV.

This can be done by finding the volume average of the required Laplacians in

each element

µk =

∫
Ek

∆u(x)dV∫
Ek

1dV
, νk =

∫
Ek

∆v(x)dV∫
Ek

1dV
, (A.4)

= (D−1Ru)k = (D−1Rv)k (A.5)

and integrating these quantities over the respective elements. This formulation

reduces to

〈u, v〉DR = 〈u, v〉D + αµDν,

= 〈u, v〉D + αuTRTD−1Rv,

= uT (D + αRTD−1R)v. (A.6)

Looking at the inner product shown in eq. (A.6) as the maximum element volume

tends to zero we see that

lim
max(D)→0

〈u, v〉R =

∫
Ω

u(x)v(x)dV +

∫
Ω

(∆u(x))(∆v(x))dV,

= 〈u, v〉L2 + 〈∆u,∆v〉L2 . (A.7)

It is interesting to note that such a formulation could be performed with

other matrix approximations to differential operators. One particularly interest-

ing operator not explored here is the approximation of the gradient operator on

an unstructured mesh which would produce an approximation to the H1 inner

product over the mesh. It is also interesting to note that this formulation can
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be related to the H2 Sobolev Space inner product as the induced norm of the L2

inner product on the Laplacian is equivalent to the H2 semi-norm as shown in

the regularisation section. However, the full implementation of the H2 norm has

not been examined here.

The final inner product mentioned above is derived from the objective func-

tional formulation of the EIT reconstruction,

F = ‖V (σ)−m‖2 + α‖Rσ‖2, (A.8)

where V is the forward operator taking the conductivity map σ to a voltage, m

is the measured voltage, α is a regularisation hyperparameter and R is one of the

differential operators described above. Taking the value of the cost functional F

is a standard technique for verifying the solution to an inverse problem and is

usually called calculating the residual. However, F is unlikely to be zero for the

true solution so taking the angle defined by the inner product

〈u, v〉 = 〈V (u), V (v)〉+ αuTRTRv (A.9)

allows a comparison of the reconstruction with the true solution under the mod-

elling conditions used to reconstruction the image.

This formulation can be adjusted either to take into account the absolute

values of conductivity given by the pseudo-absolute reconstruction algorithm or to

simply take the difference measurements. This can be done by either performing

a full forward solve or by using a Jacobian matrix to perform a linearised solve

on the difference image.
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