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Conversions between barycentric, RKFUN, and

Newton representations of rational interpolants

Steven Elsworth Stefan Güttel∗

Abstract

We derive explicit formulas for converting between rational interpolants
in barycentric, rational Krylov (RKFUN), and Newton form. We show ap-
plications of these conversions when working with rational approximants
produced by the AAA algorithm [Y. Nakatsukasa, O. Sète, L. N. Tre-
fethen, arXiv preprint 1612.00337, 2016] within the Rational Krylov
Toolbox and for the solution of nonlinear eigenvalue problems.

1 Introduction

The Rational Krylov Toolbox (RKToolbox) is a collection of scientific com-
puting tools based on rational Krylov techniques [3]. This MATLAB toolbox
implements, among other algorithms, Ruhe’s rational Arnoldi method [12] and
the RKFIT method for nonlinear rational approximation [5]; see also the ex-
ample collection on http://rktoolbox.org. At the heart of many RKToolbox
algorithms are so-called RKFUNs (short for rational Krylov functions), which
are matrix pencil-based representations of rational functions [4, 5]. The tool-
box overloads more than 30 MATLAB commands for RKFUN objects using
object-oriented programming, including root and pole finding (methods roots

and poles), the efficient evaluation for scalar and matrix arguments (feval),
addition, multiplication, and conversion to continued fraction form (contfrac).
See [2, Chapter 7] for more details on the RKFUN calculus.

Since version 2.7 the RKToolbox supports the conversion of rational in-
terpolants from their barycentric form into the RKFUN format. In this brief
note we explain this conversion and also establish an explicit relation to ra-
tional Newton interpolation. We then apply these connections to the problem
of sampling a nonlinear eigenvalue problem, making use of the recently devel-
oped AAA algorithm [11]. But let us first review the various rational function
representations.

Assume that we are given pairs of complex numbers (zj , fj) with the zj being
pairwise distinct (j = 0 : m). Then a rational interpolant of type [m,m] can be
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written in barycentric form as

r(z) =

m∑
j=0

wjfj
z − zj

m∑
j=0

wj

z − zj

, (1)

where the barycentric weights wj are nonzero but can otherwise be chosen freely
(see, e.g., [8, 9, 11, 13]). It is easily verified that r(z) → fj as z → zj , so r is
indeed a rational interpolant for the data (zj , fj).

The RKFUN representation of a type [m,m] rational function is

r =
∧

(Hm,Km, cm),

where (Hm,Km) is an (m+ 1)×m unreduced upper-Hessenberg pencil (unre-
duced meaning that Hm and Km have no common zero entries on their sub-
diagonals) and cm = [c0, c1, . . . , cm]T ∈ Cm+1 is a coefficient vector [5]. The
matrix pencil gives rise to a sequence of rational basis functions r0, r1, . . . , rm
satisfying the rational Arnoldi decomposition [4, 12]

z [r0(z), r1(z), . . . , rm(z)]Km = [r0(z), r1(z), . . . , rm(z)]Hm, (2)

and r is defined as a linear combination of these basis functions:

r(z) =

m∑
j=0

cjrj(z). (3)

Of course, at least one of the functions rj needs to be fixed in order for the de-
composition (2) to uniquely determine all other basis functions. In RKToolbox
the convention is that r0 ≡ 1, but other choices are possible.

Finally, a rational interpolant of type [m,m] is in Newton form

r(z) =

m∑
j=0

djbj(z)

if the basis functions bj follow a recursion

b0 ≡ 1, bj(z) =
z − σj−1

βj(hj − kjz)
bj−1(z), j = 1 : m, (4)

with complex scalars satisfying βj 6= 0, |hj |+ |kj | 6= 0, and σj−1 6= hj/kj for all
j. Note that the bj form a rational Newton basis with each bj having roots at
the points σi−1 and poles at ξi := hi/ki for i = 1 : j.
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2 From barycentric to RKFUN format

Our aim is to convert the rational function r from the barycentric form (1) into
the RKFUN format (3). First we write

r(z) =

m∑
j=0

fjrj(z), rj(z) =

wj

z − zj
m∑
i=0

wi

z − zi

(5)

with the functions rj satisfying the recursion

wj−1(z − zj)rj(z) = wj(z − zj−1)rj−1(z), j = 1 : m.

Bringing terms containing z to the left,

z(wj−1rj(z)− wjrj−1) = wj−1zjrj(z)− wjzj−1rj−1(z),

and collecting these equations in matrix form yields a rational Arnoldi decom-
position

z [r0(z), r1(z), . . . , rm(z)]Wm = [r0(z), r1(z), . . . , rm(z)]ZmWm (6)

with

Zm =


z0

z1
. . .

zm−1

zm

 , Wm =


−w1

w0 −w2

. . .
. . .

wm−2 −wm
wm−1

 .

Note that the (m + 1) × m upper-Hessenberg pencil (ZmWm,Wm) is indeed
unreduced as we assume nonzero barycentric weights wj . We have therefore
converted r into the RKFUN representation

r =
∧

(ZmWm,Wm, fm), fm = [f0, f1, . . . , fm]T . (7)

This form allows subsequent numerical operations on r as implemented in the
RKToolbox. For example, the following result from [5, Section 5.2] summarizes
how to compute the roots of r.

Theorem 1 Given the RKFUN representation (7) with nonzero coefficient vec-
tor fm. Let P be an invertible (m + 1) × (m + 1) matrix such that P−1fm =
[γ, 0, . . . , 0]T for some nonzero γ. Then the generalized eigenvalues of the lower
m × m-part of the pencil (P−1ZmWm, P

−1Wm) correspond to the roots of r
(with multiplicity).
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In the roots method in the RKToolbox, the matrix P is chosen as a House-
holder reflector P = Im+1 − σuuH . Note that Theorem 1 effectively enables
us to find the m roots of a rational function in barycentric form (1) by solv-
ing an m ×m generalized eigenvalue problem. The barycentric data zj , fj , wj

appear explicitly in the vector fm and the matrices Zm,Wm. It is likely that
the bidiagonal structure of (ZmWm,Wm) can be exploited in the solution of the
generalized eigenproblem, but as m is typically moderate this is not our focus
here.

The problem of root finding for polynomials and rational functions in (barycen-
tric) Lagrange form has attracted quite some research, with the polynomial case
slightly more explored. A popular approach for rational root finding, explained
for example in [9], [8, Section 2.3.3], and also used in [11], involves the solution
of an (m + 2) × (m + 2) eigenvalue problem, giving rise to two spurious eigen-
values at infinity. An exception is the very general class of CORK linearizations
for nonlinear eigenvalue problems in [14], which contains our formulation and
also leads to m × m eigenproblems (for scalar nonlinear eigenvalue problems,
of which root finding is a special case). Theorem 1 spells out the conversion
explicitly when r is given in the form (1), and it makes a direct link with the
RKFUN root-finding approach in [5, Section 5.2].

For purposes other than root finding (e.g., pole finding) it may be desirable
to modify (6) so that the first rational basis function r0 is transformed into a
constant. This can be achieved by utilizing the relation

m∑
j=0

rj(z) = 1.

Let Q be an invertible (m+ 1)× (m+ 1) matrix with first column [1, 1, . . . , 1]T .
(For example, Q may be chosen as a multiple of a unitary matrix.) Then by
inserting QQ−1 we transform (6) into the decomposition

z [r̂0(z), r̂1(z), . . . , r̂m(z)](Q−1Wm) = [r̂0(z), r̂1(z), . . . , r̂m(z)](Q−1ZmWm)

where now r̂0 ≡ 1. The equivalent to (7) is

r =
∧

(Q−1ZmWm, Q
−1Wm, Q

−1fm). (8)

By computing a QZ decomposition of the lower m × m-part of the pencil
(Q−1ZmWm, Q

−1Wm) we can restore the upper-Hessenberg structure and thereby
obtain the RKFUN representation used in [3]. The following theorem is an im-
mediate consequence of [3, Theorem 2.6].

Theorem 2 Given the RKFUN representation (8). Then the generalized eigen-
values of the lower m×m-part of the pencil (Q−1ZmWm, Q

−1Wm) correspond
to the poles of r (with multiplicity).

Again, the theorem requires an m ×m eigenproblem to be solved and the
involved matrices are products of structured matrices (for suitably chosen Q).
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We have implemented the described method for converting a barycentric inter-
polant into RKFUN format in the utility function util bary2rkfun provided
with RKToolbox version 2.7. After the conversion, all methods overloaded for
RKFUNs can be called on the barycentric interpolant. We demonstrate this
with a simple example.

Example 1: In an example taken from [11, page 27] the AAA algorithm is used
to compute a rational approximant r(z) to the Riemann zeta function ζ(z) on
the interval [4 − 40i, 4 + 40i]. After conversion into an RKFUN, we evaluate
the matrix function r(A)b ≈ ζ(A)b for a shifted skew-symmetric matrix A ∈
R20×20 having eigenvalues in [4 − 40i, 4 + 40i] and a vector b of all ones. This
evaluation uses the efficient rerunning algorithm described in [5, Section 5.1]
and requires no diagonalization of A. We then compute and display the relative
error ‖ζ(A)b− r(A)b‖2/‖ζ(A)b‖2:

zeta = @(z) sum(bsxfun(@power,(1e5:-1:1)’,-z));

[r,pol,res,zer,z,f,w,errvec] = aaa(zeta,linspace(4-40i,4+40i));

rat = util_bary2rkfun(z,f,w); % convert to RKFUN format

A = 10*gallery(’tridiag’,10); S = 4*speye(10);

A = [ S , A ; -A , S ]; b = ones(20,1);

f = rat(A, b); % approximates zeta(A)*b

[V,D] = eig(full(A)); ex = V*(zeta(diag(D).’).’.*(V\b));

norm(ex - f)/norm(ex)

ans = 1.5199e-13

3 From barycentric to Newton form

The recursion (4) for the Newton basis functions bj can be linearized as

z [b0(z), b1(z), . . . , bm(z)]Mm = [b0(z), b1(z), . . . , bm(z)]Nm (9)

with matrices

Mm =


1

β1k1 1

. . .
. . .

βm−1km−1 1
βmkm

 , (10)

Nm =


σ0

β1h1 σ1

. . .
. . .

βm−1hm−1 σm−1

βmhm

 .
Comparing the matrix pencils (Mm, Nm) in (9) with (ZmWm,Wm) in (6) we
find that they are of the same structure. In particular, starting from (6) and
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defining for j = 1 : m the quantities

σj−1 := zj−1, βjkj := −wj−1

wj
, βjhj := −zjwj−1

wj
,

we arrive at

z [r0(z), r1(z), . . . , rm(z)]Mm = [r0(z), r1(z), . . . , rm(z)]Nm

where Mm, Nm are given in (10).
What we have just shown is that the basis functions rj defined in (5) and

associated with the barycentric interpolant can also be interpreted as Newton
basis polynomials, except that the first function r0 is not necessarily constant.
This is a useful insight because numerical methods based on rational Newton
interpolation may not need to be rewritten from scratch when switching to
barycentric rational interpolation. The only change required is to convert the
barycentric data zj , fj , wj into the Newton data σj , ξj = hj/kj , βj using the
explicit formulas provided above.

4 An application to nonlinear eigenproblems

Let F : Ω → CN×N be a matrix-valued function analytic on a domain Ω ⊆ C.
We wish to compute points λ ∈ C, the eigenvalues of F , at which F (λ) is
singular. This is the so-called nonlinear eigenvalue problem and many numerical
methods have been developed for its solution; see, e.g., [7,10] and the references
therein. In this note we will focus on the NLEIGS method described in [6],
which is based on an approximate expansion of F into a rational interpolant

R(z) =

m∑
j=0

bj(z)Dj , (11)

where the Dj ∈ CN×N are the matrix analogue to divided differences and
the bj are the rational Newton basis functions defined by (4). The rational
interpolant R(z) is then linearized into a (large, sparse and structured) matrix
pencil (Am,Bm) of sizeNm×Nm. For completeness, we quote [6, Theorem 3.2].

Theorem 3 Given a rational eigenvalue problem (11) with basis functions bj
defined by (4). Then the linear pencil

Lm(z) = Am − zBm
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with

Am =


D0 D1 · · · DN−2 DN−1 − σN−1DN/βN
σ0I β1I

. . .
. . .

σN−3I βN−2I
σN−2I βN−1I

 ,

Bm =


D0/ξN D1/ξN · · · DN−2/ξN DN−1/ξN −DN/βN
I β1/ξ1I

. . .
. . .

I βN−2/ξN−2I
I βN−1/ξN−1I

 ,

is a strong linearization of R(z). If (λ,x), x 6= 0, is an eigenpair of R, that

is R(λ)x = 0, then (λ, b(λ) ⊗ x) with b(λ) :=
[
b0(λ) b1(λ) · · · bm−1(λ)

]T
is an eigenpair of Lm(z). Conversely, if (λ,ym) is an eigenpair of Lm(z) then
there exists a vector x such that ym = b(λ)⊗ x and (λ,x) is an eigenpair of R.

After linearization ofR(z) it remains to compute the eigenvalues of (Am,Bm)
inside a target set Σ, a compact subset of Ω in which the desired eigenvalues of
the nonlinear eigenproblem F are located. If R ≈ F uniformly on Σ, one can
show that these eigenvalues are good approximations to the eigenvalues of F ,
and that there are no spurious eigenvalues inside Σ (i.e., eigenvalues of R which
are not eigenvalues of F ). Depending on the size Nm the linear eigenvalue
problem can be solved either directly or iteratively (e.g., by a rational Krylov
method [12]).

Note that the basis functions bj in (4) depend on the sampling points σi−1,
poles ξi = hi/kj , and scaling parameters βi (i, j = 1 : m), all of which have to
be chosen so that R ≈ F uniformly on Σ. The NLEIGS sampling procedure
described in [6, Section 5] serves this purpose, using greedy Leja–Bagby points
as the parameters [1]. However, this approach requires the user to specify can-
didates for the pole parameters ξi, which may be a disadvantage in particular
when the analytic form of F is not accessible.

In order to overcome this drawback, we consider instead of (11) the barycen-
tric form

R(z) =

m∑
j=0

wj

z − zj
F (zj)

m∑
j=0

wj

z − zj

(12)

and aim to choose the parameters zj , wj so that R ≈ F uniformly on Σ. The
AAA algorithm [11] seems to provide a powerful tool for this, except that it is
only applicable to scalar functions. However, if we use instead of the matrix-
valued function F a scalar surrogate function f having the same region of ana-
lyticity and similar behaviour over Ω, we expect that the sampling parameters zj
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and the barycentric weights wj computed for f are also good choices for inter-
polating the original function F via (12). Here we consider the scalar surrogate
function f(z) = uHF (z)v, where u,v ∈ CN are random vectors of unit length.

Due to the direct link between the barycentric and Newton forms established
in Section 3, we can modify the existing NLEIGS implementation in RKToolbox
with minimal effort. Given the boundary of the target set Σ and the function-
ality to evaluate F in points on that boundary, the AAA–NLEIGS combination
works as follows:

1. Discretize the boundary of the target set Σ with sufficiently many candi-
date points, collected in a set Z.

2. Run the AAA algorithm to compute a type [m,m] rational interpolant r
of the form (1) for the surrogate f(z) = uHF (z)v on the set Z. (The
degree m is determined by the built-in stopping criterion of AAA.)

3. Convert the barycentric parameters zj , fj , wj into the Newton parameters
σj , ξj = hj/kj , βj using the formulas provided in Section 3.

4. Build the NLEIGS linearization in Theorem 3 using the Newton param-
eters. The matrices Dj are not affected by the conversion and we simply
have Dj = F (zj) = F (σj).

5. Solve the linearized eigenproblem using, e.g., a rational Krylov iteration.

We illustrate this algorithm with the help of a numerical example.

Example 2: Consider the nonlinear eigenproblem F (z) = A−z1/2I, where A ∈
R20×20 is the shifted skew-symmetric matrix from Example 1. The eigenvalues
of F are the squares of the eigenvalues of A. As target set Σ we choose a disk of
radius 50 centered at 10 + 50i, inside of which are three eigenvalues of F . The
boundary circle is discretized by 100 equispaced points, providing the set Z of
candidate points.

We apply the AAA algorithm to f(z) = uHF (z)v, which returns with a
rational interpolant r of degree m = 15 in barycentric form. The accuracy of r
measured in the uniform norm over the set Z is shown on the left of Figure 1
(solid line). We also show the error maxz∈Z ‖F (z)−R(z)‖2 for the corresponding
matrix-valued interpolant R (dashed line) and confirm that both approximants
converge at similar rates.

Following the algorithm outlined above, we convert the rational interpolant
into Newton form and then supply the Newton parameters to the NLEIGS
linearization code in RKToolbox. The resulting linear eigenvalue problem is
of dimension 20m = 300 and, for the purpose of this demonstration, small
enough to be solved directly using MATLAB’s eig. On the right of Figure 1 we
show the exact eigenvalues of F (red circles) and their approximations (magenta
pluses), together with the sampling points zj (black squares) and the poles of
the rational interpolant (green crosses). We observe that the eigenvalues of F
inside the target set are well approximated by eigenvalues of the linearization,
and that there are no spurious eigenvalues inside Σ.
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Figure 1: Solution of a nonlinear eigenvalue problem using the AAA algorithm
combined with NLEIGS. Left: Accuracy of the AAA sampling procedure as the
degree m of the rational interpolant increases. Right: Exact eigenvalues and
their approximations, together with the sampling points zj and the poles ξj of
the rational interpolant.

5 Conclusions

We have derived explicit formulas for converting between rational interpolants
in barycentric, rational Krylov (RKFUN), and Newton form, and shown two
examples where this conversion is useful within the RKToolbox. In future work
we plan to extend the sampling procedure to nonsquare problems, e.g., for
sampling solutions of vector-valued initial and boundary value problems, and
we plan to derive probabilistic error bounds for the surrogate sampling approach.
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[6] Güttel, S., Beeumen, R. V., Meerbergen, K., and Michiels, W.
NLEIGS: A class of fully rational Krylov methods for nonlinear eigenvalue
problems. SIAM J. Sci. Comput. 36, 6 (2014), A2842–A2864.
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