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Abstract

An octad triple is a set of three octads, octads being the blocks of the S(5, 8, 24)
Steiner system. In this paper we determine the orbits of M24, the largest Mathieu
group, upon the set of octad triples.

1 Introduction

The Mathieu group M24 of degree 24 trails in its wake myriad exotic and varied combinatorial
structures. For example the Golay code [11] and the Leech lattice [7], [8], not to mention
the many sporadic simple groups such as the other four Mathieu groups and Conway’s
largest simple group which have close ties with M24. Arguably though the most fundamental
combinatorial object is the Steiner system S(5, 8, 24) of whichM24 is its automorphism group.
This slant on M24 was first revealed by Witt in [13], [14]. Let Ω be a 24-element set, equipped
with this Steiner system. The blocks of this system will be referred to as octads, and we
denote the set of octads of Ω by O. We shall make extensive use of Curtis’s MOG and shall
assume that Ω has the Steiner system as descibed in [9]. Our principal interest here is in
octad triples, by which we mean a subset of O of size 3. Indeed, an octad triple {X1, X2, X3}
in which Xi ∩Xj = ∅ for i 6= j is called a trio and has already appeared in the literature in
relation to the subgroup structure of M24 [9], [10]. Trios also make appearances in various
group geometries [12]. The main aim of this paper is to analyse the M24-orbits of the set of
octad triples. While this is of independent interest, this investigation was prompted by Nigel
Boston [2] as these results will have application to various questions in the area of coding
theory concerning pseudocodewords of AGWN pseudoweight less than 8 in the extended
Golay code. For further details the reader may consult Boston [3] and Calderbank, Forney,
Vardy [5]. And for other papers which also enumerate M24-orbits on sets related to Ω see
Choi [6] and Brouwer, Cuypers, Lambeck [4].
We shall use Oc

{c12,c13,c23} to denote the set of octad triples {X1, X2, X3} for which |Xi∩Xj| =
cij, 1 ≤ i < j ≤ 3 and |X1 ∩X2 ∩X3| = c. Our main result is as follows.
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Theorem 1.1. M24 has 16 orbits on the set of octad triples, the orbits being listed below.

M24−Orbits Size Representative Triple
O0
{0,0,0} 3795 {Y1, Y2, Y3}

O0
{0,0,4} 318780 {Y1, Y3, Y4}

O0
{0,2,2} 2550240 {Y1, Y2, Y5}

O0
{0,2,4} 5100480 {Y1, Y3, Y5}

O0
{0,4,4} 318780 {Y1, Y2, Y4}

O0
{2,2,2} 10200960 {Y1, Y5, Y6}

O1
{2,2,2} 4080384 {Y1, Y5, Y7}

O0
{2,2,4} 7650720 {Y1, Y5, Y8}

O1
{2,2,4} 20401920 {Y1, Y5, Y9}

O2
{2,2,4} 2550240 {Y1, Y5, Y10}

O1
{2,4,4} 6800640 {Y1, Y4, Y11}

O2
{2,4,4} 7650720 {Y1, Y4, Y12}

O0
{4,4,4} 35420 {Y1, Y4, Y8}

O2
{4,4,4} 2550240 {Y1, Y4, Y13}

O3
{4,4,4} 2266880 {Y1, Y4, Y14}

O4
{4,4,4} 106260 {Y1, Y4, Y10}

The octads Y1, ..., Y14 appearing in Theorem 1.1 are described in Section 3. It is interesting to
observe that the intersection data suffices to describe the M24-orbits. The M24-orbits on sets
of O of size two have long been known, see Lemma 2.1, and they are also determined by their
intersection data. The remainder of this section introduces the notation and terminology
we shall be using. As indicated earlier we shall be employing the MOG [Figure 4; [9]] in
proving Theorem 1.1 and we recommend the reader has the MOG to hand. We note that
the heavy bricks of [10] are named Y1, Y2, Y3 here. We shall view the MOG array as a matrix
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and identify a particular member of it by (i, j) where it is in the ith row and jth column.
Sometimes, it will be convenient to have names for the elements of Ω and we shall employ
Curtis’s labelling as given in the (2, 1)th position of the MOG.
We shall have occasion to use sextets in our argument. Recall that a sextet is the disjoint
union of 6 tetrads (tetrads being 4-element subsets of Ω) with the property that the union of
any two tetrads is an octad. We use the numbers 1,...,6 in the MOG to indicate the tetrads.

For example,

2 1

1 2

1 2

1 2

3 3

4 4

5 5

6 6

3 3

4 4

5 5

6 6

means that {0, 14, 3, 15}, {∞, 8, 18, 20} and so on are

the tetrads of this sextet. Note that

6 5

5 6

5 6

5 6

1 1

2 2

3 3

4 4

1 1

2 2

3 3

4 4

describes the same sextet.

For g ∈ M24, we use fixΩ(g) to denote the elements of Ω fixed by g. We use pictures such
as

g =

to describe the involution of M24 which is fixing O1 = Y1 pointwise and interchanging those
pairs of elements of Ω joined by a line. We recall that for X ∈ O and a 2-subset D of Ω\X
there is a unique involution τ in M24 such that fixΩ(τ) = X and τ interchanges the two
elements in D, see [9].
The first author was supported by LMS Undergraduate Research Bursary 16-17 01.

2 Orbits on Octad Triples

We begin by recollecting some well known facts about S(5, 8, 24) and the action of M24 on
this Steiner system. For the remainder of this paper, we set G = M24.

Lemma 2.1. Let X ∈ O and set GX = StabGX. Then

(i) G is transitive on O and |O| = 759;

(ii) GX is transitive on {Y | Y ∈ O, X ∩ Y = ∅} which consists of 30 octads;

(iii) GX is transitive on {Y | Y ∈ O, |X ∩ Y | = 2} which consists of 448 octads; and

(iv) GX is transitive on {Y | Y ∈ O, |X ∩ Y | = 4} which consists of 280 octads.

Proof See Lemma 19.2 (1)-(3) of [1]. �
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Lemma 2.2. Let X, Y ∈ O with |X ∩ Y | = 2 and set K = StabGX ∩ StabGY . Then
K ∼= Sym(6) with K acting in its usual degree 6 representation on X\(X∩Y ) and Y \(X∩Y ).

Proof See Lemma 19.2(5) of [1]. �

Proof of Theorem 1.1 Thoughout we take T to be the octad triple {X1, X2, X3} and
H =

⋂3
i=1 StabG(Xi). Because the triples are not an ordered set we need to avoid double

counting for cases such as O0
{0,2,2} and O0

{2,2,2}, and so we divide by 2 or 3! = 6 as appropriate
when counting.

The set O0
{0,0,0} is just the set of trios of Ω and is well known to be a G-orbit of size 3795

(see, for example, [9] or Lemma 20.2 of [1]).

Let T = {X1, X2, X3} be an octad triple in O0
{0,0,4}. Since G is transitive on O, we

may assume that X1 = Y1. By Lemma 2.1 (iv) we may also assume X2 = Y13. As
|X1 ∩X3| = 0 = |X2 ∩X3| there are now three choices for X3, namely

× ×

× ×

× ×

× × ,
× ×

× ×

× ×

× ×

and
× ×

× ×

× ×

× ×

.

Therefore

|O0
{0,0,4}| =

759 · 280 · 3
2

= 318780.

Let ρ = (ρ has order 3). Then ρ ∈ G by Corollary 2 of [9] and clearly

ρ ∈ StabGX1 ∩ StabGX2, so O0
{0,0,4} is a G-orbit.

Suppose {X1, X2, X3} ∈ O0
{0,2,2}∪O0

{0,2,4}. Then by Lemma 2.1 we may suppose X1 = Y1 and

X2 = Y5. By Lemma 2.2 StabGX1 ∩ StabGX2
∼= Sym(6) acts as Sym(6) on X2\(X1 ∩X2).

In particular, StabGX1∩StabGX2 acts transitively on the 2-sets and 4-sets of X2\(X1∩X2).
Now for a given 2-set, respectively, 4-set there is a unique X3 ∈ O such that |X1 ∩X3| = 0
and |X2 ∩X3| = 2, respectively, |X2 ∩X3| = 4. Hence

|O0
{0,2,2}| =

759 · 448 · 15

2
= 2550240, and

|O0
{0,2,4}| = 759 · 448 · 15 = 5100480

with each of O0
{0,2,2} and O0

{0,2,4} being G-orbits.

Next we consider O0
{0,4,4}. If {X1, X2, X3} is an octad triple in this set, we may, without loss

take X1 = Y1 and X2 = Y4, whence there are three possible choices for X3
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× ×

× ×

× ×

× ×

,

× ×

× ×

× ×

× ×

and

× ×

× ×

× ×

× ×
.

So

|O0
{0,4,4}| =

759 · 280 · 3
2

= 318780.

Considering the sextet S =

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

, by the structure of the sextet stabi-

lizer, [9], there exists a g ∈ G which induces (4, 5, 6) on the tetrads of S. Since g ∈
StabGX1 ∩ StabGX2, we infer that O0

{0,4,4} is a G-orbit.

Consider T = {X1, X2, X3} ∈ O1
{2,2,2}. Without loss we can take X1 = Y1 and X2 = Y5, and

so we know X1 ∩X2 =

× ×

. In order to have |X1 ∩X2 ∩X3| = 1 we need

one point of X3 in {∞, 14} and one in {0, 8, 3, 20, 15, 18}. These choices are independent
and so we have 2 · 6 = 12 choices for X1∩X3. Since L = StabGX1∩StabGX2 is transitive on
2-subsets D of X1 with |D ∩X1 ∩X2| = 1 = |D ∩ (X1\(X1 ∩X2)|, we may further suppose

that X1 ∩ X3 =

×

×
. By looking at the MOG we can find which octads

have this as the first brick and |X2 ∩X3| = 2. We obtain the following octads.

From (1, 5) we obtain

×

×

×

×

×

×

× × ,

×

×

×

×

× × ×

×

and

×

×

×

×

× ×

×

×

and (1,6) gives

×

×

×

×

×

×

× ×

, (4,5) gives

×

× × ×

×

×

×

×
, (4,6) gives

×

× × ×

×

×

×

×
. With this choice of the first brick there are 6 octads and so 12 ·6 = 72

choices in total when X1 and X2 are fixed. This means there are 759·448·72
6

= 4080384 triples
in O1

{2,2,2}.
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Again using the transitively of L on 2-subsets D with |D∩X1∩X2| = 1 = |D∩(X1\(X1∩X2)|,

we may assume that X1 ∩X3 =

×

×
. Hence, when choosing X3 we must

have that X3 ∩ (X2\X1) consists of one element.

Let X3 =

×

×

×

×

× ×

×

×

. Observe that StabGT/H will be a subgroup of Sym(3).

Hence, as |O1
{2,2,2}| = 4080384, |StabGT | ≥ 22 · 3 · 5. Note that H leaves (X1 ∩ X2) ∪

(X1 ∩ X3) ∪ (X2 ∩ X3) =

× ×

×

×

invariant and consequently must leave

invariant the sextet

1 1

1 2

3 4

5 6

1 2

2 2

6 5

4 3

6 4

3 5

6 3

5 4

. Furthermore H must fix ∞ and 0, and so

H ≤ (StabGX1 ∩ StabGX2)0,∞ ∼= Alt(5).
Suppose that |H| > 2 · 5. Then we must have that H ∼= Alt(4) or Alt(5). In particular H
must contain an element g of order 3 with cycle type 12 · 31 on X1\{∞, 14, 0}. Note that
{∞, 14, 0, 17} ⊆ fixΩ(g). If, say, g fixes 3 and 8, then, as g leaves X2 invariant, it must also
fix 1 and 11. But then |fixΩ(g)| ≥ 8, contrary to [9]. Thus |H| ≤ 2 · 5 and this then forces
|H| = 2 · 5 and StabGT/H ∼= Sym(3). Therefore O1

{2,2,2} is a G-orbit.

Consider T = {X1, X2, X3} ∈ O0
{2,2,2} with X1 = Y1 and X2 = Y5. So X1 ∩ X2 =

× ×

, and hence we know the first brick of X3 must have 2 points in

{0, 8, 3, 20, 15, 18}. This means we have
(

6
2

)
= 15 choices as to where to put our two points.

Without loss of generality we can choose the two points to be {0, 8}. Searching among
the square tetrads of the MOG we find that (3,1), (4,1), (5,1) and (6,1) have this as their
first brick in the square tetrad. Using the condition that |X2 ∩ X3| = 2 we find the fol-
lowing octads. From (3,1) we obtain {0, 8, 4, 16, 10, 11, 1, 9} and {0, 8, 17, 13, 7, 2, 1, 9} and
from (4,1) we find {0, 8, 17, 16, 10, 13, 22, 19} and {0, 8, 4, 22, 7, 2, 22, 19}. While (5,1) gives
{0, 8, 10, 2, 22, 1, 21, 5}, {0, 8, 10, 2, 12, 19, 9, 6}, {0, 8, 16, 2, 11, 13, 21, 6}, and {0, 8, 17, 4, 10, 7, 21, 6}.
And finally (6,1) gives {0, 8, 16, 7, 21, 19, 9, 5}, {0, 8, 16, 7, 22, 1, 12, 6}, {0, 8, 10, 11, 13, 7, 12, 5},
and
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{0, 8, 17, 4, 16, 2, 12, 5}. Therefore for this particular choice for the first brick there are 12
choices for octads and so there are 12 · 15 = 180 choices for X3 when X1 and X2 are fixed.
In total there are 759·448·180

6
= 10200960 triples in O0

{2,2,2}.

Having determined |O0
{2,2,2}|, we now show that O0

{2,2,2} is a G-orbit. Choose

X3 =
× ×

×

×

×

×

× ×
. So T = {X1, X2, X3} ∈ O0

{2,2,2}. We shall prove that |H| = 4.

Let 1 6= g ∈ H, and note that g leaves {∞, 14}, {0, 8} and {9, 11} invariant. So g leaves the
tetrads {∞, 14, 0, 8} and {5, 6, 17, 22} invariant and hence fixes the sextets

S1 =

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

and S2 =

2 2

5 6

5 3

3 6

1 2

4 3

6 4

5 4

1 3

4 2

5 1

6 1

. Thus g must leave all the

tetrads of S1 invariant, excluding T1 = {17, 11, 4, 13} and T2 = {22, 19, 1, 9}. The latter two
tetrads are either left invariant or interchanged by g. Suppose g leaves {11, 9}, {17, 1} and
{4, 1} invariant, we conclude that g fixes Y = {17, 11, 4, 13, 22, 19, 1, 9} point-wise. Therefore
g is an involution with fixΩ(g) = Y , and, since g must then interchange ∞ and 14, we infer

that g = .

Next consider the case where g interchanges T1 and T2. On T1 ∪ T2, g must act as

(17, 22)(1, 4)(19, 11)(13, 9). If g has no fixed points on Ω, then we see that g = .

This is impossible as

× ×

×

×

×

×

× ×

g−→

× ×

×

×

× ×

×

×

which is not an oc-

tad, so g /∈ G. Therefore g has fixed points and, as it fixes S2, there are two possibilities for g

and .

As a consequence |H| = 4. From |StabGT/H| ≤ 6 and |O0
{2,2,2}| we now infer that |StabGT | =
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24 and that O0
{2,2,2} is a G-orbit.

If we let {X1, X2, X3} ∈ O2
{2,2,4} withX1 = Y1 andX2 = Y5, thenX1∩X2 =

× ×

.

As |X1 ∩ X3| = 4 we can assume that the first block is the heavy brick, and we also know
that X1∩X2 is a subset of X3. We can search among the MOG for the corresponding heavy
bricks. We find (1,1), (1,2), (2,2), (2,3), (3,2), (3,3), (4,4), (4,5), (4,6), (5,4), (5,5), (5,6),
(6,4), (6,5), (6,6) all have the heavy brick we want. With the further intersection conditions
we find that each give one octad that satisfies all the conditions on X3. For example (1,1)
gives the octad {∞, 14, 20, 18, 16, 2, 1, 19}. So given X1 and X2 we have 15 choices for X3

and so

|O2
{2,2,4}| =

759 · 448 · 15

2
= 2550240.

Let T = {X1, X2, X3} ∈ O2
{2,2,4} with X1 = Y1, X2 = Y5. So |X1 ∩X2 ∩X3| = {∞, 14}. Now

StabGX1∩StabGX2
∼= Sym(6) is transitive on 2-subsets of X1\{∞, 14}. If we pick a 2-subset

D of X1\{∞, 14}, then there is exactly one octad X such that X ∩X1 = {∞, 14} ∪D and
X ∩X2\{∞, 14} = ∅. Hence O2

{2,2,4} is a G-orbit.

Let T = {X1, X2, X3} ∈ O1
{2,2,4} with X1 = Y1 and X2 = Y5 then the first brick of X3

can either have the point∞ and not 14, or 14 and not∞. Consider the first case and search
among the MOG for the corresponding heavy bricks. We find (1,3), (1,4), (1,5), (1,6), (2,4),
(2,5), (2,6), (3,1), (3,4), (3,5), (3,6), (4,1), (4,2), (4,3), (5,1), (5,2), (5,3), (6,1), (6,2), (6,3).
Each of these 20 choices give 3 octads which satisfy the conditions on X3. So for this choice
of the heavy brick we have 20 · 3 = 60 choices for X3. We could have also chosen to have 14
but not ∞ in the heavy brick, so when X1 and X2 are fixed we have 60 · 2 = 120 choices for
X3. And so

|O1
{2,2,4}| =

759 · 448 · 120

2
= 20401920.

Since L = StabGX1∩StabGX2
∼= Sym(6) is transitive on 4-sets F ⊆ X1 with |F ∩{∞, 14}| =

1, we may suppose X1 ∩ X3 = {∞, 0, 3, 15}. We also have H ≤ StabL(X1 ∩ X3) ∼ 32 · 2.
Let g ∈ StabL(X1 ∩X3) be of order 3. Suppose that g has cycle type 13 · 31 on X1\{∞, 14}.
Then fixΩ(g) = {∞, 14, 17, 0, 3, 15} or {∞, 14, 17, 8, 20, 18}. From [9] (see Corollary 2), we
have that g cycles {11, 22, 19}. But then g /∈ StabGX2. Thus g cannot have cycle type 13 ·31

on X1\{∞, 14} and hence |H| ≤ 3 ·2. From |O1
{2,2,4}| we now conclude that |StabGT | = 22 ·3

and that O1
{2,2,4} is a G-orbit.

Let {X1, X2, X3} ∈ O0
{2,2,4} with X1 = Y1 and X2 = Y5. We need |X1 ∩ X3| = 4 and

|X1 ∩X2 ∩X3| = 0 and so the first brick of X3 needs 4 points in {0, 8, 3, 20, 15, 18}. Since
L = StabGX1∩StabGX2

∼= Sym(6) is transitive on the
(

6
4

)
= 15 4-sets of X1\{∞, 14}, with-

out loss we may suppose X3 ∩ X1 = {3, 20, 15, 8}. This only corresponds to MOG picture
(4,4). Using |X2 ∩X3| = 2 we find 3 choices for X3, namely
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× ×

× ×

× ×

× ×
,

× ×

× ×

× ×

× ×
and × ×

× ×

× ×

× ×

.

So with X1 and X2 fixed we have 15 · 3 = 45 choices for X3, which means that

|O0
{2,2,4}| =

759 · 448 · 45

2
= 7650720.

Again using the fact that L is transitive on 4-sets of X1\{∞, 14}, we may suppose X3∩X1 =

{3, 20, 15, 8}. Then StabL(X3 ∩X1) ∼= 2× Sym(4) fixes the sextet

1 1

1 1

2 2

2 2

3 3

3 3

4 4

4 4

5 5

5 5

6 6

6 6

.

Let g ∈ StabL(X3 ∩ X1) with g of order 3. We see that g leaves the tetrads {∞, 14, 0, 8},
{3, 20, 15, 18}, and {16, 7, 10, 2} invariant (the latter because it is the only tetrad in Ω\X1

missing X2). So g cycles the remaining three tetrads. Now the possible choices for X3 are

× ×

× ×

× ×

× ×
,

× ×

× ×

× ×

× ×
and × ×

× ×

× ×

× ×

,

whence O0
{2,2,4} is a G-orbit.

We next determine |O1
{2,4,4}| and |O2

{2,4,4}|. Let {X1, X2, X3} ∈ O1
{2,4,4} with X1 = Y1 and

X2 = Y4. Recall that L = StabGX1 ∩ StabGX2 is transitive on 2 subsets D of X1 such that

|D∩(X1∩X2)| = 1 = |D∩X1\X2|. So we may assumeX1∩X2∩X3 =

× ×

and searching among the MOG for a heavy brick with only 14 in its top block we find the
pictures (2,5), (3,6), (5,3), (6,2). The condition that |X2 ∩X3| = 2 doesn’t restrict X3 any
further, and so for each picture we obtain all 4 possibilities for the MOG and so 4 · 4 = 16
octads for this choice for top block of the heavy brick. We have 4 possibilities for the posi-
tioning of the single point in the top block of the heavy brick, and so 4 · 16 = 64 choices for
X3 when X1 and X2 are fixed as above. Therefore

|O1
{2,4,4}| =

759 · 280 · 64

2
= 6800640.

Let {X1, X2, X3} ∈ O2
{2,4,4} with X1 = Y1 and X2 = Y4 Therefore Z = X1 ∩ X2 =
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× ×

× ×
. Because L = StabGX1 ∩ StabGX2 is transitive on the

(
4
2

)
= 6 2-

element subsets of Z, without loss we can assume X1 ∩ X2 ∩ X3 =

× ×

.

To find X3 we now search among the MOG for heavy bricks that only have∞ and 4 in their
top blocks. We find these are (1,1), (1,2), (4,5), (4,6), (5,4), and (6,4). Using the further
condition that |X3 ∩X2| = 2 gives that each of these MOG pictures offers 2 choices for X3.
For example (1,1) gives {∞, 14, 20, 18, 16, 2, 1, 19} and {∞, 14, 20, 18, 10, 7, 22, 9}. So with
this choice of 2 element subset we find 12 octads, and therefore we have 12 · 6 = 72 choices
for X3 when X1 and X2 are fixed. Hence

|O2
{2,4,4}| =

759 · 280 · 72

2
= 7650720.

Let T = {X1, X2, X3} ∈ O1
{2,4,4} ∪ O2

{2,4,4}. Without loss we may suppose X1 = Y1 and
X2 = Y4.
First we look at O1

{2,4,4} and select X3 = Y11. Note that X1 ∩ X2 ∩ X3 = {14}. Now

L = StabGX2 ∩ StabGX3
∼= Sym(6) and H ≤ StabL{3, 20, 15} ∩ StabL{14}, and therefore

|H|
∣∣2 · 32. Taking into account |O1

{2,4,4}|, we infer that |StabGT | = 22 · 32 and hence that

O1
{2,4,4} is a G-orbit.

For T ∈ O2
{2,4,4}, we choose X3 =

× ×

× ×

× ×

× × . So X1 ∩ X2 ∩ X3 = {∞, 14},

X1 ∩X2 = {∞, 14, 0, 8} and X1 ∩X3 = {∞, 14, 3, 20}. Consequently H ≤ StabL{∞, 14} ∩
StabL{0, 8} ∩ StabL{3, 20} ∩ StabL{15, 18} where L = StabGX1 and hence |H|

∣∣27. A sim-
ilar argument gives H ≤ StabL{22, 19} ∩ StabL{12, 5} and consequently H ∩ O2(L) ≤
〈(11, 7)(4, 13)(7, 16)(2, 10)(19, 22)(1, 9)(5, 12)(6, 21)〉. So |H|

∣∣24 and, as |StabGT/H| ≤ 2,
we must have |StabGT | = 24 with O2

{2,4,4} being a G-orbit.

Let T = {X1, X2, X3} ∈ O0
{4,4,4} with X1 = Y1 and X2 = Y4, therefore X1 ∩ X2 =

× ×

× ×
. In order to have |X1∩X3| = 4, |X2∩X3| = 4 and |X1∩X2∩X3| = 0

with this choice of X1 and X2 we only have the one possibility X3 = × ×

× ×

× ×

× ×
.
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Consequently

|O0
{4,4,4}| =

759 · 280 · 1
6

= 35420.

In addition as there is only one choice for X3 clearly O0
{4,4,4} is a G-orbit.

For T = {X1, X2, X3} ∈ O2
{4,4,4} choose X1 = Y1 and X2 = Y4. As |X1 ∩ X2 ∩ X3| = 2

we need 2 points of X3 in {∞, 14, 0, 8} and so there are
(

4
2

)
= 6 possibilities. Consider the

case where the two points are {0, 14}. We need another 2 points in this brick so can assume
its the heavy block. Searching among the MOG we find that (1,5), (1,6), (2,4), (3,1), (3,4),
and (4,1) have a heavy block of the right type. The condition that |X3 ∩ X2| = 4 each of
the MOG pictures gives 2 options for X3. So when X1 and X2 are fixed there are 6 · 12 = 72
choices for X3, therefore

|O2
{4,4,4}| =

759 · 280 · 72

6
= 2550240.

Let X3 = Y13. So T ∈ O2
{4,4,4} and X1∩X2∩X3 = {0, 14}, X1∩X3 = {0, 14, 3, 15}, X2∩X3 =

{0, 14, 11, 17}. Consequently H ≤ StabL{0, 14}∩StabL{∞, 8}∩StabL{3, 15}∩StabL{11, 17}
where L = StabGX1 and so, just as in the case of O2

{2,4,4}, we conclude that |H|
∣∣24. Since

|StabGT/H|
∣∣6, we must have |StabGT | = 25 · 3 and thus using |O2

{4,4,4}| we have that O2
{4,4,4}

is a G-orbit.

Let T = {X1, X2, X3} ∈ O3
{4,4,4} with X1 = Y1 and X2 = Y4. As |X1 ∩ X2 ∩ X3| = 3

we need 3 points of X3 in {∞, 14, 0, 8} and so there are 4 possibilities.
Consider the case where the 3 points are {∞, 14, 8}, we can then search among the MOG
for heavy bricks of this form and find (2,2), (3,3), (5,6), (6,5). Each of these options give
4 possibilities for X3 and so there are 4 · 4 = 16 possibilities for X3 with this choice of top
block of the first brick. This then gives 4 · 16 = 64 choices for X3 when X1 and X2 are fixed
as above. Therefore

|O3
{4,4,4}| =

759 · 280 · 64

6
= 2266880.

Choosing X3 =

× ×

×

×

×

×

×

× , gives T ∈ O3
{4,4,4}. Taking account of the various in-

tersections we deduce that H leaves {∞, 14, 8}, {3, 15, 18}, {4, 11, 13} and {2, 9, 12} invariant
and fixes 0, 20 and 17. Put L = StabGX1. From H fixing 17 we have H ∩O2(L) = 1, and so
by the action of H on X1 we see that |H|

∣∣2 · 32. Using |O3
{4,4,4}| we infer that |H| = 22 · 32

and that O3
{4,4,4} is a G-orbit.

Now let T = {X1, X2, X3} ∈ O4
{4,4,4} with X1 = Y1 and X2 = Y4. In order to have

12



|X1 ∩ X2 ∩ X3| = 4 we need

× ×

× ×
to be the first block of X3. Consulting the MOG

we only have (4,4) as an option. The further condition that |X2 ∩ X3| = 4 gives 3 choices
for X3 with this choice of X1 and X2 which are

× ×

× ×

× ×

× ×

,

× ×

× ×

× ×

× ×

and

× ×

× ×

× ×

× ×
, and so

|O4
{4,4,4}| =

759 · 280 · 3
6

= 106260.

It follows easily as in case of O0
{2,2,4} that O4

{4,4,4} is a G-orbit.

There are
(

759
3

)
= 72586459 octad triples. By summing the sizes of the G-orbits we’ve found

so far we can see that we have covered all of the triples. This completes the proof of Theorem
1.1. �
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3 A Few Octads

Y1 =

× ×

× ×

× ×

× ×

Y3 =

× ×

× ×

× ×

× ×

Y5 =

× × × × ×

×

×

×

Y7 =

×

×

×

×

×

×

× ×

Y9 =

×

×

×

×

× × × ×

Y11 =

×

× ×

×

×

×

×

×

Y13 =

×

×

×

×

× × × ×

Y2 =

× ×

× ×

× ×

× ×

Y4 =

× ×

× ×

× ×

× ×

Y6 =
× ×

×

×

×

×

× ×

Y8 =
× ×

× ×

× ×

× ×

Y10 =

× ×

× ×

× ×

× ×

Y12 =

× ×

× ×

× ×

× ×

Y14 =

× ×

×

×

×

×

×

×
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