
Rational Krylov Methods for Operator Functions

Güttel, Stefan

2010

MIMS EPrint: 2017.39

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/


Rational Krylov Methods for Operator Functions

Von der Fakultät für Mathematik und Informatik

der Technischen Universität Bergakademie Freiberg

genehmigte Dissertation zur Erlangung des akademischen Grades

doctor rerum naturalium (Dr. rer. nat.),

vorgelegt von Dipl.-Math. Stefan Güttel,
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Abstract

We present a unified and self-contained treatment of rational Krylov

methods for approximating the product of a function of a linear operator

with a vector. With the help of general rational Krylov decompositions

we reveal the connections between seemingly different approximation

methods, such as the Rayleigh–Ritz or shift-and-invert method, and de-

rive new methods, for example a restarted rational Krylov method and

a related method based on rational interpolation in prescribed nodes.

Various theorems known for polynomial Krylov spaces are generalized

to the rational Krylov case. Computational issues, such as the computa-

tion of so-called matrix Rayleigh quotients or parallel variants of ratio-

nal Arnoldi algorithms, are discussed. We also present novel estimates

for the error arising from inexact linear system solves and the approx-

imation error of the Rayleigh–Ritz method. Rational Krylov methods

involve several parameters and we discuss their optimal choice by consid-

ering the underlying rational approximation problems. In particular, we

present different classes of optimal parameters and collect formulas for

the associated convergence rates. Often the parameters leading to best

convergence rates are not optimal in terms of computation time required

by the resulting rational Krylov method. We explain this observation

and present new approaches for computing parameters that are prefer-

able for computations. We give a heuristic explanation of superlinear

convergence effects observed with the Rayleigh–Ritz method, utilizing a

new theory of the convergence of rational Ritz values. All theoretical re-

sults are tested and illustrated by numerical examples. Numerous links

to the historical and recent literature are included.
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Notation

By ⊆ we denote set inclusion with possible equality, whereas ⊂ denotes strict inclusion.

Unless stated otherwise, the following conventions for variable names hold: Small Latin

letters (a, b, . . .) and Greek letters (α, β,Φ,Ψ, . . .) denote scalars or scalar-valued functions

(including measures µ, ν, . . .). Bold Latin letters (a , b, . . .) stand for vectors, and these

are usually in column format. Capital Latin letters (A,B, . . .) stand for linear opera-

tors. Calligraphic letters (P,Q, . . .) denote linear spaces and double-struck capital letters

(D,R, . . .) are special subsets of the complex plane C.

Here is a list of frequently used symbols with the page numbers of their first occurrence

in this thesis.

A linear operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
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fm approximation for f(A)b from m-dimensional search space . . . . . . . 1

Vm linear space of dimension m . . . . . . . . . . . . . . . . . . . . . . . . . 2

R real line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

C complex plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Km(A, b) polynomial Krylov space of order m . . . . . . . . . . . . . . . . . . . . 3

span{· · · } space of linear combinations of the vectors in braces . . . . . . . . . . . 3

B complex Banach space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

L(B) algebra of bounded linear operators on B . . . . . . . . . . . . . . . . . 10

‖ · ‖ vector or operator norm . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

O zero operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

I identity operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

D(A) domain of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

%(A) resolvent set of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1 Introduction

Probable impossibilities

are to be preferred to

improbable possibilities.

Aristotle

An important problem arising in science and engineering is the computation of

f(A)b,

where A is a linear operator, b is a vector, and f is a function such that f(A) is defined. In

this thesis we consider approximations for f(A)b, denoted by fm, which can be represented

as

fm = rm(A)b,

where rm is a rational function of type (m−1,m−1) with a prescribed denominator. Often

the function f = f τ depends on a parameter τ , and consequently the same is true for the

corresponding approximations f τ
m. Here is a selection of functions that are of particular

interest for applications:

— the resolvent or transfer function f τ (z) = (z − τ)−1, arising in model reduction

problems in the frequency domain [Ruh84, GGV96],

— the exponential function f τ (z) = exp(τz) or variants of it, for the solution of evolution

problems [HLS98, ST07b],

1



2 Chapter 1. Introduction

— variants of trigonometric functions such as f τ (z) = sinc(τ
√
z), for the solution of

time-dependent hyperbolic problems [GH08],

— fractional powers f(z) = zα, in particular with α = 1/2 for the solution of stochastic

differential equations in population dynamics [All99] and neutron transport [SA00,

ABB00], or for preconditioning domain decomposition methods [AL08],

— the sign function f(z) = sgn(z), arising in quantum chromodynamics [EFL+02].

In this thesis we consider rational Krylov methods for computing the approximations f τ
m.

These methods generalize standard (polynomial) Krylov methods for the approximation

of operator functions since polynomials can be interpreted as rational functions with all

poles at infinity. It is useful to view rational (and polynomial) Krylov methods as abstract

approximation methods, which can be characterized by two components:

(a) an m-dimensional search space Vm from which the approximations f τ
m are chosen,

and

(b) the extraction, i.e., how the approximations f τ
m are chosen from Vm.

We now use a simple model problem to briefly describe and compare two approximation

methods, a polynomial and a rational Krylov method.

1.1 A Model Problem

Consider the initial-boundary value problem for the heat equation on the unit cube in

d dimensions

∂τu = ∆u in Ω = (0, 1)d, τ > 0, (1.1a)

u(x , τ) = 0 on Γ = ∂Ω, τ > 0, (1.1b)

u(x , 0) = u0(x ) in Ω, (1.1c)

which is a standard model problem in the literature [GS92, EH06].

When the Laplacian is discretized by the usual (2d + 1)-point stencil on a uniform grid

involving n interior grid points in each Cartesian direction, problem (1.1) reduces to the
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initial value problem

u ′(τ) = Au(τ), τ > 0, (1.2a)

u(0) = b, (1.2b)

with a matrix A ∈ R
N×N (N = nd) and an initial vector b ∈ R

N×N consisting of the

values u0(x ) at the grid points x . The solution of (1.2) is given by

u(τ) = f τ (A)b, where f τ (z) = exp(τz). (1.3)

It is known that A is symmetric and its eigenvalues Λ(A) are contained in the interval

(−4d(n + 1)2, 0). Note that A becomes large as we increase the number n, but it re-

mains sparse since there are at most 2d + 1 nonzeros per row. Here are two well-known

approximation methods for computing approximations f τ
m for (1.3).

The Polynomial Lanczos Method. This method utilizes an orthonormal basis Vm =

[v1, . . . , vm] ∈ C
N×m of the polynomial Krylov space

Km(A, b) := span{b, Ab, . . . , Am−1b},

satisfying a Lanczos decomposition

AVm = VmTm + vm+1βmeT
m,

where vm+1 ⊥ R(Vm) and Tm is a symmetric tridiagonal matrix [DK89, GS92]. The

approximations are then computed as

f τ
m := Vmf

τ (Tm)V ∗
mb.

Hence, coming back to our two components of approximation methods, the search space

is Vm = Km(A, b) and the extraction is called Rayleigh extraction (because Tm = V ∗
mAVm

is a matrix Rayleigh quotient of A).
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The Shift-and-Invert Lanczos Method. This method utilizes an orthonormal basis Vm

of a rational Krylov space Vm = Km((A− ξI)−1, b) for some shift ξ ∈ C \Λ(A) satisfying

(A− ξI)−1Vm = VmTm + vm+1βmeT
m,

which is also a Lanczos decomposition, but now for the shifted and inverted operator

(A− ξI)−1 [MN04, EH06]. The approximations are then extracted by back-transforming

the matrix Tm, i.e.,

f τ
m := Vmf

τ (T−1
m + ξIm)V ∗

mb.

Comparison of the Two Approximation Methods. In Figure 1.1 we compare the con-

vergence of the polynomial and the rational Krylov method for the model problem in

d = 3 dimensions and a fixed time parameter τ = 0.1. In the three plots we vary the grid

parameter n ∈ {15, 31, 63}. The linear systems in the shift-and-invert method were solved

by a geometric multigrid method to a relative residual norm of 10−14 and we used the

(rather arbitrary) shift ξ = 1. We observe that the number of iterations m required by

the polynomial Krylov method to reach a certain accuracy is roughly proportional to n.

Indeed, it is proven in [HL97] that for negative definite operators the regime of superlinear

convergence is reached after
√

‖τA‖ = O(n) iterations. The costly part of each polynomial

Krylov iteration is essentially a matrix-vector product with A, which can be performed in

O(N) operations, and two orthogonalizations at the cost of O(N) operations to build the

orthonormal Krylov basis Vm. On the other hand, the number of iterations required by the

rational Krylov method appears to be independent of n. Under the assumption that each

iteration involves a linear system of size N × N that can be solved in O(N) operations,

the overall cost for solving a fixed number of these systems is O(N). Additionally, one

evaluation of a function of Tm typically involves O(m2) or even O(m3) operations and this

cost becomes non-negligible for the polynomial Krylov method as m gets large.

Polynomial Lanczos Shift-and-invert

Iterations m = O(n) m = const.

Operator/Iteration O(N) O(N)

Orthogonalize/Iteration O(N) O(N)

Evaluate f(Tm) O(m2) const.

Total O(nN) O(N)

Table 1.1: Operation counts (N = nd)
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Figure 1.1: Convergence curves of a polynomial and a rational Krylov method for the 3D heat
equation discretized with n ∈ {15, 31, 63} grid points in each coordinate direction, respectively.
The dashed line shows the error of the orthogonal projection of the exact solution f τ (A)b onto
the respective Krylov spaces.



6 Chapter 1. Introduction

The total operation counts summarized in Table 1.1 on page 4 indicate that for a large

enough grid parameter n the rational Krylov method will ultimately outperform the poly-

nomial Krylov method under the assumption that we employ a linear system solver that

is (asymptotically) as expensive as a matrix-vector product with A. This becomes even

more pronounced when A is not self-adjoint so that the cost for orthogonalization grows

in each iteration, though, on the other hand, the linear systems may then be more difficult

to solve. To say it in the words of Aristotle, it is therefore not an “improbable possibility”

that rational Krylov methods can be useful in practice. Some of the reasons why rational

Krylov methods are not (yet) as popular as polynomial Krylov methods are:

(−) The implementation of rational Krylov methods is more involved than that of poly-

nomial methods, e.g., we need to solve shifted linear systems with A.

(−) The cost of the linear system solves only pays off for very large problems (if ever).

(−) Rational Krylov methods are not parameter-free, e.g., in our example we could pos-

sibly find a better shift than ξ = 1.

(−) The convergence behavior is not completely understood, in particular in the presence

of inexact solves of the linear systems.

On the other hand, rational Krylov methods are powerful:

(+) Rational approximation may be more efficient than polynomial approximation. To

give an example, we consider the exponential function f(x) = exp(x) on the negative

real axis (−∞, 0]. The polynomial with the lowest uniform error 0.5 is obviously

p(x) ≡ 0.5, whereas even a simple rational function such as r(x) = (1− x/m)−m can

achieve an arbitrarily small uniform error on (−∞, 0] for sufficiently large m.

(+) Rational functions possess a partial fraction expansion, which yields an immediate

and effective method for parallelizing rational Krylov methods (though stability prob-

lems may arise).

Last but not least, rational Krylov methods are interesting because there are obviously

many open questions connected to them, some of which we hope to answer in this thesis.



1.2. Aim and Structure of this Thesis 7

1.2 Aim and Structure of this Thesis

Our aim is to develop and study rational Krylov methods for the approximation of f(A)b

in a unified way, to treat different aspects of their implementation, and to test them on

numerical examples.

To make this thesis self-contained, Chapter 2 is devoted to the definition of functions of

linear operators A. Although in numerical computations A is usually a matrix, it often

originates from the discretization of a bounded or unbounded linear operator. A main

advantage of rational Krylov methods is that their convergence can be independent of the

discretization mesh width (as in the above model problem) and therefore it is adequate to

study these methods more generally for linear operators.

In Chapter 3 we introduce the Rayleigh method as the canonical extraction associated

with a search space Vm. When Vm is generated by polynomials or rational functions in A

times b, the Rayleigh method becomes the Rayleigh–Ritz method and possesses interesting

properties such as an interpolation characterization and near-optimality. We study these

properties in Chapter 4 without utilizing any Krylov decomposition for Vm. Such rational

Krylov decompositions enter the stage in Chapter 5, where we also discuss the rational

Arnoldi algorithm invented by A. Ruhe.

Chapter 6 deals with several computational issues, e.g., we investigate inexact solves,

multigrid methods for shifted linear systems, and make comments about the parallel im-

plementation of the rational Arnoldi algorithm. In Chapter 7 we study selected rational

approximation problems, which are naturally associated with rational Krylov methods. In

Chapter 8 we give insights into the interpolation procedure underlying the Rayleigh–Ritz

method by discussing the convergence of rational Ritz values. In Chapter 9 we test and

illustrate the theoretical results with the help of numerical experiments.

Each chapter begins with a brief overview, where we often review contributions from the

historical literature. Whenever we cite many references in a row, such as [Vor87, DK89,

Kni91], this is a possibly non-exhaustive list and should be read as “see, e.g., [Vor87,

DK89, Kni91] and the references therein.” Within chapters we use common counters for

Definitions, Lemmas, Remarks, etc. We believe this simplifies referencing for the reader

since finding Remark 1.3 tells one that Lemma 1.4 should follow.
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The computations in this thesis were carried out in Mathworks Matlab (release 2008b),

partly using the Schwarz–Christoffel toolbox by T. A. Driscoll [Dri96, Dri05], the chebfun

system by L. N. Trefethen and coauthors [BT04, PPT10, THP+09], and Mathworks’

optimization toolbox. These computations are marked by an icon and an identifier in the

margin of the page and may be reproduced by the reader. The necessary Matlab filesidentifier

are available upon request by sending a short message to stefan@guettel.com.



2 Functions of Operators

Auch kann f(U) kürzer als das Residuum von

(xE − U)−1f(x) in Bezug auf alle Wurzeln der

charakteristischen Gleichung von U erklärt werden.

F. G. Frobenius [Fro96]

In this chapter we define operator functions f(A), where f is a complex-valued function

and A is a linear operator on a complex Banach space B.

The theory of operator functions includes matrix functions as a special case. However, it

took more than 50 years of separate development before both concepts were unified in the

early 20th century. Therefore it is scarcely possible to assign precise credit for references to

many of the notions we review here. Cayley [Cay58, Cay72] was certainly the first to study

square roots of 2×2 and 3×3 matrices. Although published late in 1898, Laguerre [Lag98]

had considered infinite power series for constructing the matrix exponential as early as

1867. The definition of a matrix function via polynomial interpolation is due to Sylvester

[Syl83] and Buchheim [Buc84, Buc86]. Frobenius [Fro96] stated that if f is analytic then

f(A) is the sum of residues of (λI − A)−1f(λ) at the eigenvalues of A, attributing an

important share of credit to Stickelberger, who used this idea to define powers Aα in

his akademische Antrittsschrift1 [Sti81]. Poincaré [Poi99] made explicit use of the Cauchy

integral to define f(A) for a matrix. For further details on the interesting history of matrix

functions we refer to MacDuffee [Mac46, Ch. IX] and Higham [Hig08, Sec. 1.10].

1The akademische Antrittsschrift is a paper accompanying Stickelberger’s inauguration as professor at
the University of Freiburg. In [Tay50] the word Antrittsschrift is translated as dissertation, and this
mistake is often repeated in the literature (e.g., in [DS58, §VII.11]).

9
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The development of the theory of operator functions was mainly stimulated by the need

for a spectral theory for bounded operators arising from integral equations, see, e.g., the

contributions of Dunford [Dun43] and Taylor [Tay43], and the extension to the unbounded

case [Tay50]. For a review of the early historical developments in this direction, and as

a general reference for this introductory chapter, we refer to the book by Dunford &

Schwartz [DS58, Ch. VII].

In Section 2.1 we consider functions of bounded operators, which are defined by contour

integrals. Section 2.2 is devoted to the important special case of algebraic operators.

The definition of functions of unbounded operators requires extra care and is discussed in

Section 2.3.

2.1 Bounded Operators

Let B be a complex Banach space. The elements of B are called vectors and the vector

norm and associated operator norm are denoted by ‖ · ‖. The domain of a linear operator A

is denoted by D(A). In this section we assume that A is bounded on B, i.e., ‖A‖ <∞ and

D(A) = B. The space L(B) of all such operators constitutes a Banach algebra with the

usual addition and multiplication operations, zero element O and identity I. The resolvent

set %(A) is the set of complex numbers ζ for which the resolvent R(ζ,A) := (ζI − A)−1

exists as an element of L(B). The spectrum2 Λ(A) is the complement of %(A) in C. The

following two lemmas are classical in functional analysis, so we just cite them here from

[DS58, Ch. VII].

Lemma 2.1 (F. Riesz). The resolvent set %(A) is open and the resolvent R(ζ,A) as a

function of ζ is analytic in %(A). More precisely, the following power series representation

holds:

R(ζ + µ,A) =

∞∑

j=0

(−µ)jR(ζ,A)j+1 for |µ| < ‖R(ζ,A)‖−1.

Lemma 2.2 (A. E. Taylor). The spectrum Λ(A) is nonempty and compact.

We will require some further notions from complex integration (cf. [Hen88, §4.6]). Through-

out this thesis, Γ will denote a finite union of nonintersecting piecewise regular Jordan

2In the functional analysis literature the spectrum is often denoted by σ(A). However, we prefer Λ(A),
which is also common (e.g., Halmos [Hal72] used it) and more familiar to the linear algebra community
when A is a matrix.
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curves. To abbreviate this we say that Γ is an integration contour. We always assume that

integration contours are traversed in the positive sense. A nonempty open subset of C

is called a region, and a connected region is a component. The set C \ Γ consists of two

regions, namely the bounded interior int(Γ), which is the set of points z ∈ C where the

winding number n(Γ, z) := (2πi)−1
∫
Γ(ζ− z)−1 dζ equals one, and the unbounded exterior

ext(Γ) with n(Γ, z) = 0. Any open inclusion set of a closed set is called a neighborhood.

We are now in the position to define operator functions f(A) for functions f analytic in a

neighborhood of Λ(A).

Definition 2.3. Let Γ be an integration contour such that Λ(A) ⊂ int(Γ), f is analytic

in int(Γ) and extends continuously to Γ. Then

f(A) :=
1

2πi

∫

Γ
f(ζ)R(ζ,A) dζ.

This formula for f(A) is often called the Cauchy–Dunford integral. The integral is de-

fined as the limit of Riemann sums in the operator norm topology. Using Lemma 2.1 and

Cauchy’s integral theorem [Hen88, Thm. 5.5c] one can easily establish that f(A) is inde-

pendent of the particular integration contour Γ. Let us collect some important properties

of f(A) (cf. [DS58, Ch. VII.3]).

Lemma 2.4 (I. M. Gelfand). Let f and g be analytic in some neighborhood of Λ(A) and

let α, β be complex numbers. The following assertions hold.

(a) f(A) ∈ L(B) and g(A) ∈ L(B),

(b) αf(A) + βg(A) = (αf + βg)(A),

(c) f(A) · g(A) = (f · g)(A), hence f(A) and g(A) commute,

(d) if f(z) =
∑∞

j=0 αj(z − z0)
j in a neighborhood of Λ(A),

then f(A) =
∑∞

j=0 αj(A− z0I)
j ,

(e) if B ∈ L(B) is invertible, then f(BAB−1) = Bf(A)B−1.

Another useful result is the so-called spectral mapping theorem.

Theorem 2.5 (N. Dunford). If A ∈ L(B) and f is analytic in a neighborhood of Λ(A),

then Λ(f(A)) = f(Λ(A)).
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2.2 Algebraic Operators

An operator A ∈ L(B) is algebraic if it has a minimal polynomial ψA(z) =
∏k

j=1(z−λj)
mj

(with pairwise distinct λj), which is the unique monic polynomial of smallest possible

degree satisfying ψA(A) = O. Square matrices A ∈ C
N×N are algebraic operators on C

N .

Functions of algebraic operators possess representations alternative to Definition 2.3. By

Cauchy’s formula for the Hermite interpolation polynomial [Wal69, p. 50], we know that

pf,A(z) =
1

2πi

∫

Γ

ψA(ζ) − ψA(z)

ζ − z

f(ζ)

ψA(ζ)
dζ

is a polynomial that interpolates3 the function f at the zeros of ψA. Using Definition 2.3

we obtain

pf,A(A) =
1

2πi

∫

Γ
[ψA(ζ)I − ψA(A)](ζI −A)−1 f(ζ)

ψA(ζ)
dζ

=
1

2πi

∫

Γ
f(ζ)R(ζ,A) dζ

= f(A).

Every function of an algebraic operator is therefore representable as a polynomial pf,A

depending on f and ψA. Let us summarize this finding in the following definition.

Definition 2.6. Let A be algebraic and let the polynomial pf,A(λ) satisfy the interpolation

conditions

p
(ν)
f,A(λj) = f (ν)(λj) for j = 1, . . . , k and ν = 0, . . . ,mj − 1,

provided that all f (ν)(λj) are defined. Then f(A) := pf,A(A).

Note that f need not be analytic in a neighborhood of Λ(A), as is required in Definition 2.3.

Instead it is only required that f possesses derivatives up to a finite order. It is clear from

Definition 2.6 that two functions f and g satisfy f(A) = g(A) if ψA | (pf,A − pg,A). The

converse is also true since (f − g)(A) = O implies ψA | pf−g,A by the minimality of ψA.

An alternative definition of an operator function is based on a Jordan canonical form

(cf. [Mey00, §7.8]).
3In what follows, interpolation will always be understood in Hermite’s sense.
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Definition 2.7. Let J = U−1AU be a Jordan canonical form of A ∈ C
N×N , where

J = diag(J1, . . . , Jp) ∈ C
N×N is a matrix with Jordan blocks

J` =




λ` 1

λ`
. . .

. . . 1

λ`



∈ C

n`×n`,

and U ∈ C
N×N is invertible. Then f(A) := Uf(J)U−1 := U diag(f(J1), . . . , f(Jp))U

−1,

where

f(J`) :=




f (0)(λ`)
0!

f (1)(λ`)
1! . . . f (n`−1)(λ`)

(n`−1)!

f (0)(λ`)
0!

. . .
...

. . . f (1)(λ`)
1!

f (0)(λ`)
0!




for ` = 1, . . . , p,

provided that all f (ν)(λ`) are defined.

It is easy to show that this definition is independent of the particular Jordan canonical

form that is used. For convenience we stated this definition for a matrix A. This is no

restriction since every algebraic operator has a matrix representation in an appropriate

basis. The equivalence of Definition 2.6 and Definition 2.7 is verified by observing that

f(J`) = pf,A(J`) for all ` = 1, . . . , p. For a detailed review of definitions of matrix functions

and their relationships we refer to [Rin55] and [Hig08, Ch. 1].

2.3 Closed Unbounded Operators

We now consider the important class of closed linear operators. An operator A is closed

if for every sequence {xn} ⊆ D(A) with xn → x and Axn → y there holds x ∈ D(A) and

Ax = y . Closed operators are more general than bounded operators (e.g., a large class of

differential operators is closed but unbounded) but still possess nice enough properties to

allow for the development of a functional calculus (under mild additional assumptions).

The definition of the resolvent set and the spectrum of unbounded operators is identical

to the corresponding definitions for bounded operators, i.e., %(A) is the set of complex
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numbers ζ for which the resolvent R(ζ,A) = (ζI−A)−1 exists as a bounded operator with

domain B and Λ(A) = C \ %(A). The spectrum Λ(A) of a closed unbounded operator is a

closed subset of C, which—in contrast to the bounded case—can also be the empty set or

even the whole plane C. By the closed graph theorem (cf. [DS58, Thm. II.2.4]) every closed

operator A with D(A) = B is bounded, hence the domain of a closed unbounded operator

is a strict subset of B. This causes technical difficulties when dealing with unbounded

operators because one has to ensure that operations with A or f(A) are actually defined.

Thus we face the following problem: How to write about rational Krylov methods, which

are particularly interesting for unbounded operators, in a way such that generality and

rigor are maintained, but the notation remains transparent and close to the one we are

used to from linear algebra?

One convenient solution would be to assume that “all operations involving A are defined.”

However, we found such an assumption too sloppy. A (hopefully) satisfying compromise

for this thesis is to consider bounded linear operators only, referring to the fact that if

there exists a number ξ ∈ %(A), the unbounded operator A can be transformed into a

bounded operator (A− ξI)−1 ∈ L(B). The definition

f(A) := f̂((A− ξI)−1), with f̂(z) := f(z−1 + ξ), (2.1)

is thus reduced to a function of a bounded operator. This way of defining f(A) for closed

unbounded operators with nonempty resolvent set was proposed by Taylor [Tay50] and is

standard now (cf. [DS58, §VII.9]). The assumption that A be closed is essential to build

a functional calculus on (2.1). For example, if A is closed and has a nonempty resolvent

set, then p(A) is a closed operator for every polynomial p [DS58, Thm. VII.9.7].

Note that the transformation (2.1) is the same as the one in the shift-and-invert Lanczos

method considered in the introduction (page 3ff.). There we actually transformed a finite-

difference matrix A with spectral interval contained in (−∞, 0) into a matrix (A− ξI)−1

with bounded spectral interval contained in (−1/ξ, 0). Since the spectral interval of A be-

comes arbitrarily large as the discretization mesh becomes finer, it is adequate to consider

A as an unbounded operator.



3 Subspace Approximation for f(A)b

Oscillatory movement is gaining more and

more importance in technical problems, so

that in Germany there is a study program

called Schwingungs-Ingenieure.

A. N. Krylov [Kry31]

Let A be a bounded linear operator on a complex Hilbert space H and let f be a complex-

valued function such that f(A) is defined. Let a vector b ∈ H be given. Our aim is to

obtain an approximation for f(A)b from a subspace Vm ⊆ H of small dimension m, while

avoiding the explicit “evaluation” of f(A), which is usually unfeasible or even impossible.

In Section 3.1 we consider the so-called Rayleigh method, which is a general method for

obtaining approximations for f(A)b. It turns out that this method applied to the solution

of linear operator equations is closely related to the Galerkin method. In Section 3.2 we

explore the fact that Rayleigh approximations can be interpreted as linear combinations

of so-called Ritz vectors of A. Finally, in Section 3.3 we consider the important special

case where the search space Vm is a polynomial Krylov space and collect results about the

associated Rayleigh–Ritz approximations.

15
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3.1 The Rayleigh Method

Let H be endowed with the inner product 〈 · , · 〉 and the induced norm ‖h‖ = 〈h ,h〉1/2.

We consider a quasi-matrix 1 Vm := [v1, . . . , vm] whose columns vj form a basis of an

m-dimensional subspace Vm ⊆ H. For an arbitrary vector c = [c1, . . . , cm]T ∈ C
m we

define

Vmc := v1c1 + · · · + vmcm,

so that Vm : C
m → H is a linear operator. The coordinate space C

m is always endowed

with the Euclidian inner product. Using the triangle inequality it is readily verified that

the operator norm of Vm satisfies ‖Vm‖ ≤∑m
j=1 ‖vj‖, i.e., Vm is a bounded operator. Since

the range R(Vm) = Vm is finite-dimensional and therefore closed, there exists a unique

Moore–Penrose inverse V †
m : H → C

m, which is uniquely defined as the solution X of the

four equations [BG03, Ch. 9, Thm. 3]

VmXVm = Vm, XVmX = X, (XVm)∗ = XVm, (VmX)∗ = VmX.

By the first of these equations (VmV
†
m)2 = VmV

†
m and by the last (VmV

†
m)∗ = VmV

†
m, so

that VmV
†
m is the orthogonal projection operator onto Vm, and therefore

〈VmV
†
mh , v〉 = 〈h , v〉 for all h ∈ H, v ∈ Vm. (3.1)

Since Vm has full column rank, we have two more useful properties of the Moore–Penrose

inverse at hand:

(VmS)† = S−1V †
m for every invertible S ∈ C

m×m, (3.2)

V †
mVm = Im, where Im denotes the m×m identity matrix. (3.3)

Equation (3.2) follows from the fact that X = (VmS)† solves (VmS)X(VmS) = (VmS),

or equivalently, Vm(SX)Vm = Vm. Hence V †
m = SX = S(VmS)†. Equation (3.3) holds

because VmV
†
mvj = vj and hence V †

mvj = ej, the jth column of Im.

1This term was coined by Stewart [Ste98, Ch. 5]. However, the same idea with different terminology was
used before in [Boo91] and [TB97, p. 52].
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Let A be a bounded linear operator on H. The following two definitions are fundamental.

Definition 3.1. For a given quasi-matrix Vm = [v1, . . . , vm] of full column rank, the

Rayleigh quotient for (A,Vm) is defined as

Am := V †
mAVm = [V †

m(Av1), . . . , V
†
m(Avm)] ∈ C

m×m.

The name Rayleigh quotient is justified since Am is the generalization of the so-called

matrix Rayleigh quotient, which results when the columns of Vm are orthonormal vectors

(cf. [Par98, §11.3]).

Definition 3.2. Let Vm be a basis2 of Vm and denote by Am the Rayleigh quotient for

(A,Vm). Provided that f(Am) exists, the Rayleigh approximation for f(A)b from Vm is

defined as

fm := Vmf(Am)V †
mb.

To justify this definition we need to verify that fm is independent of the choice of the

basis Vm.

Lemma 3.3. Let Vm and Wm be bases of Vm. Then

(a) the Rayleigh quotients for (A,Vm) and (A,Wm) are similar matrices,

(b) the Rayleigh approximation is independent of the particular choice of the basis and

depends only on the search space Vm.

Proof. There exists an invertible matrix S ∈ C
m×m such that Wm = VmS. Therefore

(a) A′
m := W †

mAWm = S−1V †
mAVmS = S−1AmS using (3.2), and

(b) Wmf(A′
m)W †

mb = VmSf(S−1AmS)S−1V †
mb = Vmf(Am)V †

mb, where we have used

the property f(S−1AmS) = S−1f(Am)S (which holds for every matrix function).

For a given search space Vm a method for obtaining a Rayleigh approximation is referred

to as a Rayleigh method.

2This is a short-hand for “Let the columns of Vm = [v1, . . . , vm] be a basis of . . .”
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Remark 3.4. The term f(Am) in the definition of the Rayleigh approximation is a func-

tion of a (relatively) small matrix, whereas evaluating f(A) is usually unfeasible or even

impossible (for example if A is defined only by its action on vectors). For a comprehen-

sive treatment and an extensive bibliography of the f(Am) problem we refer to the recent

monograph by Higham [Hig08] and the review by Frommer & Simoncini [FS08a].

Remark 3.5. Assume that A is invertible. The Rayleigh approximation for f(z) = z−1

coincides with the approximation obtained by the (Bubnov–)Galerkin method applied to

the operator equation Ax = b (cf. [Kre99, §13.3]). To show this we verify that the Rayleigh

approximation xm = Vmf(Am)V †
mb satisfies the Galerkin condition. In the context of

operator equations this means that the residual is orthogonal to the test space Vm, i.e.,

〈b −Axm, v〉 = 0 for all v ∈ Vm. (3.4)

Inserting the Rayleigh approximation yields

〈b −Axm, v〉 = 〈b −AVmA
−1
m V †

mb, v〉

= 〈VmV
†
mb − Vm(V †

mAVm)A−1
m V †

mb, v〉

= 0 for all v ∈ Vm,

where we have used (3.1) for the second equality. Conversely, there is no other vector

x ′
m ∈ Vm that satisfies the Galerkin condition (3.4): by linearity of the inner product such

a vector satisfies 〈A(xm − x ′
m), v〉 = 0, and by (3.1), 〈VmV

†
mA(xm − x ′

m), v〉 = 0 for all

v ∈ Vm. Setting v = VmV
†
mAm(xm − x ′

m) ∈ Vm and using the fact that A is injective,

we obtain xm = x ′
m. Therefore the Galerkin condition (3.4) completely characterizes the

Rayleigh approximation from Definition 3.2 for the function f(z) = z−1.

For other functions f a residual equation is usually not available and the Galerkin method

is not applicable. However, the Rayleigh approximation is defined whenever f(Am) is

defined.



3.2. Ritz Pairs 19

3.2 Ritz Pairs

Definition 3.6. Let (θj,xj) be an eigenpair of the Rayleigh quotient Am = V †
mAVm, i.e.,

Amxj = xjθj . Then (θj ,yj := Vmxj) is a Ritz pair for (A,Vm). The number θj ∈ C is

called a Ritz value and yj ∈ Vm is the associated Ritz vector.

By Lemma 3.3 the Ritz values are indeed independent of the particular basis Vm of Vm.

Since the Ritz values are eigenvalues of a Rayleigh quotient of A, they are all contained

in the numerical range

W(A) :=

{〈Ah ,h〉
〈h ,h〉 : h ∈ H \ {0}

}
,

which, by the Toeplitz–Hausdorff theorem (cf. [Hal82, Ch. 22]), is a bounded convex subset

of C whose closure contains the spectrum Λ(A).

It is easily verified that also the Ritz vectors are independent of the basis Vm, hence we

can assume that Vm is an orthonormal basis. In this case the Rayleigh quotient and the

coordinate representation of b simplify to

Am = V ∗
mAVm = [〈Av`, vk〉]1≤k,`≤m and V †

mb = V ∗
mb = [〈b, vk〉]1≤k≤m. (3.5)

In Remark 3.5 we have discussed the relationship between the Rayleigh method and the

Galerkin method for solving operator equations. In fact, a connection to operator eigen-

problems can also be given. To this end, let us consider a self-adjoint operator A = A∗.

Then the matrix Am in (3.5) is Hermitian, and hence has m orthonormal eigenvectors xj

associated with real Ritz values θj, i.e.,

Amxj = xjθj for j = 1, . . . ,m. (3.6)

The Ritz vectors yj = Vmxj form an orthonormal basis of Vm. Writing xj component-wise

xj = [x1,j , . . . , xm,j]
T , the kth row of (3.6) reads as

m∑

`=1

〈Av`, vk〉x`,j − xk,jθj = 0,
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or equivalently, 〈(A − θjI)yj , vk〉 = 0. Varying k = 1, . . . ,m, we arrive at the variational

formulation

〈(A− θjI)yj , v〉 = 0 for all v ∈ Vm.

This means that the Ritz vectors yj ∈ Vm may be regarded as “eigenvector approxima-

tions” and the θj are corresponding approximate “eigenvalues” (A itself may not have any

eigenvalues). Moreover, the Rayleigh approximation obviously satisfies

fm = Vmf(Am)V ∗
mb =

m∑

j=1

f(θj)〈b,yj〉yj ,

meaning that f(A)b is approximated by a linear combination of approximate eigenvec-

tors yj of A scaled by f(θj) (j = 1, . . . ,m).

3.3 Polynomial Krylov Spaces

In 1931 A. N. Krylov published the paper [Kry31] in which he considered the problem of

computing eigenvalues of a square matrix A ∈ C
N×N . Starting with some vector b ∈ C

N ,

Krylov used the sequence {b, Ab, . . . , AN−1b} in a clever way to find the coefficients of the

characteristic polynomial χA(z) of A with significantly fewer arithmetic operations than

the direct expansion of the determinant det(zI − A) would require.3 Today this attempt

is viewed as an “unfortunate goal” [Par98, Ch. 12], as it is known to be a highly unstable

approach for computing eigenvalues. However, back in 1931 people were dealing with, say,

6×6 matrices where ill-conditioning does not play such a big role [Bot02]. Later, Krylov’s

name became attached to the spaces we now call polynomial Krylov spaces: for a bounded

linear operator A and a vector b ∈ H the polynomial Krylov space of order m associated

with (A, b) is

Km(A, b) = span{b, Ab, . . . , Am−1b}.

If there is no room for ambiguity, we will often write Km instead of Km(A, b). With

increasing order m, polynomial Krylov spaces are nested subspaces of H.

Polynomial approximation methods for the f(A)b problem started to gain interest in the

mid 1980’s. Until that time the most common approach to solve such problems was by

3see [FF76, §42] for a brief summary of Krylov’s method. The computation of χA is only possible if A is
nonderogatory and b is cyclic for A, otherwise Krylov’s method computes a divisor of χA.
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diagonalization of A (with exception of the function f(z) = z−1 for which efficient polyno-

mial Krylov methods had already been known for about 30 years, see [SV00, §6]). Nauts

& Wyatt [NW83, NW84], interested in the scalar problem 〈exp(A)b,a〉 for Hamiltonian

operators A arising in Chemical Physics and vectors a and b, realized that full diagonal-

ization is not necessary if one is able to compute a few eigenvalues of A by the Lanczos

method. Building on this work, Park & Light [PL86] advocated the efficiency of polyno-

mial Krylov methods for exp(A)b, making use of Rayleigh approximations. Since then,

polynomial Krylov methods were further applied and analyzed for the matrix exponential

[Nou87, FTDR89], and more generally for other functions f(z) [Vor87, DK89, Kni91]. The

theoretical understanding of these methods was greatly enhanced by Ericsson [Eri90] and

Saad [Saa92a], who independently discovered the connection between Rayleigh approxi-

mations and polynomial interpolation.

In this section the search space for the Rayleigh method is a polynomial Krylov space, i.e.,

Vm = Km. Let us collect some well-known properties of the associated Rayleigh quotients

in the following lemma (cf. [Saa92b, Ch. VI]). By Pm we denote the space of polynomials

of degree ≤ m, and P∞
m denotes the set of monic polynomials of degree = m.

Lemma 3.7. Let Vm be a basis of Km(A, b), Am = V †
mAVm, and let χm denote the

characteristic polynomial of Am. Then the following statements hold.

(a) Am is nonderogatory.

(b) χm(A)b ⊥ Km(A, b).

(c) χm minimizes ‖sm(A)b‖ among all sm ∈ P∞
m .

Proof.

(a) Assume first that Vm = [b, Ab, . . . , Am−1b]. Then Am = V †
mAVm is obviously a

companion matrix, i.e.,

Am =




0 −α0

1 0 −α1

. . .
. . .

...

1 −αm−1



,

with characteristic polynomial χm(z) = zm +
∑m−1

j=0 αjz
j . Since a companion matrix
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is nonderogatory (cf. [Mey00, p. 648]) and for any choice of Vm the matrix Am is

similar to this companion matrix (by Lemma 3.3), Am is nonderogatory.

(b) Assume again that Vm = [b, Ab, . . . , Am−1b]. Then V †
mAmb = [−α0,−α1, . . . ,−αm−1]

T ,

which is the last column vector of Am. Since VmV
†
mAjb = Ajb for all j ≤ m− 1, we

have

VmV
†
mχm(A)b = VmV

†
mA

mb +
m−1∑

j=0

αjA
jb = 0 ,

as desired.

(c) Write sm(z) = zm −pm−1(z) for some pm−1 ∈ Pm−1. Then pm−1(A)b ∈ Km and the

condition

〈Amb − pm−1(A)b, v〉 for all v ∈ Km

characterizes the unique minimizer of ‖sm(A)b‖. By (b) this condition is satisfied

for sm = χm.

We now turn to Rayleigh approximations from polynomial Krylov spaces, which deserve

a special name.

Definition 3.8. The Rayleigh approximation

fm = Vmf(Am)V †
mb

is called a Rayleigh–Ritz approximation for f(A)b if Vm is a basis of Km(A, b).

We will see that the Ritz values Λ(Am) have a very important meaning in connection

with Rayleigh–Ritz approximations—hence the name. In fact, the Ritz values turn out to

be interpolation nodes for a polynomial underlying fm. In [HH05] the authors used the

name Ritz approximation for fm, but we intend to remind the reader that Rayleigh–Ritz

approximations are Rayleigh approximations from a special search space.

In Remark 3.5 we showed that the Rayleigh method applied for the function f(z) =

z−1 coincides with the Galerkin method for the solution of an operator equation, and

consequently the same is true for the Rayleigh–Ritz method. A Galerkin method with

search space Vm = Km is also known as method of moments (cf. [Vor65]).
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The following lemma is a straightforward generalization of [Eri90, Thm. 5.1] and [Saa92a,

Lem. 3.1]; we have dropped the assumptions that Vm is orthonormal and that A is a

matrix.

Lemma 3.9 (Ericsson, Saad). Let Vm be a basis of Km, Am = V †
mAVm, and let Pm =

VmV
†
m be the orthogonal projector onto Km. Then for every pm ∈ Pm there holds

Pmpm(A)b = Vmpm(Am)V †
mb.

In particular, for every pm−1 ∈ Pm−1 there holds

pm−1(A)b = Vmpm−1(Am)V †
mb,

i.e., the Rayleigh–Ritz approximation for pm−1(A)b is exact.

Proof. The proof is by induction on the monomials Aj , i.e., we will show that PmA
jb =

VmA
j
mV

†
mb for all j ≤ m. This assertion is obviously true for j = 0. Assume that it is

true for some j ≤ m− 1. Since Ajb belongs to Km we have

PmA
j+1b = PmAA

jb = PmAPmA
jb.

By definition of Am we have PmAPm = VmAmV
†
m and, using the induction hypothesis,

PmA
j+1b = (VmAmV

†
m)VmA

j
mV

†
mb = VmA

j+1
m V †

mb.

Of great importance for the analysis of Rayleigh–Ritz approximations is the following

theorem, which is a generalization of [Eri90, Thm. 4.3] and [Saa92a, Thm. 3.3]. It also

justifies the name Rayleigh–Ritz approximation.

Theorem 3.10 (Ericsson, Saad). Let Vm be a basis of Km and Am = V †
mAVm. Let f be

a function such that f(Am) is defined. Then

fm = Vmf(Am)V †
mb = pm−1(A)b,

where pm−1 ∈ Pm−1 interpolates f at the Ritz values Λ(Am).
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Proof. By the definition of a matrix function, f(Am) = pm−1(Am). Hence,

Vmf(Am)V †
mb = Vmpm−1(Am)V †

mb = pm−1(A)b,

where we have used Lemma 3.9 for the last equality.

Let us further investigate in what case the Rayleigh–Ritz approximation is exact, i.e.,

fm = f(A)b. By M we denote the smallest integer such that KM−1 ⊂ KM = KM+1, which

means that KM is A-invariant (M is called the invariance index ). If there exists no such

integer we set M = ∞. If M <∞ there exists a unique polynomial ψA,b ∈ P∞
M such that

ψA,b(A)b = 0 , and there exists no such polynomial of smaller degree. This polynomial

ψA,b is called the minimal polynomial of b with respect to A (cf. [Gan59, Ch. VII]). Let

VM be an arbitrary basis of KM and let χM denote the characteristic polynomial of the

Rayleigh quotient AM = V †
MAVM . With the help of Lemma 3.9 we derive

KM 3 χM (A)b = PMχM (A)b = VMχM (AM )V †
Mb = 0 ,

which immediately proves

ψA,b = χM = ψM ,

where ψM denotes the minimal polynomial of AM (which coincides with χM because AM

is nonderogatory by Lemma 3.7).

By A(M) we denote the section of A onto KM , that is A(M) := VMAMV
†
M . It is easily

verified that the Rayleigh quotients Am for (A,Vm) and A
(M)
m for (A(M), Vm) coincide for

all orders m ≤M : since VMV
†
M is a projection onto KM there holds

Am = V †
mAVm = V †

m(VMV †
M )A(VMV †

M )Vm = V †
mA

(M)Vm = A(M)
m . (3.7)

This implies that also the Rayleigh–Ritz approximations for f(A)b and f(A(M))b from

Km coincide (provided that both exist), i.e.,

fm = Vmf(Am)V †
mb = Vmf(A(M)

m )V †
mb for all m ≤M. (3.8)

The following lemma is now easily proved.
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Lemma 3.11. If M <∞ and f(A)b = f(A(M))b, then

fM = VMf(AM )V †
Mb = f(A)b.

In particular, if A is algebraic then fM = f(A)b.

Proof. By (3.8) we know that fM = VMf(A
(M)
M )V †

Mb, and hence it suffices to show that

VMf(A
(M)
M )V †

Mb = f(A(M))b, or equivalently, VMf(AM)V †
Mb = f(A(M))b (because AM =

A
(M)
M by (3.7)). Note that A(M) is an algebraic operator since ψM , the minimal polynomial

of AM , satisfies

ψM (A(M)) = ψM (VMAMV
†
M ) = VMψM (AM )V †

M = O.

Hence there exists a polynomial pM−1 ∈ PM−1 that interpolates f at the zeros of ψM such

that f(A(M)) = pM−1(A
(M)), and this polynomial also satisfies f(AM) = pM−1(AM ).

Therefore

f(A(M))b = pM−1(A
(M))b = VMpM−1(AM )V †

Mb = VMf(AM )V †
Mb,

where we have used the exactness of Rayleigh–Ritz approximation, Lemma 3.9, for the

second equality.

If A is algebraic, then by definition of a polynomial Krylov space it is clear that M is

finite4, in particular, there holds M ≤ deg(ψA). That f(A)b = f(A(M))b follows from the

fact that the minimal polynomials of b with respect to A and A(M) coincide.

Remark 3.12. In general, the Rayleigh–Ritz approximation fm differs from f(A)b until

the invariance index M is reached, even if f(A)b ∈ Km for m < M . In Figure 3.1 this

fact is illustrated with the help of a simple example.

4In a sense, a theorem by I. Kaplansky states that the converse is also true: if there exists an integer
M < ∞ such that KM (A,h) = KM+1(A,h) for every h ∈ H then A is algebraic [Nev93, p. 38].
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Figure 3.1: The black circles indicate the eigenvalues of A = diag(1, 2, 3, 4). By chance, f(A)
coincides with A2, so that f(A)b ∈ K3(A, b) = span{b, Ab, A2b}. However, the Rayleigh–Ritz
approximation of order 3 corresponds to an interpolating polynomial for the function f at the Ritz
values (red squares) and thus f3 does not coincide with f(A)b.
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It is thus well possible that the series

of largest roots in which we are primarily

interested is practically established with

sufficient accuracy after a few iterations.

C. Lanczos [Lan50]

Some of the most successful iterative algorithms for eigenproblems with a large sparse or

structured matrix A originate from ideas of Lanczos [Lan50] and Arnoldi [Arn51], and

are now known as Hermitian Lanczos, non-Hermitian Lanczos, and Arnoldi method, re-

spectively (cf. [Saa92b, Par98]). These methods are polynomial Krylov methods1 because

the computed eigenvector approximations are elements of the polynomial Krylov space

Km(A, b). Lanczos already realized that his method usually tends to approximate ex-

tremal eigenvalues of symmetric matrices, i.e., those eigenvalues close to the endpoints

of A’s spectral interval, after a few iterations. Ericsson & Ruhe [ER80] made use of

this observation by running the Lanczos method for the spectrally transformed matrix

(A− ξI)−1, thus obtaining good approximate eigenvalues close to the shift ξ ∈ C \ Λ(A).

The authors also provided an implementation of this method called STLM (for Spectral

Transformation Lanczos Method [ER82]). The search space in the mth iteration of this

method is the linear space of rational functions in A times b having a pole of order m− 1

in ξ, i.e.,

{rm(A)b : rm(z) = pm−1(z)/(z − ξ)m−1, pm−1 ∈ Pm−1}.

1A footnote in [Lan50] indicates that this relationship with Krylov’s work was pointed out to Lanczos by
A. M. Ostrowski.

27
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Ruhe [Ruh84] developed this idea further by allowing the m − 1 poles of the rational

functions to be arbitrary (not lying in Λ(A), of course). The resulting rational Krylov

space is the linear space of the form

{rm(A)b : rm(z) = pm−1(z)/qm−1(z), pm−1 ∈ Pm−1},

where qm−1 ∈ Pm−1 is a prescribed polynomial. Such spaces are the subject of this chapter

and we will see that they are powerful search spaces for approximating f(A)b.

In Section 4.1 we show some basic properties of rational Krylov spaces, where we use

a definition based on polynomial Krylov spaces. This allows us to easily carry over all

results about polynomial Krylov spaces (cf. Section 3.3) to the rational case. Although

this approach inevitably introduces some redundancies into the development of the theory,

it most clearly reveals the relationships between polynomial and rational Krylov spaces.

In Section 4.2 we show that Rayleigh approximations for f(A)b from rational Krylov

spaces are closely related to rational interpolation at rational Ritz values and possess a

near-optimality property.

4.1 Definition and Basic Properties

Let A be a bounded linear operator. The following definition and notation will be used.

Definition 4.1. Let the polynomial qm−1 ∈ Pm−1 have no zeros in the spectrum Λ(A).

The space

Qm := Qm(A, b) := qm−1(A)−1Km(A, b)

is called the rational Krylov space of order m associated with (A, b, qm−1).

The name “Qm” is intended to remind the reader that there is always associated with it

a polynomial qm−1, even if this polynomial does not occur explicitly in the notation. In

what follows we denote by Pm−1/qm−1 the set of rational functions {pm−1/qm−1 : pm−1 ∈
Pm−1} and we use a similar notation with Pm/qm−1 and P∞

m /qm−1. Let us collect some

basic properties of the rational Krylov space Qm.
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Lemma 4.2. There holds

(a) Qm = Km(A, qm−1(A)−1b),

(b) b ∈ Qm,

(c) dim(Qm) = min{m,M}, where M is the invariance index of Km(A, b),

(d) Qm
∼= Pm−1/qm−1 for all m ≤M , i.e., there exists an isomorphism.

Proof.

(a) This is a consequence of the fact that operator functions commute. More precisely,

qm−1(A)−1Ajb = Ajqm−1(A)−1b for all j ≥ 0.

(b) We have b ∈ qm−1(A)−1Km if and only if qm−1(A)b ∈ Km, the latter being true by

definition of Km.

(c) By definition, qm−1(A)−1 is an invertible operator and hence does not reduce the

dimension of the space it is applied to. Thus dim(qm−1(A)−1Km) = dim(Km).

(d) This is a consequence of the fact Km
∼= Pm−1.

We emphasize that assertion (a) of Lemma 4.2 is as important as it is trivial since it links

rational and polynomial Krylov spaces via the modified starting vector qm−1(A)−1b. We

will make extensive use of this fact for transferring results from polynomial to rational

Krylov spaces.

It obviously suffices to consider monic polynomials qm−1 only. For computations it is

convenient to have nested spaces Q1 ⊂ Q2 ⊂ · · · , and such nested spaces are obtained if

the polynomials qm−1 differ only by a linear factor as m is increased by one. For a given

sequence of poles {ξ1, ξ2, . . .} ⊂ C \ Λ(A), C := C ∪ {∞}, we hence define

qm−1(z) :=

m−1∏

j=1
ξj 6=∞

(z − ξj) for m = 1, 2, . . . (4.1)

once and for all. By convention, an empty product is equal to one and we will often refer

to the polynomial qm−1 as “the poles of Qm,” which also reflects the fact that the space

Qm is independent of the particular ordering of the poles. The resulting rational Krylov

spaces are indeed nested.
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Lemma 4.3. Let qm−1 be defined by (4.1). If M <∞ then

span{b} = Q1 ⊂ Q2 ⊂ · · · ⊂ QM = KM ,

otherwise

span{b} = Q1 ⊂ Q2 ⊂ · · ·

Proof. We first remark that Qm ⊆ Qm+1 since

v ∈ Qm = qm−1(A)−1Km ⇔ qm−1(A)v ∈ Km

⇒ qm(A)v ∈ Km+1

⇔ v ∈ qm(A)−1Km+1 = Qm+1.

As long as dim(Km+1) = m+ 1, we have Qm ⊂ Qm+1 by Lemma 4.2 (c). If M <∞ then

KM is A-invariant, hence qM−1(A)p(A)b ∈ KM and therefore p(A)b ∈ qM−1(A)−1KM =

QM for every polynomial p of arbitrary degree. Thus QM = KM .

Remark 4.4. Depending on the sequence {ξj}, various special cases of rational Krylov

spaces exist.

(a) If all ξj = ∞ then Qm = Km is a polynomial Krylov space.

(b) If all ξj = ξ ∈ C then Qm is a shift-and-invert Krylov space, i.e.,

Qm(A, b) = Km((A− ξI)−1, b).

For the approximation of matrix functions such spaces were first considered in

[MN04, EH06].

(c) If ξ2j = ∞ and ξ2j+1 = 0 for all j ≥ 1, one obtains the so-called extended Krylov

spaces introduced in [DK98] and further studied in [JR09, KS10].

4.2 The Rayleigh–Ritz Method

A nice example of the close relationship between polynomial and rational Krylov spaces

is the following lemma about Rayleigh quotients associated with Qm.
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Lemma 4.5. Let Vm be a basis of Qm, Am = V †
mAVm, and let χm denote the characteristic

polynomial of Am. Then the following statements hold.

(a) Am is nonderogatory.

(b) χm(A)qm−1(A)−1b ⊥ Qm(A, b).

(c) χm minimizes ‖sm(A)qm−1(A)−1b‖ among all sm ∈ P∞
m .

Proof. This lemma is obtained by simply replacing in Lemma 3.7 the vector b by q :=

qm−1(A)−1b and using the fact that Km(A, q) = Qm(A, b).

4.2.1 Rational Interpolation

The following lemma states that a Rayleigh approximation extracted from a rational

Krylov space Qm is exact for certain rational functions. This result follows from its

polynomial counterpart and has been derived for special cases in several ways in the

literature, e.g., in [DK98] for the extended Krylov spaces, or in [BR09].

Lemma 4.6. Let Vm be a basis of Qm, Am = V †
mAVm, and let Pm = VmV

†
m be the or-

thogonal projector onto Qm. Then for every rational function r̃m = pm/qm−1 ∈ Pm/qm−1

there holds

Pmr̃m(A)b = Vmr̃m(Am)V †
mb.

In particular, for every rational function rm = pm−1/qm−1 ∈ Pm−1/qm−1 there holds

rm(A)b = Vmrm(Am)V †
mb,

i.e., the Rayleigh approximation for rm(A)b is exact (provided that rm(Am) is defined).

Proof. Replacing in Lemma 3.9 the vector b by q := qm−1(A)−1b yields

Pmpm(A)q = Vmpm(Am)V †
mq for all pm ∈ Pm. (4.2)

Since b = qm−1(A)q and, again by Lemma 3.9, the Rayleigh approximation for qm−1(A)b

is exact, we have b = Vmqm−1(Am)V †
mq , or equivalently, V †

mq = qm−1(Am)−1V †
mb. Re-

placing V †
mq in (4.2) yields the assertion.
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Remark 4.7. The eigenvalues Λ(Am) are called rational Ritz values. An example where

rm(A) is defined but rm(Am) is not can be obtained with the matrix A = diag(−2,−1, 1, 2),

the vector b = [1, 1, 1, 1]T and the poles ξj = 0 (j = 1, 2, 3). By symmetry there is a

rational Ritz value at zero when m is odd.

The following theorem states that the Rayleigh approximation fm from a rational Krylov

space is closely related to rational interpolation at the rational Ritz values Λ(Am). For

this reason we will extend Definition 3.8 by using the name Rayleigh–Ritz approximation

also in the case where the search space is a rational Krylov space.

Theorem 4.8. Let Vm be a basis of Qm and Am = V †
mAVm. Let f be a function such that

f(Am) is defined. Then

fm = Vmf(Am)V †
mb = rm(A)b,

where rm = pm−1/qm−1 ∈ Pm−1/qm−1 interpolates f at Λ(Am).

Proof. With q := qm−1(A)−1b and f̃ := fqm−1 we have f(A)b = f̃(A)q . By Lemma 3.10

the Rayleigh–Ritz approximation fm for f̃(A)q from Km(A, q) = Qm(A, b) satisfies

fm = pm−1(A)q = pm−1(A)qm−1(A)−1b,

where pm−1 interpolates f̃ at the nodes Λ(Am). Thus the function rm = pm−1/qm−1

interpolates f at Λ(Am).

We see from the proof of Theorem 4.8 that rational interpolation with a prescribed de-

nominator qm−1 is in fact very similar to polynomial interpolation. As a consequence,

there also exists a Cauchy integral representation of such rational interpolating functions.

Let χm denote the characteristic polynomial of Am and let Γ be an integration contour

such that Λ(Am) ⊂ int(Γ). If f is analytic in int(Γ) and extends continuously to Γ then so

does f̃ = fqm−1. Owing to Hermite’s formula [Wal69, p. 50], the polynomial pm−1 ∈ Pm−1

interpolating f̃ at Λ(Am) can be expressed as

pm−1(z) =
1

2πi

∫

Γ

χm(ζ) − χm(z)

χm(ζ)(ζ − z)
f̃(ζ) dζ.
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For the interpolation error we have

f̃(z) − pm−1(z) =
1

2πi

∫

Γ

χm(z)

χm(ζ)(ζ − z)
f̃(ζ) dζ.

Dividing this equation by qm−1 and setting sm := χm/qm−1 we obtain

f(z) − rm(z) =
sm(z)

2πi

∫

Γ

f(ζ)

sm(ζ)(ζ − z)
dζ,

where rm = pm−1/qm−1 interpolates f at Λ(Am). By Theorem 4.8 we have fm = rm(A)b

and thus the error of the Rayleigh–Ritz approximation can be bounded as

‖f(A)b − rm(A)b‖ ≤ `(Γ)

2π
· ‖sm(A)b‖ · max

ζ∈Γ

∥∥∥∥
f(ζ)

sm(ζ)
(ζI −A)−1

∥∥∥∥

≤ D · ‖sm(A)b‖ · max
ζ∈Γ

|sm(ζ)|−1, (4.3)

where `(Γ) denotes the length of Γ and D = D(A, f,Γ) is a constant. It is remarkable

that sm is the minimizer of the factor ‖sm(A)b‖ among all rational functions in P∞
m /qm−1

by Lemma 4.5 (c).

Here and in the following it will be essential for us to estimate ‖f(A)‖. To this end let

‖f‖Σ := supz∈Σ |f(z)| denote the uniform (or supremum) norm of f on a set Σ ⊇ W(A)

(we recall that W(A) denotes A’s numerical range). Let us first assume that A is self-

adjoint. Then by the spectral mapping theorem (Theorem 2.5) and the well-known fact

that ‖A‖ = sup{|z| : z ∈ W(A)} (cf. [Hal72, §24]) we have ‖f(A)‖ ≤ ‖f‖Σ. In the more

general case of a bounded operator A, the following theorem due to Crouzeix [Cro07]

provides a powerful tool.

Theorem 4.9 (M. Crouzeix). Let f be analytic in a neighborhood of W(A), and let

Σ ⊇ W(A). There holds ‖f(A)‖ ≤ C‖f‖Σ with a constant C ≤ 11.08. (It is conjectured

that the bound also holds with C = 2.)

If f is analytic in a neighborhood of W(A) containing an integration contour Γ such that

W(A) ⊆ Σ ⊂ int(Γ), then Theorem 4.9 applied to (4.3) yields

‖f(A)b − rm(A)b‖ ≤ 2CD‖b‖ · ‖sm‖Σ · ‖s−1
m ‖Γ,

noting that the zeros of sm are rational Ritz values, hence contained in W(A), and therefore
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‖s−1
m ‖Γ < ∞. This bound suggests which type of approximation problems are connected

with the optimization of a rational Krylov space for Rayleigh–Ritz extraction: consider

rational functions sm that are “smallest possible” on the set Σ and “largest possible” on

the integration contour Γ winding around Σ. The zeros of the denominator qm−1 of such

an optimal rational function should constitute “good” poles for the rational Krylov space

Qm. These so-called Zolotarev problems will be treated in more detail in Chapter 7.

The derivation of error bounds using the Cauchy integral representation of the error is

classical for studying the convergence of Padé(-type) approximations (cf. [Mag81, Eie84]).

Indeed, if the poles qm−1 were free and we were given a set of m−1 additional interpolation

nodes {µ1, . . . , µm−1} with nodal polynomial ωm−1 ∈ P∞
m−1, then it would also be possible

to interpret the rational function rm = pm−1/qm−1 from above as a multi-point Padé-type

approximation (cf. [Sta96]) satisfying

qm−1f − pm−1

χmωm−1
is bounded at each zero of χmωm−1.

4.2.2 Near-Optimality

The accuracy of an approximation obtained by some approximation method is determined

by the “quality” of the rational Krylov space Qm and the extraction. Of course, an

approximation fm can only be as good as the search space it is extracted from, i.e.,

min
v∈Qm

‖f(A)b − v‖ ≤ ‖f(A)b − fm‖.

In a rational Krylov method it is therefore necessary to make the left-hand side of this

inequality as small as possible by choosing the poles qm−1 suitably. If in addition the

extraction is the Rayleigh–Ritz extraction, we will automatically obtain a near-best ap-

proximation fm ∈ Qm (cf. [BR09, Prop. 3.1] for the polynomial Krylov case).

Theorem 4.10. Let Vm be a basis of Qm and Am = V †
mAVm. Let f be analytic in a

neighborhood of W(A) and consider fm = Vmf(Am)V †
mb. For every set Σ ⊇ W(A) there

holds

‖f(A)b − fm‖ ≤ 2C‖b‖ min
rm∈Pm−1/qm−1

‖f − rm‖Σ.

with a constant C ≤ 11.08. If A is self-adjoint the result holds with C = 1.
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Proof. The Rayleigh–Ritz approximation is independent of the particular basis, hence let

Vm be orthonormal. By Lemma 4.6 we know that rm(A)b = Vmrm(Am)V †
mb for every

rm ∈ Pm−1/qm−1. Thus,

‖f(A)b − Vmf(Am)V †
mb‖ = ‖f(A)b − Vmf(Am)V †

mb − rm(A)b + Vmrm(Am)V †
mb‖

≤ ‖b‖ (‖f(A) − rm(A)‖ + ‖f(Am) − rm(Am)‖)

≤ 2C‖b‖ · ‖f − rm‖Σ,

where we have used Theorem 4.9 for the last inequality. If A is self-adjoint then so is Am

and Theorem 4.9 holds with C = 1. The proof is completed by taking the infimum among

all rm ∈ Pm−1/qm−1 and the fact that this infimum is attained.

The error bound of Theorem 4.10 will be an important tool for us, hence it deserves

further discussion. First of all, we cannot expect this bound to be sharp if A is highly

nonnormal since it is based on the numerical range W(A). Unfortunately, this bound

can be crude even for a self-adjoint operator. To illustrate this we reconsider the model

problem in the introduction, i.e., the solution of the 3D heat equation discretized by finite

differences on the unit cube with n = 15 interior grid points in each Cartesian coordinate

direction. This results in a symmetric negative definite matrix A ∈ R
N×N with N = 3375

eigenvalues in W(A) ≈ [−3043,−30]. As in the introduction we approximate f(A)b, where

f(z) = exp(0.1z) and b ∈ R
N is a random vector of unit length. In Figure 4.1 we show

the absolute error curves of Rayleigh–Ritz approximations fm from a polynomial and a

rational Krylov space, respectively, and the errors of the orthogonal projection of f(A)b

onto these spaces. The poles ξj of the rational Krylov space Qm were all chosen equal to

one. The dotted curves in Figure 4.1 are the error bounds2 obtained from Theorem 4.10

in the polynomial and rational Krylov case, respectively. We observe that these bounds

are not very close to the actual errors ‖f(A)b − fm‖. To explain this, we first note that

for a symmetric (or Hermitian) matrix A the inequality in the proof of Theorem 4.10 can

be improved to

‖f(A)b − fm‖ ≤ 2‖b‖ min
rm∈Pm−1/qm−1

‖f − rm‖Λ(A)∪Λ(Am),

2The associated best uniform approximation problems were solved approximately by the chebfun imple-
mentation of the Remez algorithm given in [PT09]. At least in the case of polynomial approximation
the errors could also be bounded by the Chebyshev coefficients of the exponential function, which are
explicitly known in terms of modified Bessel functions [Mei64, §6.5].
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which is a min-max problem on the discrete set Λ(A)∪Λ(Am). The error of the continuous

minimizer is typically much larger than the error of the discrete minimizer, particularly if

the eigenvalues Λ(A) do not “fill” the interval W(A) sufficiently well. This is the reason

why the bounds in Figure 4.1 are not good. In the worst case, for a symmetric matrix of

size 2× 2 having the extremal eigenvalues of A, we would obtain the same error bound as

in Figure 4.1, although f2 would already be exact.

To restore the reputation of Theorem 4.10 we now let A be the discrete 1D Laplacian of

(small) size 500 × 500, shifted and scaled so that W(A) ≈ [−3043,−30], as above. Again

we approximate f(A)b with f(z) = exp(0.1z) (which corresponds to a scaled solution of

the 1D heat equation). The vector b ∈ R
500 of unit length is chosen as b =

∑500
j=1 uj/

√
500

so that each of A’s orthonormal eigenvectors uj is active with equal weight. In Figure 4.2

we show the error curves of the polynomial and rational Rayleigh–Ritz approximations

and the corresponding error bounds of Theorem 4.10. The error bounds are identical

to the ones in Figure 4.1, but they are almost sharp for this problem. The reason is

that the eigenvalues of the 1D Laplacian are a “very good discretization” of the interval

W(A). Indeed, these eigenvalues are distributed according to the equilibrium measure of

W(A), a notion we will make precise in Chapter 7. We expect that, at least for Hermitian

matrices A, there should not be much room for improving the bound in Theorem 4.10 if

only W(A) and ‖b‖ are taken into account.

Remark 4.11. Theorem 4.10 suggests that we choose the poles qm−1 such that

min
rm∈Pm−1/qm−1

‖f − rm‖Σ

becomes as small as possible, which is a rational best uniform approximation problem. We

will consider such problems in Chapter 7.
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Figure 4.1: Convergence of Rayleigh–Ritz approximations from a polynomial (blue) and a rational
Krylov space (red) for the solution of a 3D heat equation. The solid lines are the error curves
‖f(A)b − fm‖, and the dashed line is the error of the orthogonal projection of f(A)b onto the
respective Krylov space. The dots indicate the error bounds obtained from Theorem 4.10. 4bound
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Figure 4.2: Convergence of Rayleigh–Ritz approximations for the solution of a 1D heat equation,
where W(A) and ‖b‖ are the same as in the figure above, and hence the error bounds (dotted) are
identical. However, for this problem these error bounds are far more satisfactory.
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5 Rational Krylov Decompositions

In the previous chapter we presented Rayleigh–Ritz approximations as abstract approxi-

mations associated with a rational Krylov space Qm, independent of the basis Vm. How-

ever, each computational method requires a basis of the vector space it is working with.

Thus when it comes to actually computing a Rayleigh–Ritz approximation, the basis Vm

eventually needs to be constructed. In 1984, A. Ruhe [Ruh84] introduced the rational

Arnoldi algorithm1 to iteratively compute an ascending orthonormal basis of a rational

Krylov space. It can be thought of as an extension of the spectrally transformed Arnoldi

algorithm, allowing the pole ξ = ξj to vary in each iteration. Ten years later, Ruhe re-

considered the rational Arnoldi algorithm for generalized eigenproblems Ax = λBx , see

[Ruh94b, Ruh94c, Ruh94a] and also [Ruh98]. He showed that the basis vectors generated

by his algorithm satisfy a rational Arnoldi decomposition. In our context these decomposi-

tions are essential for the efficient and stable computation of Rayleigh–Ritz approximations

for f(A)b.

In Section 5.1 we review the rational Arnoldi algorithm and rational Arnoldi decomposi-

tions generated therein. The relationship between these decompositions and orthogonal

rational functions is discussed in Section 5.2. In Section 5.3 we introduce rational Krylov

decompositions, a general framework that allows us to relate existing rational Krylov

methods and to derive some novel rational Krylov algorithms for the approximation of

operator functions in Section 5.4.

1Ruhe actually used the name rational Krylov sequence algorithm, but for reasons which become apparent
in Section 5.3 we prefer to use rational Arnoldi algorithm here.

39
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5.1 The Rational Arnoldi Algorithm

Before describing the rational Arnoldi algorithm we first show that it is always possible

to iteratively construct a basis for a rational Krylov space Qj+1 given a basis for Qj. As

in the previous chapters, M denotes the invariance index of the Krylov space.

Lemma 5.1. There exists a vector yj ∈ Qj such that (I−A/ξj)−1Ayj ∈ Qj+1 \Qj if and

only if j < M .

Proof. Set q := qj−1(A)−1b. By the definition of a rational Krylov space we have

(I −A/ξj)
−1AQj = (I −A/ξj)

−1AKj(A, q) = AKj(A, qj(A)−1b) ⊆ Qj+1.

Let j < M and assume there exists no vector yj such that (I −A/ξj)
−1Ayj ∈ Qj+1 \ Qj .

Then (I − A/ξj)
−1AQj ⊆ Qj and hence AQj ⊆ (I − A/ξj)Qj . Since Qj is not A-

invariant, dim(AQj) = dim((I − A/ξj)Qj) = j and therefore AQj = (I − A/ξj)Qj .

This is equivalent to AKj(A, q) = (I − A/ξj)Kj(A, q), which is a contradiction because

(I −A/ξj)q 6∈ AKj(A, q).

For j ≥ M we have (I − A/ξj)
−1AQj = Qj and the rational Krylov space Qj cannot be

enlarged further.

Let {ξ1, ξ2, . . .} ⊂ C \ Λ(A) be a given sequence of nonzero poles. The rational Arnoldi

algorithm now proceeds as follows:

In the first iteration j = 1 we set v1 = b/‖b‖, which is an orthonormal basis vector of Q1.

In the following iterations the vector vj+1 is obtained by orthonormalizing

xj = (I −A/ξj)
−1Ayj, yj =

j∑

i=1

viui,j (5.1)

against the already known orthonormal vectors v1, . . . , vj . The vector yj ∈ Qj is called a

continuation vector and it is chosen such that xj is not a linear combination of v1, . . . , vj .

By Lemma 5.1 this is possible if and only if j < M , i.e., as long as we have not reached the
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invariance index of the rational Krylov space. The orthogonalization leads to the equation

xj =

j+1∑

i=1

vihi,j , (5.2)

where the normalization coefficient hj+1,j can be chosen > 0. At this point we have

computed an orthonormal basis {v1, . . . , vj+1} of Qj+1.

Equating (5.1) and (5.2) and left-multiplying both sides by I −A/ξj gives

A

j∑

i=1

viui,j = (I −A/ξj)

j+1∑

i=1

vihi,j, (5.3)

and separation of the terms containing A yields

A

(
j∑

i=1

viui,j +

j+1∑

i=1

vihi,jξ
−1
j

)
=

j+1∑

i=1

vihi,j . (5.4)

For j = 1, . . . ,m < M we can rewrite (5.4) in “matrix language” as a rational Arnoldi

decomposition

AVm(Um +HmDm) +Avm+1hm+1,mξ
−1
m eT

m = VmHm + vm+1hm+1,meT
m, (5.5)

where

Vm = [v1, . . . , vm] is an orthonormal basis of Qm,

[Vm, vm+1] is an orthonormal basis of Qm+1,

Hm = [hi,j ] ∈ C
m×m is an unreduced upper Hessenberg matrix,

hm+1,m is positive,

Um = [ui,j ] ∈ C
m×m is an upper triangular matrix,

Dm = diag(ξ−1
1 , . . . , ξ−1

m ),

em denotes the mth unit coordinate vector in R
m.

Setting

Hm :=


 Hm

hm+1,meT
m


 and Km :=


 Um +HmDm

hm+1,mξ
−1
m eT

m


 , (5.6)
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one can write (5.5) more succinctly as

AVm+1Km = Vm+1Hm, (5.7)

where Hm and Km are unreduced upper Hessenberg matrices of size (m + 1) × m (the

underline is intended to symbolize the additional last row).

Note that if Um = Im and all poles ξj are infinite then Dm = O and (5.7) reduces to a

polynomial Arnoldi decomposition

AVm = Vm+1Hm.

In this case Algorithm 1 reduces to the polynomial Arnoldi algorithm.

Algorithm 1: Rational Arnoldi algorithm.

Input: A, b, {ξ1, . . . , ξm}, Um

v1 := b/‖b‖1

for j = 1, . . . ,m do2

y :=
∑j

i=1 viui,j3

x := (I −A/ξj)
−1Ay4

for i = 1, . . . , j do5

hi,j := 〈x , vi〉6

x := x − vihi,j7

hj+1,j := ‖x‖8

vj+1 := x/hj+1,j9

Remark 5.2. Our construction does not allow for poles at zero. However, this is no

practical restriction since we can choose a number σ ∈ C different from all the poles and

run the rational Arnoldi algorithm with the shifted operator A− σI and nonzero shifted

poles ξj − σ as input parameters. It is also possible to vary the shift σ = σj in each

iteration, and if these shifts are chosen properly, this can improve the robustness of the

rational Arnoldi algorithm for eigenvalue computations [LM98].

Remark 5.3. The rational Krylov space can be enlarged differently than is done in (5.1).

As an example, assume that all the poles ξj are finite. Analogously to Lemma 5.1 one can
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easily verify that there exists a continuation vector yj ∈ Qj such that (A − ξjI)
−1yj ∈

Qj+1 \ Qj if and only if j < M . Hence we can derive a variant of the rational Arnoldi

algorithm where the vector vj+1 is obtained by orthonormalizing

xj = (A− ξjI)
−1yj , yj =

j∑

i=1

viui,j,

against the orthonormal vectors v1, . . . , vj , thus yielding an orthonormal basis of Qj+1.

The resulting rational Arnoldi decomposition is

AVm+1Hm = Vm+1(Um +HmXm), (5.8)

where (for m < M)

Vm+1 = [v1, . . . , vm+1] is an orthonormal basis of Qm+1,

Hm = [hi,j ] ∈ C
(m+1)×m is an unreduced upper Hessenberg matrix,

Um = [ui,j] ∈ C
(m+1)×m is an upper triangular matrix,

Xm = diag(ξ1, . . . , ξm).

5.2 Orthogonal Rational Functions

Let A be a bounded normal operator on the Hilbert space H, i.e., A∗A = AA∗.

We will require some notions from spectral theory. A spectral measure E is a function

defined on the Borel sets of C whose values are orthogonal projection operators defined on

H such that E(C) = I and E(
⋃

j Ωj) =
∑

j E(Ωj) for every sequence {Ωj} of disjoint Borel

sets. Let ϕ be a function such that ϕ(A) is defined. By the spectral theorem for normal

operators (cf. [Hal72, Thm. 44.1]) there exists a unique spectral measure E with compact

support such that 〈ϕ(A)x ,y〉 =
∫
ϕ(λ) d〈E(λ)x ,y〉 for every pair of vectors x ,y ∈ H.

The dependence of ϕ(A) on ϕ and E will be denoted by ϕ(A) =
∫
ϕ(λ) dE(λ).

Let {v1, . . . , vm+1} be an orthonormal basis of Qm+1 and let {ϕ1, . . . , ϕm+1} ⊂ Pm/qm

be the unique rational functions such that vj = ϕj(A)b for j = 1, . . . ,m+ 1 (the unique-

ness following from Lemma 4.2 (d)). Owing to the usual calculus of spectral integrals
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(cf. [Hal72, §36–37]), there holds

〈vk, vj〉 = 〈ϕk(A)b, ϕj(A)b〉

=
〈∫
ϕk(λ) dE(λ)b,

∫
ϕj(λ) dE(λ)b

〉

=

∫
ϕk(λ)ϕj(λ) d〈E(λ)b, E(λ)b〉

=: 〈ϕk, ϕj〉E ,

where we have used the fact that Ω1∩Ω2 = ∅ implies E(Ω1)E(Ω2) = O (spectral measures

are multiplicative, see [Hal72, Thm. 36.2]) to reduce the double integral. We have thus es-

tablished that {ϕ1, . . . , ϕm+1} constitutes an orthonormal basis of the Hilbert space Pm/qm

with inner product 〈 · , · 〉E , being isometric isomorphic to Qm+1.

Let us now consider the special case where all poles satisfy ξj ∈ R ∪ {∞} and A is self-

adjoint. The spectral measure E is then supported on a subset of the real line (cf. [Hal72,

Thm. 43.1]). From the theory of orthogonal rational functions (cf. [BGHN99, Thm. 11.1.2]

and [BGHN03]) we know that it should be possible to construct a set {ϕ1, . . . , ϕm+1} of

rational functions orthonormal with respect to 〈 · , · 〉E by a three-term recurrence.2 The

construction of such a recursion in rational Krylov spaces was given in [DB07]. Here is a

simple derivation: we go back to the rational Arnoldi algorithm in Section 5.1 and assume

that the continuation vector yj can always be chosen as the last computed basis vector vj

(for j = 1, . . . ,m). In this case, (5.3) can be written in terms of rational functions

ϕj+1(z)hj+1,j =
z

1 − z/ξj
ϕj(z) − ϕj(z)hj,j − · · · − ϕ1(z)h1,j , (5.9)

with the initial condition ϕ1 ≡ 〈1, 1〉1/2
E .

Defining Wm+1 := [ϕ1, . . . , ϕm+1], the unreduced upper Hessenberg matrix Hm := [hi,j ] ∈
C

(m+1)×m and the diagonal matrix Dm := diag(ξ−1
1 , . . . , ξ−1

m ), (5.9) can be rewritten as

zWm+1(Im +HmDm) = Wm+1Hm, (5.10)

which is nothing but the “scalarized” form of the rational Arnoldi decomposition (5.7) (see

2This also follows from the well-known fact that such a recurrence exists for orthonormal polynomials
{π1, . . . , πm+1} with respect to the inner product 〈πk, πj〉Eq :=

∫
πk(λ)πj(λ) d〈E(λ)q ,E(λ)q〉 with

q := qm(A)−1b.
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also (5.6)). Note that the coefficients hi,j are coordinates of ϕj+1hj+1,j in the (nonorthog-

onal) basis { z

1 − z/ξj
ϕj(z), ϕj(z), . . . , ϕ1(z)

}
.

Of course, we could also represent ϕj+1 in some other basis, for example,

ϕj+1(z)h̃j+1,j =
z

1 − z/ξj
ϕj(z) − ϕ̃j(z)h̃j,j − · · · − ϕ̃1(z)h̃1,j , (5.11)

where

ϕ̃i(z) :=
1 − z/ξi−1

1 − z/ξj
ϕi(z) for i = 1, . . . , j,

h̃j+1,j is positive and ξ0 := ∞, for convenience. Multiplying (5.11) by 1 − z/ξj and

separating terms containing the factor z yields

z
(
ϕj+1

h̃j+1,j

ξj
+ ϕj + ϕj

h̃j,j

ξj−1
+ · · · + ϕ1

h̃1,j

ξ0

)
= ϕj+1h̃j+1,j + · · · + ϕ1h̃1,j .

For j = 1, . . . ,m this can be rewritten as

zWm+1(Im + D̃mH̃m) = Wm+1H̃m, (5.12)

where H̃m := [h̃i,j] ∈ C
(m+1)×m is an unreduced upper Hessenberg matrix and D̃m :=

diag(ξ−1
0 , ξ−1

1 , . . . , ξ−1
m ). Note that (5.12) and (5.10) look very similar, except that the

order of the factors “D” and “H” is switched. It is remarkable that this new order makes

H̃m = [Im,0 ]H̃m symmetric and therefore tridiagonal: by (5.12) we have

Im + D̃mH̃m = W ∗
m+1z

−1Wm+1H̃m,

and right-multiplying by H̃−1
m yields3

H̃−1
m + D̃mĨm = W ∗

m+1z
−1Wm+1Ĩm,

where Ĩm and H̃−1
m are Im and H̃−1

m appended with a nonzero row at the bottom, re-

spectively. Since W ∗
mz

−1Wm is Hermitian for all z ∈ R, we know that H̃−1
m is Hermitian

3If H̃m is not invertible, consider (5.12) for the shifted variable z − σ instead of z. For more properties

of H̃m and its relation to Hm we refer to [Fas05].
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and hence H̃m must be symmetric (all entries h̃j+1,j are positive) and thus tridiagonal. In

other words, the orthogonal rational functions ϕj satisfy a three-term recurrence in (5.12).

To get a nicer notation we define

αj := h̃j,j and βj := h̃j+1,j = h̃j,j+1,

such that (5.11) becomes

βjϕj+1(z) =
z

1 − z/ξj
ϕj(z) − αj

1 − z/ξj−1

1 − z/ξj
ϕj(z) − βj−1

1 − z/ξj−2

1 − z/ξj
ϕj−1(z). (5.13)

To reduce operations with z we follow [DB07] by introducing

rj(z) =
z[ϕj(z) + βj−1ξ

−1
j−2ϕj−1(z)] − βj−1ϕj−1(z)

1 − z/ξj
and sj(z) =

1 − z/ξj−1

1 − z/ξj
ϕj(z),

such that (5.13) is equivalent to

βjϕj+1(z) = rj(z) − αjsj(z), (5.14)

a formula from which αj and βj can be easily computed as

αj =
〈rj , ϕj〉E
〈sj, ϕj〉E

and βj = ‖rj(z) − αjsj(z)‖E .

Here, ‖ · ‖E denotes the norm induced by the inner product 〈 · , · 〉E . The rational Lanczos

algorithm is obtained by replacing z by A in (5.14) and right-multiplying the result by b,

see Algorithm 2. This algorithm reduces to the polynomial Lanczos algorithm if all poles ξj

are at infinity. Note that in each iteration of Algorithm 2 two linear systems with I−A/ξj
need to be solved (except if ξj−1 = ξj because then sj = ϕj). Hence, this algorithm is

in general not competitive with the rational Arnoldi algorithm if the poles ξj vary often.

Moreover, we will make explicit use of the orthogonality of the rational Krylov basis Vm+1

when computing Rayleigh–Ritz approximations for f(A)b (see Chapter 6). In this case

full orthogonalization of Vm+1 is required anyway and one cannot take advantage of the

short recurrence.

Remark 5.4. We have tacitly assumed that a representation (5.11) exists. This assump-

tion may fail, e.g., if ϕj happens to have a zero at ξj. This situation is often called
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unlucky breakdown: we are not able to compute a basis of Qj+1 although this space has

dimension j + 1. Rational functions for which such breakdowns do not occur are called

regular [BGHN99, Ch. 11].

Algorithm 2: Rational Lanczos algorithm.

Input: A, b, {ξ1, . . . , ξm}
ξ−1 := ∞1

ξ0 := ∞; β0 := 0; v0 := 02

v1 := b/‖b‖3

for j = 1, . . . ,m do4

ỹ := A(vj + βj−1ξ
−1
j−2vj−1) − βj−1vj−15

r := (I −A/ξj)
−1ỹ6

s := (I −A/ξj)
−1(I −A/ξj−1)vj7

αj := (r , vj)/(s, vj)8

w := r − αjs9

βj := ‖w‖10

vj+1 := w/‖w‖11

5.3 Rational Krylov Decompositions

We have seen that the rational Arnoldi algorithm or variants of it lead to decomposi-

tions of the form (5.7), (5.8) or (5.12). We will find it fruitful to introduce the following

generalization of such decompositions.

Definition 5.5. A relation

AVm+1Km = Vm+1Hm, (5.15)

where Vm+1 = [Vm, vm+1] has m + 1 linearly independent columns such that R(Vm+1) =

Qm+1, R(Vm) = Qm, Km ∈ C
(m+1)×m, Hm ∈ C

(m+1)×m, and Hm is of rank m, is called

a rational Krylov decomposition.

If the last row of Km contains only zeros we have

AVmKm = Vm+1Hm (5.16)

and say that this decomposition is reduced.
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Let us collect some useful facts about rational Krylov decompositions.

Lemma 5.6.

(a) The matrix Km of (5.15) is of rank m. In particular, the matrix Km of the reduced

rational Krylov decomposition (5.16) is invertible.

(b) The validity of (5.16) implies vm+1 ∈ AQm \ Qm.

(c) If (5.16) is an orthonormal decomposition, i.e., V ∗
m+1Vm+1 = Im+1, then the Rayleigh

quotient Am = V ∗
mAVm can be computed as Am = HmK

−1
m .

Proof.

(a) Since the right-hand side of (5.15) is of rank m, the same must hold for the left-

hand side. We have m = rank(AVm+1Km) ≤ min{rank(AVm+1), rank(Km)}, hence

rank(Km) = m.

(b) The decomposition (5.16) can be written as AVmKm = VmHm + vm+1h
T
m, where

hT
m ∈ C

1×m denotes the last row of Hm. Therefore vm+1 is a linear combination of

vectors in R(AVm) = AQm and R(Vm) = Qm. However, vm+1 cannot be contained

in Qm since by definition of a rational Krylov decomposition R([Vm, vm+1]) = Qm+1.

(c) There holds V ∗
mVm+1 = [Im,0 ], and hence V ∗

mAVmKm = V ∗
mVm+1Hm = Hm.

Remark 5.7. The assumption that Hm is of full rank m is satisfied if the decomposition is

generated by the rational Arnoldi algorithm (or one of its variants), since Hm is unreduced

upper Hessenberg in this case.

We define the rational Krylov approximation

f RK
m := Vmf(HmK

−1
m )V †

mb (5.17)

associated with the rational Krylov decompositions (5.15) or (5.16), provided that the ma-

trix function f(HmK
−1
m ) is defined. Of particular interest are approximations associated

with reduced decompositions.
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Theorem 5.8. The rational Krylov approximation associated with the reduced rational

Krylov decomposition (5.16) satisfies

f RK
m = Vmf(HmK

−1
m )V †

mb = rm(A)b,

where rm ∈ Pm−1/qm−1 interpolates f at the eigenvalues Λ(HmK
−1
m ).

Proof. By Lemma 5.6 (a), Km is invertible and the decomposition (5.16) can be written

as a polynomial Krylov decomposition

AVm = Vm+1HmK
−1
m = VmHmK

−1
m + vm+1h

T
mK

−1
m , (5.18)

where hT
m denotes the last row of Hm and vm+1 ∈ Qm+1 \ Qm. By Lemma 5.6 (b) we

know that vm+1 ∈ AQm. Therefore Qm = Km(A, q) and Qm+1 = Km+1(A, q) with

q := qm−1(A)−1b.

By induction we show that Ajq = Vm(HmK
−1
m )jV †

mq for all j ≤ m− 1, which is obviously

true for j = 0. Assume that the assertion is true for some j ≤ m− 2. Then

Aj+1q = AAjq = AVm(HmK
−1
m )jV †

mq

= (VmHmK
−1
m + vm+1h

T
mK

−1
m )(HmK

−1
m )jV †

mq

= Vm(HmK
−1
m )j+1V †

mq ,

where we have used (5.18) and the facts that Aj+1q ∈ Qm and vm+1 ∈ Qm+1 \ Qm,

hence the coefficient hT
mK

−1
m (HmK

−1
m )jV †

mq must vanish. We have thus established that

pm−1(A)q = Vmpm−1(HmK
−1
m )V †

mq for all pm−1 ∈ Pm−1. Using this relation we obtain

Vmf(HmK
−1
m )V †

mb = Vmf(HmK
−1
m )V †

m(qm−1(A)q)

= Vmf(HmK
−1
m )qm−1(HmK

−1
m )V †

mq

= Vmpm−1(HmK
−1
m )V †

mq = pm−1(A)q ,

where pm−1 interpolates f̃ := fqm−1 at the nodes Λ(HmK
−1
m ). Thus the function rm =

pm−1/qm−1 interpolates f at Λ(HmK
−1
m ).
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5.4 Various Rational Krylov Methods

5.4.1 A Restarted Rational Krylov Method

Let us consider a reduced rational Krylov decomposition,

AV (1)K(1) = V (1)H(1) + v (1)h (1), (5.19)

being computed, e.g., by m iterations of the rational Arnoldi algorithm. More precisely,

R(V (1)) = Qm, R([V (1), v (1)]) = Qm+1, and K(1),H(1) are m×m matrices, h (1) ∈ C
1×m

is a row vector (for notational convenience). We may also assume that ‖b‖V (1)e1 = b.

The rational Krylov approximation for f(A)b associated with the decomposition (5.19) is

f (1) := V (1)f
(
H(1)[K(1)]−1

)
‖b‖e1.

By Theorem 5.8 we know that f (1) = rm(A)b, where rm ∈ Pm−1/qm−1 interpolates f at

the nodes Λ(H(1)[K(1)]−1).

It is now possible to restart the rational Arnoldi algorithm, thus generalizing the algorithm

for restarted polynomial Krylov approximations presented by Eiermann & Ernst [EE06].

We let

AV (2)K(2) = V (2)H(2) + v (2)h (2)

be a reduced rational Krylov decomposition with starting vector v (1), i.e., V (2)e1 = v (1).

By appending this decomposition to the previous one (5.19) we obtain

A[V (1), V (2)]


 K(1)

K(2)


 = [V (1), V (2)]


 H(1)

e1h
(1) H(2)


+ v (2)[0T ,h (2)].

The rational Krylov approximation associated with this (again reduced) decomposition is

f (2) := [V (1), V (2)]f
(

 H(1)

e1h
(1) H(2)




 K(1)

K(2)



−1 )

‖b‖e1, (5.20)

and Theorem 5.8 asserts that f (2) = r2m(A)b, where r2m ∈ P2m−1/q2m−1 interpolates f

at the nodes Λ(H(1)[K(1)]−1) ∪ Λ(H(2)[K(2)]−1).
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Due to the block structure of the accumulated “H” and “K” matrices, the term f(· · · ) in

(5.20) again has a block structure, namely

f (2) = [V (1), V (2)]


 f

(
H(1)[K(1)]−1

)

F (2) f
(
H(2)[K(2)]−1

)


 ‖b‖e1,

where F (2) ∈ C
m×m. Hence we obtain an update formula

f (2) = V (1)f
(
H(1)[K(1)]−1

)
‖b‖e1 + V (2)F (2)‖b‖e1

= f (1) + V (2)F (2)‖b‖e1,

which allows us to compute f (2), a rational Krylov approximation of order 2m, from

f (1) using only the last m Krylov basis vectors in V (2). This restarting procedure can

be repeated until a sufficiently good rational Krylov approximation is obtained, never

exceeding the storage requirement of m Krylov basis vectors (the number m is often

called the restart length). A computational problem, however, is the evaluation of the

matrix function f(· · · ) for block matrices growing in size with each restart. This problem

has been addressed in [AEEG08b] for the polynomial restart algorithm by replacing f

with a suitable rational approximation of it. Other aspects related to restarted Krylov

methods for approximating f(A)b are discussed in [AEEG08a, EEG09].

5.4.2 The PAIN Method

A particularly simple rational Krylov method is given by the iteration

v1 = b/‖b‖, (5.21a)

βjvj+1 = (I −A/ξj)
−1(A− αjI)vj , j = 1, . . . ,m, (5.21b)

the numbers αj, βj ∈ C being arbitrary for the moment, except that we require αj 6= ξj

and βj 6= 0 for all j = 1, . . . ,m. It is easily seen that this iteration generates a rational
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Krylov decomposition AVm+1Km = Vm+1Hm, where Vm+1 = [v1, . . . , vm+1] and

Km =




1

β1/ξ1 1

β2/ξ2

. . .

. . . 1

βm/ξm




and Hm =




α1

β1 α2

β2
. . .

. . . αm

βm




.

For ξm = ∞ we obtain a reduced decomposition AVmKm = Vm+1Hm. By Theorem 5.8

the associated rational Krylov approximation satisfies

f RK
m = Vmf(HmK

−1
m )‖b‖e1 = rm(A)b, (5.22)

where rm is a rational function with poles ξ1, . . . , ξm−1 that interpolates f at the eigenval-

ues Λ(HmK
−1
m ), and these are obviously the points α1, . . . , αm. Therefore the approxima-

tion method just described corresponds to rational interpolation of f(A)b with preassigned

poles and interpolation nodes. To refer to this method easily we call it the PAIN method.

Some comments are in order:

— The matrix HmK
−1
m is independent of the last pole ξm, and so is the approxima-

tion f RK
m in (5.22). Hence, for computing f RK

m it is not necessary to set ξm = ∞.

— The iteration (5.21) involves no inner products with Krylov basis vectors. The ma-

trices Hm and Km have the same bidiagonal structure as if they were computed by

a restarted rational Arnoldi algorithm with restart length one. This means that only

one Krylov basis vector needs to be stored at a time and the approximation f RK
m can

be obtained via updating f RK
m = f RK

m−1 + cmvm, where cm denotes the last entry of

the vector f(HmK
−1
m )‖b‖e1.

— The PAIN method requires, in addition to the poles {ξj}, a suitable sequence of

interpolation nodes {αj}. The choice of both sequences is discussed in Chapter 7.

— If all poles ξj = ∞, the PAIN method reduces to a polynomial interpolation method.

If in addition all scaling factors βj = 1, the PAIN method is equivalent to evaluating
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an interpolation polynomial in Newton form

f RK
m =

m∑

k=1

dk

k−1∏

j=1

(A− αjI)b. (5.23)

Such a method is described in [HPKS99]4, where it is also proposed to choose the

interpolation nodes αj as Leja points in a compact set Σ containing Λ(A). Therefore

this method is also called the Leja point method [CVB04, BCV04, CVB07]. The Leja

point method requires a stable computation of the divided differences dk for f . Based

on the observation that




d1

d2

...

dm




= f
(




α1

1 α2

. . .
. . .

1 αm




)
e1 (5.24)

(see [Opi64, MNP84] or [Hig08, Thm. 10.22]), it is proposed in [Cal07] to determine

the divided differences dk by (5.24) via a matrix function evaluation and then to

evaluate the polynomial (5.23). This is exactly what the polynomial PAIN method

does implicitly (note that (5.24) equals f(HmK
−1
m )e1 if βj = 1, ξj = ∞ for all

j = 1, . . . ,m).

— To avoid overflow in Newton interpolation it is known that the set of interpolation

points Σ needs to be scaled to have unit logarithmic capacity [Rei90, Tal91]. This

rescaling is not required for the PAIN method if we choose the scaling factors βj such

that all Krylov vectors vj have unit length.

Remark 5.9. The PAIN method can be combined with the Rayleigh–Ritz method to

obtain a hybrid rational Krylov algorithm (in the style of [NRT92]) for problems of the

form f(A)b(j) with distinct vectors b(j), j = 0, 1, . . . , p. In the first phase of such a

hybrid algorithm one computes a Rayleigh–Ritz approximation f
(0)
m for f(A)b(0) and the

associated rational Ritz values. In the second phase one runs in parallel p instances of the

PAIN method for approximating f(A)b(j), j = 1, . . . , p, using as interpolation nodes the

rational Ritz values from the first phase (suitably reordered).

4This article appeared in The Journal of Chemical Physics and seems to have been overlooked by the
matrix function community. Another contribution of the authors is the proposal to insert A directly
into a Faber expansion of f , an approach also advocated in [MN01b, Nov03, BCV03].
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Remark 5.10. The PAIN method can easily be altered to approximate f(A) instead of

f(A)b. To this end one formally sets b = I in (5.21) and replaces possible vector norms

by operator norms. If A ∈ C
N×N is a matrix, the “matricized” PAIN method is equivalent

to approximating f(A)ej for all unit coordinate vectors ej ∈ C
N simultaneously.

The observation that Krylov basis vectors can formally be replaced by operators naturally

inspires the definition of rational operator decompositions of the form

A[A1, . . . , Am+1]Km = [A1, . . . , Am+1]Hm,

where A,A1, . . . , Am+1 are bounded linear operators on a Banach or Hilbert space. It

would be interesting to study such decompositions (e.g., what is the interpretation of the

eigenvalues Λ(HmK
−1
m ) associated with these decompositions?), but this is beyond the

scope of this thesis.

5.4.3 The Shift-and-Invert Method

The shift-and-invert method for the approximation of matrix functions was introduced

independently by Moret & Novati [MN04] (there referred to as the restricted denominator

method) and van den Eshof & Hochbruck [EH06]. The principle of this method is to run

the polynomial Arnoldi algorithm with the spectrally transformed operator (A − ξI)−1,

ξ 6∈ Λ(A), which yields a polynomial Arnoldi decomposition

(A− ξI)−1Vm = Vm+1Hm, where Hm =


 Hm

hm+1,meT
m


 ∈ C

(m+1)×m (5.25)

is an unreduced upper Hessenberg matrix, and Vm+1 = [Vm, vm+1] is an orthonormal

basis of Qm+1 = Km+1((A − ξI)−1, b), a rational Krylov space with all poles at ξ. The

shift-and-invert approximation for f(A)b is defined as

f SI
m := Vmf(Sm)V ∗

mb with Sm := H−1
m + ξIm.

Note that (5.25) is equivalent to

AVm+1Hm = Vm+1(ξHm + Im), (5.26)
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which is a special case of the rational Arnoldi decomposition (5.8) with Xm = ξIm and

Um = Im. Moreover, we have Sm = (ξHm + Im)H−1
m so that the shift-and-invert ap-

proximation is a rational Krylov approximation (cf. (5.17)) associated with the decompo-

sition (5.26). Unfortunately, this decomposition (5.26) is not reduced and hence Theo-

rem 5.8 cannot be applied.

Note that Sm is not a Rayleigh quotient for (A,Vm): left-multiplying (5.25) by V ∗
m(A−ξI)

and separating the term V ∗
mAVm yields

V ∗
mAVm = H−1

m + ξIm − V ∗
mAvm+1hm+1,meT

mH
−1
m

= Sm − V ∗
mAvm+1hm+1,meT

mH
−1
m

=: Sm −Mm,

i.e., Sm is a rank-1 modification of the Rayleigh quotient Am = V ∗
mAVm with

Mm = V ∗
mAvm+1hm+1,meT

mH
−1
m . (5.27)

Therefore f SI
m is not a Rayleigh–Ritz approximation for f(A)b from Qm. However, with

the function f̂(ẑ) := f(ẑ−1 + ξ) we have f SI
m = Vmf̂(Hm)V ∗

mb, hence f SI
m is a polynomial

Rayleigh–Ritz approximation for f̂((A − ξI)−1)b = f(A)b associated with the Arnoldi

decomposition (5.25). This connection allows us to conclude from Lemma 3.10 that there

exists an interpolation characterization of the shift-and-invert approximation (cf. [EH06]).

Theorem 5.11. There holds f SI
m = rm(A)b, where rm(z) = pm−1(z)/(z − ξ)m−1 interpo-

lates f at the nodes Λ(Sm).

A near-optimality result similar to Theorem 4.10 can also be given.

Theorem 5.12. If f is analytic in a neighborhood of W(A), then for every set Σ ⊇ W(A)

there holds

‖f(A)b − f SI
m ‖ ≤ 2C‖b‖ min

pm−1∈Pm−1

‖f(z) − pm−1(z)/(z − ξ)m−1‖Σ,

with a constant C ≤ 11.08.

If A is self-adjoint the result holds with C = 1.
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Let A be a self-adjoint operator, in which case the matrices Am and Sm = H−1
m + ξIm

are clearly Hermitian. Moreover, these matrices are nonderogatory and hence the real

eigenvalues Λ(Am) and Λ(Sm) must be distinct, respectively. Let us have a closer look at

these eigenvalues, which are plotted in Figure 5.1 for a simple example. One observes an

interlacing property in the sense that between any two neighboring rational Ritz values

in Λ(Am) we find exactly one point of Λ(Sm), and vice versa. Additionally, the following

theorem asserts that the eigenvalues of Sm are always “closer” to the real pole ξ than the

Ritz values.

Theorem 5.13. Let A be self-adjoint with Λ(A) ⊆ [a, b]. Let θ1 < θ2 < · · · < θm denote

the rational Ritz values Λ(Am) associated with the rational Krylov space generated with a

single repeated pole ξ ∈ R\ [a, b], and let σ1 < σ2 < · · · < σm denote the eigenvalues Λ(Sm)

(which are the interpolation nodes underlying the shift-and-invert method). Then

σ1 ≤ θ1 ≤ σ2 ≤ θ2 ≤ · · · ≤ σm ≤ θm if ξ < a,

θ1 ≤ σ1 ≤ θ2 ≤ σ2 ≤ · · · ≤ θm ≤ σm if b < ξ.

Proof. By (5.26) we have

AVm = Vm(ξIm +H−1
m ) + (ξvm+1 −Avm+1)hm+1,meT

mH
−1
m . (5.28)

Let us verify that V ∗
mAvm+1 is an eigenvector of the matrix Mm defined in (5.27):

Mm(V ∗
mAvm+1) = (V ∗

mAvm+1hm+1,meT
mH

−1
m )[AVm]∗vm+1

= (V ∗
mAvm+1hm+1,meT

mH
−1
m )[H−1

m emhm+1,m(ξvm+1 −Avm+1)
∗vm+1]

= (V ∗
mAvm+1)h

2
m+1,meT

mH
−2
m em(ξ − v∗

m+1Avm+1)

=: (V ∗
mAvm+1)µm,

where we have used (5.28) for the substitution in square brackets. The Rayleigh quo-

tient v∗
m+1Avm+1 is clearly contained in the interval [a, b] and hence the eigenvalue µm is

negative for ξ < a and positive for b < ξ. Therefore the inertia5 of Mm is (0, 1,m− 1) and

(1, 0,m − 1), respectively. The remainder of the proof is a direct application of the rank

theorem [Par98, Cor. 10.3.1].

5The inertia of a matrix is the triple of the numbers of its positive, negative and zero eigenvalues, see
[Par98, p. 11].
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Figure 5.1: The red squares indicate the rational Ritz values Λ(Am), and the blue dots indicate
the interpolation nodes Λ(Sm) of the shift-and-invert method. In this example we have chosen
A = diag(1, 2, . . . , 20), b = [1, . . . , 1]T , and ξ = 0.

5.4.4 The PFE Method

A convenient form of a rational function is its partial fraction expansion (PFE)

5siritz

rm(z) = γ0 +
γ1

z − ξ1
+ · · · + γm−1

z − ξm−1
,

where the numbers γj are referred to as residues. Given such an expansion we can directly

compute the vector

f PFE
m := rm(A)b = γ0b + γ1(A− ξ1I)

−1b + · · · + γm−1(A− ξm−1I)
−1b, (5.29)

an approach we will refer to as the PFE method. This method does not utilize a rational

Krylov decomposition in the sense of Definition 5.5, but its “search space” is obviously

a rational Krylov space Qm(A, b) with poles ξ1, . . . , ξm−1. The quality of f PFE
m as an

approximation for f(A)b depends on the rational function rm, since by Crouzeix’s theorem
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(cf. Theorem 4.9) we have for every set Σ ⊇ W(A):

‖f(A)b − f PFE
m ‖ ≤ C‖b‖ ‖f − rm‖Σ, C ≤ 11.08.

Note that the m−1 shifted linear systems in (5.29) can be solved independently and hence

the PFE method is perfectly suited for a parallel computer [GS89]. Efficient variants of

the PFE method have appeared in the literature, e.g., using different polynomial Krylov

methods such as CG [EFL+02, FS08b] or restarted FOM [AEEG08b], or H-matrix tech-

niques [GHK02, GHK03, GHK04, GHK05], to solve these linear systems. The practical

computation of near-best approximations rm to f was greatly enhanced by Trefethen and

coauthors [TWS06, ST07a, ST07b, HHT08] using the Carathéodory–Fejér method and

contour integrals (cf. Chapter 7).

The applicability of the PFE method hinges on the ability to compute the rational function

rm and its partial fraction expansion in a stable way. This is in contrast to the Rayleigh–

Ritz method, the PAIN method or any other rational Krylov method based on rational

interpolation: errors in rm are directly reflected in f PFE
m and there is no way to reduce these

errors by iterating further. The PFE method is therefore not robust against perturbations.

Or to say it in other words, any method based on rational interpolation of f is not

very sensitive to perturbed poles and/or interpolation nodes, whereas a partial fraction

is possibly very sensitive to inaccurate poles and residues. We remark that this problem

has stimulated the development of techniques for computing incomplete partial fraction

expansions [Hen71, Lau87, CGR95]. These representations are more stable but come at

the price of losing parallelism.

Assume now we can stably compute a good partial fraction approximation rm to f on Σ.

Is there any reason to still use, e.g., Rayleigh–Ritz approximations?

The answer depends, of course, on the application. Here are a few reasons why the use of

Rayleigh–Ritz approximations could be superior to the PFE method.

— In practice, most of the computation time is spent in solving shifted linear systems

with A. Compared to this it often does not really matter whether one orthogonalizes

m vectors or not. Once we have computed a rational Arnoldi decomposition we can

use it to approximate f(A)b for whatever function we like.
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— Rational Arnoldi decompositions, and more generally, rational Krylov decompositions

contain valuable spectral information about A as a by-product.

— The poles ξj of the partial fraction rm are dictated by the function f and the set Σ.

If these poles are complex, the PFE method may introduce complex arithmetic into

real problems (though there may exist remedies, e.g., if A is symmetric [AK00]). On

the other hand, Rayleigh–Ritz approximations for f(A)b can achieve high accuracy

even if the poles of the search space Qm are chosen rather arbitrarily.

5.5 Overview of Rational Krylov Approximations

At this point, let us briefly review the various rational Krylov approximations we have

studied so far (there won’t be any more).

Rayleigh approximations fm = Vmf(Am)V †
mb with the Rayleigh quotient Am = V †

mAVm

are defined for an arbitrary search space Vm. These approximations are independent

of the basis Vm.

Rayleigh–Ritz approximations fm = Vmf(Am)V †
mb are Rayleigh approximations where

the search space is a polynomial Krylov space Km or, more generally, a ratio-

nal Krylov space Qm. The underlying interpolation nodes are rational Ritz val-

ues Λ(Am).

Rational Krylov approximations f RK
m = Vmf(HmK

−1
m )V †

mb are associated with a rational

Krylov decomposition (5.15) and their search space is a rational Krylov space Qm.

These approximations are dependent on the basis Vm. In case that the rational

Krylov decomposition is reduced (cf. (5.16)), the interpolation nodes underlying

f RK
m are Λ(HmK

−1
m ), and if this reduced decomposition is orthonormal then f RK

m

coincides with the Rayleigh–Ritz approximation fm from Qm.

Shift-and-invert approximations f SI
m are special rational Krylov approximations extracted

from rational Krylov spaces generated with a single repeated pole.

Partial fraction approximations f PFE
m = rm(A)b are computed by direct evaluation of a

rational function rm, which is (in some sense) a good approximation to f .
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6 Computational Issues

Note: the minors are computed following

this longer rule to avoid small differences of

large numbers causing the loss of accuracy.

A. N. Krylov [Kry31]

We will address several questions related to the practical implementation of rational Krylov

methods for approximating f(A)b. We begin with some remarks on the efficient computa-

tion of Rayleigh quotients in Section 6.1. In Section 6.2 we discuss the important issue of

solving linear systems in a rational Krylov method, followed by the derivation of an error

estimate for Rayleigh–Ritz approximations computed with inexact linear system solves in

Section 6.3. In Section 6.4 we have some remarks about the loss of orthogonality in the

rational Arnoldi algorithm, and in Section 6.5 we investigate several parallel variants of

this algorithm. Section 6.6 is devoted to a-posteriori error estimates for Rayleigh–Ritz

approximations.

This chapter also includes a few numerical toy problems with the function f(z) = exp(z).

The main purpose of these examples is to illustrate our findings, which are neither limited

to small problems nor to a particular function f . More extensive numerical computations

are the subject of Chapter 9.
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6.1 Obtaining the Rayleigh Quotient

For the efficient computation of a Rayleigh–Ritz approximation fm = Vmf(Am)V †
mb from

a rational Krylov space Qm it is crucial to obtain the Rayleigh quotient Am = V †
mAVm

cheaply. In what follows we discuss several approaches in this direction.

The Explicit Projection Approach. Let us assume that Vm is an ascending orthonormal

basis as is computed, e.g., by the rational Arnoldi algorithm (cf. Algorithm 5.1 on page 40).

In this case we have Am = V ∗
mAVm and the most straightforward approach for computing

Am is to use this projection formula explicitly. To make this projection as efficient as

possible, one can exploit the fact that the Rayleigh quotient Am−1 is a leading principal

submatrix of Am and hence only the last column and row vectors of Am need to be

computed in iteration m. If A is self-adjoint then so is Am and the computation of only

one of these vectors is required.

We also recall that in iteration m of the rational Arnoldi algorithm the vector

xm = (I −A/ξm)−1Aym, ym =
m∑

i=1

viui,m (6.1)

is computed. If we store in addition to the Krylov basis Vm a matrix Zm = [zm, . . . , zm] :=

AVm we have

xm = (I −A/ξm)−1ỹm, ỹm =

m∑

i=1

ziui,m,

whose evaluation requires the same number of arithmetic operations as (6.1). The matrix

Zm is useful because the last row of Am is v∗
mZm and the last column is V ∗

mzm, hence no

additional products with A are required for computing Am. To update Zm to Zm+1 =

[Zm, Avm+1] one only has to append the column Avm+1 upon availability of vm+1.

Performing a Polynomial Krylov Step. An efficient approach for computing the Rayleigh

quotient Am is proposed by Beckermann & Reichel [BR09]. By Lemma 5.6 we know

that Am can be computed from the reduced rational Arnoldi decomposition AVmKm =

Vm+1Hm as Am = HmK
−1
m . Such a reduced decomposition is obtained from the rational

Arnoldi algorithm by setting ξm = ∞ (since the last row of Km in (5.6) vanishes), i.e., by

performing a polynomial Krylov step in iteration m.
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In practice one may want to compute the Rayleigh quotients Aj during many iterations

j ≤ m without setting all the corresponding poles ξj = ∞. A possible remedy is to

perform a polynomial Krylov step by computing an intermediate basis vector x̃j = Ayj

using the continuation vector yj in iteration j. This vector x̃j is then orthonormalized

against the basis {v1, . . . , vj} to complete the reduced rational Arnoldi decomposition

AVjKj = Vj+1Hj from which Aj = HjK
−1
j is easily computed. Afterwards the vector x̃j

can be reused to continue the rational Arnoldi algorithm with

xj = (I −A/ξj)
−1Ayj = (I −A/ξj)

−1x̃j.

With this naive approach both vectors x̃j and xj need to be orthonormalized against the

basis {v1, . . . , vj}, which is of course not desirable. We therefore propose the use of an

auxiliary basis vector v∞, which is initialized as v∞ = Av1 in the first iteration of the

rational Arnoldi algorithm and permanently kept orthonormal to the vectors v1, . . . , vj in

all iterations j > 1 (which requires only one additional orthogonalization per iteration).

The Rayleigh quotient Aj = H̃jK̃
−1
j is then obtained from the auxiliary reduced Arnoldi

decomposition AVjK̃j = [Vj , v∞]H̃j. Afterwards this decomposition can be overwritten

by the usual rational Arnoldi algorithm.

To summarize, we give a possible implementation of a rational Arnoldi algorithm, which

computes the Rayleigh quotient in each iteration by explicit projection (yielding Âj) and

by using an auxiliary basis vector v∞ (yielding Ãj). For brevity we have used Matlab

indexing in Algorithm 3, e.g., U1:j,1:j−1 denotes the upper j × (j − 1) part of Um. Note

that in exact arithmetic there holds Âj = Ãj . However, we will see in Section 6.3 that it

proves useful to compute both Rayleigh quotients separately.
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Algorithm 3: Rational Arnoldi with computation of Rayleigh quotients Âj and Ãj .

Input: A, b, {ξ1, . . . , ξm}, Um

v1 := b/‖b‖1

Â0 := [ ] ; // empty matrix2

for j = 1, . . . ,m do3

zj := Avj4

Âj :=


 Âj−1 V ∗

j−1zj

v∗
j Zj−1 v∗

j zj


 ; // = RQ by explicit projection

5

if j = 1 then6

v∞ := z1 ; // initialize v∞7

hj,∞ := 〈v∞, vj〉 ; // keep v∞ orthogonal to Vj8

v∞ := v∞ − vjhj,∞9

H̃j :=
[
Hj−1, h1:j,∞

]
; // auxiliary H̃j and K̃j such10

K̃j := [U1:j,1:j−1, e1] + H̃j diag(ξ−1
1 , . . . , ξ−1

j−1, 0) ; // that AVjK̃j = [Vj, v∞]H̃j11

Ãj := H̃jK̃
−1
j ; // = RQ from the decomposition12

ỹ :=
∑j

i=1 ziui,j ; // usual rational Arnoldi13

x := (I −A/ξj)
−1ỹ14

for i = 1, . . . , j do15

hi,j := 〈x , vi〉16

x := x − vihi,j17

hj+1,j := ‖x‖18

vj+1 := x/hj+1,j19

Recursive Updating. Assume that the Rayleigh quotient Am is known and we have a

(not necessarily reduced) rational Arnoldi decomposition

AVm+1


 Km

kT
m


 = Vm+1


 Hm

hT
m


 ,
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where Vm+1 = [Vm, vm+1] is orthonormal, Km and Hm are m×m matrices, and kT
m,h

T
m ∈

C
1×m. Multiplying this decomposition on the left by V ∗

m+1 we find


 Am a1

aT
2 am+1




 Km

kT
m


 =


 Hm

hT
m


 ,

which are two equations for the missing column a1 and row aT
2 of the Rayleigh quotient

Am+1, provided that the scalar am+1 is known, which comes at the cost of one additional

inner product in the rational Arnoldi algorithm. If A is self-adjoint then so is Am+1 and

additional savings are possible.

We remark that this approach is possibly unstable if the Rayleigh quotient is updated for

many iterations. The recursion is useful if one needs to extrapolate Rayleigh quotients

Am+j from Am for a few iterations j = 1, 2, . . . only.

6.2 Linear System Solvers

At the core of a rational Krylov algorithm are linear systems of the form

(A− ξI)x = y , or more generally, (A− ξM)x = y , (6.2)

where A and M are typically large sparse matrices having similar nonzero patterns. The

efficient solution of these linear systems is crucial for a good overall performance of any

rational Krylov method for approximating f(A)b.

The solution of a linear system is probably the most important task in scientific computing.

It is clearly beyond the scope of this thesis to discuss all possible approaches that may be

applicable for solving shifted linear systems of the form (6.2). Instead we briefly discuss

different types of solvers, emphasizing possible savings that arise from the special structure

of (6.2). Existing methods of solution can be categorized into direct methods and iterative

(or relaxation) methods.
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6.2.1 Direct Methods

The computational kernel of direct methods is Gaussian elimination, i.e., the LU factor-

ization of the system matrix A − ξI or A − ξM , respectively. The operation of a sparse

direct solver can be roughly divided into four steps [DDSV98, Ch. 6], namely

— a reordering step that permutes the rows and columns such that the LU factors suffer

little fill, or that the matrix has special structure, such as block-triangular form,

— an analysis step (sometimes also referred to as symbolic factorization) that determines

the nonzero structures of the LU factors and creates suitable data structures for them,

— the numerical factorization that actually computes the LU factorization,

— the solve step that performs forward and back substitution using the LU factors.

The first three steps are independent of the right-hand side y of the linear system (6.2).

Therefore direct solvers are particularly effective if the same system needs to be solved

for many right-hand sides y = yj, which is the case in a rational Krylov method if the

poles ξ = ξj do not vary often. The first two steps depend on the sparsity structure of the

system matrix only and hence need be done exactly once even if the pole ξ = ξj changes.

If sparse direct solvers are applicable it is certainly a good idea to give them a try because

tremendous progress has been made in this direction in recent decades. Nowadays highly

parallel codes tailored for different matrix properties (symmetry, diagonal dominance,

block structure, etc.) and computer architectures are available. For a comprehensive

overview of sparse direct solution techniques we refer to [Duf97]. More recent benchmarks

of modern direct solvers are reported in [Gup02, GSH07]. In our numerical experiments in

Chapter 9 we use the code Pardiso [SG04, SG06] which, according to these benchmarks,

seems to offer a good overall performance as a black-box solver considering computation

time, parallelism, and memory requirements. The main drawbacks of direct solvers com-

pared to iterative solvers are certainly the need for an explicit matrix representation of

the operator A and larger memory requirements compared to iterative methods.
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6.2.2 Iterative Methods

Geometric Multigrid. Multigrid methods for elliptic boundary value problems are iter-

ative methods whose guiding principle is to smooth out error components in the solution

vector which are, on the actual grid, highly oscillatory in the eigenvector basis of the sys-

tem matrix A. Since a shift A− ξI does not affect the eigenvectors of A, we may expect

that the same smoothing principle should apply for shifted linear systems. Let us illustrate

that indeed the same smoother, here the damped Jacobi iteration, can be applied almost

independently of the shift ξ for the 1D model problem (see, e.g., [Bri87])

x′′(t) − ξx(t) = y(t) for t ∈ (0, 1), (6.3a)

x(0) = x(1) = 0. (6.3b)

The finite-difference discretization of (6.3) in the points Ωn := {j/(n + 1) : j = 1, . . . , n}
yields a linear system (A− ξI)x = y , where

A = (n+ 1)2




2 −1

−1 2
. . .

. . .
. . . −1

−1 2



∈ R

n×n, x , y ∈ R
n.

Let us split the system matrix A − ξI = D − R into the diagonal D = (2(n + 1)2 − ξ)I

and the remaining matrix R. The damped Jacobi iteration for (A− ξI)x = y is given as

xm+1 = Pωxm + ωD−1y , where 0 < ω ≤ 1 is the damping parameter and

Pω = (1 − ω)I + ωD−1R = (1 − ω)I + ω
(n+ 1)2

2(n+ 1)2 − ξ




0 −1

−1 0
. . .

. . .
. . . −1

−1 0




is the Jacobi iteration matrix, the eigenvalues of which are

Λ(Pω) =

{
λj = 1 − ω + ω

(n+ 1)2

(n + 1)2 − ξ
cos

(
πj

n+ 1

)
: j = 1, . . . , n

}
.
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It is known that the absolute values of the eigenvalues Λ(Pω) determine the rate of er-

ror reduction in the direction of the associated eigenvectors (which are the same as the

eigenvectors of A− ξI). Note that the eigenvalues Λ(Pω) are only slightly affected by the

shift ξ if n is sufficiently large. Hence we expect that the Jacobi iteration on fine grids will

converge just as if the shift ξ were absent. In particular, the optimal damping parameter

ω = 2/3 known for the unshifted problem (6.3) with ξ = 0 should also be a reasonable

choice for the shifted problem.

Apart from the smoother, the other important components of a multigrid method are

so-called intergrid transfers, which are matrices that map vectors associated with the

coarse grid Ωn to vectors associated with the fine grid Ω2n and vice versa (interpolation

and restriction). Since the grids depend mainly on the geometry of the problem and its

discretization, the same intergrid transfers can be used for various shifted systems A−ξjI.

Polynomial Krylov Methods. The shift-invariance Km(A, b) = Km(A − ξI, b) of poly-

nomial Krylov spaces has led to the development of shifted-system versions for virtually

every polynomial Krylov solver [Fre90, Fre93, FG98, Fro03, Sim03]. Unfortunately, these

methods are not useful as linear system solvers within a rational Krylov method, at least

in unpreconditioned form: solving the linear systems of a rational Krylov method with an

unpreconditioned polynomial Krylov method is equivalent to working in a subspace of a

polynomial Krylov space. As a simple example, assume we have computed a basis Vm of

a “rational Krylov space” Qm using s iterations of a polynomial Krylov method to solve

each of the shifted linear systems associated with the basis vectors. All together, we have

thus required (m − 1)s operator-vector products (the vector b ∈ Qm requires no linear

system solve) and therefore Qm ⊂ K(m−1)s. Note that Qm is not a rational Krylov space

because the linear systems were solved inexactly. By Theorem 4.10 we know that the

Rayleigh–Ritz approximation for f(A)b from K(m−1)s is near-optimal, hence we expect

that any extraction from the subspace Qm ⊂ K(m−1)s is worse.

Obviously, polynomial linear system solvers need preconditioning in order to be efficient

within a rational Krylov method. If sequences of (shifted) linear systems are to be solved

it is desirable to have preconditioners that can be updated cheaply from one linear system

to the next, taking advantage of previous computations. The design of such updating

techniques is still an active area of research, see, e.g., the recent developments of updated

approximate inverse preconditioners [BB03, Ber04, TT07].
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Hierarchical Matrices. The idea of the hierarchical matrix technique is to compute a

data-sparse approximation of a (generally dense) matrix A. Data-sparse means that only

few data are needed for representing the approximation [HGB02]. This representation then

allows one to compute matrix-vector products or to solve linear systems with almost linear

complexity in the size of A, which consequently allows for the efficient use of polynomial or

rational Krylov methods. Hierarchical matrix techniques have been applied successfully to

the computation of the matrix exponential [GHK02], the matrix sign function [GHK03],

and other matrix functions [GHK04, GHK05].

6.3 Inexact Solves

Many iterative methods are inner-outer iterations (also referred to as two-stage methods

[FS92]), where the inner iteration is performed in an inexact way. Some examples are in-

exact Newton methods [DES82], inexact rational Krylov methods for eigenvalue problems

[LLL97, LM98, SP99, GY00], and polynomial Krylov methods for the solution of linear

systems of equations where the action of A is inexact [SS03, ES04, ESG05]. The theory

of inexact Krylov methods has gained more attention in recent years. However, we are

not aware of corresponding results for operator functions, except for some experiments

reported in [EH06].

In the rational Arnoldi method, more precisely in (5.1), a linear system is solved. This

is typically done approximately by an iterative method like multigrid or a preconditioned

polynomial Krylov method, and hence we actually need to replace (5.1) by

x̃j + dj = (I −A/ξj)
−1Ayj , yj =

j∑

i=1

viui,j, (6.4)

where dj := xj − x̃j denotes the error of the approximate solution x̃j. We assume here

that the Gram–Schmidt orthogonalization is exact so that we only need to modify (5.2)

to

x̃j =

j+1∑

i=1

vihi,j . (6.5)

The residual rj := Ayj − (I − A/ξj)x̃j associated with (6.4) satisfies (I − A/ξj)dj = rj.

By equating (6.4) and (6.5) and left-multiplying the result by I − A/ξj , we obtain a
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decomposition

AVm+1Km = Vm+1Hm +Rm,

whereHm andKm are defined as in (5.6), Vm+1 = [v1, . . . , vm+1] has orthonormal columns,

and Rm = [r1, . . . , rm] is the residual matrix. Following [LM98] we rewrite this decompo-

sition as

(A+Dm)Vm+1Km = Vm+1Hm, where Dm = −RmK
†
mV

∗
m+1. (6.6)

We assert that this is a rational Arnoldi decomposition for the perturbed operator A+Dm,

provided no pole ξj is contained in the spectrum Λ(A + Dm). This assertion is verified

by running the rational Arnoldi algorithm with the data (A + Dm, b, {ξ1, . . . , ξm}) and

showing that the approximate solutions x̃j from (6.4) satisfy exactly

x̃j =

(
I − A+Dm

ξj

)−1

(A+Dm)yj .

Indeed, the residual associated with this linear system is

(A+Dm)yj −
(
I − A+Dm

ξj

)
x̃j = Ayj − (I −A/ξj)x̃j +Dm(yj + x̃j/ξj)

= rj −RmK
†
mV

∗
m+1(yj + x̃j/ξj)

= rj −RmK
†
m(Umej +Hmej/ξj)

= rj −RmK
†
mKmej

= 0 ,

where we have used for the third equality the fact that the continuation vector yj satisfies

yj = Vm+1Umej with the upper triangular matrix Um = [ui,j ] ∈ C
(m+1)×m by (6.4), and

x̃j = Vm+1Hmej by (6.5).

Remark 6.1. It may indeed happen that poles ξj lie in the spectrum Λ(A +Dm). As a

simple example we consider the data

A =




0 0 1

1 0 0

0 1 0


 , b =




1

0

0


 , ξ1 = −1.

Clearly, v1 = e1 and if the linear system for x1 = (I − A/ξ1)
−1Av1 is solved exactly, we
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obtain after orthonormalization v2 = [0,
√

0.5,−
√

0.5]T . However, if this linear system is

solved with a residual r1 = R1 = [−1,−0.1, 0.1]T we obtain a decomposition

(A+D1)V2K1 = V2H1 +R1 with D1 =




−5 0 5

−0.5 0 0.5

0.5 0 −0.5




and it can easily be calculated that A + D1 has an eigenvalue at −1. Hence, a rational

Krylov space for the data (A+D1, b, {ξ1}) does not exist. ——

We see from (6.6) that the Rayleigh quotient Ãm computed with the (inexact) matrices

Km and Hm (cf. Section 6.1 for methods for doing this) is actually associated with the

operator A+Dm, and not with A. Thus the approximation associated with (6.6),

f̃m = Vmf(Ãm)V ∗
mb = Vmf(V ∗

m(A+Dm)Vm)V ∗
mb, (6.7)

is the Rayleigh–Ritz approximation for f(A+Dm)b from the rational Krylov space Qm(A+

Dm, b). We also refer to f̃m as an inexact Rayleigh–Ritz approximation for f(A)b. The

error ‖f(A)b − f̃m‖ can be decomposed into the sensitivity error and the approximation

error as

‖f(A)b − f̃m‖ ≤ ‖f(A)b − f(A+Dm)b‖︸ ︷︷ ︸
sensitivity error

+ ‖f(A+Dm)b − f̃m‖︸ ︷︷ ︸
approximation error

.

The sensitivity error may be estimated by sensitivity analysis of the function f , or by the

estimator we will introduce soon, and the approximation error can be treated by error

estimates for Rayleigh–Ritz approximations (cf. Section 6.6).

Example 6.2. To estimate the sensitivity error for the exponential function f(z) = ez

one can use the formula (cf. [Bel70, p. 175], [Van77])

eA+Dmb − eAb = Dm

∫ 1

0
e(1−s)Aes(A+Dm)b ds,

to obtain

‖eA+Dmb − eAb‖ ≤ ‖Dm‖ · ‖eA‖ · ‖eA+Dmb‖ / ‖Dm‖ · ‖eA‖2 · ‖b‖.

——
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By (6.6) we have

‖Dm‖ ≤ ‖Rm‖ · ‖K†
m‖ ≤ ‖Rm‖σ−1

min(Km),

where σmin(Km) denotes the smallest nonzero singular value of Km. Assume that all

residuals satisfy ‖rj‖ ≤ τ , then

‖Rm‖ = max
y∈Cm

‖y‖=1

∥∥∥
m∑

j=1

rjyj

∥∥∥ ≤ max
y∈Cm

‖y‖=1

m∑

j=1

‖rj‖ · |yj| = τ max
y∈Cm

‖y‖=1

‖y‖1 ≤ τ
√
m.

This inequality is sharp if and only if the residuals rj are all collinear. In practice, this

bound is often too crude and the norms ‖Rm‖ stay of modest size for all orders m. Hence

the norm ‖Dm‖ and the sensitivity error are mainly determined by σmin(Km). Thus

the rational Arnoldi algorithm can be considered backward stable if σmin(Km) does not

become too small, a condition that can be easily monitored during the iteration.

A very small value of σmin(Km) indicates that one has computed a rational Arnoldi decom-

position for the operator A+Dm that is possibly “very far” from A, with the consequence

that f̃m in (6.7) is possibly a very inaccurate approximation for f(A)b.

An Estimator for the Sensitivity Error. In practice it is often observed that the Rayleigh

quotient Âm = V ∗
mAVm obtained by explicit projection with the basis Vm yields a corrected

approximation

f̂m = Vmf(Âm)V ∗
mb,

which is slightly closer to f(A)b than the approximation f̃m in (6.7). In general, f̂m is

not a Rayleigh–Ritz approximation and therefore not representable as a rational function

rm(A)b, rm ∈ Pm−1/qm−1. However, f̂m is a Rayleigh approximation for f(A)b whereas f̃m

is a Rayleigh–Ritz approximation for the perturbed problem f(A+Dm)b. This observation

inspires us to use ‖f̂m − f̃m‖ as an estimate for the sensitivity error, i.e.,

‖f(A)b − f(A+Dm)b‖ ≈ ‖f̂m − f̃m‖ = ‖f(Âm)V ∗
mb − f(Ãm)V ∗

mb‖. (6.8)

It is easy to evaluate this estimate if the Rayleigh quotients Âm and Ãm are available,

e.g., by the implementation of the rational Arnoldi algorithm in Section 6.1, page 64. In

practice, one usually observes that (6.8) is a rapidly increasing curve that stagnates at
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the level of the sensitivity error. Of course, when the approximation error falls below the

sensitivity error (say, in iteration m0) it is advised to stop the iteration because one would

only improve approximations to a sequence of “wrong” problems {f(A+Dm)b}m>m0
.

Sometimes the computation of Âm by explicit projection is not feasible, e.g., if A originates

from a finite-element discretization and itself involves a linear system A = M−1K. In this

case one can make use of the residuals Rm since

Âm = V ∗
mAVm

= V ∗
m(A+Dm)Vm − V ∗

mDmVm

= Ãm + V ∗
m(RmK

†
mV

∗
m+1)Vm

= Ãm + V ∗
mRmK

†
mIm,

where Im denotes the identity matrix of order m with an appended column of zeros. Thus,

in the mth iteration of the rational Arnoldi algorithm we “only” need to perform 2m− 1

additional inner products

v∗
1 rm, v

∗
2 rm, . . . , v

∗
mrm and v∗

mr1, v
∗
mr2, . . . , v

∗
mrm−1

to obtain the corrected Rayleigh quotient Âm without explicit projection (of course we

exploit the fact that V ∗
m−1Rm−1 is a leading principal submatrix of V ∗

mRm).

Example 6.3. To illustrate our sensitivity error estimate (6.8) we consider the computa-

tion of f(A)b, f(z) = exp(z), with the simple data

A = diag(−99,−98, . . . , 0), b = [1, . . . , 1]T , ξj = j for j = 1, 2, . . . (6.9)

The error curves in Figure 6.1 show that the approximations f̃m (blue curve) obtained

with inexact linear system solves in the rational Arnoldi algorithm (with residual norm

10−8) stagnate at a higher level than if the linear systems were solved exactly (black

dotted curve). We also observe that the corrected approximations f̂m (red dashed curve)

are better approximations for f(A)b; in particular, f̂100 is exact to working precision. The

sensitivity error estimate (6.8) (green dash-dotted curve) predicts well the stagnation level

of the error curve ‖f(A)b − f̃m‖ even for moderate orders m.
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Figure 6.1: Approximations for f(A)b, f(z) = exp(z), with data (6.9). The linear systems in the
rational Arnoldi algorithm were solved to a residual norm of 10−8. The green dash-dotted curve
shows the estimated sensitivity error (6.8).

6.4 Loss of Orthogonality

6inexact

The results in the previous section suggest that losing orthogonality in Vm+1 is somehow

incompatible with inexact solves: our estimate (6.8) for the sensitivity error strongly relies

on the orthogonality of Vm+1. In other words, we are not able to estimate the influence of

inexact solves in the rational Arnoldi algorithm if we give up the orthogonality of Vm+1.

On the other hand, if all linear systems are solved exactly and we have computed a (not

necessarily orthogonal) reduced rational Krylov decomposition

AVmKm = Vm+1Hm,

then Theorem 5.8 asserts that the rational Krylov approximation f RK
m = Vmf(HmK

−1
m )V †

mb

can be represented as a rational function interpolating f at the eigenvalues Λ(HmK
−1
m ).

This characterization of f RK
m allows for an estimate of the approximation error ‖f(A)b −

f RK
m ‖, e.g., by making use of Crouzeix’s theorem (cf. Theorem 4.9). If Vm+1 is (nearly)

orthonormal then the points Λ(HmK
−1
m ) are (nearly) rational Ritz values and we expect

that the near-optimality result Theorem 4.10 is still applicable for practical purposes.
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To sum up, we can either allow for inexact solves if we have orthogonality in Vm+1, or

we can allow for loss of orthogonality in Vm+1 if we guarantee that all linear systems

in the rational Arnoldi algorithm are solved exactly. Unfortunately, we cannot allow for

both, at least with the tools at our disposal. Fortunately, preventing loss of orthogonality

in the rational Arnoldi decomposition is usually a minor problem because the Rayleigh–

Ritz approximations fm converge sufficiently fast that the number m of required Krylov

basis vectors stays small and full reorthogonalization is still feasible. In our numerical

experiments with the rational Arnoldi algorithm we found it sufficient to orthogonalize

the Krylov basis vectors twice by the modified Gram–Schmidt algorithm, which is in

agreement with W. Kahan’s “twice is enough” rule (cf. [Par98, p. 115], [GLR02]).

6.5 Parallelizing the Rational Arnoldi Algorithm

The solution of large shifted linear systems is the bottleneck in a rational Krylov method,

and hence it is advisable to parallelize it. Various possible implementations of the parallel

rational Arnoldi algorithm were also discussed by Skoogh [Sko96, Sko98].

Given p processors, we mainly have two options for parallelizing the rational Arnoldi

algorithm (cf. Algorithm 1 on page 42), namely

— parallelism through partial fractions: assign d distinct linear systems (I −A/ξj)xj =

Ayj to different processors and solve them simultaneously (d ≤ p),

— parallelism at the solver level: solve a single system (I − A/ξ)x = Ay by a parallel

linear system solver on s processors (s ≤ p).

These levels of parallelism are often referred to as large grain parallelism and medium

grain parallelism, respectively [CGR95]. The so-called low grain parallelism is achieved by

parallelizing the elementary arithmetic operations like, e.g., vector-vector sums or inner

products. Although low grain parallelism is surely an important issue, we will only discuss

medium and large grain parallelism here, referring to [KGGK94] for parallel treatment of

low grain operations.

We will assume that p = ds so that all processors are potentially busy with linear system

solves. Note that the parallelism at the partial fraction level comes theoretically with
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perfect speedup d compared to solving the linear systems sequentially on s processors,

since the solution of these d linear systems is decoupled. Therefore it seems natural to

maximize partial fraction parallelism, i.e., to make d as large as possible. An extreme case

would be to have d = p pairwise distinct poles ξ1, . . . , ξd and to compute the vectors

x1 = (I −A/ξ1)
−1Av1, . . . ,xd = (I −A/ξd)

−1Av1 (6.10)

in parallel, one on each processor, using the first basis vector v1 as continuation vector.

This immediately gives d new basis vectors, which can then be orthogonalized by a mas-

ter processor. Unfortunately, these vectors tend to become linearly dependent and this

approach may easily become unstable as d gets larger. Before demonstrating this, let us

recall the role of the upper triangular matrix Um = [ui,j] introduced in Section 5.1, which

collects the coordinates of the continuation vectors yj (cf. (5.1))

xj = (I −A/ξj)
−1Ayj , yj =

j∑

i=1

viui,j.

Obviously, the matrix Um holds the information as to which of the already computed

Krylov basis vectors vi are used for computing the vector xj. Different matrices Um yield

different sorts of parallelism through partial fractions. For example, with Um = Im we

obtain a sequential rational Arnoldi algorithm because the system for xj can only be solved

if vj is available. In the left column of Figure 6.2, labeled as variant (a), we illustrate this

situation. In the top picture we show the nonzero pattern of Um and below we illustrate

the entries of the Hessenberg matrix Hm computed by the rational Arnoldi algorithm using

A, b and ξj given in (6.9).

The variant (b) in Figure 6.2 corresponds to the above mentioned extreme case (6.10):

here we compute d = 40 basis vectors of a rational Krylov space in parallel by solving the

shifted linear systems (I−A/ξj)xj = Av1 simultaneously (for j = 1, . . . , 40). Note that this

is only possible because all shifts ξj are pairwise distinct. We observe that the subdiagonal

entries of Hm decay rapidly. In fact, it is remarkable that all vectors xj = (I−A/ξj)−1Av1

have large components in only a few of the first Krylov basis vectors, say, v1, . . . , v16. We

hence expect that the rational Krylov space Q16 = span{v1, . . . , v16} contains a good

approximation for f ξj(A)v1 with the function f τ (z) = (1 − z/τ)−1z, even if j ≥ 16 such

that the pole ξj is not contained in Q16. This expectation can be justified theoretically,
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and we will consider such rational approximation problems in Chapter 7, particularly in

Section 7.5.

With variant (c) in Figure 6.2 we first compute sequentially 8 Krylov basis vectors, followed

by a parallel computation of d = 8 Krylov basis vectors at a time, using yj = vj−8 as the

continuation vector. With variant (d) we always compute d = 8 Krylov basis vectors at a

time, using the same continuation vector yj = vdj/8e for all of them.

variant (a) variant (b) variant (c) variant (d)
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Figure 6.2: In the top row we show the nonzero patterns of four different matrices Um, m = 40.
Below are the entries of the Hessenberg matrices Hm generated by the rational Arnoldi algorithm
with input data (6.9). Dark blue regions correspond to zeros or very small entries of order about
10−16, dark red regions correspond to large entries of order about 101. Variant (a) is a sequen-
tial rational Arnoldi algorithm, and the variants (b)–(c) correspond to parallel rational Arnoldi
algorithms.

In Figure 6.3 we show the error curves of Rayleigh approximations f̂m = V̂mf(Âm)V̂ ∗
mb,

f(z) = exp(z), computed with the variants (a)–(d) of the rational Arnoldi algorithm (from

here on the variables with hats are possibly affected by rounding errors). The error of the

projection of f(A)b onto the space R(V̂m) is also shown. The computations were carried

out with full reorthogonalization of the basis V̂m and the Rayleigh quotient Âm = V̂ ∗
mAV̂m

was computed by explicit projection. All entries of the solution vectors xj of the linear

systems involved are exact to all digits (A is a diagonal matrix and a linear system solve

requires exactly one floating point operation per entry of the solution vector). Nevertheless
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Figure 6.3: Error curves (solid lines) of the Rayleigh approximations f̂m = V̂mf(Âm)V̂ ∗
mb for

f(A)b, f(z) = exp(z), computed with the variants (a)–(d) of the rational Arnoldi algorithm, and

the error of the projection of f(A)b onto R(V̂m) (dashed lines, partially indistinguishable from the
solid lines).

we observe that the error curves of variants (b)–(d) stagnate at a higher level than the

error curve of the sequential rational Arnoldi algorithm, variant (a). Looking at the errors

of the projections we see that this stagnation is obviously caused by the search space

R(V̂m), which stops improving at a certain order. This loss of accuracy is reflected neither

in the residual norms ‖AV̂m+1K̂m− V̂m+1Ĥm‖ of the rational Arnoldi decompositions, nor

in the distance to orthogonality ‖V̂ ∗
m+1V̂m+1 − Im+1‖, see Table 6.1.

6parallel

variant (a) variant (b) variant (c) variant (d)

‖AV̂m+1K̂m − V̂m+1Ĥm‖ 2.79e-14 2.34e-14 2.32e-14 2.56e-14

‖V̂ ∗
m+1V̂m+1 − Im+1‖ 5.43e-16 2.19e-15 6.31e-16 5.87e-16

Table 6.1: Residual norms and distance to orthogonality of the decompositions computed by the
four variants of the rational Arnoldi algorithm (m = 40). These quantities do not indicate any
accuracy loss.

The difference between all four variants becomes visible by interpreting the rational

Arnoldi algorithm as a modified Gram–Schmidt orthogonalization of

Xm+1 := [v̂1, V̂m+1Ĥm] = [v1,x1, . . . ,xm].



6.5. Parallelizing the Rational Arnoldi Algorithm 79

Let cond(Xm+1) denote the 2-norm condition number of Xm+1, and let ε be the floating

point relative accuracy of a given finite-precision arithmetic. The numerical behavior of

the modified Gram–Schmidt algorithm applied to a well-conditioned matrix is essentially

understood, see, e.g., [Bjö67, Ruh83, BP92, GRS97, GLR05] and [Hig02, §19.8]. The

case in which this algorithm is used with exactly one reorthogonalization is analyzed

in [GLR02]. It is shown that if Xm+1 ∈ R
N×(m+1) is numerically nonsingular, that is,

p(N,m)ε cond(Xm+1) < 1 for a low degree polynomial p in N and m, then

Xm+1 + Em = V̂m+1[e1, Ĥm], where ‖Em‖ ≤ m2ε‖Xm+1‖.

This means that the modified Gram–Schmidt algorithm with reorthogonalization com-

putes a QR decomposition of a nearby matrix. Unfortunately, we can scarcely make use

of these bounds because, as shown in Figure 6.4, Xm+1 is far from being numerically

nonsingular even for moderate orders m. Hence, the norm of the perturbation Em may

be large and the space R(V̂m+1) = R(Xm+1 + Em) may be “far away” from the rational

Krylov space Qm+1 = R(Xm+1) of which we aimed to compute an orthonormal basis.

We observe in Figure 6.4 that ε cond(Xm+1) increases particularly fast for the parallel

variants (b)–(d) of the rational Arnoldi algorithm, and that it stagnates at a certain level

above one. It seems that, at least in this example, this stagnation happens approximately

at the same order m for which the Rayleigh approximations f̂m stagnate (cf. Figure 6.3).

In [Sko98] is remarked that possible instabilities in the parallel rational Krylov algorithm

for computing eigenvalues of generalized eigenproblems are also reflected in rapidly decay-

ing singular values in the matrices Ĥm and K̂m. Indeed we have

cond(Xm+1) = cond(Vm+1[e1,Hm]) = cond([e1,Hm]),

and the last quantity can easily be monitored during the rational Arnoldi algorithm. Note

that an almost singular matrix K̂m is useless for computing the Rayleigh quotient Ãm =

ĤmK̂
−1
m by the “last pole at infinity” technique we described in Section 6.1. Unfortunately,

even more complications concerning instabilities are expected when using the classical

Gram–Schmidt orthogonalization instead of the modified variant, the former being better

suited for parallel implementation [GLR05].
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Figure 6.4: The matrixXm+1 becomes rapidly ill-conditioned, in particular for the parallel variants
(b)–(d) of the rational Arnoldi algorithm.

In summary we have a very interesting situation here: the advantageous approximation

properties of rational functions limit the granularity of the parallel rational Arnoldi algo-

rithm because d basis vectors generated in parallel tend to become more and more linearly

dependent as d is increased. This problem can be reduced by increasing s instead, i.e., al-

lowing for more parallelism at the linear solver level. The extreme case would be s = p, and

if all shifts ξj were equal we would obtain a parallel variant of the shift-and-invert Arnoldi

algorithm, which has been implemented in the “Parallel ARnoldi PACKage” (“shift and

invert spectral transformation mode”, cf. [MS96, LSY98]). In our numerical experiments

we often found d = 4 to be a good compromise between slight loss of accuracy and satis-

factory parallelization. It may also be advisable to reorder the poles ξj to maximize the

distance between d consecutive poles.
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6.6 A-Posteriori Error Estimation

As a starting point we consider a reduced rational Arnoldi decomposition

AVmKm = VmHm + vm+1h
T
m, (6.11)

where Vm+1 = [Vm, vm+1] has orthonormal columns such that R(Vm) = Qm, R(Vm+1) =

Qm+1, Km and Hm are m×m matrices, Hm is of rank m, and hT
m ∈ C

1×m. For simplicity

we also assume that ‖b‖ = 1 and V ∗
mb = e1. Our aim is to bound or estimate the error

‖f(A)b − fm‖ of the Rayleigh–Ritz approximation fm = Vmf(Am)e1, Am = V ∗
mAVm.

In the literature, a-posteriori error estimates have been derived for polynomial Krylov

methods [Saa92a, PS93, ITS10, AEEG08b, DMR08] and for the shift-and-invert method

[EH06, Mor07, MN08, Mor09]. We will see that some of these ideas generalize nicely to

rational Rayleigh–Ritz approximations.

6.6.1 Norm of Correction

An observation often made in practice is that the error ‖f(A)b − fm‖ is of the same order

as the norm of the correction ‖fm+1 − fm‖. By the triangle inequality we have

‖f(A)b − fm‖ ≤ ‖f(A)b − fm+1‖ + ‖fm+1 − fm‖

and if ‖f(A)b − fm+1‖ is comparably small, the estimate

‖f(A)b − fm‖ ≈ ‖fm+1 − fm‖ (6.12)

could be justified. It may fail, e.g., if the approximations fm stagnate for two or more

consecutive iterations.
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6.6.2 Cauchy Integral Formula

Using Lemma 5.6 we can transform the decomposition (6.11) into

AVm = VmAm + vm+1a
T
m, (6.13)

where Am = HmK
−1
m is the Rayleigh quotient and aT

m = hT
mK

−1
m ∈ C

1×m. For this

decomposition we can apply a technique used in [ITS10]. Assume that f is analytic in a

neighborhood of W(A) such that Cauchy’s integral formula is applicable to define f(A)

and f(Am). With a suitable integration contour Γ we have

f(A)b − fm = f(A)b − Vmf(Am)e1

=
1

2πi

∫

Γ
f(ζ)[(ζI −A)−1b − Vm(ζIm −Am)−1e1] dζ.

We write

(ζI −A)−1b − Vm(ζIm −Am)−1e1 = (ζI −A)−1rm(ζ),

where rm(ζ) can be interpreted as the residual vector for the approximate solution xm =

Vm(ζIm −Am)−1e1 of the linear system (ζI −A)x = b. By (6.13) we have (ζI −A)Vm =

Vm(ζIm −Am) − vm+1a
T
m, so that

rm(ζ) = b − [Vm(ζIm −Am) − vm+1a
T
m](ζIm −Am)−1e1

= b − Vme1 + vm+1[a
T
m(ζIm −Am)−1e1]

:= ρm(ζ)vm+1,

where ρm(ζ) = aT
m(ζIm − Am)−1e1 is a rational function with poles at the rational Ritz

values Λ(Am) = {θ1, . . . , θm}. Assume now that Am = XmDmX
−1
m is diagonalizable, i.e.,

Xm ∈ C
m×m is an invertible matrix and Dm = diag(θ1, . . . , θm). Defining the vectors

[α1, . . . , αm] := aT
mXm and [β1, . . . , βm]T := X−1

m e1, we have

ρm(ζ) = aT
mXm(ζIm −Dm)−1X−1

m e1 =

m∑

j=1

αjβj
1

ζ − θj
.
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Now,

f(A)b − fm =
1

2πi

∫

Γ
f(ζ)(ζI −A)−1rm(ζ) dζ

=
1

2πi

∫

Γ
f(ζ)(ζI −A)−1ρm(ζ)vm+1 dζ

=

m∑

j=1

αjβj
1

2πi

∫

Γ

f(ζ)

ζ − θj
(ζI −A)−1vm+1 dζ

=
m∑

j=1

αjβj(f(A) − f(θj)I)(A − θjI)
−1vm+1,

where we have used the residue theorem (cf. [Hen88, Thm. 4.7a]) for the last equality.

Note that this is an explicit formula for the approximation error, though it involves the

term f(A). Following [ITS10] we define the function

gm(ζ) :=

m∑

j=1

αjβj





f(ζ)−f(θj )
ζ−θj

, if ζ 6= θj ;

f ′(θj), if ζ = θj ,
(6.14)

so that for a self-adjoint operator with Λ(A) ⊆ [a, b] one can bound the error as

min
ζ∈[a,b]

|gm(ζ)| ≤ ‖f(A)b − fm‖ ≤ max
ζ∈[a,b]

|gm(ζ)|. (6.15)

If A is not self-adjoint we still get an upper bound by Crouzeix’s theorem (cf. Theorem 4.9)

‖f(A)b − fm‖ ≤ C max
ζ∈W(A)

|gm(ζ)|, C ≤ 11.08. (6.16)

6.6.3 Auxiliary Interpolation Nodes

The following error indicator is based on an idea described in [Saa92a, Thm 5.1], and ex-

tended in [PS93, Thm. 3.1] and [AEEG08b, Sec. 4]. The approach relies on an expansion

of the approximation error obtained by adjoining auxiliary nodes ϑ1, . . . , ϑ` to the inter-

polation nodes of the rational function underlying fm. We define the nodal polynomials

w0(z) := 1, wj(z) := (z − ϑ1) · · · (z − ϑj), j = 1, . . . , `,
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and note that we have vm+1 = w0(A)vm+1 and wj(A)b = (A − θjI)wj−1(A)vm+1. The

decomposition (6.11) can obviously be extended to

A[Vm,W`−1]




Km

1

1

. . .

1




= [Vm,W`]




Hm

hT
m ϑ1

1 ϑ2

. . .
. . .

1 ϑ`

1




, (6.17)

where Wj := [w0(A)vm+1, w1(A)vm+1, . . . , wj(A)vm+1]. This is a reduced rational Krylov

decomposition and the matrix

B`
m :=




Hm

hT
m ϑ1

1 ϑ2

. . .
. . .

1 ϑ`







Km

1

1

. . .

1




−1

∈ C
(m+`)×(m+`)

has the eigenvalues Λ(B`
m) = Λ(HmK

−1
m ) ∪ {ϑ1, . . . , ϑ`} = Λ(Am) ∪ {ϑ1, . . . , ϑ`}. By

Theorem 5.8, the rational Krylov approximation f `
m associated with the decomposition

(6.17) satisfies

f `
m = [Vm,W`−1]f(B`

m)e1 = rm+`(A)b,

where rm+` ∈ Pm+`−1/qm−1 interpolates f at the eigenvalues Λ(B`
m). We have thus added

` interpolation nodes to our rational interpolating function. It is interesting to investigate

the matrix f(B`
m) further. In [AEEG08b, Lem. 4.1] is shown that

f(B`
m) =




f(Am)

aT
mφ1(Am) f(ϑ1)

aT
mφ2(Am) ∆1

1 f(ϑ2)
...

...
...

. . .

aT
mφ`(Am) ∆`−1

1 ∆`−2
2 . . . f(ϑ`)
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with the functions

φ0(z) := f(z), φj(z) :=
φj−1(z) − φj−1(ϑj)

z − ϑj
, j = 1, . . . , `,

and the kth order divided differences of f with respect to ϑj, . . . , ϑj+k (cf. [Wal69, §3.2])

∆k
j :=

1

2πi

∫

Γ

f(ζ)

(ζ − ϑj) · · · (ζ − ϑj+k)
dζ.

The rational Krylov approximation f `
m can now be written as

f `
m = [Vm,W`−1]f(B`

m)e1

= Vmf(Am)e1 +
∑̀

j=1

(aT
mφj(Am)e1)wj−1(A)vm+1

= fm +
∑̀

j=1

(aT
mφj(Am)e1)wj−1(A)vm+1.

Under the assumption that we can choose a sequence of auxiliary nodes {ϑj} such that

f `
m → f(A)b as `→ ∞, we arrive at the error representation

‖f(A)b − fm‖ =
∥∥∥

∞∑

j=1

(aT
mφj(Am)e1)wj−1(A)vm+1

∥∥∥.

A practical error estimate is obtained by truncating again the infinite sum to ` terms, i.e.,

‖f(A)b − fm‖ ≈
∥∥∥
∑̀

j=1

(aT
mφj(Am)e1)wj−1(A)vm+1

∥∥∥. (6.18)

Example 6.4. For illustration we use the data (6.9) to approximate f(A)b, f(z) = exp(z).

In Figure (6.5) we show the error curve of Rayleigh approximations fm computed with

the rational Arnoldi algorithm (black curve, all linear systems were solved to a residual

norm of 10−8), and the presented error estimates and bounds. The estimate (6.18) was

used with ` = 1 and ` = 2, where ϑ1 = λmin = −99 and ϑ2 = λmax = 0 (this choice yields

lower and upper bounds in the polynomial Krylov case, see [AEEG08b]). Except for the

lower bound (6.15), which shows a quite erratic behavior, all estimates predict well the

actual error ‖f(A)b − fm‖ until its stagnation due to the inexact linear system solves.

In conjunction with the estimate (6.8) for the sensitivity error we thus obtain practical

stopping criteria for the rational Arnoldi algorithm.
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Figure 6.5: Actual error curve (black) and the error estimates/bounds for approximating f(A)b,
f(z) = exp(z), by the Rayleigh–Ritz method. The linear systems involved are solved inexactly,
which causes the early stagnation of the error curve.6error

Remark 6.5. It is interesting to note that for ` = 1 we have

‖(aT
mφ1(Am)e1)w0(A)vm+1‖ = |aT

m(f(Am) − f(ϑj)Im)(Am − ϑjIm)−1e1|,

and, if Am = XmDmX
−1
m is diagonalizable, this equals |gm(ϑj)| with the function gm de-

fined in (6.14). This explains why the bounds (6.15) obtained by minimizing or maximizing

|gm(ζ)| among all ζ ∈ W(A) are always below or above the estimate (6.18), respectively,

if the auxiliary node ϑ1 is contained in W(A).



7 Selected Approximation Problems

In the study of expansions

of analytic functions it is

often of great convenience to

study first the function 1/(t − z).

J. L. Walsh [Wal69, §3.1]

In the previous chapters we have considered various methods to extract an approximation

fm ≈ f(A)b from a rational Krylov space Qm(A, b) = qm−1(A)−1Km(A, b). All these

methods require a choice of parameters:

— The Rayleigh–Ritz method (cf. Section 4.2) depends on the poles ξ1, . . . , ξm−1 of the

rational Krylov space, i.e., on the zeros of qm−1.

— The shift-and-invert method (cf. Section 5.4.3) requires the choice of the shift ξ.

— The extraction by rational interpolation (PAIN method, cf. Section 5.4.2) requires

the choice of poles ξ1, . . . , ξm−1 and interpolation nodes α1, . . . , αm.

— The evaluation of a partial fraction expansion (PFE method, cf. Section 5.4.4) re-

quires the poles ξ1, . . . , ξm−1 and the residues γ0, γ1, . . . , γm−1 of a partial fraction.

This chapter is devoted to the choice of these parameters.

The above methods have in common that the resulting approximations are of the form

fm = rm(A)b with a rational function rm = pm−1/qm−1 of type (m − 1,m − 1). By

87
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Crouzeix’s theorem (cf. Theorem 4.9) we know that

‖f(A)b − fm‖ ≤ C‖b‖ ‖f − rm‖Σ,

where C ≤ 11.08 and ‖ · ‖Σ denotes the uniform norm on a set Σ ⊇ W(A). The aim

for a smallest possible approximation error ‖f(A)b − fm‖ immediately leads us to the

problem of rational best uniform approximation of f on Σ. In particular, the Rayleigh–

Ritz approximation fm is near-optimal,

‖f(A)b − fm‖ ≤ 2C‖b‖ inf
p∈Pm−1

‖f − p/qm−1‖Σ

(cf. Theorem 4.10), and hence the minimization of the approximation error reduces to

the problem of finding an optimal denominator qm−1, or equivalently, an optimal search

space Qm. Rational Krylov methods with an underlying rational Krylov decomposition

are closely related to problems of rational interpolation (cf. Theorem 5.8), a topic we will

also include in our considerations.

In many applications, the function f = f τ also depends on a parameter τ from a parameter

set T , and consequently the same is true for the approximations f τ
m ≈ f τ (A)b. This needs

to be taken into account when optimizing the parameters of a rational Krylov method.

Moreover, it is often necessary to restrict the poles ξj to a pole set Ξ. For example, if

complex arithmetic is to be avoided, Ξ = R ∪ {∞} is an appropriate restriction.

In the next two sections we collect tools from the theory of rational approximation and

interpolation, followed by a brief overview of logarithmic potential theory. The remain-

ing sections are devoted to various approaches for computing optimal (in a sense to be

specified) parameters for a rational Krylov method, depending on the function f τ and the

configuration of Σ, T and Ξ.
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7.1 Preliminaries from Rational Approximation Theory

We consider a closed set Σ ⊂ C and a function f whose domain of definition contains

Σ. Often we will require that f is analytic on Σ, by which we mean analytic in an open

set Ω ⊃ Σ. By Rm,n we denote the set of rational functions of type (m,n), that is, the set

of quotients p/q with p ∈ Pm and q ∈ Pn. By RΞ
m,n we mean the set of rational functions

of type (m,n) with all poles in a nonempty closed set Ξ ⊆ C. The following fundamental

theorem about the possibility of uniform approximation of f is due to Runge [Run84] (here

we essentially use a formulation from [Wal69, §1.6, Thm. 8]).

Theorem 7.1 (Runge). Let f be analytic on a closed set Σ ⊂ C. Let a set Ξ ⊂ C \ Σ

contain at least one point in each connected component into which Σ separates the plane.

Then for every ε > 0 there exists a rational function r(z) with all poles in Ξ such that

‖f − r‖Σ < ε.

In particular, if C \ Σ is connected, r(z) can be chosen as a polynomial.

There is a more general version of this theorem, called Mergelyan’s theorem, which only

requires f to be analytic in int(Σ) and continuous on Σ (cf. [Kra99]). However, Runge’s

theorem is sufficient for our primary goal, which will be the construction of rational func-

tions with poles in Ξ such that the error ‖f − r‖Σ is smaller than a given tolerance ε.

Another task is to obtain a smallest possible error ‖f − r∗‖Σ with a rational function

r∗ ∈ RΞ
m,m. Such a function r∗ is called rational best uniform approximation to f on

Σ with all poles in Ξ. The following theorem guarantees the existence of such rational

functions (cf. [Wal69, §12.3, Cor. 1 & Cor. 2]).

Theorem 7.2. Let f be continuous on a compact set Σ ⊂ C and let Ξ ⊂ C \ Σ be closed

and nonempty. Then there exists a rational function r∗ ∈ RΞ
m,m with

‖f − r∗‖Σ = min
r∈RΞ

m,m

‖f − r‖Σ.

This theorem does not say anything about uniqueness, and indeed, rational best uniform

approximations are in general not unique (see, e.g., [Wal69, §12.4] or [GT83]).

Assume now we have a compact parameter set T and a parameterized function f τ (z),

τ ∈ T . If there exists a continuous function g on TΣ = {τz : τ ∈ T, z ∈ Σ} such that
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f τ (z) = g(τz), then by Theorem 7.2 and the compactness of T we know that there exists

a rational function r∗ ∈ RΞ
m,m, Ξ ⊂ C \ TΣ satisfying

max
τ∈T

‖f τ (z) − r∗(τz)‖z∈Σ = min
r∈RΞ

m,m

max
τ∈T

‖f τ (z) − r(τz)‖z∈Σ.

[A similar statement holds if f τ (z) = g(z+τ).] Note that the poles of r∗(τz) [and r∗(z+τ)]

depend on the parameter τ . In the context of rational Krylov methods, however, one is

usually interested in optimal rational approximations with poles independent of τ . In

other words, we are looking for a fixed rational function 1/q∗ ∈ RΞ
0,m such that

inf
p∈Pm

sup
τ∈T

‖f τ − p/q∗‖Σ = inf
1/q∈RΞ

0,m

inf
p∈Pm

sup
τ∈T

‖f τ − p/q‖Σ. (7.1)

The following theorem assures that this problem has a solution.

Theorem 7.3. Let f τ be defined on Σ for all τ ∈ T and let Ξ ⊂ C \ Σ be closed and

nonempty. Then there exists a rational function 1/q∗ ∈ RΞ
0,m satisfying (7.1).

Proof. Define

ρ(1/q) = inf
p∈Pm

sup
τ∈T

‖f τ − p/q‖Σ.

We can assume that there exists 1/q ∈ RΞ
0,m such that ρ(1/q) < ∞, otherwise both sides

of (7.1) attain the value ∞. Let

α = inf
1/q∈RΞ

0,m

ρ(1/q) ≥ 0

and let {1/qk} be a sequence in RΞ
0,m such that limk→∞ ρ(1/qk) = α. Without loss of

generality we may assume that all polynomials qk are monic. By the assumption that

Ξ be closed, we can extract a subsequence from {1/qk} converging uniformly on Σ to a

rational function 1/q∞ ∈ RΞ
0,m. To see that ρ(1/q∞) = α it only remains to show that

ρ(1/q) is continuous. Assume without loss of generality that ρ(1/q1) < ρ(1/q2). For any

ε > 0 there exist τ1 ∈ T and p1 ∈ Pm such that ‖f τ1 − p1/q1‖Σ ≤ ρ(1/q1) + ε. Then

ρ(1/q2) ≤ ‖f τ1 − p1/q2‖Σ

≤ ‖f τ1 − p1/q1‖Σ + ‖p1/q1 − p1/q2‖Σ

≤ ρ(1/q1) + ε+ ‖p1/q1 − p1/q2‖Σ,
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and hence

|ρ(1/q1) − ρ(1/q2)| ≤ ε+ ‖p1‖Σ ‖1/q1 − 1/q2‖Σ,

where ‖p1‖Σ <∞. This proves that ρ is continuous.

We now turn to the question of the rate of approximation, i.e., among all rm ∈ RΞ
m−1,m−1

how fast can the error ‖f − rm‖Σ decay as m → ∞? We will see that this question is

closely related to the construction of rational functions which are uniformly as small as

possible on Σ and as large as possible on Ξ, and such rational functions can be studied

with tools from logarithmic potential theory.

7.2 Preliminaries from Logarithmic Potential Theory

For a detailed treatment of the concepts reviewed here we refer to the monographs [Ran95,

ST97]. The connections between logarithmic potential theory and rational interpolation

and approximation are nicely outlined in [LS06].

The Classical Case. For a compact set Σ ⊂ C, let M(Σ) denote the set of positive

Borel measures µ with support supp(µ) ⊆ Σ and total mass ‖µ‖ = 1 (also referred to as

probability measures on Σ). The logarithmic potential of a measure µ is defined as

Uµ(z) =

∫
log

1

|z − ζ| dµ(ζ).

This function is superharmonic in C and harmonic outside supp(µ). The logarithmic

energy of µ is given by

I(µ) =

∫
Uµ dµ =

∫ ∫
log

1

|z − ζ| dµ(ζ) dµ(z).

The quantity

VΣ = inf
µ∈M(Σ)

I(µ)

is called the logarithmic energy of Σ. The logarithmic capacity of Σ is defined as

cap(Σ) = exp(−VΣ).
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Figure 7.1: The density of the equilibrium measure µΣ of an L-shaped domain Σ and the associated
potential UµΣ . The level of the “plateau” of the potential is VΣ = −0.082, so that cap(Σ) =
exp(−VΣ) = 1.085. The level lines of the potential are also the level lines of the Green’s function
gΩ of the outer domain Ω = C \ Σ.

If VΣ = +∞ we set cap(Σ) = 0. A property is said to hold quasi-everywhere (q.e.)

on Σ if it holds everywhere on Σ except for a subset of logarithmic capacity zero. Let us

assume that cap(Σ) > 0. In this case the fundamental theorem of Frostman asserts that

there exists a unique equilibrium measure µΣ ∈ M(Σ) such that I(µΣ) = VΣ (cf. [Ran95,

Thm. 3.3.4]). Let Ω be the outer domain relative to Σ, by which is meant the unbounded

component of C \ Σ. Here is a list of remarkable properties of the equilibrium measure

(cf. Figure 7.1):

— there holds supp(µΣ) ⊆ ∂Ω, and

— since M(∂Ω) ⊆ M(Σ) and µΣ is unique, this inclusion implies cap(Σ) = cap(∂Ω),

— there holds

UµΣ(z) ≤ VΣ for all z ∈ C,

UµΣ(z) = VΣ for q.e. z ∈ Σ,

— conversely, if Uµ is constant q.e. on Σ and I(µ) < ∞ for some µ ∈ M(Σ), then

µ = µΣ.

The Green’s function of Ω (with pole at ∞) is

gΩ(z) := −UµΣ(z) + VΣ .
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This function is closely related to the growth of polynomials that are uniformly small on Σ,

and thereby also related to polynomial interpolation. With the level curves

ΓR = {z ∈ Ω : gΩ(z) = logR}, R > 1,

the following theorem holds (cf. [Wal69, §7.9]).

Theorem 7.4 (Bernstein, Walsh). Let Σ be a compact set with cap(Σ) > 0 and let R be the

largest number such that f admits an analytic continuation to int(ΓR). Then there exists

a sequence of maximally converging polynomials {pm−1 ∈ Pm−1}m≥1 that interpolate f

in a sequence of nodes {αm,1, . . . , αm,m}m≥1 ⊂ Σ and satisfy

lim sup
m→∞

‖f − pm−1‖1/m
Σ = R−1.

Let {p∗m−1 ∈ Pm−1}m≥1 be a sequence of polynomials of best uniform approximation to f

on Σ. Then

lim sup
m→∞

‖f − p∗m−1‖1/m
Σ = R−1.

Note that for entire functions f , the level R can be chosen arbitrarily large and hence

‖f − pm−1‖Σ and ‖f − p∗m−1‖Σ decay superlinearly as m→ ∞.

Signed Measures. Let Σ ⊂ C be compact and Ξ ⊂ C be closed, both sets of positive

capacity and distance dist(Σ,Ξ) := inf{|σ − ξ| : σ ∈ Σ, ξ ∈ Ξ} > 0. The pair (Σ,Ξ) is

called a condenser [Bag67, Gon69]. We define the set of signed measures

M(Σ,Ξ) = {µ = µΣ − µΞ : µΣ ∈ M(Σ), µΞ ∈ M(Ξ)}

and consider the energy problem

V = inf
µ∈M(Σ,Ξ)

I(µ).

One can show that V is a positive number and there exists a unique equilibrium measure

µ∗ such that I(µ∗) = V (cf. [ST97, Thm. VIII.1.4]). The quantity

cap(Σ,Ξ) = 1/V

is called the condenser capacity of (Σ,Ξ).
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Figure 7.2: The (absolute value of the) density of the signed equilibrium measure µ∗ of an L-
shaped domain Σ and a circular set Ξ. The associated potential Uµ∗

is shown on the right. The
levels of the “plateaus” of the potential are FΣ = 0.892 and −FΞ = −1.174, so that cap(Σ,Ξ) =
1/(FΣ + FΞ) = 0.484.

The following assertions hold (cf. Figure 7.2):

— supp(µ∗) ⊆ ∂(Σ ∪ Ξ) (not necessarily the outer boundary),

— cap(∂Σ, ∂Ξ) = cap(Σ,Ξ),

— there exist real constants FΣ and FΞ such that

Uµ∗

(z) = FΣ for q.e. z ∈ Σ,

Uµ∗

(z) = −FΞ for q.e. z ∈ Ξ,

— V = FΣ + FΞ.

To return to problems of rational approximation, let us consider a sequence of rational

functions

sm(z) =
(z − σm,1) · · · (z − σm,m)

(z − ξm,1) · · · (z − ξm,m−1)
, m = 1, 2, . . . (7.2)

of type (m,m − 1) with zeros σm,j ∈ Σ and poles ξm,j ∈ Ξ, and the associated counting

measures

µm =
1

m

m∑

j=1

δσm,j
− 1

m

m−1∑

j=1

δξm,j
,

where δz denotes the Dirac unit measure in the point z. Note that µm|Ξ is not normalized,

but
∥∥µm|Ξ

∥∥→ 1 as m→ ∞ (we think of that as if there were an artificial pole ξm,m = ∞).
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Now the absolute value of sm is related to the potential of µm by

Uµm(z) =
1

m

m∑

j=1

log
1

|z − σm,j |
− 1

m

m−1∑

j=1

log
1

|z − ξm,j|

= − 1

m
log
( m∏

j=1

|z − σm,j|/
m−1∏

j=1

|z − ξm,j|
)

= − log |sm(z)|1/m.

Together with the properties of the equilibrium measure µ∗ listed above, the following

theorem can be proved [Gon69, LS94].

Theorem 7.5. For a sequence of rational functions sm of the form (7.2) there holds

lim sup
m→∞

(
supz∈Σ |sm(z)|
infz∈Ξ |sm(z)|

)1/m

≥ e−1/ cap(Σ,Ξ), (7.3)

with equality if µm
∗→ µ∗.

By µm
∗→ µ∗ we mean weak-star convergence, i.e., for every continuous function g defined

on the supports of all measures µm there holds
∫
g dµm →

∫
g dµ∗.

The problem of finding a sequence {sm} such that equality holds in (7.3) is often referred

to as (generalized) Zolotarev problem for the condenser (Σ,Ξ) because it reduces to the

third of Zolotarev’s classical problems if Σ and Ξ are real intervals [Zol77, Gon69, Tod84].

Zolotarev problems have been studied extensively in the literature, e.g., in connection with

the ADI method [Leb77, EW91, Sta91]. Here are two practical ways (there exist more) to

compute zeros and poles of asymptotically optimal rational functions.

— Generalized Fejér points [Wal65]: If Σ and Ξ are closed connected sets (not single

points) that do not separate the plane, then by the Riemann mapping theorem (cf.

[Hen88, Thm. 5.10h]) there exists a function Φ that conformally maps Ω = C\(Σ∪Ξ)

onto a circular annulus AR := {w : 1 < |w| < R}. The number R is called the

Riemann modulus of AR and there holds

R = e1/ cap(Σ,Ξ).

Denote by Ψ = Φ−1 the inverse map and assume that Ψ can be extended continuously
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to ∂Σ and ∂Ξ (which is true, e.g., if these boundaries are Jordan curves). The

generalized Fejér points of order m are then given as

{
σm,j = Ψ(e2πij/m)

}
j=1,...,m

and
{
ξm,j = Ψ(Re2πij/(m−1))

}
j=1,...,m−1

.

— Generalized Leja points [Bag69]: These are nested point sequences, i.e., σm,j = σj

and ξm,j = ξj form = 1, 2, . . ., which is convenient and often crucial for computations.

Starting with points σ1 ∈ Σ and ξ1 ∈ Ξ of minimal distance, the points σj+1 ∈ Σ and

ξj+1 ∈ Ξ are determined recursively such that with

sj(z) =

j∏

i=1

z − σi

z − ξi

the conditions

max
z∈Σ

|sj(z)| = |sj(σj+1)|

min
z∈Ξ

|sj(z)| = |sj(ξj+1)|

are satisfied.

By the Walsh–Hermite formula, the error of a rational function rm with poles ξm,1, . . . , ξm,m−1

that interpolates f at the nodes σm,1, . . . , σm,m is given by

f(z) − rm(z) =
1

2πi

∫

Γ

sm(z)

sm(ζ)

f(ζ)

ζ − z
dζ, z ∈ Σ,

where Γ is a suitable integration contour winding around Σ such that f is analytic in

int(Γ) and extends continuously to Γ. The uniform error can be estimated as

‖f − rm‖Σ ≤ D
maxz∈Σ |sm(z)|
minζ∈Γ |sm(ζ)| ,

where D = D(f,Γ) is a constant. In conjunction with Theorem 7.5 we obtain

lim sup
m→∞

‖f − rm‖1/m
Σ ≤ e−1/ cap(Σ,Γ), (7.4)

provided the nodes σj,m and poles ξj,m are asympotically distributed according to the

equilibrium measure µ∗ of the condenser (Σ,Γ). If Σ does not separate the plane (and is
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not a single point) then int(Γ) \ Σ is conformally equivalent to an annulus AR and (7.4)

can be also written as

lim sup
m→∞

‖f − rm‖1/m
Σ ≤ R−1. (7.5)

By bending the integration contour Γ to enclose a largest possible area int(Γ) (in which

the function f is still analytic) we can make cap(Σ,Γ) as large as possible (cf. Figure 7.3).

Obviously, equilibrium-distributed points on the condenser (Σ,Γ) are reasonable nodes and

poles for rational interpolating functions, and we will use these points, e.g., as parameters

for the PAIN method (cf. Section 5.4.2).

Figure 7.3: Suppose a function f is analytic in the slit plane C \Ξ, Ξ = (−∞, 0]. We can bend the
integration contour Γ arbitrarily wide as long as we avoid Ξ, and in the limit the condenser (Σ,Γ)
has the same capacity as the condenser (Σ,Ξ).

Remark 7.6. If f is entire we can choose a circle Γ = r∂D (∂D denoting the boundary of

the open unit disk D) and let the radius r approach infinity, thus making cap(Σ,Γ) arbi-

trarily large. This means that the poles of the rational interpolating functions move closer

and closer to infinity and in the limit we obtain superlinearly converging interpolation

polynomials.

Remark 7.7. It is interesting to note that the rational best uniform approximation r∗m

of type (m− 1,m − 1) to f on Σ is (not better than) twice as good as what we achieved

in (7.4). More precisely,

lim inf
m→∞

‖f − r∗m‖1/m
Σ ≥ e−2/ cap(Σ,Γ) (7.6)

(cf. [Par88, Pro93, Pro05]). This result is sharp in the sense that equality holds in (7.6) for

certain classes of analytic functions, for example Markov functions [Gon78] or functions

with a finite number of algebraic branch points [Sta89].



98 Chapter 7. Selected Approximation Problems

Remark 7.8. Zolotarev problems can be studied more generally for ray sequences {rm,n ∈
Rm,n}, that is, m/n → λ ≥ 1 as m + n → ∞ [LS94]. In a practical rational Krylov

algorithm it is usually more time-consuming to expand the Krylov space with a finite

pole than with a pole at infinity (which corresponds to a polynomial Krylov step). On

the other hand, finite poles usually yield better search spaces Qm. With the theory of

ray sequences it should be possible to study the convergence of a rational Krylov method

where a 1/λ-fraction of all poles ξj is required to be at infinity. This could then be used

to optimize λ for a particular computer if the respective execution times of a rational and

a polynomial Krylov step are known.

7.3 The Quadrature Approach

Given a Cauchy integral

f(z) =
1

2πi

∫

Γ

f(ζ)

ζ − z
dζ, z ∈ Σ,

the application of a quadrature rule with nodes {ξj}m−1
j=1 ⊂ Γ immediately yields a rational

function of the form

rm(z) =
m−1∑

j=1

wj

z − ξj
(7.7)

with residues wj. Conversely, rational approximations can usually be interpreted as

quadrature rules, the poles being connected by a contour Γ. The use of the trapezoid

rule for the approximation of matrix functions is advocated in [ST07b, Sch07, HHT08].

It is known that the convergence of the trapezoidal rule for periodic analytic functions

can be very rapid and the rapidity depends on the “thickness” of the region to which the

function f can be continued analytically (see [Dav59], [DR84, §4.6.5]). The quadrature

approach is even successful for unbounded sets Σ if the function f decays sufficiently fast

along the contour Γ, which then passes through infinity (cf. [Tal79, TWS06, ST07a]).

Other quadrature concepts, such as Sinc quadrature [Ste93, Ste94, Ste00], have also been

applied successfully for operator functions [GHK04].

In [HHT08] the authors consider functions f analytic in the slit plane C\(−∞, 0] and a real

interval of approximation Σ = [a, b], 0 < a < b. By the Riemann mapping theorem there

exists a conformal map Φ that carries the doubly connected region Ω = C \ ((−∞, 0] ∪ Σ)
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(also known as a Teichmüller domain [Ahl73, §4.11]) onto the annulus AR with Riemann

modulus R. The map Φ can be given explicitly in terms of elliptic functions and

R = exp

(
π

2

K(κ)

K(1 − κ)

)
, where κ =

√
b/a− 1√
b/a+ 1

(7.8)

and K(κ) =
∫ 1
0 [(1 − t2)(1 − κt2)]−1/2 dt is the complete elliptic integral of the first kind1.

The application of the trapezoid rule for the transplanted Cauchy integral

f(z) =
1

2πi

∫
√

R∂D

f(Ψ(w))

Ψ(w) − z
Ψ′(w) dw, z ∈ Σ, (7.9)

yields a rational function rm whose poles are the images of Ψ = Φ−1 of m− 1 equispaced

points on the circle
√
R∂D (this corresponds to the “Method 1” in [HHT08]). Indeed, the

integrand in (7.9) is a periodic analytic function as w goes along
√
R∂D, and results about

the asymptotic convergence of the trapezoid rule show that

‖f − rm‖ = O(R−m/2). (7.10)

This rate can be improved if (−∞, 0) is just a branch cut of f : applying the transplanted

trapezoid rule (7.9) for the function f(ẑ) in the new variable ẑ = z1/2, ẑ ∈ Σ̂ = [
√
a,
√
b],

we obtain a convergence of order O(R̂−m/2), where

R̂ = exp

(
π

2

K(κ̂)

K(1 − κ̂)

)
, κ̂ =

4
√
b/a− 1

4
√
b/a+ 1

, (7.11)

is the improved Riemann modulus we get when C \ ((−∞, 0] ∪ Σ̂) is mapped conformally

onto an annulus (this is the “Method 2” in [HHT08]). As the ratio b/a becomes larger, R̂

approaches R2, and hence the improved quadrature rule converges for large ratios b/a as

‖f − rm‖ ≈ O((R − ε)−m),

i.e., twice as fast as (7.10). We recall that the same rate O(R−m) is achieved by rational

interpolation with equilibrium-distributed nodes and poles on the condenser (Σ, (−∞, 0])

independently of how large the ratio b/a is, see (7.5). In Figure 7.4 we illustrate the

1The definition of K(κ) is not consistent in the literature. We stick to the definition in [AS84, §17.3],
which is also used by Matlab when typing ellipke(kappa).
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convergence of the Methods 1–3 in [HHT08] and the PAIN method. (“Method 3” is based

on the observation that for f(z) = z1/2 the function f(z) = ẑ has no singularity after the

transformation. This method actually reproduces Zolotarev’s best relative approximation

of the square root.)

The quadrature approach has the feature that it directly yields a rational function in

partial fraction form (7.7), which can be evaluated easily in parallel. Moreover, the poles

of this rational function do not depend on f , only on the map Φ. If f = f τ depends on a

parameter τ ∈ T , one obtains rational functions

rτ
m(z) =

m−1∑

j=1

wτ
j

z − ξj
≈ f τ (z),

where only the parameter-dependent residues wτ
j need to be recalculated for all τ ∈ T .

At the operator level this means that only m− 1 linear systems (A− ξjI)
−1b need to be

solved in order to compute rτ
m(A)b for various τ .

A drawback of the quadrature approach is that the poles ξj are in general complex. This in-

troduces possibly unwanted complex arithmetic in practical algorithms. (The “Method 3”

in [HHT08] avoids complex arithmetic, but it is tailored to f(z) = z1/2.) If the region Ω

is symmetric with respect to the real axis, the poles ξj occur in complex conjugate pairs,

which can usually be exploited to halve the number of linear system solves.
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Figure 7.4: Convergence of the Methods 1–3 in [HHT08] for approximating A1/2, where the matrix
A is generated with the Matlab command pascal(5). We also show the asymptotic convergence
rates R1/2, R̂, R2 (dashed lines), the numbers R and R̂ being given in (7.8) and (7.11), respectively.
The “matricized” PAIN method (see Remark 5.10) with generalized Leja points on the sets Σ =
[a, b] and Ξ = (−∞, 0] converges at rate R. The plot looks similar for log(A), except that the red
curve needs to be omitted since Method 3 is not applicable in this case.

7quadr
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7.4 Single Repeated Poles and Polynomial Approximation

Let us make a general remark about rational Krylov spaces generated with a single re-

peated pole ξ. Note that every rational function of the form rm(z) = pm−1(z)/(z − ξ)m−1

can be written as a polynomial p̂m−1(ẑ) in the variable ẑ = 1/(z − ξ). Rational ap-

proximations of this form are also referred to as restricted denominator approximations

[Nør78, MN04]. Such approximations are closely related to the shift-and-invert method

(cf. Section 5.4.3). We have

‖f(z) − rm(z)‖Σ = ‖f(z) − pm−1(z)/(z − ξ)m−1‖Σ = ‖f̂(ẑ) − p̂m−1(ẑ)‖Σ̂,

where f̂(ẑ) := f(ẑ−1 + ξ). Instead considering a rational approximation problem with the

function f(z) on the set Σ, we have an equivalent polynomial approximation problem with

f̂(ẑ) on Σ̂ = {ẑ : z ∈ Σ}. This simplifies matters in cases where it is possible to solve

the polynomial best uniform approximation problem explicitly, or at least approximately

(cf. [EH06], where the authors use the Remez algorithm to compute optimal poles for the

shift-and-invert method).

Note that even if the closed set Σ is unbounded, the set Σ̂ is compact if ξ 6∈ Σ. If in addition

cap(Σ̂) > 0 and all other requirements of Theorem 7.4 are satisfied, we can characterize the

asymptotic convergence of polynomial best uniform approximations utilizing the Green’s

function g
C\Σ̂. In what follows we use this characterization to construct asymptotically

best converging rational approximations to the resolvent function.

7.5 The Resolvent Function

In this section we approximate the resolvent function (or transfer function)

f τ (z) = (z − τ)−1 (7.12)

on a closed set Σ by rational functions rτ
m = pτ

m−1/qm−1 with poles in a closed set Ξ. The

parameters τ are collected in a parameter set T . Since f τ is a rational function itself, this

problem is only interesting if either T has much more than m elements or if Ξ 6= T .
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As the transfer function is connected with the input-output behavior of linear dynamical

systems in the frequency domain, it appears, e.g., in engineering problems, such as filter

design or electric circuit simulations, or in geophysical applications. The parameters τ

usually correspond to frequencies and are often needed for purely imaginary values only.

Polynomial and rational Krylov order reduction techniques for approximating the transfer

function over a large frequency interval have proved to be very efficient, especially for large

problems [GGV96, RS98, Bai02, Fre03, OR06, BES08, KDZ09].

7.5.1 Single Repeated Poles

Suppose we want to approximate (7.12) on the interval Σ = [a, b], 0 ≤ a < b, by a rational

function of type (m− 1,m− 1) with all poles at a point ξ. Using the notation introduced

in Section 7.4, the Green’s function for C \ Σ̂ is

g
C\Σ̂(ẑ) = log

∣∣ζ +
√
ζ2 − 1

∣∣, ζ =
2ẑ − (b− ξ)−1 − (a− ξ)−1

(b− ξ)−1 − (a− ξ)−1
. (7.13)

Note that f̂ τ (ẑ) has a pole at ŝ = (τ − ξ)−1 and therefore exp(g
C\Σ̂(ŝ)) is the asymptotic

convergence rate we expect from the error of the rational Krylov method with all poles

at ξ. It is now easy to consider R = exp(g
C\Σ̂(ŝ)) as a function of ξ to find a single

repeated asymptotically optimal pole ξ0.

To obtain transparent formulas, let us assume that the parameters τ are purely imaginary.

Then f−τ (z) = f τ (z) and it suffices to consider a parameter set T on the positive imaginary

axis only.

Example 7.9. If Σ = [0,+∞], formula (7.13) evaluated at ŝ = (τ − ξ)−1 takes the

particularly simple form

g
C\Σ̂(ŝ) = log

∣∣ζ +
√
ζ2 − 1

∣∣, ζ =
τ + ξ

τ − ξ
. (7.14)

Let T = {τ} be a singleton parameter set, where τ ∈ iR+ is a positive imaginary number,

and let us find an optimal real pole ξ0 < 0. Note that ζ = ζ(ξ) as a function of ξ < 0 is

the Cayley transform and its image U is the upper half of the unit circle as ξ moves along

(−∞, 0). The level lines of R = exp(g
C\Σ̂) =

∣∣ζ+
√
ζ2 − 1

∣∣ as a function of ζ are ellipsoids

with foci ±1. Hence the maximum value of exp(g
C\Σ̂) on U is attained in the point ζ0 = i,
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and this means that ξ0 = iτ is the optimal pole. The resulting optimal convergence rate

is

R =
∣∣ζ0 +

√
ζ2
0 − 1

∣∣ =
∣∣i+

√
−2
∣∣ = 1 +

√
2.

More generally, let now T = [τmin, τmax] be an interval on the positive imaginary axis.

Then it is easy to see that ξ0 = i
√
τminτmax is the optimal pole since

ζ(τ) =
τ + ξ0
τ − ξ0

describes a subarc of U that is symmetric to the imaginary axis as τ moves along T . Note

that we get exactly the same subarc of U if we replace T by cT and ξ0 by cξ0 for some

c > 0. Thus U is only dependent on the ratio c = τmax/τmin. In particular,

ζ(τmin) =
i−√

c

i+
√
c
, ζ(τmax) =

√
c+ i√
c− i

.

Inserting these expressions into the Green’s function (7.14), we obtain after some elemen-

tary calculations the worst-case convergence rate on T as

R1 =
∣∣ζ(τmin) +

√
ζ(τmin)2 − 1

∣∣ =
∣∣ζ(τmax) +

√
ζ(τmax)2 − 1

∣∣

=

(
1 +

√
8c3/4 + 4c1/2 +

√
8c1/4

1 + c

)1/2

. (7.15)

As seen above, the best-case convergence rate R = 1 +
√

2 on T is obtained for the

parameter τ = ξ0/i.

Example 7.10. Let again Σ = [0,+∞] and T = [τmin, τmax] be an interval on the positive

imaginary axis. Let us now choose an imaginary optimal pole ξ0 ∈ T . Note that

ζ(τ) =
τ + ξ0
τ − ξ0

is a real-valued function that should attain values as large as possible for all parameters

τ ∈ T (i.e., values far away from the interval [−1, 1], of which g
C\Σ̂ in (7.14) is the Green’s

function as a function of ζ). Since |ζ(τ)| is monotonically increasing for τ ∈ [τmin, ξ0) and

monotonically decreasing for τ ∈ (ξ0, τmax], we need only consider the endpoints of the



7.5. The Resolvent Function 105

interval T , yielding the equation

−τmin + ξ0
τmin − ξ0

=
τmax + ξ0
τmax − ξ0

with solution ξ0 =
√
τminτmax. Note that, as in the previous example, the image of ζ(τ)

does not change if we replace T by cT and ξ0 by cξ0 for some c > 0. In particular,

ζ(τmin) =
1 +

√
c

1 −√
c
, ζ(τmax) =

√
c+ 1√
c− 1

with the ratio c = τmax/τmin.

The best-case convergence rate R = ∞ on T is obviously obtained for τ = ξ0. The

worst-case convergence rate on T is

R2 =
∣∣ζ(τmin) +

√
ζ(τmin)2 − 1

∣∣ =
∣∣ζ(τmax) +

√
ζ(τmax)2 − 1

∣∣

=
c1/4 + 1

c1/4 − 1
. (7.16)

Note that the convergence rate (7.16) is always better than what we achieved in (7.15)

using a real pole. However, both rates R1 and R2 tend to 1 as c→ ∞ (cf. Figure 7.5). For

a practical implementation of a near-optimal rational Krylov method2 this implies that it

does not pay off to use an imaginary pole (and hence complex arithmetic) if only c is large

enough. Assume that one iteration of the rational Krylov method with an imaginary pole

takes d times as long as one iteration with a real pole. Then the break-even point of the

computation time of both methods satisfies R−dm
1 = R−m

2 , i.e., d = log(R2)/ log(R1). As

an example, let d = 4. Then Figure 7.5 shows that the method with the real pole will

already outperform the method with the imaginary pole if c ' 1.27.

Remark 7.11. Equation (7.15) can be used to give a formula for the asymptotic conver-

gence rate as a function of τ ∈ iR+ for a fixed pole ξ0 < 0. Note that ξ0 is the optimal pole

for all imaginary parameter intervals [−ξ20/τ, τ ] with ratio c = −τ2/ξ20 . Since τ = τmax for

2Near-optimal means that the approximation fm extracted from the rational Krylov space Qm converges
to the exact solution with at least the same asymptotic rate as the best approximation from Qm when
m → ∞. The Rayleigh–Ritz method is near-optimal.
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Figure 7.5: Worst-case convergence rates on the parameter set T = [τmin, τmax] as a function of
c = τmax/τmin using a single repeated optimal real pole (R1, red) compared to an optimal imaginary
pole (R2, green). The logarithmic quotient (black line) indicates how many iterations are required
by the rational Krylov method using the optimal real pole to achieve the same error reduction as
one iteration of the method using the optimal imaginary pole.

all these intervals, we can substitute c in (7.15). To summarize,

R1(τ, ξ0) =

(
1 +

√
8c3/4 + 4c1/2 +

√
8c1/4

1 + c

)1/2

, c = −τ2/ξ20 .

The same reasoning can be applied to (7.16) with a fixed pole ξ0 ∈ iR+, which results in

R2(τ, ξ0) =
c1/4 + 1

c1/4 − 1
, c = τ2/ξ20 .

In Figure 7.6 we show a graph of these functions.

7.5.2 Connection to Zolotarev Problems

Given a rational function sm ∈ RΞ
m,m−1, it is easily verified that

rτ
m(z) =

1 − sm(z)
sm(τ)

z − τ
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Figure 7.6: Graph of the functions R1(τ, ξ0) and R2(τ, ξ0), which describe the asymptotic conver-
gence rates for approximating the resolvent function f τ using a single repeated real or imaginary
pole ξ0, respectively.

is the rational function of type (m− 1,m− 1) with the same poles as sm that interpolates

the resolvent function (7.12) at the zeros of sm. The absolute error is explicitly given by

f τ (z) − rτ
m(z) =

sm(z)

sm(τ)

1

z − τ
, (7.17)

and the relative error takes the even simpler form

[
f τ (z) − rτ

m(z)
]/
f τ (z) =

sm(z)

sm(τ)
. (7.18)

(The same representation for the error can be derived with the help of so-called skeleton

approximations of f τ , see [Tyr96, KDZ09].)

If the set of allowed poles Ξ coincides with the parameter set T , the minimization of (7.18)

for all z ∈ Σ is precisely the Zolotarev problem we considered in Theorem 7.5, and hence

the zeros and poles of sm should be asymptotically distributed according to the equilibrium

measure of the condenser (Σ,Ξ) (e.g., one could use generalized Leja points). In [KDZ09]

the authors explicitly determine optimal rational functions s∗m for the sets Σ = [0,+∞) and

Ξ = T ′ = [−τmin,−τmax] ∪ [τmin, τmax], the latter being purely imaginary and symmetric
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with respect to the real axis. They also give the expression for the convergence rate as

R′ = exp

(
π

2

K(κ)

K(1 − κ)

)
, where κ =

τmin

τmax

and K(κ) =
∫ 1
0 [(1− t2)(1−κt2)]−1/2 dt. The proof in [KDZ09] relates the zeros and poles

of s∗m to those of the Zolotarev approximation for the square root on the positive interval

[|τmin|, |τmax|]. This technique relies strongly on the symmetries of T ′ and the Green’s

function gΩ(z, ζ) for Ω = C\[0,+∞) with pole at ζ. However, since f−τ (z) = f τ (z) for real

arguments z, it actually suffices to consider the half condenser plate Ξ = T = [τmin, τmax],

which should give rise to an improved convergence rate R > R′. Unfortunately, the loss of

symmetry makes it more complicated to construct the conformal mapping of C \ (Σ ∪ Ξ)

onto the annulus AR and to obtain a formula for R. It should be possible to construct such

a mapping via the Schwarz–Christoffel formula for doubly connected regions (see [Hen93,

§17.5], [Däp88]).

Instead of following this approach further we propose a simple and constructive method

for generating a sequence of cyclically repeated asymptotically “good” poles. This method

will also have the advantage that Ξ needs not necessarily coincide with T . Neither is it

required that Σ be an interval.

7.5.3 Cyclically Repeated Poles

As before we consider Σ = [0,+∞] and T = [τmin, τmax] positive imaginary. Recall the

function R1(τ, ξ0) [or R2(τ, ξ0)] in Remark 7.11, which gives the asymptotic convergence

rate one can expect from optimal rational approximation of the function f τ (z) = (z−τ)−1

with all poles at the point ξ0 < 0 [or iξ0 < 0]. In other words, one iteration of a near-

optimal extraction (such as Rayleigh–Ritz) from a rational Krylov space with all poles at

ξ0 reduces the error by R1(τ, ξ0)
−1 [or R2(τ, ξ0)

−1].

Consider now p poles ξ1, . . . , ξp being all contained in the real interval Ξ = iT . The

product form (7.17) of the error allows us to conclude that the Rayleigh–Ritz method

with these poles repeated cyclically converges (at least) at the rate

R(τ) = [R1(τ, ξ1) · · ·R1(τ, ξp)]
1/p ,
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depending on the parameter τ ∈ T . Obviously, it is desirable to make the minimum of R(τ)

as large as possible on T (the factors R1(τ, · ) are continuous on the compact set T and

hence attain a minimum, cf. Figure 7.6). A simple method for finding a suitable placement

of real poles is given by successive maximization of the worst-case convergence rate.

(a) Set j := 1 and initialize a function R̃(τ) ≡ 1 for all τ ∈ T .

(b) Choose ξj such that

min
τ∈T

R̃(τ)R1(τ, ξj) = max
ξ∈Ξ

min
τ∈T

R̃(τ)R1(τ, ξ)

(c) Update R̃(τ) := R̃(τ)R1(τ, ξj) for all τ ∈ T .

(d) Set j := j + 1.

(e) If j ≤ p go to (b).

Note that step (b) is computationally difficult to handle, except if T and Ξ are discrete

sets with only a few elements. For we know that R1(τ, ξ) attains its maximum value on

T at the point τ = ξ/i (cf. Example 7.9), it is reasonable to replace step (b) by

(b’) Choose ξj such that R̃(ξj/i) = minτ∈T R̃(τ).

The resulting method is very easily implemented, e.g., in the chebfun system. We remark

that this method works with slight modifications if R1(τ, ξ) is replaced by R2(τ, ξ). In

fact, it works if only a formula for the asymptotic error reduction as a function of τ ∈ T

and ξ ∈ Ξ is available.

Example 7.12. We compare the “approximation power” of a rational Krylov space with

real poles computed by the proposed method and a rational Krylov space with purely

imaginary poles on Ξ = T (generalized Leja points). To this end we consider a symmetric

matrix A with equispaced eigenvalues in [0, 104] ⊂ Σ = [0,+∞] and a parameter interval

T = i[1, 103]. We approximate the resolvent function f τ for 11 logspaced parameters τ ∈ T

using the Rayleigh–Ritz method. In Figure 7.7 we show the resulting convergence curves

and the asymptotic convergence rates using real and imaginary poles, respectively. As

expected, the method with the imaginary poles converges at a higher rate as the method

with the real poles. Note that with imaginary poles the error may drop drastically at

the jth iteration, which happens if a pole ξj hits one of the parameters τ exactly (e.g.,

the extremal ones). However, the faster convergence of this method comes at the price



110 Chapter 7. Selected Approximation Problems

of solving linear systems with a complex shift (i.e., complex arithmetic) and one may

ask whether this pays off. We try to answer this question in Figure 7.8, where we show

the (estimated) asymptotic convergence rates R1(c) and R2(c) of the methods with real

and imaginary poles for parameter sets T = [i, ic] with varying ratio c, respectively. It

is surprising how fast the logarithmic quotient of both rates decays as c gets larger. For

example, if one iteration with an imaginary pole is 4 times as expensive as with a real

pole, it is advised to use real poles already if c ' 1.41 (in practical applications the ratio c

is usually larger than, say, 103).
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Figure 7.7: Error curves (solid) and asymptotic convergence rates (dashed) of Rayleigh–Ritz ap-
proximations for the resolvent function extracted from a rational Krylov space with real poles (top)
and imaginary poles (bottom).
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Figure 7.8: Estimated asymptotic convergence rates on the parameter set T = [τmin, τmax] as a
function of c = τmax/τmin using real poles (R1, red) compared to imaginary poles (R2, green).
The logarithmic quotient (black) indicates how many iterations are required by Rayleigh–Ritz
extraction from a rational Krylov space with optimal real poles to achieve the same error reduction
as one iteration with optimal imaginary poles.

7.6 The Exponential Function

In this section we approximate the exponential function

f τ (z) = exp(τz)

on a closed set Σ by rational functions rτ
m = pτ

m−1/qm−1 with poles in a closed set Ξ. As

before, the parameters τ are collected in a parameter set T . This parameter set is often

real as τ usually corresponds to time.

The exponential function represents the exact solution u(τ) = exp(τA)u0 of the most

fundamental dynamical system

u ′(τ) = Au(τ), u(0) = u0,

hence is of high relevance, e.g., for exponential integrators [HLS98, CM02, KT05, MW05,

ST07b] or in Markov chain analysis [PS93, Saa95, SS99], and has numerous applications
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in nuclear magnetic resonance spectroscopy [NH95], quantum physics [NW83], and geo-

physics [DK94], to name just a few. In all these applications, polynomial and rational

Krylov order reduction techniques have proved to be very efficient, especially in large-

scale computations.

7.6.1 Real Pole Approximations

Due to their computational advantages, rational approximations to the exponential func-

tion on (−∞, 0] with real poles in Ξ = R+ have been studied extensively in the literature,

see [SSV76, Lau77, NW77, Ser92]. In particular, it was shown in [Bor83] that the best

uniform approximation in RΞ
m,m to f1(z) = exp(z) on (−∞, 0] has a pole of order m. A

result due to [And81] states that this pole behaves asymptotically like m/
√

2.

The Parameter-Free Case. Let us consider the approximation of f1 on an interval Σ =

[a, b], −∞ < a < b ≤ 0 by a rational function with a single repeated pole ξ > 0. A possible

approach for obtaining the linear convergence rate is to again reduce the problem to

polynomial approximation. As proposed in Section 7.4, set ẑ = (z−ξ)−1 and approximate

f̂(ẑ) := exp(ẑ−1 + ξ) by a polynomial on Σ̂ = [(b − ξ)−1, (a − ξ)−1]. As f̂ has its only

singularity at ẑ = 0, the asymptotic convergence rate should be the same as for the CG

method applied to a symmetric matrix with positive spectral interval −Σ̂, i.e.,

R = exp(g
C\Σ̂(0)) ≈

√
κ+ 1√
κ− 1

with κ = (a− ξ)/(b− ξ).

Note that the rate R increases as ξ goes to infinity. This corresponds to the fact that

polynomial best uniform approximation of the exponential function on Σ converges super-

linearly, not just linearly like polynomial approximation of f̂ on Σ̂. However, we are not

primarily interested in the asymptotic rate but in the error of polynomials of finite degree.

The asymptotic convergence theory of polynomial approximation does not reveal that fast

linear convergence in early iterations can be much better than superlinear convergence for

late iterations. Another limitation is that this asymptotic theory is not applicable when

a = −∞, in which case f̂ is not analytic in any ellipse containing Σ̂. Let us therefore

employ another approach in the following, covering more generally the approximation of

the parameter-dependent function f τ (z) = exp(τz).
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The Parameter-Dependent Case. Let the configuration Σ = [−∞, 0], T = [τmin, τmax] ⊂
R+, and Ξ = {ξ1, . . . , ξp} ⊂ R+ be given. How should the poles in Ξ be chosen such that

we can guarantee ‖f τ (A)b − f τ
m‖ ≤ 2ε for all τ ∈ T , where f τ

m is the Rayleigh–Ritz

approximation from a rational Krylov space Qm with poles in Ξ? The situation is more

complicated than it was for the resolvent function since a simple error formula of type

(7.17) does not exist. However, with the help of the following corollary one can still justify

the fact that cyclically repeated poles yield at least as good approximations as the single

poles could achieve taken separately.

Corollary 7.13. Assume that the rational Krylov space Qm contains the pole ξ at least

n− 1 times, that is,

Sn := span{b, (A − ξI)−1b, . . . , (A− ξI)−n+1b} ⊆ Qm.

Then the Rayleigh–Ritz approximation f τ
m for f τ (A)b from Qm satisfies

‖f τ (A)b − f τ
m‖ ≤ 2C min

pn−1∈Pn−1

‖f τ (z) − pn−1(z)/(z − ξ)n−1‖Σ,

with Σ ⊇ W(A) and a constant C ≤ 11.08.

If A is self-adjoint the result holds with C = 1.

Proof. This follows from Theorem 4.10 and the fact that Sn ⊆ Qm.

The following approach is a straightforward generalization of a method used in [EH06]

(see also [PS08] for related work). Adhering to the notation introduced in Section 7.4, we

have

ηn(τ, ξ) := min
pn−1∈Pn−1

‖f τ (z) − pn−1(z)/(z − ξ)n−1‖Σ (7.19)

= min
p̂n−1∈Pn−1

‖f̂ τ (ẑ) − p̂n−1(ẑ)‖Σ̂,

where ẑ = (z − ξ)−1, Σ̂ = [−ξ−1, 0], and f̂ τ (ẑ) = eτ(ẑ−1+ξ). Obviously, there holds

ηn(τ, ξ) = ηn(cτ, ξ/c) for all c > 0. This means that if we have a partition T = T1∪· · ·∪Tp

into p intervals of the form Tj = τmin[c
j−1, cj ] and we find a pole ξ1 such that ηn(τ, ξ1) ≤ ε

for all τ ∈ T1, then we know that ηn(τ, ξ1/c
j−1) ≤ ε for all τ ∈ Tj .
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The above suggests the use of the poles

ξj :=
ξ1
cj−1

, j = 1, . . . , p,

since by Corollary 7.13 we then have

‖f τ (A)b − f τ
m‖ ≤ 2Cε, for all τ ∈ T ,

where m = p(n− 1) + 1 and fm is the Rayleigh–Ritz approximation from a Krylov space

Qm with each pole ξj repeated cyclically for n− 1 times.

Example 7.14. Let T = [10−3, 1] and p = 3, so that we have c = 10 and T = [10−3, 10−2]∪
[10−2, 10−1] ∪ [10−1, 1]. We aim for an approximation error ‖f τ (A)b − f τ

m‖ smaller than

2ε = 2 · 10−7. One verifies with the help of Figure 7.9 (top) that η20(τ, ξ0 = 1) ≤ ε for all

τ ∈ T0 = [3.25, 32.7]. This plot has been generated by running the Remez algorithm for

various τ (we used the chebfun implementation of the Remez algorithm given in [PT09]).

Rescaling T0 and ξ0 yields

ξ1 = 3.25 · 1000, ξ2 = 3.25 · 100, ξ3 = 3.25 · 10

as the desired poles.

In Figure 7.9 (bottom) we show the error curves of Rayleigh–Ritz approximations for 11

logspaced parameters τ ∈ [10−3, 1], with a symmetric matrix A with equispaced eigenval-

ues in [−105, 0]. As expected, the errors do not exceed the level 2 · 10−7 for all iterations

of order larger than m = p(n − 1) + 1 = 3(20 − 1) + 1 = 58, which is indicated by the

green bar.

Remark 7.15. The above approach is constructive and guarantees that in a certain

iteration m the error ‖f τ (A)b−f τ
m‖ is smaller than a prescribed tolerance for all τ ∈ T . In

particular, if Σ = [−∞, 0] is taken unbounded as in our Example 7.14, this error tolerance

will be respected for every symmetric negative semi-definite operator A. On the other

hand, we make use of the somewhat “pessimistic” assumption that a pole ξj contributes

only to those approximations f τ
m for which τ ∈ Tj . For very large parameter intervals T this

inevitably yields rational approximations of order much higher than actually required. In

this case it is advisable to use another approach for computing the poles, which we describe

in the following.
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Figure 7.9: The function η20(τ, ξ0 = 1) (top) defined in (7.19) and convergence curves of Rayleigh–
Ritz approximations for f τ (A)b = exp(τA)b with 11 logspaced parameters τ ∈ [10−3, 1] (bottom).
The poles of the rational Krylov space are repeated cyclically. By construction, the error curves
stay below the green bar.
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7.6.2 Connection to a Zolotarev Problem

We sketch a novel approach for constructing rational approximations to f τ on a bounded

interval Σ = [a, b], a < b < 0, which has been presented recently by Druskin, Knizhnerman

& Zaslavsky [DKZ09]. These rational functions have real poles and converge at a fixed

rate R to f τ for arbitrary parameters τ . The rate R depends on the ratio b/a, and hence

this approach should be preferred to the one described in the previous section if b/a is

moderate and T is a large interval.

The key idea is to exploit the inverse Fourier representation of the exponential function,

namely

f τ (z) = exp(τz) =
1

2πi

∫ i∞

−i∞

exp(τζ)

ζ − z
dζ, z < 0, τ ≥ 0

(which could also be called Bromwich integral [WT07]). Using this integral representation

for f τ (A)b and the Rayleigh–Ritz approximation f τ
m = Vmf

τ (Am)V †
mb, one obtains

f τ (A)b − f τ
m =

1

2πi

∫ i∞

−i∞
exp(τζ)

[
(ζI −A)−1b − Vm(ζIm −Am)−1V †

mb
]

dζ

=
1

2πi

∫ i∞

−i∞
exp(τζ)

[
rζ(A)b − rζ

m(A)b
]

dζ,

where rζ
m(z) = pζ

m−1(z)/qm−1(z) interpolates the resolvent function rζ(z) := (ζ − z)−1 at

the nodes Λ(Am). The aim is to make the error rζ − rζ
m as small as possible on Σ for

all “parameters” ζ ∈ iR. As described in Section 7.5.2, this can be done by solving a

Zolotarev problem on the condenser (Σ,Ξ) with plates Σ and Ξ = {z : <(z) ≥ 0}. Again

with the help of elliptic functions one can show that C \ (Σ∪Ξ) is conformally equivalent

to the annulus AR with

R = exp

(
π

4

K(1 − κ)

K(κ)

)
, where κ =

(
1 −

√
a/b

1 +
√
a/b

)4

, (7.20)

K(κ) =
∫ 1
0 [(1− t2)(1−κt2)]−1/2 dt. The near-optimality of Rayleigh–Ritz approximations

then allows us to conclude that

lim sup
m→∞

‖f τ (A)b − f τ
m‖1/m ≤ R−1,

if the poles of the rational Krylov space are distributed on ∂Ξ = iR according to the
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equilibrium measure of the condenser (Σ,Ξ).

It has been proven in [LT00] that for this special geometry of a real and an imaginary

interval symmetric to the real axis there is a sequence of rational functions sm ∈ R−Σ
m,m−1

with poles in −Σ = [−b,−a] ∈ R+ and zeros in Σ that satisfy

lim sup
m→∞

(
supz∈Σ |sm(z)|
infz∈iR |sm(z)|

)1/m

= R−1,

where R is the same as in (7.20). It is important to underline that the poles of sm are

real, and hence computationally convenient for building a rational Krylov space.

Example 7.16. In Figure 7.10 we show the error curves of Rayleigh–Ritz approximations

for f τ (A)b = exp(τA)b for 11 logspaced parameters τ ∈ T = [10−3, 1], where A is a

symmetric negative definite matrix with equispaced eigenvalues in Σ = [−105,−1]. We

compute generalized Leja points on the condenser (Σ,−Σ) and use the points on the

plate −Σ as poles for the rational Krylov space. We also show the asymptotic convergence

rate (7.20).
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Figure 7.10: Convergence curves and asymptotic convergence rate of Rayleigh–Ritz approximations
for f τ (A)b = exp(τA)b with 11 logspaced parameters τ ∈ T = [10−3, 1]. The poles of the rational
Krylov space lie on the positive real axis and are optimal for a certain Zolotarev problem.
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7.7 Other Functions, Other Techniques

Rational approximation theory is a very rich field and it is impossible to give a complete

treatment here. Usually, every function f requires a special investigation depending on

the configuration of Σ, T and Ξ. This makes the choice of parameters in rational Krylov

methods for f(A)b challenging, and also interesting. We have already discussed important

issues, such as the choice of poles and nodes for the PAIN method, or the real pole selection

when approximating the resolvent and exponential function. In this brief section we give

some references to other approximation techniques that may be applicable, without being

exhaustive.

First of all, we repeat that the poles of a rational best approximation to f on Σ are good

candidates for poles of a rational Krylov space when using the near-optimal Rayleigh–

Ritz approximations. In a few special cases rational best approximations r∗m are explicitly

known, the most prominent example being the best relative approximation to f(z) = z1/2

on a positive real interval and the related best uniform approximation to sgn(z) on two

disjoint real intervals constructed by Zolotarev, see [Zol77, Tod84]. For work relating

matrix functions and Zolotarev’s approximations we refer to [EFL+02, Ken04]. Seven

possible ways to obtain rational approximations for the function f(z) = (1 − z2)1/2 on

Σ = [−1, 1], which is connected with the so-called one-way wave equation, are investigated

in [HT88]. An error estimate for best uniform rational approximation of zα on Σ = [0, 1]

is given in [Sta03].

Another problem that has attracted a lot of attention is the rational approximation of the

exponential function f(z) = exp(z), typically on the unit disk D or on the negative real

axis (−∞, 0], see [CMV69]. Recently the exponential function and the related ϕ-functions

have gained special interest in connection with exponential integrators. The practical com-

putation of near-best approximations using the Carathéodory–Fejér method and contour

integrals is considered in [TWS06, ST07a, ST07b, Sch07, HHT08]. The Carathéodory–

Fejér method for rational approximation on the unit disk is based on a singular value

decomposition of a Hankel matrix set up with a few Taylor coefficients of the function f ,

and it provides rational approximations closer to best than can practicably be achieved by

other means [Tre81, Tre83]. In [TG83] it is shown that in conjunction with a conformal

transplantation this method is efficient for real approximation, too. On the other hand,
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for parameter-dependent functions f τ rational approximations obtained by quadrature

formulas on contour integrals may sometimes perform better than Carathéodory–Fejér

approximations [TWS06].

The approximation of trigonometric functions of symmetric positive definite operators by

the shift-and-invert method is considered in [GH08]. Clearly, no rational function can be a

good approximation for an oscillating function on an infinite interval, so the introduction

of an artificial decay factor becomes necessary. The connection of the shift-and-invert

method to polynomial approximation in conjunction with Jackson’s approximation the-

orems [Che98, Sec. 4.6] allows one to give bounds for the approximation error. Padé

approximations of trigonometric functions were considered in [Col89], and approximations

with a repeated pole in [DS80].

We demonstrated in Section 4.2.2 how Crouzeix’s theorem can be used to bound the error

of the Rayleigh–Ritz approximation fm via the uniform error of the rational best uniform

approximation r∗m ∈ Pm−1/qm−1 to f on Σ ⊇ W(A). This yields an a-priori error estimate

if one is able to bound the error ‖f − r∗m‖Σ. For Markov functions f , explicit lower and

upper bounds for ‖f − r∗m‖Σ involving finite Blaschke products are derived in [BR09] by

making use of the Faber transform. These bounds can also be used for pole optimization.

In general, the Faber transform is a powerful tool for constructing rational approximations

to analytic functions on simply connected sets Σ [Ell83]. We remark that the expansion of

a function in Faber polynomials can be used directly to obtain efficient polynomial Krylov

methods with asymptotically optimal error reduction [HPKS99, MN01a, Nov03, BCV03], a

particular interesting special case on intervals being expansions in Chebyshev polynomials

[DK89, Sch90, CRZ99, BV00].
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8 Rational Ritz Values

This chapter is adopted in parts from [BGV10].

The rational Ritz values, which are the eigenvalues of the Rayleigh quotient Am = V †
mAVm,

have played a prominent role so far, for example as interpolation nodes in Rayleigh–Ritz

approximations. It is known that the Ritz values tend to approximate eigenvalues of

A in proximity of the poles of the rational Krylov space. We will give a theoretical

explanation of this behavior when A is Hermitian. In Section 8.1 we investigate how

the distance between Ritz values and eigenvalues of A can be bounded via a polynomial

extremal problem. In the following sections we describe in an asymptotic sense which

eigenvalues of A are approximated by rational Ritz values and how fast this approximation

takes place. This description gives insight into the rational Arnoldi algorithm used to

compute eigenvalues of Hermitian matrices, but it can also explain superlinear convergence

effects observed with Rayleigh–Ritz approximations for f(A)b. We decided to use a more

intuitive approach to this asymptotic theory, since many details are involved and a rigorous

derivation can be found in [BGV10].

8.1 A Polynomial Extremal Problem

In what follows we consider a Hermitian matrix A ∈ C
N×N with distinct eigenvalues

λ1 < · · · < λN . We assume that A = UDU∗ is the spectral decomposition of A with

normalized eigenvectors U = [u1, . . . ,uN ] and D = diag(λ1, . . . , λN ). The normalized

eigencomponents of b in the basis U are denoted by w(λj), i.e.,

w(λj) = |〈uj , b/‖b‖〉| ∈ [0, 1], j = 1, . . . , N. (8.1)

121
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By Θ we denote the set of mth rational Ritz values θ1 < · · · < θm associated with

the rational Krylov space Qm = qm−1(A)−1Km(A, b), and χm is the associated nodal

polynomial χm(x) = (x − θ1) · · · (x − θm). By Ξ we now denote the multiset of poles

ξ1, . . . , ξm−1, which are the zeros of qm−1.

It is often observed in practice that rational Ritz values tend to approximate some of A’s

eigenvalues very quickly. The natural question arises, which eigenvalues are approximated

by rational Ritz values of order m? In other words, can we give bounds for the distance

of an eigenvalue λk to the set Θ? It is clear that this distance cannot be small for all

eigenvalues λk since there are fewer Ritz values than eigenvalues. In several textbooks

[GV96, PPV95, Saa92b, TB97] one can find bounds for polynomial Ritz values and these

results are classical now. Many of them are derived by exploiting the relationship between

polynomials and Krylov spaces, where an important ingredient for estimating the distance

of an eigenvalue to the set of Ritz values is a link to some polynomial extremal problem.

Typically, such procedures are used to handle extremal eigenvalues or outliers, but this

approach is also useful for eigenvalues in other parts of the spectrum [Bec00a]. The

following result, also given in [BGV10, Lemma 2.3], is an extension of [Bec00a, Lemma 2.2]

to rational Ritz values. Here we give a different proof.

Lemma 8.1. If λk ≤ θ1 then

θ1−λk = min





∑N
j=1,j 6=k

w(λj)2

qm−1(λj)2
(λj − θ1) sm−1(λj)

2

w(λk)2

qm−1(λk)2 sm−1(λk)2
: sm−1 ∈ Pm−1, sm−1(λk) 6= 0



 .

The minimum is attained for sm−1(x) = χm(x)/(x− θ1).

If λk ∈ [θκ−1, θκ] then

(λk − θκ−1) (θκ − λk)

= min





∑N
j=1,j 6=k

w(λj)
2

qm−1(λj)2
(λj − θκ−1) (λj − θκ) sm−2(λj)

2

w(λk)2

qm−1(λk)2 sm−2(λk)2
: sm−2 ∈ Pm−2, sm−2(λk) 6= 0



 .

The minimum is attained for sm−2(x) = χm(x)/ ((x− θκ−1)(x− θκ)).

Proof. We only prove the second part λk ∈ [θκ−1, θκ]; the proof for the other part is

similar. Without loss of generality we assume that Vm is an orthonormal basis of Qm and
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Am = V ∗
mAVm. We set q := qm−1(A)−1b and first show that

α = 〈sm−2(A)q , (A − θκ−1I)(A− θκI)sm−2(A)q〉 (8.2)

is a nonnegative real number for all sm−2 ∈ Pm−2. Since sm−2(A)q ∈ Qm, we can use the

exactness of Rayleigh–Ritz approximations (cf. Lemma 4.6) to obtain

α = 〈sm−2(A)q , Pm(A− θκ−1I)(A− θκI)sm−2(A)q〉

= 〈sm−2(Am)V ∗
mb, (Am − θκ−1Im)(Am − θκIm)sm−2(Am)V ∗

mb〉

= 〈x , (Am − θκ−1Im)(Am − θκIm)x 〉,

where Pm = VmV
∗
m is the orthogonal projector onto Qm and x := sm−2(Am)V ∗

mb. Let

Am = XmDmX
∗
m be a spectral decomposition of Am with X∗

mXm = Im and Dm =

diag(θ1, . . . , θm), then

α =

m∑

j=1

(θj − θκ−1)(θj − θκ)|ejX
∗
mx |2,

which is obviously a nonnegative real number. Note that, by Lemma 4.5 (b), we get α = 0

in (8.2) if sm−2 is chosen such that (x − θκ−1)(x − θκ)sm−2(x) = χm(x). By replacing

A = UDU∗ in (8.2) we find

α =

N∑

j=1

w(λj)
2

qm−1(λj)2
(λj − θκ−1)(λj − θκ)sm−2(λj)

2,

from which the assertion of the lemma follows by separating the term with j = k.

To give a better understanding of the potential impact of Lemma 8.1, let us have a closer

look at the first part for polynomial Ritz values (i.e., qm ≡ 1). Since all Ritz values lie in

the open interval (λ1, λN ), we may choose k = 1 and obtain for dist(λ1,Θ) = θ1 − λ1 the

upper bound

dist(λ1,Θ) ≤ |λN − λ1|
maxj=2,...,N |sm−1(λj)|2

|sm−1(λ1)|2
N∑

j=2

w(λj)
2

w(λ1)2

for any polynomial sm−1 ∈ Pm−1 with sm−1(λ1) 6= 0. More explicit upper bounds are
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obtained by choosing sm−1 to take the value 1 at λ1 and be small on the convex hull of

all other eigenvalues, leading to the well-known Kaniel–Page–Saad estimate for extremal

eigenvalues [GV96, PPV95, Saa92b, TB97]. This construction is similar to the one in

the proof of the classical convergence bound for the CG method, which predicts linear

convergence in terms of the condition number of A: there the spectrum is also replaced

by its convex hull. However, for bounding dist(λ1,Θ) it is only necessary that sm−1 is

small on the discrete set {λ2, . . . , λN}. The optimal polynomials for both tasks can look

quite different, see Figure 8.1 for a simple example. Therefore a precise upper bound for

dist(λk,Θ) needs to incorporate the fine structure of the spectrum, see [Bec00a, HKV05,

Kui00].
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Figure 8.1: The absolute value of two polynomials of degree 17 taking the value 1 at 0. One
polynomial (solid red) is minimal on the discrete set {1, 2, . . . , 20}, and the other (solid blue) is
minimal on the interval [1, 20]. The maximal absolute value attained by these polynomials on their
respective sets of optimality is indicated by the dashed lines.

8.2 Asymptotic Distribution of Ritz Values

Let us first recall some recent asymptotic results about polynomial Ritz values. In the

following we use notions from logarithmic potential theory, such as potential, energy and

weak-star convergence, which were defined in Section 7.2.
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The Polynomial Krylov Case. There is a rule of thumb proposed by Trefethen & Bau

[TB97, p. 279] that dist(λk,Θ) is small for eigenvalues λk in regions of “too little charge”

for an equilibrium distribution. It was Kuijlaars [Kui00] who first quantified this rule

in an asymptotic sense using logarithmic potential theory (see also [Bec00a, HKV05]).

Since it is not possible to consider asymptotics for a single matrix A, we need a sequence

of Hermitian matrices A(N) ∈ C
N×N with a joint eigenvalue distribution described by

a probability measure σ. To be more precise, we denote by ΛN the set of eigenvalues

λ
(N)
1 < · · · < λ

(N)
N of A(N) and let

δN (ΛN ) :=
1

N

∑

x∈ΛN

δx

be the normalized counting measure of the eigenvalues. We then assume a weak-star

convergence δN (ΛN )
∗→ σ. Sequences of matrices having a joint eigenvalue distribution

occur quite frequently in applications, the most prominent examples being finite sections of

Toeplitz operators, see for instance [BS99]. Matrices obtained by finite-difference or finite-

element discretization of PDEs with varying mesh width can also have a joint eigenvalue

distribution after suitable rescaling [BC07].

In addition to the above we require a sequence of vectors b(N) ∈ C
N and a fixed number

t ∈ (0, 1). Associated with A(N) and b(N) are polynomial Ritz values of order m = dtNe,
which we denote by θ

(N)
1 < · · · < θ

(N)
m and collect in the set ΘN . Under mild assumptions

Kuijlaars showed that the distribution of these Ritz values is given by a measure µt in

the sense that δN (ΘN )
∗→ µt, where µt solves a constrained equilibrium problem from

logarithmic potential theory. More precisely, µt is the unique minimizer of the (mutual)

logarithmic energy

I(µ) = I(µ, µ), I(µ1, µ2) =

∫ ∫
log

1

|x− y| dµ1(x) dµ2(y) (8.3)

among all positive Borel measures µ of total mass ‖µ‖ = t satisfying µ ≤ σ. The minimal

energy property (8.3) is a consequence of the fact that Ritz values are zeros of discrete

orthogonal polynomials and hence optimal in a certain sense (cf. Lemma 8.1). This re-

lationship allows one to make use of weak asymptotics for discrete polynomials due to

Rakhmanov [Rak96], Dragnev & Saff [DS97], Van Assche & Kuijlaars [KV99], Becker-

mann [Bec00b], and others [KR98, BR99, CV05]. The constraint µ ≤ σ results from
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the fact that Ritz values are nowhere denser than eigenvalues, which follows from the

well-known interlacing property (cf. [Par98, Theorem 10.1.1]):

In every open interval (θj , θj+1) there is at least one eigenvalue of A. (8.4)

We conclude that in parts of the real line where the constraint is active there are asymp-

totically as many Ritz values as eigenvalues. Let Ft be the maximum of the logarithmic

potential

Uµt(x) =

∫
log

1

|x− y| dµt(y)

on the real line (which is also the maximum in the complex plane) and define the set

Σt = {x ∈ R : Uµt(x) = Ft}. Points outside Σt are of “too little charge” for an equilibrium

distribution and Kuijlaars proved that eigenvalues lying in a neighborhood of a point

x ∈ R \ Σt ⊆ R \ supp(σ − µt) are approximated by Ritz values with a geometric rate.

The close connection between charge distributions and logarithmic potentials allows us to

think of Ritz values as electrons placed on A’s spectral interval, moved to electrostatic

equilibrium (the state of minimal energy (8.3)) and satisfying the interlacing property

(8.4). Let us give an illustrative example.

Example 8.2. We consider a diagonal matrix A ∈ R
N×N with equidistant eigenvalues in

[−1, 1] and a vector b ∈ R
N with all entries being one, N = 100. The eigenvalue density

is dσ/dx = 1/2. In Figure 8.2 (top) we show the density of the constrained equilibrium

measure µt of total mass t = 0.75 and the associated potential Uµt , which attains its

maximal value

Ft = t+ t · log 2√
1 − t2

− 1

2
log

1 + t

1 − t
≈ 0.607

on the interval Σt = [−
√

1 − t2,
√

1 − t2] (these expressions are given in [Rak96]). We

expect that the Ritz values of order m ≥ 75 start converging to eigenvalues of A that are

outside Σt. This is confirmed in the lower figure, where we plot the Ritz values of all orders

m = 1, . . . , 100 and the endpoints of Σt (black parabola) for varying t = m/N . We use

different colors, listed in Table 8.1, to indicate the distance of each Ritz value to a closest

eigenvalue of A. As expected, the Ritz values start converging to the extremal eigenvalues

first since these have a low density compared to the (unconstrained) equilibrium measure

of the interval [−1, 1]. Although the above statements are only of an asymptotic nature,

they can obviously provide good predictions for matrices of moderate size.
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Figure 8.2: Constrained equilibrium problem and its connection to the convergence of polynomial
Ritz values for a matrix with N = 100 equidistant eigenvalues in [−1, 1]. The black parabola in
the lower figure indicates the endpoints of the interval Σt (t = m/N), outside of which the Ritz
values have converged.

Color Distance of a Ritz value θ to the spectrum

Red dist(θ,Λ(AN )) < 10−7.5

Yellow 10−7.5 ≤ dist(θ,Λ(AN )) < 10−5.0

Green 10−5.0 ≤ dist(θ,Λ(AN )) < 10−2.5

Blue 10−2.5 ≤ dist(θ,Λ(AN ))

Table 8.1: Color codes for Ritz values
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The Rational Krylov Case. Generalizing the works of Kuijlaars [Kui00] and Beckermann

[Bec00a], asymptotic results for rational Ritz values were obtained in [BGV10]. In this case

one needs to take into account the influence of the poles ξ
(N)
1 , . . . , ξ

(N)
m−1, which are collected

in a multiset ΞN and assumed to have a weak-star limit δN (ΞN )
∗→ νt (this measure counts

poles according to their multiplicity). These poles cause technical difficulties when lying

in the spectrum of A, for example, and the major part of [BGV10] deals with this case.

This critical situation is primarily of interest for eigenvalue computations, where a shift

is often placed in proximity of a sought-after eigenvalue. In the context of approximating

matrix functions f(A)b, however, the poles are typically away from the numerical range

W(A). To keep the exposition simple we therefore limit ourselves to the case of strict

separation between eigenvalues and poles.

Assumption 1: There exist disjoint compact sets Λ and Ξ such that for all N there holds

ΛN ⊂ Λ and ΞN ⊂ Ξ.

Two more technical assumptions are necessary. Logarithmic potential theory provides

asymptotics in an Nth root sense and hence the eigenvalues ΛN should not cluster ex-

ponentially (this situation could not be resolved by these asymptotics). The following

assumption prevents exponential clustering, but still allows for equidistant eigenvalues,

Chebyshev eigenvalues (the eigenvalues of the 1D Laplacian), and more general sets of

points [DS97]. It also guarantees that Uσ is continuous [BGV10, Lemma A.4].

Assumption 2: For any sequence ΛN 3 λ(N) → λ for N → ∞ there holds

lim sup
δ→0+

lim sup
N→∞

1

N

∑

0<|λ(N)
j −λ(N)|≤δ

log
1

|λ(N)
j − λ(N)|

= 0.

Rational Ritz values ΘN can only approximate eigenvalues whose associated eigenvec-

tors are present in the starting vector b(N). We therefore need to ensure that b(N) has

sufficiently large eigencomponents in all eigenvectors of A(N).

Assumption 3: The eigencomponents w(λ
(N)
j ) ∈ [0, 1] defined in (8.1) satisfy

lim inf
N→∞

min
j
w(λ

(N)
j )1/N = 1.

We recall from above that polynomial Ritz values distribute like electrons placed on the

spectral interval of A moving to electrostatic equilibrium and being nowhere denser than
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the eigenvalues. In the rational Krylov case these electrons are attracted by positive

charges (the poles of the rational Krylov space) whose distribution is described by the

measure νt. The rational Ritz values also satisfy the interlacing property (8.4) because they

are polynomial Ritz values for a modified starting vector. From this physical intuition it

seems natural that the rational Ritz values distribute according to a measure µt minimizing

the energy

I(µ− νt) = I(µ) − 2I(µ, νt) + I(νt) ≥ 0

among all positive Borel measures µ of total mass ‖µ‖ = t satisfying the constraint µ ≤ σ.

Since I(νt) may be infinite (e.g., if νt has mass points), it is more adequate to minimize

I(µ) − 2I(µ, νt) instead. As in the polynomial case we expect that rational Ritz values

start converging to eigenvalues in regions of the real line where the constraint is active.

Indeed this happens with a geometric rate as asserted in the following theorem [BGV10,

Thm. 3.1].

Theorem 8.3. Under the above assumptions the rational Ritz values of order m = dtNe
have an asymptotic distribution described by δN (ΘN ) → µt, where µt is the unique min-

imizer of I(µ) − 2I(µ, νt) among all positive Borel measures µ of total mass ‖µ‖ = t

satisfying µ ≤ σ.

Define Ft as the maximum of Uµt−νt in the whole complex plane and let Σt = {z ∈ C :

Uµt−νt(z) = Ft}. Let J ⊂ R \ Σt ⊂ R \ supp(σ − µt) be a closed interval. Then all

eigenvalue sequences {λ(N) ∈ ΛN} ⊂ J with λ(N) → λ for N → ∞ satisfy

lim
N→∞

dist(λ(N),ΘN )1/N = exp(2(Uµt−νt(λ) − Ft)),

with the possible exclusion of at most one unique “exceptional eigenvalue” in each set ΛN .

Example 8.4. As in Example 8.2 we consider a diagonal matrix A ∈ R
N×N with equidis-

tant eigenvalues in [−1, 1] and the vector b ∈ R
N with all entries being one, N = 100. All

poles of the rational Krylov space are at the point ξ = 1.1, so that in iteration m we have

νt = t ·δ1.1 with t = m/N . In Figure 8.2 (top) we show the density of the constrained equi-

librium measure µt of total mass t = 0.75 and the associated potential Uµt−νt . We have

computed µt by minimizing the energy of a measure with piecewise linear density using an

active set method implemented in Matlab’s quadprog. We expect that the Ritz values

of order m ≥ 75 start converging to eigenvalues of A that are outside the set Σt. This is
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confirmed in the lower figure, where we plot the Ritz values of all orders m = 1, . . . , 100

and the endpoints of Σt (black curve) for varying t = m/N . We use the color codes of

Table 8.1 to display the distance of each Ritz value to a closest eigenvalue of A. We

observe that the rational Ritz values start converging to the right-most eigenvalues of A

first, which are the ones closest to the pole ξ.

We note that by Theorem 5.13 the interpolation points of the shift-and-invert method

with A− ξI were distributed according to the same measure µt.
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Figure 8.3: Constrained weighted equilibrium problem and its connection to the convergence of
rational Ritz values for a matrix with 100 equidistant eigenvalues in [−1, 1]. All poles of the rational
Krylov space are at the point ξ = 1.1. The black curve in the lower figure indicates the endpoints
of the interval Σt (t = m/N), outside of which the rational Ritz values have converged.



8.3. Superlinear Convergence 131

8.3 Superlinear Convergence

The analytic description of the convergence of polynomial Ritz values is an important

step towards understanding the superlinear convergence behavior of the CG method (see

[BK01a, BK01b, BK02] and the reviews [DTT98, Kui06, Bec06]). Superlinear convergence

can also be observed with discrete rational approximation and has been studied, e.g., in

connection with the ADI method [BG10]. Also rational Rayleigh–Ritz approximations for

matrix functions show superlinear convergence effects and in fact we have already seen

them, for example in Figure 7.7 (top) on page 110, where we approximated the resolvent

function f τ (A)b, f τ (z) = (z − τ)−1, for a symmetric positive definite matrix A from a

rational Krylov space with poles on the negative real axis. Note that the error curves

belonging to small parameters close to τ = 1i start converging superlinearly after about

10 iterations and ultimately “overtake” the curves belonging to large parameters close to

τ = 1000i. In the following we study these effects with the help of a simple example.

We consider the symmetric Toeplitz matrix

A =




q0 q1 q2

q1 q0 q1
. . .

q2 q1 q0
. . .

. . .
. . .

. . .



∈ R

N×N , with q ∈ (0, 1).

It is known [KMS53, BK01b] that the asymptotic eigenvalue distribution for N → ∞ is

described by a measure σ supported on the positive interval [α, β] with density

dσ

dx
(x) =

1

πx
√

(x− α)(β − x)
, α =

1 − q

1 + q
, β =

1 + q

1 − q
.

One can show [BGV10, §4] that if all poles of the rational Krylov space are at a point

ξ > β, i.e., νt = t · δξ, then the set Σt from Theorem 8.3 is the interval Σt = [α, b(t)] with

b(t) = min

{
β,

ξ

t2β(ξ − α) + 1

}
.

We choose N = 100 and q = 1/3 so that the matrix A has eigenvalues in Σ = [1/2, 2].

In Figure 8.4 (top) we illustrate the convergence of the rational Ritz values obtained

with a rational Krylov space with all poles in ξ = 2.5 and a random starting vector b



132 Chapter 8. Rational Ritz Values

with normally distributed entries. The black curve is the right endpoint of Σt plotted

for varying t ∈ (0, 1). This curve predicts that the rational Ritz values of order m ≥ 25

start converging to the right-most eigenvalues of A, which is in good agreement with the

observed convergence.

Let us approximate the resolvent function f τ (A)b, f τ (z) = (z − τ)−1, from the same

rational Krylov space for the three parameters

τ1 = 0, τ2 = 0.32, τ3 = 2.01,

which are chosen such that with the technique described in Section 7.4 we predict linear

convergence at rates

R1 = 1.67, R2 = 1.39, R3 = 1.39,

respectively. The solid lines in Figure 8.4 (bottom) show the corresponding convergence

curves, which look approximately linear for orders m < 25. For m ≥ 25, that is, when the

right-most rational Ritz values start converging to eigenvalues of A, we observe superlinear

convergence. An intuitive explanation for this behavior goes as follows: by Theorem 4.8

we know that the rational function rτ
m underlying the Rayleigh–Ritz approximation f τ

m =

rτ
m(A)b interpolates the function f τ at the rational Ritz values θ1, . . . , θm. Since these

Ritz values approximate very well the eigenvalues outside the interval Σt = [1/2, b(t)],

t = m/N , and hence the interpolation error at these eigenvalues is already small, the

near-best Rayleigh–Ritz extraction puts most of its “effort” into reducing the error on the

remaining set Σt. The near-best approximation problem thus takes place on shrinking

sets Σt. If R(t, τ) denotes the convergence rate of rational best approximation for f τ on

Σt with all poles in ξ, then we expect (similar to the reasoning in Section 7.5.3) that the

Rayleigh–Ritz approximation of order m reduces the initial error at least by the factor

Em(τ) = [R(1/N, τ)R(2/N, τ) · · ·R(m/N, τ)]−1 , (8.5)

and this quantity is shown in Figure 8.4 (bottom) for the parameters τ1, τ2, τ3 as dashed

lines. The convergence acceleration clearly depends on the location of the parameter τ

relative to the set Σt. For example, the parameters τ1 and τ2 benefit less from superlinear

convergence than τ3, because they lie to the left of Σt and the rational Ritz values converge

on the other side. Initially, that is, for m < 25, the error curves for τ2 and τ3 are
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parallel because we have chosen these parameters such that the corresponding asymptotic

convergence rates are equal. However, for m ≥ 25 this linear rate would be a quite

pessimistic prediction for the actual convergence. All these effects are reflected in the

quantity (8.5). Note that

[Em(τ)]1/N = exp


− 1

N

m∑

j=1

logR(j/N, τ)


→ exp

(
−
∫ t

0
logR(s, τ) ds

)

as N → ∞ and m/N → t. In the polynomial Krylov case we have R(t, τ) = exp(gC\Σt
(τ)),

where gC\Σt
denotes the Green’s function of C\Σt, and if τ = 0 we recover the asymptotic

error formula for the CG method derived more rigorously in [BK01b, Thm. 2.1].
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Figure 8.4: The convergence of rational Ritz values (top) yields superlinear convergence of
Rayleigh–Ritz approximations for the resolvent function f τ (A)b, f τ (z) = (z − τ)−1. The conver-
gence acceleration depends on the location of the parameter τ relative to the set Σt of unconverged
Ritz values.



9 Numerical Experiments

Why does Matlab

have a sin function,

but no forgive function?

P. J. Acklam

In this chapter we test and illustrate various aspects of rational Krylov methods by nu-

merical examples. These examples include Maxwell’s equations in the time and frequency

domain, the approximation of the sign function of a QCD matrix, an advection–diffusion

problem, and the solution of a wave equation. All computations are done in Mathworks

Matlab (release 2008b) on a quad-core AMD Opteron processor running Suse Linux

Enterprise Server (version 10). The FEM discretizations are generated by the Comsol

Multiphysics package (version 3.5). In the first two examples we use the direct solver

Pardiso (version 3.2), which is invoked through a Mex-interface from Matlab and al-

lows one to reuse the information of the analysis step if systems with identical nonzero

structure are solved.

9.1 Maxwell’s Equations

9.1.1 Time Domain

The modeling of transient electromagnetic fields in inhomogeneous media is a typical task

arising, for example, in geophysical prospecting [OH84, GHNS86, DK94]. Such models

135
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can be based on the quasi-static Maxwell’s equations

∇× e + µ∂τh = 0 , (9.1)

∇× h − σe = j e,

∇ · h = 0,

where

e = e(x , τ) is the electric field,

h = h(x , τ) is the magnetic field,

σ = σ(x ) is the electric conductivity,

µ = 4π · 10−7 is the magnetic permeability, and

j e = j e(x , τ) is the external source current density.

The variables x = [x, y, z]T and τ correspond to space and time, respectively. In geophysics

the plane z = 0 is the earth–air interface and z increases downwards. After eliminating h

from (9.1) we obtain the second order partial differential equation

∇×∇× e + µσ∂τe = −µ∂τ j
e (9.2)

for the electric field. The source term j e typically results from a known stationary trans-

mitter with a driving current that is shut off at time τ = 0, i.e.,

j e(x , τ) = q(x )H(−τ) (9.3)

with the vector field q denoting the spatial current pattern and the Heaviside unit step

function H.

To reduce the problem to two space dimensions we assume now that σ and j e are invariant

in the y-direction and the vector field j e(x , τ) = [0, je(x, z, τ), 0]T points only into the y-

direction. In this case the electric field e(x , τ) = [0, e(x, z, τ), 0]T has only one component

and hence is divergence free. Using the identity ∇×∇× e = ∇(∇ · e)−∇2e in (9.2), we
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arrive at a scalar bidimensional heat equation for e = e(x, z, τ),

−∇2e+ µσ∂τe = −µ∂τ j
e. (9.4)

To restrict this equation to the region of interest z > 0 (which is the earth), we impose an

exact boundary condition at the earth–air interface of the form

∂ze = Te+ µ∂τ j
e, for z = +0,

where T is a linear nonlocal convolution operator in x given in [GHNS86]. This condition

ensures that the tangential component of e is continuous across the line z = 0 and that

the Laplace equation −∇2e = 0 is satisfied for z < 0. As spatial domain we consider a

rectangle Ω = (−105, 105) × (0, 4000) and we assume, in addition to the exact boundary

condition on the top, homogeneous Dirichlet data on the lower, left and right boundary

of Ω. The structure of the conductivity σ in our model is sketched in Figure 9.1 (top).

We assume that for times τ < 0 the source term je corresponds to a steady current in a

double line source located on the earth–air interface, and that this source is shut off at

time τ = 0. The thereby induced electric field at time τ0 = 10−6 is assigned as initial

value e0 for (9.4) (in the short time interval [0, τ0] the electric field does not reach any

inhomogeneous conductivity structures of our model and is known analytically [OH84],

cf. Figure 9.1 (middle)). Under these assumptions the discretization of (9.4) using linear

finite elements on triangles yields a linear ordinary differential equation

Me ′(τ) = Ke(τ), e(τ0) = e0

with symmetric matrices K, M ∈ R
N×N and vectors e0, e(τ) ∈ R

N (N = 20134). The

solution of this problem is explicitly given as

e(τ) = f τ (A)b, where f τ (z) = e(τ−τ0)z , A = M−1K, b = e0.

Note that the matrix A is in general not symmetric, but its eigenvalues are real since it is

similar to M−1/2KM−1/2. In fact, we could symmetrize the problem using the identity

f τ (M−1K) = M−1/2f τ (M−1/2KM−1/2)M1/2,
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but this requires additional operations with the matrices M−1/2 and M1/2. Therefore

we prefer not to do this symmetrization and no complications will arise when (formally)

working with A. Since

(I −A/ξ)−1A = (I −M−1K/ξ)−1M−1K = (M −K/ξ)−1K,

we have to solve linear systems with the matrix M − K/ξ, which is still sparse since K

and M have similar nonzero patterns and also symmetric if the pole ξ is real.

A computational task, arising for example with inverse problems, is to model the transient

behavior of the electric field by approximating f τ
m for many time parameters τ ∈ T .

In our example T contains 25 logspaced points in the interval [τ0 = 10−6, 10−3]. An

approximation f τ
m is considered accurate enough if ‖f τ (A)b − f τ

m‖ ≤ 10−8. The exact

solution f τ (A)b is computed by evaluating the best uniform rational approximation of

type (16, 16) to the exponential function on (−∞, 0] obtained by the Carathéodory–Fejér

method (see [TWS06, Fig. 4.1]). A Carathéodory–Fejér approximation of type (9, 9) would

actually suffice to achieve the desired stopping accuracy of 10−8. This rational function

has 4 complex conjugate poles so that we would need to solve (4+ 1) · 25 = 125 (complex)

linear systems of equations, which takes Pardiso about 15 seconds if the analysis step is

done exactly once for all systems.

We test two different sequences of real poles for the rational Krylov space Qm. The

first sequence contains 3 cyclically repeated poles computed for the spectral inclusion set

Σ = [−∞, 0] by the technique described in Section 7.6.1 (see Example 7.14 on page 114).

Corollary 7.13 tells us that at most m = 70 iterations are required to achieve an absolute

accuracy of 10−8. The second sequence are the “Zolotarev poles” given in [DKZ09] (cf. Sec-

tion 7.6.2). This sequence requires information about the spectral interval of A, which we

estimated by a few iterations of the rational Arnoldi algorithm as Λ(A) ⊆ [−108,−1]. By

(7.20) we expect an asymptotic convergence rate R = 1.28.

Figure 9.2 shows the convergence curves of Rayleigh–Ritz approximations extracted from

rational Krylov spaces with the two different pole sequences. The number of subroutine

calls making up the essential part of the computation and the overall time spent in each

subroutine are given in Table 9.1. The timings are based on the reports of Matlab’s

profiler tool and averaged over ten runs of the rational Arnoldi algorithm. In both cases
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we use identical implementations of this algorithm, the only difference being the pole

sequences. The analysis step of Pardiso is done exactly once because the nonzero struc-

ture of M −K/ξ is independent of ξ. The advantage of cyclically repeated poles becomes

obvious in the time spent with factorizing these matrices. After obtaining the reduced

rational Arnoldi decomposition AVmKm = Vm+1Hm with ‖b‖Vme1 = b, the sought-after

Rayleigh–Ritz approximation is computed as f τ
m = Vmf

τ (HmK
−1
m )‖b‖e1. Here we do not

make any use of orthogonality and hence no reorthogonalization is required in the rational

Arnoldi algorithm and the number of inner products and vector-vector sums (in Table 9.1

subsumed under “orthogonalization steps”) is m(m+1)/2. Note that the spectral interval

of A is already large enough so that the cyclically repeated poles also outperform the

Zolotarev poles in terms of required iterations m.
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Figure 9.1: On the top is sketched a cutout of the spatial domain showing the conductivity structure
and the location of the double line source on the earth–air interface. The other two pictures show
snapshots of the electric field at initial time τ0 = 10−6 and at τ = 10−4.
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Figure 9.2: Error curves of Rayleigh–Ritz approximations for f τ (A)b = e(τ−τ0)Ab extracted from
a rational Krylov space with cyclically repeated poles (top) and Zolotarev poles (below).

Cyclically repeated poles Zolotarev poles

Iterations m 45 62

Pardiso analysis 1 (148 ms) 1 (148 ms)

Pardiso factorizations 3 (238 ms) 62 (4920 ms)

Pardiso solves 45 (325 ms) 62 (448 ms)

Orthogonalization steps 1035 (282 ms) 1953 (533 ms)

Compute f τ
m 25 (203 ms) 25 (288 ms)

Total (1196 ms) (6337 ms)

Table 9.1: Number of subroutine calls and timings. The problem size is N = 20134.
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9.1.2 Frequency Domain

Applying the Fourier transform

ê(x , ω) =

∫ ∞

−∞
e(x , t) exp(−iωt) dt, ω ∈ R,

to (9.2) and (9.3), using the fact that H(−τ) transforms to multiplication by −1/(iω), we

obtain the equation

∇×∇× ê + iωµσê = µq . (9.5)

A common approach used in geophysics is to compute ê(x , ω) for many frequencies ω in

a real interval [ωmin, ωmax] and to synthesize the time-domain solution by inverse Fourier

transform [NHA86]. As spatial domain we consider a cube with side-lengths 1000 having

a layered conductivity structure with the top layer corresponding to air (cf. Figure 9.3).

The finite-element discretization of (9.5) reads as

Kê + iωM ê = µq

with symmetric matrices K, M ∈ R
N×N and vectors ê = ê(ω), q ∈ R

N (N = 67937),

and the solution is given in terms of the resolvent function

ê(ω) = f τ (A)b, where f τ (z) = (z − τ)−1, τ = −iω, A = M−1K, b = µM−1q .

The parameters τ are elements of an imaginary parameter interval T = i[ωmin, ωmax]. In

our example we choose T = i[103, 109] and approximate f τ (A)b for 25 logspaced param-

eters τ ∈ T . Again we test two different sequences of poles. The first sequence consists

of real poles computed by the method introduced in Section 7.5.3, i.e., these poles are

obtained by successively maximizing the asymptotic convergence rate R̃(τ) expected for

all parameters τ ∈ T . The resulting overall convergence rate is the minimum of the geo-

metric mean of all single convergence rates. The second sequence are imaginary Zolotarev

poles in T (cf. Section 7.5.2). For the computation of both sequences we assume that

Λ(M−1K) ⊂ Σ := (−∞, 0].

It is surprising that the real poles cluster in a few points, e.g., among 100 computed poles

the values 103 and 109 (which are asymptotically optimal for the extremal parameters in T )
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are repeated for 22 times each, cf. Figure 9.4 (top). To reduce the number of factorizations

it seems reasonable to group the poles occuring in clusters. To this end we partition

the interval [ξmin, ξmax] containing the real poles ξj in 100 subintervals of geometrically

increasing length and replace the ξj lying in one subinterval by their geometric mean

(j = 1, . . . ,m). This way we can reduce the number of distinct poles from 100 to 13,

without noticeable degradation of convergence. Such a reduction seems not possible for

the imaginary Zolotarev poles since these are spread all over the parameter interval T , see

Figure 9.4 (bottom).

In Figure 9.5 we show the residual curves of Rayleigh–Ritz approximations computed with

identical implementations of the rational Arnoldi algorithm. As expected, the method

with Zolotarev poles on the imaginary axis converges at a faster rate R = 1.45 than the

method with real poles, which converges at rate R = 1.27. However, considering the com-

putation times given in Table 9.2 it becomes obvious that complex arithmetic should be

avoided: compared to using the real pole sequence the method with imaginary Zolotarev

poles requires more than the 8-fold total computation time. The accuracy loss of about

5 digits indicates that the problem we are solving is very sensitive to perturbations. This

phenomenon should be subject of future research. First experiments indicate that appro-

priate scalings of K and M , known to reduce the sensitivity of generalized eigenproblems

[Bet08], improve the final accuracy by 1 or 2 digits.



Figure 9.3: Computational domain and conductivity structure for the 3D Maxwell problem in the
frequency domain.
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Figure 9.5: Residual curves (solid) and asymptotic convergence rates (dashed) of Rayleigh–Ritz
approximations for the resolvent function extracted from a rational Krylov space with real poles
(top) and imaginary Zolotarev poles (below).

Real poles Zolotarev poles

Iterations m 81 43

Pardiso analysis 1 (1.0 s) 1 (1.0 s)

Pardiso factorizations 13 (50.1 s) 43 (547 s)

Pardiso solves 81 (10.6 s) 43 (9.3 s)

Orthogonalization steps 3321 (3.4 s) 946 (1.7 s)

Compute f τ
m 25 (2.4 s) 25 (2.1 s)

Total (67.5 s) (561.1 s)

Table 9.2: Number of subroutine calls and timings. The problem size is N = 67937.
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9.2 Lattice Quantum Chromodynamics

The fast computation of the sign function is crucial for simulations in lattice quantum

chromodynamics, a physical theory that describes strong interactions between quarks of

the constituents of matter [Hig08, §2.7]. A variety of numerical methods have been pro-

posed for this computation and—according to a remark in [EFL+02, p. 5]—all of them

turn out to be polynomial Krylov methods. We consider the approximation of sgn(Q)v ,

where Q ∈ C
N×N is the Hermitian form of the Wilson–Dirac operator introduced by

Neuberger [Neu98] (see Figure 9.6 for its nonzero structure) and v ∈ C
N is a random

vector (N = 3072). Using the identity sgn(z) = z/
√
z2 this problem can be recast as the

computation of f(A)b with f(z) = z−1/2, A = Q2 and b = Qv . Using Matlab’s eigs

we estimate Λ(A) ⊆ Σ = [7.5 · 10−4, 5.1]. We extract Rayleigh–Ritz approximations from

an inexact rational Krylov space, which results from solving the linear systems involved

by the CG method with a maximal residual norm of 10−10. As pole sequences we use

generalized Leja points on the condenser (Σ, (−∞, 0]) and the poles of Zolotarev’s best

relative approximation for f on Σ of type (12, 12) repeated cyclically. In the former case

we expect an asymptotic convergence rate R = 2.34 by (7.8), and the Zolotarev poles

should be about twice as good (cf. Remark 7.7). To make use of the estimate (6.8) for

the sensitivity error it is necessary that the rational Krylov basis Vm is orthogonal and

therefore we run the rational Arnoldi algorithm with one reorthogonalization. The error

curves (black solid curves) for both pole sequences are shown in Figure 9.7. We observe

that the error curve for the method with the Zolotarev poles suddenly drops down to 10−8

in iteration m = 13, which happens due to the near-optimality property of Rayleigh–Ritz

extraction when all 12 poles of the Zolotarev approximation are contained in the rational

Krylov space. As expected, about twice as many iterations are required with generalized

Leja poles to achieve the same accuracy. We also show the a-posteriori error estimates

from Section 6.6, where we have added to all curves the estimate for the sensitivity error

from Section 6.3. Therefore the error estimates in Figure 9.7 stagnate, and the stagna-

tion level agrees well with the stagnation of the error curves caused by the inexact linear

system solves. Except for the lower bound (6.15), which shows irregular peaks, all error

estimators perform reliable.
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We remark that the direct evaluation of Zolotarev’s rational approximation in partial

fraction form by a shifted CG method was advocated in [EFL+02], and the above described

“rational” Krylov method is clearly less efficient because the linear systems are solved by

an unpreconditioned polynomial Krylov method (see the discussion on page 68). However,

taking the detour of first computing a basis of a rational Krylov space and then extracting

approximations from it offers the possibility of preconditioning each shifted linear system

independently, which is (to our best knowledge) not possible if various partial fractions

are approximated simultaneously from the same polynomial Krylov space.

0 1000 2000 3000

0

1000

2000

3000

Figure 9.6: Nonzero structure of a Wilson–Dirac matrix Q. This matrix is of size 3072× 3072 and
has 122880 nonzeros.
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Figure 9.7: Error curves and estimates of inexact Rayleigh–Ritz approximations for the QCD
problem sgn(Q)v using generalized Leja points as poles (top, the asymptotic convergence rate
is also shown) and Zolotarev’s poles of order 12 (bottom). We added to all estimates for the
approximation error the estimated sensitivity error (6.8) in order to predict the level of stagnation
caused by the inexact linear system solves.
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9.3 An Advection–Diffusion Problem

We consider the initial value problem

∂τu =
1

Pe
∆u− a · ∇u in Ω = (−1, 1) × (0, 1),

u = 1 − tanh(Pe) on Γ0,

u = 1 + tanh((2x + 1)Pe) on Γin,

∂u

∂n
= 0 on Γout,

u(x , 0) = u0(x ) in Ω

for the advection–diffusion equation, which is a popular benchmark for discretizations of

advection–dominated problems, see [SH82]. The convective field is given as

a(x, y) =


 2y(1 − x2)

−2x(1 − y2)


 , (x, y) ∈ Ω,

and the boundary Γ = ∂Ω is divided into the inflow boundary Γin := [−1, 0] × {0}, the

outflow boundary Γout := [0, 1] × {0} and the remaining portion Γ0, see Figure 9.8 (top).

The Péclet number Pe is a nondimensional parameter describing the strength of advection

relative to diffusion and therefore also how far the discrete operators are from symmetric.

The finite-element discretization of the advection–diffusion operator with Pe = 100 yields

a linear ordinary differential equation

Mu ′(τ) = Ku(τ) + g , u(0) = u0,

with nonsymmetric matrices K, M ∈ R
N×N and a constant inhomogeneous term g ∈ R

N

resulting from the inhomogeneous Dirichlet boundary condition (N = 2912). We then

approximate the matrix exponential part of the solution

u(τ) = exp(τA)(u0 +K−1g) −K−1g , A = M−1K

at time τ = 1, starting with the initial value u(0) = u0 = 0 , from a rational Krylov space

with all poles ξj = 10. To simulate the effect of inexact solves we use the GMRES method

to solve the linear systems involved with a maximal residual norm of 10−10.
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In Figure 9.8 (bottom) we show the spectrum Λ(A) and parts of the numerical range

W(A). For the error bound (6.16) we would have to search the set W(A) for a maximum

of the function gm(ζ) defined in (6.14), but this is surely not practical. Instead we only

search the interval [λmin, λmax] spanned by the smallest and largest real eigenvalue of A.

This no longer guarantees an error bound, but it can still serve as an error estimate, see

Figure 9.9. Again we have added to all error estimates and bounds the estimate for the

sensitivity error from Section 6.3. Note that the level of stagnation due to the inexact

solves is predicted well, even though A is highly nonnormal.
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Figure 9.8: Spatial domain and a solution of the advection–diffusion problem. Below is shown the
spectrum of A and parts of its numerical range.
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Figure 9.9: Error curves and estimates of inexact Rayleigh–Ritz approximations for the advection–
diffusion problem. We added to all estimates for the approximation error the estimated sensitivity
error (6.8).



152 Chapter 9. Numerical Experiments

9.4 A Wave Equation

For the differential operator A = −∂xx the problem

∂ττu = −Au in Ω = (0, π), τ > 0,

u(0, τ) = u(π, τ) = 0 for all τ ≥ 0,

u(x, 0) = u0(x) for all x ∈ Ω,

∂τu(x, 0) = u1(x) for all x ∈ Ω,

has the solution

u(x, τ) = cos(τA1/2)u0(x) + τ sinc(τA1/2)u1(x),

where sinc(x) = sin(x)/x, provided that the initial data is smooth enough, i.e., u0 ∈ D(A)

and u1 ∈ D(A1/2) (cf. [GH08]). The eigenvalues and eigenvectors of A respecting the

homogenous Dirichlet boundary conditions are

λj = j2, ûj(x) =
√

2/π sin(jx) (j = 1, 2, . . .).

To obtain a simple example we let

u(x, τ) = ecos(τ+x) − ecos(τ−x),

which is obviously a solution of the above differential equation with u(x, 0) = u0(x) ≡ 0.

We therefore have

u(x, τ) = f τ (A)b, where f τ (z) = τ sinc(τz1/2), b = ∂τu(x, 0) = u1.

The chebfun system [THP+09, PPT10] allows us, in conjunction with the chebop func-

tionality [DBT08], to do Matlab computations with the unbounded operator A (based on

spectral collocation methods on Chebyshev grids of automatically determined resolution).

In particular, we can easily implement a rational Arnoldi algorithm by first defining the

operators A and I with the commands
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omega = domain(0,pi);

A = -diff(omega,2);

I = eye(omega);

A typical rational Arnoldi step then reads as

x = (I-A/xi(j) & ’dirichlet’) \ (A*y);

where x and y are continuous functions (chebfuns) on the interval [0, π], followed by the

orthogonalization of x with respect to the inner product y’*x of L2([0, π]). In Figure 9.10

we show the error of Rayleigh–Ritz approximations of orderm = 3 computed for 5 different

parameters τ = 2jπ/5 (j = 1, . . . , 5). All poles of the rational Krylov space are chosen

rather arbitrary at ξ = −10. For m = 4 the Rayleigh–Ritz approximations become already

visually indistinguishable from the exact solutions u(x, τ) (shown as dashed lines) and for

m = 10 the L2-error is less than 10−8. In Figure 9.11 the rational Ritz values of orders

m = 1, . . . , 100 are plotted in different colors indicating the distance to a closest eigenvalue

of A (cf. Table 8.1 on page 127). As expected, the rational Ritz values start converging

near the left endpoint of the spectrum close to the pole ξ.
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Figure 9.10: Rayleigh–Ritz approximations of order m = 3 for the 1D wave equation evaluated for
different time parameters τ (solid lines) and the exact solutions u(x, τ) (dashed lines).
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Figure 9.11: Rational Ritz values for the differential operator A = −∂xx with homogeneous Dirich-
let boundary conditions. All poles of the rational Krylov space are at ξ = −10.
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Poincaré operator. Technical Report RAL-TR-2008-003, Rutherford Apple-

ton Laboratory, Didcot, UK, 2008.

[All99] E. J. Allen. Stochastic differential equations and persistence time for two

interacting populations. Dyn. Contin. Discrete Impuls. Systems, 5:271–281,

1999.

[And81] J.-E. Andersson. Approximation of e−x by rational functions with concen-

trated negative poles. J. Approx. Theory, 32:85–95, 1981.

[Arn51] W. E. Arnoldi. The principle of minimized iterations in the solution of the

matrix eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951.

155



156 Bibliography

[AS84] M. Abramowitz and I. A. Stegun. Pocketbook of Mathematical Functions.

Verlag Harri Deutsch, Thun, 1984.

[Bag67] T. Bagby. The modulus of a plane condenser. J. Math. Mech., 17:315–329,

1967.

[Bag69] T. Bagby. On interpolation by rational functions. Duke Math. J., 36:95–104,

1969.

[Bai02] Z. Bai. Krylov subspace techniques for reduced-order modeling of large-scale

dynamical systems. Appl. Numer. Math., 43:9–44, 2002.

[BB03] M. Benzi and D. Bertaccini. Approximate inverse preconditioning for shifted

linear systems. BIT, 43:231–244, 2003.

[BC07] B. Beckermann and S. S. Capizzano. On the asymptotic spectrum of finite

element matrix sequences. SIAM J. Numer. Anal., 45:746–769, 2007.

[BCV03] L. Bergamaschi, M. Caliari, and M. Vianello. Efficient approximation of the

exponential operator for discrete 2D advection–diffusion problems. Numer.

Linear Algebra Appl., 10:271–289, 2003.

[BCV04] L. Bergamaschi, M. Caliari, and M. Vianello. The ReLPM exponential inte-

grator for FE discretizations of advection–diffusion equations. In M. Bubak

et al., editors, Computational Science – ICCS 2004, volume 3039 of Lecture

Notes in Computer Science, pages 434–442. Springer-Verlag, Berlin, 2004.

[Bec00a] B. Beckermann. A note on the convergence of Ritz values for sequences

of matrices. Technical Report ANO 408, Université de Lille I, Labo Paul
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tian forms. Indiana Univ. Math. J. (formerly known as Journal of Rational

Mechanics and Analysis), 2:767–800, 1953.

[Kni91] L. A. Knizhnerman. Calculation of functions of unsymmetric matrices using

Arnoldi’s method. USSR Comput. Maths. Math. Phys., 31:1–9, 1991.

[KR98] A. B. J. Kuijlaars and E. A. Rakhmanov. Zero distributions for discrete

orthogonal polynomials. J. Comput. Appl. Math., 99:255–274, 1998.

[Kra99] S. G. Krantz. Handbook of Complex Variables. Birkhäuser, Boston, MA,
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