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Abstract. We study the structured condition number of differentiable maps between smooth
matrix manifolds, developing a theoretical framework that extends previous results for vector sub-
spaces to any smooth manifold. We present algorithms to compute the structured condition number.
As special cases of smooth manifolds, we analyze automorphism groups, and Lie and Jordan algebras
associated with a scalar product. For such manifolds, we derive a lower bound on the structured
condition number that is cheaper to compute than the structured condition number. We provide
numerical comparisons between the structured and unstructured condition numbers for the principal
matrix logarithm and principal matrix square root of matrices in automorphism groups as well as
for the map between matrices in automorphism groups and their polar decomposition. We show
that our lower bound can be used as a good estimate for the structured condition number when
the matrix argument is well conditioned. We show that the structured and unstructured condition
numbers can differ by many orders of magnitude, thus motivating the development of algorithms
preserving structure.
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1. Introduction. Condition numbers measure the sensitivity of a problem to
perturbation in the data. Let f : Fn×n → Fn×n be differentiable, where F = R or C.
Our interest is in the sensitivity of f when perturbations are constrained to preserve
structure. A general theory of conditioning was first developed by Rice [20]. The
special case of matrix functions was considered by Kenney and Laub [15] and was
also analyzed in detail by Higham in the monograph [10, Chap. 3]. For a matrix
X ∈ Fn×n such that f(X) is defined in an open neighbourhood of X, the absolute
condition number of f(X) is

cond(f,X) = lim
ε→0

sup
‖Y−X‖≤ε
Y∈Fn×n

‖f(Y )− f(X)‖
ε

, (1.1)

where ‖ · ‖ is an arbitrary, but fixed, matrix norm. It follows from this definition that

‖f(Y )− f(X)‖ ≤ cond(f,X)‖Y −X‖+ o(‖Y −X‖), (1.2)

which provides a perturbation bound for small ‖Y −X‖.
Our aim is to develop a theory of conditioning for differentiable maps f :M→N

between smooth square matrix manifolds [17] M and N defining the structures of
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X ∈ M and f(X) ∈ N and to derive algorithms to compute the corresponding
structured condition numbers defined by

condstruc(f,X) = lim
ε→0

sup
‖Y−X‖≤ε
Y∈M

‖f(Y )− f(X)‖
ε

. (1.3)

The condition Y ∈ M restricts the perturbation Y −X and hence, by the definition
of supremum, we have the obvious fact that

condstruc(f,X) ≤ cond(f,X).

Whether equality holds is unclear a priori and depends on both f and X. If it does not
hold, and particularly when the ratio between the structured and the unstructured
condition numbers is much smaller than 1, we get a clear indication that using a
structured numerical method to compute f would be advantageous. This argument
motivates a study of structured condition numbers. This task was done by Davies in
[2] for the special case where M is a Jordan or Lie algebra associated with a scalar
product, which greatly simplifies the theory since in this caseM is a vector subspace
of Fn×n so that the structure is linear and the perturbation Y −X is in M.

The paper is organized as follows. In section 2, we show that the structured
condition number condstruc(f,X) can be expressed as the norm of the differential of
f at X. We then present a technique and two algorithms to evaluate or estimate
condstruc(f,X). We show in section 3 how to apply the technique derived in section 2
when M is a Jordan algebra or a Lie algebra or an automorphism group associated
with a scalar product—note that automorphism groups have a nonlinear structure.
The structured condition number is in general expensive to compute. Hence when
M is a Lie or Jordan algebra, or an automorphism group, we derive upper and lower
bounds on condstruc(f,X) that are less expensive to compute than condstruc(f,X).
We apply the results of section 3 to a 2 × 2 diagonal symplectic matrix when f is
the matrix logarithm and the matrix square root [10]. We show with this simple
example that it is possible that condstruc(f,X) � cond(f,X) and that the lower
bound on condstruc(f,X) obtained in section 3 can be attained. In section 4, we
illustrate through numerical experiments the quality of the lower and upper bounds
derived in section 3 for the matrix logarithm and matrix square root of matrices in
automorphism groups as well as for the unitary polar factor of polar decompositions.
The experiments show that our lower bound on condstruc(f,X) tends to be much
sharper than our upper bound, and the former, when combined with a backward
error, provides a good approximation to the forward error ‖f(Y )− f(X)‖.

2. Structured and unstructured condition numbers of matrix functions.
We start with a brief summary of the theory and algorithms for the unstructured
condition number of a matrix function before discussing the structured case. Because
the relative condition number of f at an n × n matrix X, denoted by rcond(f,X),
can be written in terms of the absolute condition number cond(f,X) as

rcond(f,X) = cond(f,X) · ‖X‖
‖f(X)‖

(see [10, Chap. 3]), we just concentrate on absolute condition numbers.

2.1. Unstructured condition number. Let f be a differentiable endofunction
of Fn×n, where here and throughout F = R or C. The unstructured condition number
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cond(f,X) in (1.1) can be expressed in terms of the Fréchet derivative of f at X,
which is an F-linear map Lf (X, ·) : Fn×n → Fn×n such that

‖f(X + E)− f(X)− Lf (X,E)‖ = o(‖E‖) (2.1)

for all E ∈ Fn×n. When the Fréchet derivative of f at X exists, it is unique. In that
case we have [10, Thm. 3.1]

cond(f,X) = max
E 6=0

‖Lf (X,E)‖
‖E‖

=: ‖Lf (X)‖.

An explicit formula for the Fréchet derivative is not always available. So we
assume that we have a numerical method to evaluate Lf (X,E) for a given E. Since
the Fréchet derivative is linear in E, applying the vec operator, which stacks the
columns of a matrix into one long vector [16], to Lf (X,E) gives

vec(Lf (X,E)) = Kf (X)vec(E), (2.2)

where Kf (X) ∈ Fn2×n2

is called the Kronecker form of the Fréchet derivative. If we
specialize to the Frobenius norm then

cond(f,X) = max
E 6=0

‖Lf (X,E)‖F
‖E‖F

= max
E 6=0

‖vec(Lf (X,E))‖2
‖vec(E)‖2

= ‖Kf (X)‖2, (2.3)

where we use the fact that for A ∈ Fn×n, ‖A‖F = ‖vec(A)‖2. The problem of
computing cond(f,X) in the Frobenius norm then reduces to finding the 2-norm of
Kf (X). Note that the latter matrix can be constructed explicitly by forming one
column at a time using (2.2), that is,

Kf (X)ei+(j−1)n = vec(Lf (X, eie
T
j )), i = 1: n, j = 1: n, (2.4)

where ek is a vector of appropriate dimension with kth entry equal to one and zero
everywhere else. Constructing Kf (X) this way costs O(n5) operations assuming that
Lf (X,E) can be computed in O(n3) operations. Note that, based on (2.1), Lf (X,E)
can be approximated by finite differences,

Lf (X,E) ≈ f(X + tE)− f(X)

t

for a small value of t. We refer to [10, Chap. 3] on how to choose t. When f is a
matrix function in the linear algebra sense (see [10, Chap.1] for a precise definition),
the formula

f

([
X E
0 X

])
=

[
f(X) Lf (X,E)

0 f(X)

]
also holds [10] and yields a useful tool to compute Fréchet derivatives. However, in
this paper we consider a much wider class of functions f , and hence this expression
is not always true.

A lower bound for cond(f,X) can be computed by the power method applied to
Kf (X)∗Kf (X) which, for a nonzero matrix E0 ∈ Fn×n constructs the iterates [15]

Zk+1 = Lf (X,Ek), Ek+1 = Ladj
f (X,Zk+1), γk+1 =

‖Ek+1‖F
‖Zk+1‖F

, k > 0, (2.5)
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with γk such that γk ≤ ‖Lf (X)‖F and γk → ‖Lf (X)‖F as k → ∞ [5, Chap. 7]. In

(2.5), Ladj
f is the adjoint of Lf and is given by

Ladj
f (X,E) =

{
Lf (XT , E) when F = R,
Lf̄ (X∗, E) when F = C,

where f̄(z) := f(z̄). The computation of the kth iteration in (2.5) costs O(n3) oper-
ations, and just a few iterations are usually needed for an accurate bound.

Note that the Fréchet derivative can then be represented as a 2n2 × 2n2 real

matrix K
(R)
f (X) such that

vec(ρ(Lf (X,E))) = K
(R)
f (X)vec(ρ(E)), (2.6)

where

ρ : Cn×n → Rn×2n, ρ(E) =
[
Re(E) Im(E)

]
. (2.7)

Now when F = C, it also makes sense to consider maps f : Cn×n → Cn×n that satisfy
the less demanding assumption of real Fréchet differentiability, that is, Lf (X,E) in
(2.1) is real linear (i.e, Lf (X,E + αF ) = Lf (X,E) + αLf (X,F ) for all α ∈ R; see
also [19, Section 2.3]), but not necessarily complex linear. In this case (2.2) does not
hold but (2.6) does, so that

cond(f,X) = max
E 6=0

‖Lf (X,E)‖F
‖E‖F

= max
E 6=0

‖vec
(
ρ(Lf (X,E))

)
‖2

‖vec(ρ(E))‖2
= ‖K(R)

f (X)‖2.

Again, K
(R)
f (X) can be explicitly formed by computing its 2n2 columns as

vec(ρ(Lf (X, eie
T
j ))), vec(ρ(Lf (X, ieie

T
j ))), i = 1: n, j = 1: n,

where i =
√
−1 denotes the imaginary unit.

If f is not only real but also complex Fréchet differentiable then, by the Cauchy-

Riemann equations, K
(R)
f has the form (we henceforth occasionally omit the depen-

dence on X for notational simplicity):

K
(R)
f =

[
Rf −Pf
Pf Rf

]
, Rf , Pf ∈ Rn

2×n2

. (2.8)

Let unvec be the inverse of the vec operator, which in this case is defined from F2n2

to Fn×2n. After applying vec ◦ ρ−1 ◦ unvec to (2.6), the Cauchy-Riemann equation
(2.8) implies that

vec(Lf (X,E)) = (Rf + iPf )vec(E) =: K
(C)
f vec(E),

where K
(C)
f ≡ Kf in (2.2). Observe that the unitary matrix Q = 1√

2

[
1
i

i
1

]
⊗In2 , where

⊗ denotes the Kronecker product, block diagonalizes K
(R)
f , i.e.,

Q∗K
(R)
f Q =

[
K

(C)
f 0

0 K
(C)

f

]
(2.9)
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so that ‖K(C)
f ‖2 = ‖K(R)

f ‖2. This shows that the theory is coherent, in the sense that
the computation of the unstructured condition number is independent of which the
real or complex Kronecker form of the Fréchet derivative is considered.

Example 2.1. Let X ∈ Cn×n be nonsingular and let f : X 7→ U associate
to X the unitary factor U of its polar decomposition X = UH. The map f is real
differentiable but not complex differentiable [19]. Now for n = 1 and z = x+ iy 6= 0,
f(z) = z

|z| = f1(x, y) + if2(x, y) with f1(x, y) = x/(x2 + y2)1/2, f1(x, y) = y/(x2 +

y2)1/2 and f has for real Fréchet derivative in Kronecker form the matrix

K
(R)
f (z) =

[
∂f1
∂x

∂f1
∂y

∂f2
∂x

∂f2
∂y

]
= |z|−3

[
y2 −xy
−xy x2

]
.

K
(R)
f is not of the form (2.8), revealing that f is not complex Fréchet differentiable.

2.2. Structured condition number. Suppose now that f : M → N is a
differentiable map, where M,N ⊆ Fn×n are smooth square matrix manifolds. We
consider in particular three classes of smooth manifolds:

1. real submanifolds of the n2-dimensional real vector space Rn×n (e.g., orthog-
onal matrices, real symplectic matrices),

2. complex submanifolds of the n2-dimensional complex vector space Cn×n (e.g.,
complex orthogonal matrices, complex symplectic matrices), and

3. real submanifolds of the 2n2-dimensional real vector space Cn×n (e.g., Her-
mitian matrices, unitary matrices, symplectic matrices).

These submanifolds are often associated with, respectively, real bilinear forms, com-
plex bilinear forms, and sesquilinear forms. We use the expression “square matrix
manifold” to mean any of the three classes of submanifolds of square matrices de-
scribed above. The choice of considering square matrices is for the sake of simplicity
in the exposition; we emphasize, though, that our theory can be easily extended to
rectangular matrices.

We need to distinguish between the field in which the entries of the matrices are
allowed to lie (i.e., the ambient field), denoted by F as in the previous sections, and
the field the ambient vector space is built on (i.e., the base field), that we instead
denote by K. To be more concrete, K = F (= R or C, respectively) for either case 1
or case 2 above, while the case 3 of a real submanifold of Cn×n is special in the sense
that C = F 6= K = R. We will need to deal with case 2 carefully when f is only R-
differentiable since it this case it will be necessary to identifyM with ρ(M) ⊆ Rn×2n

(see Remark 2.2 below).
For a smooth manifold M ⊆ Fn×n with base field K, the matrix E ∈ Fn×n is

called a tangent vector of M at X ∈ M if there is a smooth curve γ : K →M such
that γ(0) = X, γ′(0) = E. The set

TXM := {E ∈ Fn×n | ∃ γ : K→M smooth with γ(0) = X, γ′(0) = E} (2.10)

of tangent vectors of M at X is called the tangent space of M at X. It is a K-linear
subspace of Fn×n, in which it can be embedded, thus inheriting any usual matrix
norm1. Note that, when C = F 6= K = R, TXM is a real subspace, but generally not

1We note that other choices are possible, such as for example the intrinsic norm that makesM a
path metric space. Different choices for the notion of distance on the manifold would, of course, lead
to a different value of the condition number and hence a slightly different theory. Which choice is in
some sense the “best” depends on the context. Our goal is to compare structured and unstructured
condition numbers, and hence the induced Euclidean distance appears to be the most natural.
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a complex subspace. For example, take the unit sphereM = {X ∈ Cn×n | ‖X‖F = 1};
then TXM = {E ∈ Cn×n | trace(E∗X + X∗E) = 0} has real codimension 1, and
hence it clearly is not a complex subspace.

Consider a smooth curve γ : K → U such that γ(0) = X, where U ⊂ M is an
open set andM⊆ Fn×n has base field K. If f :M→N is K-differentiable, then the
differential of f at the point X is the map

dfX : TXM→ Tf(X)N , dfX(γ′(0)) = (f ◦ γ)′(0). (2.11)

Clearly, dfX in (2.11) is a K-linear operator [17, Exercise 3.7], and it comes equipped
with an induced norm,

‖dfX‖ := max
E∈TXM
E 6=0

‖dfX(E)‖
‖E‖

.

Remark 2.2. WhenM⊆ Cn×n is a complex submanifold, there is freedom in the
choice of the base field. Indeed, any complex submanifold is also a real submanifold,
although the converse does not always hold. If f is only real differentiable then it is
necessary to pick K = R, thus (implicitly) identifying the complex submanifold M
with the real submanifold ρ(M) =:MR ⊆ Rn×2n, which has base field R and is such
that X ∈M if and only if ρ(X) = [Re(X) Im(X)] ∈MR.

Using basic notions of differential geometry, we show that the differential dfX
plays the same role as the Fréchet derivative for the case of the unstructured condition
number.

Theorem 2.3. Let f : U → V be a K-differentiable map between two open subsets
U ⊂ M and V ⊂ N , where M and N are smooth square matrix manifolds of Fn×n
with base field K. Then for the structured condition number of f at X ∈ U it holds
that condstruc(f,X) = ‖dfX‖.

Proof. Suppose X,Y ∈ U and let γ : K → U be any curve such that γ(0) = X,
γ(ε) = Y . Letting E = γ′(0) ∈ TXU , we get Y = X + εE + o(ε) by using the
definition of derivative along a curve, and by using the definition of differential we get
f(Y ) = f(X) + εdfX(E) + o(ε). The definition of the structured condition number in
(1.3) is equivalent to

condstruc(f,X) = lim
‖X−Y ‖→0

sup
Y ∈M

‖f(Y )− f(X)‖
‖Y −X‖

,

and hence, we obtain

condstruc(f,X) = lim
ε→0

sup
E∈ TXU
E 6=0

ε‖dfX(E)‖+ o(ε)

ε‖E‖+ o(ε)
= ‖dfX‖.

A version of Theorem 2.3 appears in [3, pp. 4–5]. Note, however, that our
setting is more general in the sense that real submanifolds of complex matrices are
not analyzed in [3]. See also [1, Section 14.3] for a closely related discussion.

The uniqueness of the differential and the uniqueness of the Fréchet derivative
imply that for any E ∈ TXM,

dfX(E) = Lf (X,E). (2.12)

6



Table 2.1
Explicit expressions for the structured condition number and its cheaply computable lower and

upper bounds, depending on the ambient and base fields and the differentiability of the map f .

Ambient field (F) Base field (K) Type of differentiability condstruc(f,X) Cheap bounds

C C C Eq. (2.15) Eq. (2.14)

C R C Eq. (2.18) Eq. (2.17)

C R R Eq. (2.18) Eq. (2.17)

R R R Eq. (2.15) Eq. (2.14)

Since TXM is a K-linear subspace of Fn×n, the linear nature of E ∈ TXM is then
encoded by

vec(E) = By, (2.13)

where B ∈ Fn2×p is a matrix of full rank giving (in essence) a basis for TXM and
y ∈ Kp with p = dimK TXM is a vector of parameters; see section 3 for examples of
how to construct B.

We now give more details about how the structured condition number can be
computed, distinguishing between the possible situations depending on F, K, and the
differentiability properties of f , as summarized in Table 2.1. (Note that, when f is
only real differentiable we always take K = R as the base field).

2.2.1. When the ambient and base fields are the same. Suppose that
F = K and that the map f is K-Fréchet differentiable. Applying the vec operator to
(2.12), and using (2.2) and (2.13) yields

vec(dfX(E)) = vec(Lf (X,E)) = Kf (X)vec(E) = Kf (X)By.

Hence, from Theorem 2.3 and using the Frobenius norm, we find that

condstruc(f,X) = max
E∈TXM
E 6=0

‖Lf (X,E)‖F
‖E‖F

= max
y∈Kp
y 6=0

‖Kf (X)By‖2
‖By‖2

.

Observe now that ‖B+‖−1
2 ‖y‖2 ≤ ‖By‖2 ≤ ‖B‖2‖y‖2, where B+ denotes the Moore-

Penrose pseudoinverse of B. Hence,

‖Kf (X)B‖2‖B‖−1
2 ≤ condstruc(f,X) ≤ ‖Kf (X)B‖2‖B+‖2. (2.14)

Moreover if B can be chosen to have orthonormal columns, i.e., B∗B = Ip, then the
lower and upper bounds in (2.14) are equal so that

condstruc(f,X) = ‖Kf (X)B‖2. (2.15)

To compute ‖Kf (X)B‖2, we need to characterize TXM, find its dimension p :=

dimK TXM over the base field K, and then construct a matrix B ∈ Fn2×p such that
for any E ∈ TXM, vec(E) = By for some y ∈ Kp. If we assume that we have a
numerical method to compute Lf (X,E) for a given X ∈M and E ∈ TXM, then we
can compute the columns of Kf (X)B using

Kf (X)Bei = vec
(
Lf (X,unvec(Bei)

))
, i = 1: p, (2.16)

where the inverse vec operator unvec is in this case defined from Fn2

to Fn×n. Note
that (2.16) reduces to (2.4) when K = F and X ∈M = Fn×n = TXM so that B = In2

in (2.13).
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2.2.2. When the ambient and base fields differ. Suppose now that C =
F 6= K = R and that the map f is R-Fréchet differentiable. It follows from (2.13)

that for X ∈M and E ∈ TXM, we can write vec(E) = By for some B ∈ Cn2×p and
y ∈ Rp, where p = dimR TXM. Using the map ρ defined in (2.7) we have that, for
ρ(X) ∈MR ≡ ρ(M) and ρ(E) ∈ Tρ(X)MR, we can write vec(ρ(E)) = BRy with

BR =

[
ReB
ImB

]
∈ R2n2×p.

Applying ρ and the vec operator to (2.12) yields

vec
(
ρ(dfX(E))

)
= vec

(
ρ(Lf (X,E))

)
= K

(R)
f (X)vec

(
ρ(E)

)
= K

(R)
f (X)BRy

so that

condstruc(f,X) = max
E∈TXM
E 6=0

‖Lf (X,E)‖F
‖E‖F

= max
E∈TXM
E 6=0

‖ρ(Lf (X,E))‖F
‖vec(ρ(E))‖2

= max
y∈Rp
y 6=0

‖K(R)
f (X)BRy‖2
‖BRy‖2

and the lower and upper bounds on condstruc(f,X) follow,

‖K(R)
f (X)BR‖2‖BR‖−1

2 ≤ condstruc(f,X) ≤ ‖K(R)
f (X)BR‖2‖B+

R ‖2. (2.17)

Now if BR has orthonormal columns then

condstruc(f,X) = ‖K(R)
f (X)BR‖2. (2.18)

Remark 2.4. If C = F 6= K = R, but f is also C-differentiable, then both K
(R)
f

and K
(C)
f exist. It is easy to show that

condstruc(f,X) = ‖K(R)
f (X)BR‖2 ≤ ‖K

(C)
f (X)B‖2. (2.19)

Depending on the manifold and the map, a strict inequality may hold (see Exam-
ple 3.3). This shows that, when M is not a complex submanifold and even for holo-
morphic maps f , only the real Fréchet derivatives are linked to the structured condition
number.

2.2.3. Computation of condstruc(f,X). The construction of Kf (X) in (2.16)

extends almost trivially to the construction of K
(R)
f (X)BR and yields the following

algorithm.
Algorithm 2.5. Given
(i) any algorithm to compute the Fréchet derivative of f :M→N , where M,N

are smooth manifolds of Fn×n with base field K, and
(ii) X ∈M, and

(iii) either B ∈ Fn2×p such that for any E ∈ TXM, vec(E) = By for some y ∈ Kp

if K = F, or BR ∈ F2n2×p such that for any E ∈ TXM, vec([Re(E), Im(E)]) =
BRy for some y ∈ Kp if K 6= F,
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this algorithm computes κ = ‖Kf (X)B‖2 if K = F or κ = ‖K(R)
f (X)BR‖2 otherwise.

If B∗B = Ip for K = F or BTRBR = Ip otherwise, then κ = condstruc(f,X).

1 If K = F
2 K = 0n2×p
3 for i = 1: p
4 Compute F = Lf (X,E), where vec(E) = Bei,
5 Kei = vec(F )
6 end
7 else
8 K = 02n2×p
9 for i = 1: p

10 Compute F = Lf (X,E), where vec
(
[Re(E), Im(E)]

)
= BRei,

11 Kei = vec
(
[Re(F ), Im(F )]

)
12 end
13 κ = ‖K‖2
If K = F, the construction of K = Kf (X)B in Algorithm 2.5 costs O(pn3)

operations assuming that Lf (X,E) can be computed in O(n3) operations, and the cost
of computing the 2-norm ofK in step 6 isO(p2n2) so Algorithm 2.5 costsO(pn3+p2n2)
operations, which is high in particular when p = O(n2). As in the unstructured
case, once B is known, we can use the power method to obtain a lower bound for
‖Kf (X)B‖2, which corresponds to a lower bound for condstruc(f,X) when B has
orthonormal columns.

Analogous remarks hold for K 6= F, except that the factor 2 in the sizes of K
(R)
f

and BR leads to higher constants in front of the asymptotic complexities.

Algorithm 2.6. Given the same input as Algorithm 2.5 this algorithm uses the

power method to compute γ such that γ ≤ ‖Kf (X)B‖2 for K = F or γ ≤ ‖K(R)
f BR‖2

otherwise.

1 Choose a nonzero starting vector z0 ∈ Kp.
2 for k = 0:∞
3 if K = F
4 vec(Ek) = Bzk
5 else
6 vec

(
[Re(Ek), Im(Ek)]

)
= BRzk

7 end
8 Wk+1 = Lf (X,Ek)

9 Yk+1 = Ladj
f (X,Wk+1)

10 if K = F
11 zk+1 = B∗vec(Yk+1)
12 else
13 zk+1 = BTR vec

(
Re(Yk+1), Im(Yk+1)]

)
14 end
15 γk+1 = ‖zk+1‖2/‖Wk+1‖F
16 if converged, γ = γk+1, quit, end
17 end

Unless B (or BR) has a special structure that can be exploited in step 4 and step
11 (or steps 6 and 13), the cost of Algorithm 2.6 is O(kpn2) operations, where k is the

number of iterations and we assume that p ≥ n and Lf (X,Ek) and Ladj
f (X,Wk+1)

can be computed in O(n3) operations.
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3. Application: matrix manifolds associated with scalar products. We
illustrate the technique presented in section 2.2 on smooth square matrix manifoldsM
associated with a scalar product on Fn, that is, a nondegenerate bilinear or sesquilinear
form defined by any nonsingular matrix M by, for x, y ∈ Fn,

〈x, y〉
M

=

{
xTMy, for real or complex bilinear forms,
x∗My, for sesquilinear forms.

For any matrix A ∈ Fn×n, there exists a unique A? ∈ Fn×n called the adjoint of A
with respect to 〈·, ·〉M , and given by

A? =

{
M−1ATM, for real or complex bilinear forms,
M−1A∗M, for sesquilinear forms.

There are three classes of structured matrices associated with 〈·, ·〉
M

: a Jordan
algebra2 JM , a Lie algebra LM , and an automorphism group GM defined by

JM := {A ∈ Fn×n |A? = A}, LM := {A ∈ Fn×n |A? = −A},

GM := {A ∈ Fn×n |A? = A−1}.

For several special choices of M , a specific nomenclature exists to indicate these
sets. For example, for real bilinear forms (F = R) and

• M = I, JI ,LI and GI are the set of symmetric, skew-symmetric and orthog-
onal matrices, respectively,

• M = Sp,q =
[
Ip
0

0
−Iq

]
with p + q = n, JSp,q ,LSp,q and GSp,q correspond to

the class of pseudosymmetric, pseudoskew-symmetric and pseudo-orthogonal
matrices, respectively,

• M = J :=
[

0
−In/2

In/2
0

]
with n even, JJ ,LJ and GJ correspond to the class of

skew-Hamiltonian, Hamiltonian and symplectic matrices, respectively.

• M = R =

[
1

. .
.

1

]
, JR,LR and GR correspond to the class of persymmet-

ric, perskew-symmetric and perplectic matrices, respectively.
When M defines a real (respectively, complex) bilinear form, the three matrix

classes defined above are real (respectively, complex) smooth manifolds; when M
defines a sesquilinear form, they are real smooth submanifolds of the 2n-dimensional
real vector space Cn×n. This is immediate for JM and LM , as they are K-linear
subspaces, and hence, they are (flat) smooth manifolds. Automorphism groups are
not vector subspaces, but they are known to be smooth manifolds, as we now show.

Theorem 3.1. The automorphism group GM is a real submanifold of Fn×n. Fur-
thermore, when M defines a complex bilinear form, GM is also a complex submanifold
of Cn×n.

Proof. The first part of the statement is [21, Thm. 7.17]. For the second part,
note that GM is the set of solutions of the quadratic matrix equation M = XTMX.
Since the latter is equivalent to either n2 complex polynomial equations or 2n2 real
polynomial equations, it follows that GM is both a complex algebraic variety and a
real algebraic variety. Recall that a complex (respectively real) algebraic variety is a

2The name comes from the fact that X,Y ∈ JM ⇒ XY +Y X ∈ JM , so that JM is a commutative
ring when endowed with the usual addition and this “symmetrized multiplication”.
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complex (respectively real) manifold if and only if it does not contain singular points,
i.e., points such that the rank of the Jacobian is locally smaller than at a generic point.
It now suffices to observe that (in the canonical bases of Cn×n as a complex and real
vector space respectively), by the Cauchy–Riemann equations, J = ReJ + i ImJ is
the Jacobian of GM as a complex algebraic variety if and only if JC =

[
Re J
− Im J

Im J
Re J

]
is

the Jacobian of GM as a real algebraic variety. The statement then follows observing
that JC is unitarily similar to J ⊕ J∗.

Now suppose that X belongs to an automorphism group, Lie algebra, or Jordan
algebra. Suppose moreover that f(X) is a matrix function in the linear algebra sense
(see [10, Chap.1] for a precise definition). It is shown in [11, Thm. 3.1] that, for
bilinear forms,

f(X)? = f(X?) (3.1)

holds for all matrix functions f assuming that f is defined at X and X?. For sesquilin-
ear forms, (3.1) holds when, for example, the function f has a convergent power series
representation f(X) =

∑∞
k=0 αkX

k, with αk ∈ R. Assuming that f is defined at the
indicated arguments and that f satisfies (3.1), we have that

(i) if X ∈ JM then f(X) ∈ JM since f(X)? = f(X), and
(ii) if X ∈ LM then f(X)? = f(−X) so that

• f(X) ∈ JM if f is an even function [10, Problem 1.20],
• f(X) ∈ LM if f is an odd function [10, Problem 1.20], and
• f(X) ∈ GM if f(−X) = f(X)−1 (e.g., the matrix exponential),

(iii) if X ∈ GM then f(X)? = f(X−1) so that
• f(X) ∈ LM if f(X−1) = −f(X) (e.g., the matrix logarithm),
• f(X) ∈ GM if f(X−1) = f(X)−1 for bilinear forms and f(X−∗) =
f(X)−∗ for sesquilinear forms [11, Thm.3.1] (e.g., the principal square
root).

However, the map f does not necessarily have to be a matrix function in the sense
of [10, Chap.1]. For example, if X ∈ SM ∈ {JM ,LM ,GM} has polar decomposition
X = UH with U unitary and H positive semi-definite, then U ∈ SM . Moreover, if
X ∈ GM then H ∈ GM [18]. Note that the factor U is a “generalized matrix function”
in the sense of [6]. The existence of structured singular value decompositions, see,
e.g., [4], [22] can be used to derive conditions on f such that other generalized matrix
functions preserve structure. A precise statement is beyond our scope here and left
for future research.

Recall from section 2 that to compute or approximate condSM (f,X) for X ∈
SM ∈ {JM ,LM ,GM}, we need to

(a) characterize the tangent space TXSM and its dimension p over K, and
(b) construct a matrix B with orthonormal columns, if possible, such that for

E ∈ TXSM , vec(E) = By for some vector y ∈ Kp.
Before we explain how to do so, we recall some useful properties of vec and the

Kronecker product [16]. For all A,C, Y ∈ Fn×n,

vec(AY C) = (CT ⊗A)vec(Y ), (3.2)

vec(AT ) = Pvec(A), (3.3)

where P is the n2 × n2 vec-permutation matrix [7], and

P (A⊗ C) = (C ⊗A)P. (3.4)
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It follows from (3.3) that vec(eie
T
j ) = Pvec(eje

T
i ) so that Pe(i−1)n+j = e(j−1)n+i,

i, j = 1, . . . , n. Hence

(P − I)e(i−1)n+i = 0, i = 1, . . . , n, (3.5)

(P − σI)(e(i−1)n+j + σe(j−1)n+i) = 0, σ = ±1, 1 ≤ i < j ≤ n, (3.6)

from which it follows that P has eigenvalue 1 with multiplicity n(n+ 1)/2 and eigen-
value −1 with multiplicity n(n− 1)/2 [7].

3.1. Computation of condSM (f,X) when SM is a Jordan or Lie algebra.
Davies [2] showed that for bilinear forms with M = ±MT and MTM = I, i.e., when
the scalar product is orthosymmetric and unitary [18], cond(f,X) = condSM (f,X) for

• all functions f and either X ∈ JI or X ∈ LI (i.e., for symmetric and skew-
symmetric matrices X),

• even functions f and X ∈ LM .
Davies also showed that equality between structured and unstructured condition num-
bers for X ∈ JM does not always hold but the ratio cond(f,X)/condstruc(f,X) is
bounded in terms of n for all functions f . On the other hand, the ratio is unbounded
for odd functions and X ∈ LM (see [2, Table 6.1]). For sesquilinear forms with
M = ±MT ∈ Rn×n and MTM = I, Davies showed that cond(f,X) = condstruc(f,X)
for Jordan algebras and that equality also holds for Lie algebras when f is an odd or
even function.

In what follows we show how to compute or approximate condstruc(f,X) when it
differs from cond(f,X). We make the simplifying assumption that M = µMT ∈ Rn×n
with µ = ±1 (which is true in essentially all the cases of practical interest) but we do
not assume that M is orthogonal as in [2].

It follows directly from (2.10) that the tangent space of any vector subspace is
the vector subspace itself. Hence, for any X ∈ SM with SM ∈ {JM ,LM},

TXSM = SM .

To construct a basis for TXSM , we start with bilinear forms first and then use the
results to construct a basis when the scalar product is a sesquilinear form.

3.1.1. Bilinear forms on Fn and F-differentiable maps. Let E ∈ SM and
write vec(E) = BSM y for some y ∈ Fp with B ∈ Fn2×p of full column rank. Let s = 1
if SM = JM and s = −1 if SM = LM . Then,

E ∈ SM ⇐⇒ E? = sE ⇐⇒ ETM − sME = 0. (3.7)

If we assume M = µMT with µ ∈ {+1,−1} we can easily infer the value of p.
Indeed, in this case, (3.7) shows that ME = sµ(ME)T , i.e., ME is either (complex)
symmetric or (complex) skew-symmetric so that ME and therefore E since M is
nonsingular, depend on

p = n(n+ sµ)/2 = rank(BS
M

) = dimF(TXSM )

parameters that are real if F = R and complex otherwise. Now applying the vec
operator to (3.7) and using (3.2) and (3.3) we find that(

(MT ⊗ In)P − s(In ⊗M)
)
vec(E) = 0. (3.8)
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The property (3.4) combined with M = µMT implies that

(MT ⊗ In)P − s(In ⊗M) = (µP − sIn2)(In ⊗M).

Since P has eigenvalues 1 with multiplicity n(n + 1)/2 and −1 with multiplicity
n(n− 1)/2, and M is nonsingular, we have that

rank
(
(MT ⊗ In)P − s(In ⊗M)

)
= rank

(
µP − sIn2)(In ⊗M)

)
= n(n− µs)/2

so that the dimension of the null space of
(
µP−sIn2)(In⊗M)

)
is n(n+µs)/2. Hence,

from this and on using (3.8) and vec(E) = BSM y, it follows that

range(BS
M

) = null
(
(P − µsIn2)(In ⊗M)

)
. (3.9)

If we define DSM ∈ Rn2×p by

DSM =

{ [
D̃µs Ǐ

]
if µs = 1,

D̃µs if µs = −1,
(3.10)

where D̃µs ∈ Rn2×n(n−1)/2 has for columns the n(n− 1)/2 unit vectors

(e(i−1)n+j + µse(j−1)n+i)/
√

2, 1 ≤ i < j ≤ n,

and Ǐ ∈ Rn2×n has for columns the vectors e(i−1)n+i, i = 1, . . . n, then DSM has full
rank and orthonormal columns, and from (3.5)–(3.6) we have that (P −µsIn2)DSM =
0. From this and (3.9), it follows that

BS
M

= (In ⊗M−1)DSM , (3.11)

and this construction can be done in at most O(n3) operations.
Note that if M is orthogonal then BS

M
= µ(In⊗M)DSM has orthonormal columns

and its construction is essentially computation free. In this case,

condSM (f,X) = ‖Kf (X)(In ⊗M)DSM ‖2 (3.12)

and we refer to section 2.2 for the computation or approximation of condSM (f,X).
Davies showed in [2, Thm. 3.3] that (using our notation),

condSM (f,X) =
1

2
‖Kf (X)P (In ⊗M)(P − µsIn2)‖2,

which is a less compact expression than in (3.12) since DSM has p = n(n+µs)/2 < n2

columns for n > 1.
When M is not orthogonal then, unless it has a special structure that somehow

allows the use of computational tricks, orthogonalizing the columns of BS
M

costs

O(n6) operations. However, instead of orthonormalizing B we can use (2.14) to
obtain lower and upper bounds for condstruc(f,X) that are cheaper to compute than
condstruc(f,X). We note that ‖BS

M
‖2 ≤ ‖M−1‖2. For an upper bound on ‖B+

S
M
‖2

we remark that the Moore-Penrose inverse of a full column rank matrix A is the
minimal left inverse, i.e., for any left inverse AL of A, ‖A+‖2 ≤ ‖AL‖2. This fact is
a special case of [14, Theorem 1] but can also be shown directly using the definition
of the Moore-Penrose pseudoinverse and the singular value decomposition. Now,

13



DT
SM (I⊗M) is a left inverse for BS

M
, and hence, ‖B+

S
M
‖2 ≤ ‖DT

SM (I⊗M)‖2 ≤ ‖M‖2.

Then (2.14) yields the following lower and upper bounds on the structured condition
number,

‖Kf (X)BS
M
‖2

‖M−1‖2
≤ condSM (f,X) ≤ ‖Kf (X)BS

M
‖2‖M‖2. (3.13)

By exploiting the special structure of BS
M

in (3.11), approximating ‖Kf (X)BS
M
‖2

using Algorithm 2.6 costs O(kn3) operations, where k is the number of iterations. So
the lower bound in (3.13) and an estimate for the upper bound can be computed in
O(kn3) operations

3.1.2. Sesquilinear forms or complex bilinear forms with R-differentiable
map. When either the scalar product is a sesquilinear form or a complex bilinear form
but we are dealing with a map that is only real differentiable, the ambient and base
fields differ (see section 2.2.2). The latter case is simple to deal with since under our
assumptions on M , the matrix in (3.11) is real, and on using the map ρ in (2.7), we
have that

BSM ,R =

[
BS

M

0

]
=

[
(In ⊗M−1)DSM

0

]
, (3.14)

where SM ∈ {JM ,LM}. For sesquilinear forms, a little more handling is needed. We
have that

E ∈ TXSM = SM ⇐⇒ E? = sE ⇐⇒

{ (
Re(E)

)?
= sRe(E),(

Im(E)
)?

= −s Im(E).

Hence, if E ∈ JM then Re(E) ∈ JM and Im(E) ∈ LM so that

vec(E) = vec
(

Re(E)
)
+i vec

(
Im(E)

)
= BJMx+iBLM y = [BJM i BLM ]

[
x
y

]
=: B̂JM z

for some z ∈ Rn2

. The matrices BJM and BLM are as in (3.11) so that the n2 × n2

matrix

B̂JM = (In ⊗M−1) [DJM iDLM ]

forms a basis over the base field R for TXJM (i.e., p = n2). Similarly, we find that

B̂LM = (In ⊗M−1) [DLM iDJM ] (3.15)

forms a basis over R for TXLM . Using the map ρ in (2.7), we have that for ρ(X) ∈
ρ(SM ) and ρ(E) ∈ Tρ(X)ρ(SM ) with SM ∈ {JM ,LM}. We can write vec

(
ρ(E)

)
=

BSM ,Rz with BSM ,R =
[Re(B̂SM )

Im(B̂SM )

]
∈ R2n2×n2

, and since M is real,

BJM ,R = (In ⊗M−1)DJM ⊕ (In ⊗M−1)DLM , (3.16)

BLM ,R = (In ⊗M−1)DLM ⊕ (In ⊗M−1)DJM . (3.17)

If M is orthogonal then BSM ,R in (3.14) and (3.16)–(3.17) has orthonormal columns
and

condSM (f,X) = ‖K(R)
f (X)BSM ,R‖2. (3.18)
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Now if M is not orthogonal, we can use (2.14) to obtain lower and upper bounds for

condSM (f,X). Note that ‖B̃SM ,R‖2 ≤ ‖M−1‖2. We can use BLSM ,R = DT
SM (In⊗M) as

left inverse for BSM ,R in (3.14), BLJM ,R = DT
JM (In⊗M)⊕DT

LM (In⊗M) as left inverse

for BJM ,R in (3.16), BLLM ,R = DT
LM (In ⊗M)⊕DT

JM (In ⊗M) as left inverse for BLM ,R

in (3.17), yielding ‖B+
SM ,R‖2 ≤ ‖B

L
SM ,R‖2 ≤ ‖M‖2. Therefore,

‖K(R)
f (X)BSM ,R‖2
‖M−1‖2

≤ condSM (f,X) ≤ ‖K(R)
f (X)BSM ,R‖2‖M‖2, (3.19)

which provides lower and upper bounds for condSM (f,X) that are cheap to evaluate

compared to orthonormalizing BSM ,R into B̃SM ,R and then computing condSM (f,X)

in (3.18) with B̃SM ,R in place of BSM ,R .

3.2. Computation of condstruc(f,X) whenM is an automorphism group.
The next lemma provides an explicit characterization of TXGM .

Lemma 3.2. Let GM be the automorphism group of a scalar product 〈·, ·〉M on
Fn and let X ∈ GM . Then, the tangent space at X to GM is given by

TXGM = {E ∈ Fn×n | E = XF, F ∈ LM}, (3.20)

where LM is the Lie algebra associated with 〈·, ·〉
M

.
Proof. We only prove the lemma for bilinear forms, the proof for sesquilinear

forms being analogous. We start by showing that

TXGM = {E ∈ Fn×n | ETMX +XTME = 0}.

By definition, E ∈ TXGM is equivalent to the existence of a smooth curve γ(t) ∈ GM
satisfying γ(0) = X, γ′(0) = E. Now γ(t) ∈ GM is equivalent to γ(t)TMγ(t) = M .
By differentiating the latter equation and evaluating at t = 0, we obtain

γ′(0)TMγ(0) + γ(0)TMγ′(0) = 0.

Substituting γ(0) = X and γ′(0) = E gives

ETMX +XTME = 0. (3.21)

Conversely, suppose that E satisfies (3.21). Since X ∈ GM , it satisfies XTMX = M
so that

(X + tE)TM(X + tE) = M +O(t2).

We deduce that there exists a smooth curve γ(t) = X + tE +
∑∞
i=2Git

i ∈ GM
satisfying γ(0) = X and γ′(0) = E so that E ∈ TXGM .

Defining F := X−1E (note that X ∈ GM implies that X is nonsingular) we can
rewrite (3.21) as FTM + MF = 0, which shows that −F = M−1FTM = F?, i.e.,
F ∈ LM .

Note that Lemma 3.2 implies that (a) dimK GM = dimK LM so that dimK GM > 0
(unless n = 1 and M represents a bilinear form in which case GM = {1,−1}), and
(b) LM = TIGM (observe that I ∈ GM ). The latter property is, in fact, sometimes
used as the definition of LM , see, e.g., [21, Definition 5.7]. It follows from Lemma 3.2
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that any E ∈ TXGM can be written as E = XF with F ∈ LM . If M = µMT with
µ = ±1 then

vec(E) = vec(XF ) = (In ⊗X)vec(F ) = (In ⊗X)By,

where
• for bilinear forms, B = BL

M
is as in (3.11) with SM = LM and y ∈ Fp with

p = n(n− µ)/2,

• for sesquilinear forms, B = B̂LM is as in (3.15) and y ∈ Rp with p = n2.
If we write vec(E) = BG

M
y then

BG
M

=

{
(In ⊗XM−1)DLM , for bilinear forms,
(In ⊗XM−1) [DLM iDJM ] , for sesquilinear forms.

(3.22)

As a consequence, for complex bilinear forms (F = C) and a real differentiable, but
not complex differentiable, f (so that we pick K = R) we have

BGM ,R =

[
Re(BG

M
)

Im(BG
M

)

]
=

[
(In ⊗ Re(X)M−1)DLM
(In ⊗ Im(X)M−1)DLM

]
. (3.23)

Similarly, for sesquilinear forms we also have F = C 6= R = K and

BGM ,R =

[
Re(BG

M
)

Im(BG
M

)

]
=

[
(In ⊗ Re(X)M−1)DLM −(In ⊗ Im(X)M−1)DJM
(In ⊗ Im(X)M−1)DLM (In ⊗ Re(X)M−1)DJM

]
. (3.24)

Hence, if M and X are both orthogonal or unitary then BG
M

in (3.22) and BGM ,R in

(3.23)–(3.24) have orthonormal columns and

condGM (f,X) =

{
‖Kf (X)BG

M
‖2, for K = F,

‖K(R)
f (X)BGM ,R‖2, for K 6= F.

(3.25)

Now if M and X are not orthogonal or unitary then BG
M

does not have orthonormal

columns and orthonormalizing these columns can cost as much as O(n6) operations.
As for the Lie and Jordan algebra case, we can use (2.14) to obtain lower and upper
bounds for condGM (f,X) that are hopefully cheaper to compute than condGM (f,X).
Note that ‖BG

M
‖2 ≤ ‖M−1‖2‖X‖2 and since DT

LM (I ⊗ XTM) is a left inverse for

BG
M

, ‖B+
G

M
‖2 ≤ ‖DT

LM (I ⊗ XTM)‖2 ≤ ‖X‖2 ‖M‖2. Then, for the case of (real or

complex) bilinear forms, (2.14) yields the following lower and upper bounds on the
structured condition number,

‖Kf (X)BG
M
‖2

‖M−1‖2‖X‖2
≤ condGM (f,X) ≤ ‖Kf (X)BG

M
‖2‖X‖2 ‖M‖2. (3.26)

As for the bounds in (3.13), the cost of computing the lower and upper bounds in (3.26)
is O(kn3) operations, where k is the number of iterations performed by Algorithm 2.6.

If M is orthogonal then ‖X−1‖ = ‖X‖ for both the 2-norm and Frobenius norm
since X−1 = X? = M−1XTM so that ‖X‖ = κ(X)1/2, where κ(X) := ‖X‖‖X−1‖.
In particular, if X is well-conditioned, i.e., κF (X) ≈ 1 then ‖Kf (X)BG

M
‖2/‖f(X)‖F

offers a good estimate of the relative structured condition number since

‖Kf (X)BG
M
‖2

‖f(X)‖F
≤ condGM (f,X)

‖X‖F
‖f(X)‖F

≤ κF (X)
‖Kf (X)BG

M
‖2

‖f(X)‖F
. (3.27)
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Hence, the quality of the bounds in (3.26) is likely to be influenced by the condition
number of X.

Using Lemma A.1 and (2.17), and by an argument analogous to the one for
bilinear forms, we obtain the following lower and upper bounds on the structured
conditioned number for automorphism groups associated with sesquilinear forms and
complex bilinear forms when f is only R-differentiable,

‖K(R)
f (X)BGM ,R‖2
‖M−1‖2‖X‖2

≤ condGM (f,X) ≤ ‖K(R)
f (X)BGM ,R‖2‖X‖2 ‖M‖2. (3.28)

Example 3.3. We apply our theory to the 2× 2 real diagonal symplectic matrix

X =

[
ea 0
0 e−a

]
, a > 0. (3.29)

Note that X is in three different automorphism groups GJ :
1. the real symplectic group associated with the real bilinear form defined by
J =

[
0
−1

1
0

]
with ambient field F = R and base field K = R,

2. the complex symplectic group associated with the complex bilinear form de-
fined by J with F = K = C,

3. the conjugate symplectic group associated with the sesquilinear form defined
by J with F = C and K = R.

The matrix BGM in (3.22) with M = J and DLJ = [(e2 + e3)/
√

2, e1, e4], DJJ =
[ 1√

2
(e2 − e3)], is given by

BGJ =

{
[ 1√

2
(e−ae4 − eae1), e−ae2,−eae3] for real/complex symplectic,

[ 1√
2
(e−ae4 − eae1), e−ae2,−eae3,− i√

2
(eae1 + e−ae4)] for conj. symplectic.

The orthonormalization of BGJ for the real and complex symplectic groups and that
of BGJ ,R in (3.24) for the conjugate symplectic group take the form

B̃GJ = [
1√

1 + e4a
(e2ae1 − e4), e2, e3] ∈ R4×3,

B̃GJ ,R = [
1√

1 + e4a
(e2ae1 − e4), e2, e3,

1√
1 + e4a

(e2ae5 + e8)] ∈ R8×4.

These bases will be needed in the computation of the structured condition numbers
and their lower and upper bounds.

As differentiable map f , we consider the principal matrix logarithm [10]. Since
X has no eigenvalues on R−, logX−1 = − logX and since X ∈ GJ , we have from
section 3 that logX ∈ LJ . Indeed, logX =

[
a
0

0
−a
]

is Hamiltonian. To compute the
unstructured condition number, we construct Klog(X) one column at a time using
Klog(X)ei+2j−2 = vec(Llog(X, eie

T
j )), i, j = 1, 2 as in (2.4). Because X and eie

T
i

commute, we have that Llog(X, eie
T
i ) = X−1eie

T
i , i = 1, 2 [10, Prob. 3.8]. Since

X + eie
T
j is triangular, we can use the explicit expression for the matrix function of

a triangular matrix in [10, p. 84] and the definition of the Fréchet derivative in (2.1)
to get an expression for Llog(X, eie

T
j ). We find that

Klog(X) = diag
(
e−a,

a

sinh a
,

a

sinh a
, ea
)

17



so that

cond(log, X) = ‖Klog(X)‖2 = ea, rcond(log, X) =
e2a

a
,

showing that the unstructured absolute and relative condition numbers increase rapidly
with a. For the real and complex symplectic groups, we find that

condGJ (log, X) = ‖Klog(X)B̃GJ‖2 =
a

sinh a
< 1.

Similarly, for the conjugate symplectic group, we have that

condGJ (log, X) = ‖K(R)
log (X)B̃GJ,R‖2 =

a

sinh a
,

where K
(R)
log (X) = Klog(X) ⊕ Klog(X). Hence, for all three symplectic groups, the

ratio condGJ (log, X)/cond(log, X) = a/(ea sinh a) exponentially decays as a → ∞.
The lower and upper bounds in both (3.26) and (3.28) yield

a

sinh a
≤ condGJ (log, X) ≤ ae2a

sinh a

showing that for this particular matrix and function f , the lower bound is attained,
whereas the upper bound is larger than cond(log, X). Also, for this particular choice
of f and X, and the conjugate symplectic group, equality holds in (2.19), that is,

condGJ (log, X) = ‖K(R)
f (X)B̃GJ ,R‖2 = ‖K(C)

f (X)B̃GJ‖2 for some orthonormalization

B̃GJ of the basis BGJ for the conjugate symplectic group but this is not always the
case as we next illustrate.

Let us consider f(X) = X2, X as in (3.29) with a = log 2 and the conjugate
symplectic group as manifold. Since f is complex differentiable, we can compute

K
(C)
f (X) ≡ Kf (X) and find that K

(C)
f (X) = diag(4, 5/2, 5/2, 1) so that K

(R)
f (X) =

K
(C)
f (X)⊕K(C)

f (X). Hence

condGJ (f,X) = ‖K(R)
f (X)B̃GJ ,R‖2 =

√
257

17
≈ 3.89.

Now, for an orthonormalization B̃GJ of the 4× 4 matrix BGJ for the conjugate sym-

plectic group, we find that ‖K(C)
f (X)B̃GJ‖2 = 4 >

√
257
17 and hence the inequality is

strict in (2.19) for that particular case so that condGJ (f,X) 6= ‖K(C)
f (X)B̃GJ‖2.

Finally consider the map f that associates to X the unitary factor of its polar
decomposition X = UH. This map is real differentiable but not complex differen-
tiable. For the matrix X in (3.29), we have that U = I2. Following [19, Corollary
3.12] we can compute the Kronecker form of the Fréchet derivative of the unitary
factor analytically. Indeed, using [19, Eqn. (3.13)] with U = V = I2 we have

Lf (X,E) = F ◦ (E − E∗) + i(H − F ) ◦ Im(E),

where ◦ denotes the Schur product and, for our choice of X,

F =
1

2 cosh(a)

[
0 1
1 0

]
, H =

[
e−a 0
0 ea

]
+ F.

18



For real perturbations only, Kf (X) is the 4× 4 matrix

Kf (X) = 0⊕ 1

2 cosh(a)

[
1 −1
−1 1

]
⊕ 0

so that the unstructured condition number is cond(f,X) = 1/ cosh(a). For the man-
ifold of real symplectic matrices we find that

condGJ (f,X) = ‖Kf (X)B̃Gj‖2 = 1/ cosh(a).

Hence condGJ (f,X)/cond(f,X) = 1. For complex perturbations, the Kronecker form

of the real Fréchet derivative is an 8× 8 matrix K
(R)
f (X). Using [19, Eqn. (3.13)], we

obtain

K
(R)
f (X) = 0⊕ 1

2 cosh(a)

[
1 −1
−1 1

]
⊕ 0⊕ e−a ⊕ 1

2 cosh(a)

[
1 1
1 1

]
⊕ ea,

so that the unstructured conditioned number is cond(f,X) = ‖K(R)
f (X)‖2 = ea.

For the manifold GJ of complex symplectic matrices that we view as a real man-
ifold since f is not complex differentiable, it follows from (3.23) and (3.24) that

BGJ ,R =
[BGJ

0

]
and its orthonormalization takes the form B̃GJ ,R =

[ B̃GJ
0

]
. Hence,

condGJ (f,X) = ‖K(R)
f (X)B̃GJ ,R‖2 = 1/ cosh(a)

and condGJ (f,X)/cond(f,X) = 1/(ea cosh(a)), which decays exponentially with a.
Finally, for the real manifold of conjugate symplectic matrices GJ , it follows from

(3.24) that BGJ ,R =
[Re(BGJ )

Im(BGJ )

]
It can be readily proved that

condGJ (f,X) = ‖K(R)
f (X)B̃GJ ,R‖2 = 1/ cosh(a).

Hence, condGJ (f,X)/cond(f,X) = 1/(ea cosh(a)), which again decays exponentially
with a.

4. Numerical experiments. The purpose of this section is to compare the
structured and unstructured condition numbers numerically and to illustrate the qual-
ity of the lower and upper bounds on the structured condition number for automor-
phism groups of real and complex bilinear forms and sesquilinear forms displayed
in (3.26) and (3.28), since these bounds are cheaper to compute than condstruc(f,X).
All our experiments are performed with MATLAB R2017a for which the unit roundoff
is u ≈ 1.1× 10−16.

We consider the maps

f1 : GM → LM , f2 : GM → GM , f3 : GM → GM ∩GI ,
X 7→ logX X 7→ X1/2 X 7→ U

where logX is the principal logarithm of X, X1/2 is the principal square root of X
and U is the unitary factor in the polar decomposition X = UH of X. Both f1 and
f2 are complex differentiable but f3 is only real differentiable. Algorithms 2.5 and 2.6
require an algorithm to compute Lf (X,E) for a given E. For the logarithm, we use the
MATLAB function logm−frechet−pade from Higham’s Matrix Function Toolbox [8].
For the matrix square root, Lf2 = Lf2(X,E) is the solution to the Sylvester equation
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Fig. 4.1. Structured and unstructured relative condition numbers, and lower and upper bounds
on the structured condition number for the principal logarithm of 10 × 10 randomly generated real
perplectic matrices in plot (a), real symplectic matrices in plot (b), complex symplectic in plot (c),
and conjugate symplectic in plot (d), with increasing condition number κ2(X).

XLf2 + Lf2X = E [10, p.134], which can be computed with the function sylvsol

from [8]. For the polar orthogonal factor, one possibility is to follow Higham, who
showed in [9, Thm. 2.5] that Lf3(X,E) = (E − ULH)H−1, where LH is the solution
to the Sylvester equation HLH+LHH = ATE+ETA. Alternatively, in [19, Theorem
3.8 and Corollary 3.10] Noferini obtained explicit formulae for the Fréchet derivatives
of any generalized matrix function [6]. We prefer the latter approach for efficiency
and numerical stability.

We use Jagger’s MATLAB Toolbox for Classical Matrix Groups [13] to generate
random matrices with specified condition number in the

• real perplectic group (bilinear form with M = R, ambient field F = R, and
base field K = R),

• real pseudo-orthogonal group (bilinear form with M = Sp,q, F = K = R),
• complex orthogonal group (bilinear form with M = I, F = K = C),
• complex pseudo-orthogonal group (bilinear form with M = Sp,q, F = K = C),
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Fig. 4.2. Structured and unstructured relative condition numbers, and lower and upper bounds
on the structured condition number for the principal square root of 10× 10 randomly generated real
pseudo-orthogonal matrices with p = q = 5 in plot (a), real pseudo-orthogonal matrices with p = 1,
q = 9 in plot (b), complex pseudo-orthogonal matrices with p = q = 5 in plot (c) and pseudo-unitary
matrices with p = q = 5 in plot (d), with increasing condition number κ2(X).

• pseudo-unitary group (sesquilinear form with M = Sp,q, F = C, K = R),
• real symplectic group (bilinear form with M = J , F = K = R),
• complex symplectic group (bilinear form with M = J , F = K = C),
• conjugate symplectic group (sesquilinear form with M = J , F = C, K = R),

with J,R and Sp,q as defined at the beginning of section 3. We check that the
generated matrices X have no eigenvalues on the negative real line so that their
principal logarithm logX and principal square root X1/2 exist.

For our numerical experiments, we report the relative unstructured/structured
condition numbers, i.e.,

rcond(f,X) = cond(f,X)
‖X‖F
‖f(X)‖F

, rcondGM (f,X) = condGM (f,X)
‖X‖F
‖f(X)‖F

,
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Fig. 4.3. Structured and unstructured relative condition numbers, and lower and upper bounds
on the structured condition number for the unitary polar factor of 10 × 10 randomly generated
real perplectic matrices (top left plot), complex orthogonal matrices (top right plot), pseudo-unitary
matrices with p = q = 5 (bottom left plot) and conjugate symplectic matrices (bottom right plot),
with increasing condition number κ2(X).

rather than the absolute ones as we will be varying the condition number of X. The
upper and lower bounds in (3.26) and (3.28) multiplied by ‖X‖F /‖f(X)‖F provide
upper and lower bounds for rcondGM (f,X). These bounds and condition numbers
are reported in Figure 4.1 for the principal logarithm of real perplectic, real symplec-
tic, complex symplectic and conjugate symplectic matrices of increasing condition
numbers. In Figure 4.2 we report the same quantities for the principal square root
of real pseudo-orthogonal matrices with p = q = 5, real pseudo-orthogonal matri-
ces with p = 1, q = 9, complex pseudo-orthogonal matrices with p = q = 5, and
pseudo-unitary matrices with p = q = 5. Figure 4.3 compares the relative unstruc-
tured/structured condition numbers for the map f3 as well as the lower and upper
bounds on rcondGM (f,X). All plots show that the unstructured condition number
can be much larger than the structured one in particular when the argument X of
the matrix function has a large condition number. When the latter is not too large
the lower bound in (3.26) or (3.28) offers a good approximation to condGM (f,X).
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Our numerical experiments also suggest that for most of the real automorphism
groups we consider (see Figure 4.1(a)&(b), Figure 4.2(a) and Figure 4.3(a)) the lower
bound in (3.26) is a good approximation to condGM (f,X) even for badly conditioned
matrices X. An explanation of why (3.26) is a good approximation for many, but
not all, groups is left for future research; here, we note that more insight could be
gained by studying the angle between the dominant singular vector of the matrix B
and the vector y that achieves the maximum in the definition of structured condition
number. The plots show that the upper bound ub−cond(f,X) is in general not sharp,
in particular when κ2(X) is large as expected from the analysis in section 3.2. Our
experiments show that cond(f,X) is usually a better upper bound on condGM (f,X)
than the upper bound in (3.26) or (3.28) but not always as plot (a) in Figure 4.1
indicates.

Let A = X1/2 be the principal square root of X, and let Â be the computed
square root of X. The backward error of Â is ‖E‖F , where E = Â2 − X is the

unique matrix satisfying Â = (X + E)1/2. Then on using (1.2), we get the following
approximate upper bound on the relative error:

err(Â) :=
‖Â−X1/2‖F
‖X1/2‖F

<∼ cond(sqrt, X)
‖Â2 −X‖F
‖X1/2‖F

. (4.1)

When X ∈ GM and X1/2 is computed with a structure preserving algorithm such
as those derived in [11], cond(sqrt, X) can be replaced by condGM (sqrt, X) in (4.1)
yielding a sharper upper bound. This is illustrated in Figure 4.4 for symplectic and
pseudo-orthogonal matrices. To obtain the computed square root Â, we use the
structure preserving and cubically converging iteration

Yk+1 =
1

3
Yk
[
I + 8

(
I + 3ZkYk

)−1]
, Y0 = X, (4.2a)

Zk+1 =
1

3

[
I + 8

(
I + 3ZkYk

)−1]
Zk, Z0 = I, (4.2b)

where Yk, Zk ∈ GM and Yk → X1/2 [11, Sec.6]. For the relative error err(Â) in (4.1) we
use funm−x from Higham’s Matrix Function Toolbox [8] to compute X1/2 in extended
precision. The relative errors are plotted as ‘∗’ in Figure 4.4 and the test matrices
are sorted with increasing values of err(Â). We compare these relative errors to the
unstructured bound in (4.1). The structured bounds in Figure 4.4 correspond to (4.1)
with cond(sqrt, X) replaced with condGM (sqrt, X) and the approximate bound corre-
sponds to (4.1) with cond(sqrt, X) replaced with the lower bound on condGM (sqrt, X)
displayed in (3.26) or (3.28) (so the approximate bound is not a strict bound). The
plot on the right hand side shows that even when lb−cond(f,X) is order of magni-
tude smaller that the relative structured condition number rcondstruc(sqrt, X) (which
happens for pseudo-unitary matrices with p 6= q), the product of the lower bound
on the relative structured condition number times the relative backward error, i.e.,
lb−cond(f,X)× ‖Â2 −X‖F /‖X‖F offers a good approximation of err(Â).

5. Concluding remark. We emphasize that in this work we have focused on
manifolds embedded in a larger Euclidean space, which is the natural theoretical
setting for algorithms working on the entries of a structured matrix. Several, but not
all, algorithms in numerical linear algebra are in this category. A common alternative
approach is to work via the atlas of a manifold, which is for example a standard
paradigm to represent the manifold of semiseparable matrices. Extending the theory
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Fig. 4.4. Bounds on the relative error err(Â) = ‖Â − X1/2‖F /‖X1/2‖F for 50 randomly
generated 10× 10 symplectic matrices X in plot (a) and for 50 randomly generated 10× 10 pseudo-

orthogonal matrices X in plot (b), where Â is an approximate square root of X computed by the
structure preserving iteration (4.2).

presented in this paper to include manifolds represented via an atlas is an interesting
line of research left for future work.
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Appendix A.

The following result is needed in section 3.2, and is of potential interest per se.

Lemma A.1. For any A,B ∈ Rm×n let C = A + iB ∈ Cm×n and CR =
[
A
B

]
.

Then, ‖CR‖2 ≤ ‖C‖2 ≤
√

2‖CR‖2 and the inequalities are tight.

Moreover, suppose further that rank(C) = n ≤ m. Then, ‖C+
R ‖2 ≤ ‖C+‖2 and

the inequality is tight. However, for any M > 0 there exist A,B ∈ Rm×n such that
rank(C) = n ≤ m but ‖C+‖ > M‖C+

R ‖.
Proof. Let us sort the singular values in nonincreasing order and let σi(X) denote

the ith singular value of X. By the same argument we used to derive (2.9), observe
that the singular values of

CRR :=

[
A −B
B A

]
are the same as those of C, repeated twice (and reordered). Hence, by standard
inequalities on singular values of submatrices that can be proved using Weyl’s theorem
on eigenvalues of sum of Hermitian matrices (see, e.g., [12, Ch. 3]), we conclude that,
for any i = 1, . . . , 2 min(m,n)− n,

σi+n(CRR) ≤ σi(CR) ≤ σi(CRR).
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This in particular implies that ‖CR‖2 ≤ ‖C‖2. Noting that rank(CRR) = 2 rank(C) ≤
2 rank(CR), if m ≥ n and rank(C) = n then rankCRR = 2n and ‖C+

R ‖2 ≤ ‖C+‖2. To
see that equality can be be achieved it suffices to take scalars, i.e., m = n = 1.

Finally, we have ‖C‖2 = ‖
[
I iI

]
CR‖2 ≤

√
2‖CR‖2 with equality achieved for

example by picking A =
[

0
1
−1
0

]
, B = I2. The same choice of A,B shows that the state-

ment is tight in two additional senses: (1) we cannot relax the assumption rank(C) = n
in the pseudoinverse norm bound, and (2) as can be seen by consider a (generic) small
perturbation of the example above, such that the smallest singular value of C becomes
arbitrarily small, but nonzero, the ratio ‖C+‖2/‖C+

R ‖2 is not bounded above, even if
one requires rank(C) = n.
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