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SUMMARY

We propose an adaptive scheme to reduce communication overhead caused by data movement by selectively
storing the diagonal blocks of a block Jacobi preconditioner in different precision formats (half, single, or
double). This specialized preconditioner can then be combined with any Krylov subspace method for the
solution of sparse linear systems to perform all arithmetic in double precision. We assess the effects of the
adaptive-precision preconditioner on the iteration count and data transfer cost of a preconditioned conjugate
gradient solver. A preconditioned conjugate gradient method is, in general, a memory-bound algorithm, and
therefore its execution time and energy consumption are largely dominated by the costs of accessing the
problem’s data in memory. Given this observation, we propose a model that quantifies the time and energy
savings of our approach based on the assumption that these two costs depend linearly on the bit length
of a floating point number. Furthermore, we use a number of test problems from the SuiteSparse matrix
collection to estimate the potential benefits of the adaptive block-Jacobi preconditioning scheme.

KEY WORDS: Sparse linear systems; Krylov subspace methods; conjugate gradient (CG) method;
Jacobi preconditioners; adaptive precision; communication reduction; energy efficiency

1. INTRODUCTION

Krylov subspace-based iterative methods for the solution of sparse linear systems typically benefit
from the integration of a preconditioner that improves the conditioning of the linear system and,
consequently, accelerates the convergence process [1].

A popular preconditioner is the Jacobi preconditioner and its block-Jacobi variants.
Preconditioners of this class are based on simple (block-)diagonal scaling, which makes them
highly parallel schemes suitable for fine-grained parallelism, and they have proven to provide a
fair acceleration for many applications. For example, block-Jacobi preconditioners can efficiently
efficiently exploit the massive hardware concurrency of graphics processing units (GPUs) [2, 3].

For virtually all current hardware technologies, the computational performance of preconditioned
Krylov methods is limited by the memory bandwidth and depends heavily on the cost of memory
access. Furthermore, for current architectures, data movement is not just a performance constraint
but also a major source of energy consumption. Therefore, with highly parallel, high-performance
computing (HPC) systems moving in the direction of an increasing floating point operations
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(FLOP) per byte ratio, innovative techniques to reduce communication are critical for future
applications [4, 5, 6, 7].

When a block-Jacobi preconditioner is combined with a simple Krylov iterative method—like the
preconditioned conjugate gradient (PCG) method, which is suitable for the solution of sparse linear
systems with a symmetric positive–definite (SPD) coefficient matrix [1]—a significant portion of
the accesses to main memory is caused by the application of the preconditioner at each iteration.
To decrease the costs of this stage, we analyze a version of the block-Jacobi preconditioner that
selectively stores part of its data in low precision. This strategy reduces the data access volume
during the application of the block-Jacobi preconditioner. We emphasize that, for a memory-
bounded operation such as the PCG method, the time and energy savings of operating with reduced
precision mostly come from the reduction of the volume of data being transferred, not from the
increase in the single instruction, multiple data (SIMD) capacity associated with using reduced-
precision arithmetic. Therefore, our solution aims to reduce the cost of communication due to the
preconditioner application only. All other data (including the sparse matrix entries) as well as all
arithmetic occurs in the conventional double precision. In more detail, our work makes the following
contributions:

• We propose an adaptive preconditioner that stores the diagonal Jacobi blocks in the
preconditioner using half, single, or double precision, depending on the conditioning and
data range. In our scheme, the preconditioner blocks are retrieved from memory in the
corresponding format and transformed into double precision once in the processor registers;
all arithmetic operations are then performed at double precision level. As stated earlier, the
entries for the sparse matrix and recurrence vectors for the conjugate gradient (CG) method
(or any other Krylov subspace method) are maintained and retrieved in main memory using
standard double precision.

• We investigate the impact that storing a block-Jacobi preconditioner in low precision exerts
on the PCG convergence rate and the effectiveness of the adaptive precision block–Jacobi at
maintaining the reference convergence rate.

• We develop a model that quantifies the runtime and energy savings based on the assumption
that these costs depend linearly on the bit length of a floating point number.

• We use a set of test problems from the SuiteSparse matrix collection [8] to analyze the
robustness of the adaptive preconditioning in a CG method, and to estimate the potential
energy savings.

The use of mixed precision in preconditioned iterative solvers was previously explored with a
primary focus on reducing the cost of arithmetic operations. In [9], Arioli and Duff show that, when
using a lower-upper (LU) preconditioner computed in single precision within a flexible generalized
minimal residual method (GMRES) based iterative solver (which enables one to use a non-constant
preconditioning operator), backward stability at double precision can be preserved even for ill-
conditioned systems. In [10], Carson and Higham provide a detailed error analysis of LU-based
mixed refinement approaches for ill-conditioned systems. In [11], the same authors go as far as
using half precision for computing an LU preconditioner that is used in the solution process of a
GMRES solver that is part of a mixed precision iterative refinement process.

Our approach is fundamentally different. We do not aim to employ reduced precision in the
generation or application of the preconditioner nor in any other arithmetical computation. Instead,
we preserve full precision in all computations but store part of the preconditioner at a reduced
precision. After reading the preconditioner stored at reduced precision, all data is converted to full
precision before proceeding with the arithmetic operations in the actual preconditioner application.
We argue that this approach has significantly higher potential for runtime- and energy savings than
the previously proposed strategies for three reasons: (1) since the performance of sparse linear
algebra algorithms is typically memory bound, the performance benefit obtained by reducing the
data access volume is greater than the benefit obtained by reducing the cost of FLOPs; (2) since
the energy cost of data access is more than an order of magnitude greater than that of arithmetic
operations [12], more resources can be saved by reducing data accesses; and (3) running the
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preconditioner application at reduced precision results in a preconditioning operator not preserving
orthogonality in double precision, implying that previously orthogonal Krylov vectors may not
be orthogonal after the preconditioner application. To account for this situation, flexible variants
that introduce an additional orthogonalization step are required to preserve convergence [13].
Performing arithmetic operations in the distinct preconditioner applications in full precision (even
though the preconditioner data is stored at reduced precision) preserves the orthogonality of the
Krylov subspace and removes the burden of expensive reorthogonalization.

Section 2 provides a more detailed discussion of the need for reorthogonalization when using
mixed-precision preconditioning in flexible Krylov methods. This discussion includes a detailed
description of the CG solver that we later employ as a Krylov solver for testing our adaptive
precision block-Jacobi preconditioner. A brief recap/overview of block-Jacobi preconditioning is
provided in Section 3. In Section 4, we introduce the concept of adaptive precision preconditioning,
and we introduce the evaluation criteria for selecting the storage format of the distinct diagonal
blocks. Rounding error analysis to support the criteria is given in Section 5. We report the
experimental results in Section 6, which includes an analysis of “reckless” precision reduction in
block-Jacobi preconditioning, the assessment of the evaluation criteria, and an energy consumption
model that quantifies the savings owed to adaptive precision preconditioning. We summarize our
findings in Section 7 and provide details about the path forward for this research.

2. REDUCED PRECISION PRECONDITIONING IN THE PCG METHOD

2.1. Brief review

Figure 1 shows the PCG method for the solution of the linear system Ax = b; where the coefficient
matrix, A ∈ Rn×n, is SPD and sparse with nz nonzero entries; b ∈ Rn is the right-hand side;
and x ∈ Rn is the sought-after solution. The most challenging operations in this algorithm are
the computation of the preconditioner (before the iteration commences), the computation of the
sparse matrix-vector product (SPMV) (at each iteration), and the preconditioner application (at
each iteration). The remaining operations are scalar computations or simple vector kernels like the
dot product (DOT) and AXPY-type vector updates [14].

A→M
Initialize x0, p0, r0 := b−Ax0, τ0 :=‖ r0 ‖2, γ0
k := 0
while (τk > τmax)
qk+1 := Apk
ηk := pTk qk+1
αk := γk/ηk
xk+1 := xk + αkpk
rk+1 := rk − αkqk+1
τk+1 :=‖ rk+1 ‖2
zk+1 :=M−1rk+1

γk+1 := rTk+1zk+1
βk+1 := γk+1/γk
pk+1 := zk+1 + βk+1pk
k := k + 1

endwhile

Figure 1. Mathematical formulation of the PCG method. Here, τmax is the relative residual stopping
criterion.

In the PCG method, the DOT operations present a one-to-one ratio of FLOPs to memory accesses
(MEMOPS), and the AXPY-type operations present a two-to-three ratio of FLOPs to MEMOPS,
which clearly identifies these operations as memory-bounded kernels. For simplicity, moving
forward we make no distinction between the cost of reading a number and the cost of writing
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a number. Assuming the sparse matrix is stored in compressed sparse row (CSR) format [1]—
and is using 64 bits for double precision numbers/values (fp64) and 32 bits for integers/indices
(int32)—the ratio of FLOPs:MEMOPS for SPMV is 2nz/((n+ nz) · fp64 + (n+ nz) · int32). As
a consequence, this operation is also memory bounded. An analysis of the operations using the
preconditioner is provided later in this section.

2.2. Flexible CG

Using a reduced-precision preconditioner (i.e., 32-bit or 16-bit arithmetic) instead of “full” 64-
bit, double-precision arithmetic requires a careful consideration of the numerical effects. The
PCG method presented in Figure 1 assumes that the preconditioner is a constant operator acting
on the input vector, r = rk+1, as z = zk+1 := M−1r [1]. In this case, rTk zk+1 = 0, that is to
say, the orthogonality with respect to the previous residual is preserved. Strictly speaking, even
when using double precision, the preconditioner application introduces some rounding error
so that the computed operator satisfies z = M−1r +O(εd), where εd stands for fp64 machine
precision. Hence, a preconditioner in double precision can also have an impact on the orthogonality.
However, as the effects are in the order of the approximation accuracy, the non-consistency of the
preconditioning operator is typically disregarded in practice.

In contrast, when applying a preconditioner in less than double precision, this issue becomes more
relevant, because the rounding error now grows to z = M−1r +O(εr), where εr is the machine
precision of the reduced format. As a result, the orthogonality error increases to εr, which becomes
relevant if convergence beyond εr is desired.

A straightforward workaround is to introduce an additional orthogonalization step to account for
the loss in orthogonality. Concretely, replacing the Fletcher-Reeves formula from Figure 1,

βk := γk+1/γk =
rTk+1zk+1

rTk zk
, (1)

with the Polak-Ribière formula,

βk :=
(rk+1 − rk)T zk+1

rTk zk
, (2)

naturally accounts for zk+1 losing orthogonality with respect to the previous residual, rk [13].
Compared with the original formulation of the CG method, this orthogonality-preserving “flexible
CG” (FCG) [13] incurs an overhead that corresponds to keeping the last residual vector in memory
and computing an additional vector operation and DOT product. The benefits are that the iterative
method can handle a flexible (non-constant) preconditioner [15], which is needed when applying a
preconditioner in reduced precision.

Obviously, with a constant preconditioner, rTk zk+1 = 0, i.e. both formulas (1) and (2) are
identical. For rTk zk+1 6= 0, the Polak-Ribière formula specifies a locally optimal search direction,
which means that the convergence rate of this method will not be slower than that of a locally
optimal steepest descent method [16]. We complement the preconditioned CG method, based on
the Fletcher-Reeves formula shown in Figure 2, with the flexible conjugate gradient (FCG) method
based on the Polak-Ribière formula in Figure 3. The two codes differ only in lines 6–8 (computation
of gamma new and additional recurrence for vector t), which results in 7n additional memory
accesses. A faster preconditioner application (i.e., using reduced-precision arithmetic operations
in the actual preconditioner application) could barely compensate for this overhead.

In our approach, we store the preconditioner at reduced precision, but we convert the data to
double precision right after reading it from memory and before invoking the arithmetic computations
of the preconditioner application. Hence, although stored at a reduced precision, the preconditioner
itself remains constant across all iterations. This strategy does introduce some overhead in terms
of converting the preconditioner data to double precision and using double precision in all
arithmetic operations, but it comes with the benefit of using the Fletcher-Reeves formula (1) for
the orthogonalization step, which results in the more attractive (in terms of memory) standard PCG
solver.
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1 % PCG m e t h o d
2 % C o m p u t e p r e c o n d i t i o n e r A −> M
3 % I n i t i a l i z e x , p , r = b − A ∗ x , t a u = r ’ ∗ r , g a m m a o l d
4 whi le(tau > tau_max)
5 z = M \ r; % = Mˆ{ −1} r , a p p l y p r e c o n d i t i o n e r
6
7 gamma_new = r’ * z; % DOT p r o d u c t
8
9 beta = gamma_new / gamma_old; % s c a l a r o p e r a t i o n

10 p = z + beta * p; % AXPY− t y p e
11 q = A * p; % SpMV
12 eta = p’ * q; % DOT p r o d u c t
13 alpha = gamma_new / eta; % s c a l a r o p e r a t i o n
14 gamma_old = gamma_new; % s c a l a r o p e r a t i o n
15 x = x + alpha * p; % AXPY
16 r = r - alpha * q; % AXPY
17 tau = r’ * r; % = | | r | | 2 , DOT p r o d u c t
18 end

Figure 2. Algorithmic formulation (in MATLAB) of the PCG method. For a problem of size n containing nz
nonzero elements in the system matrix stored in CSR format, ignoring the preconditioner application, each

PCG iteration requires (14n+ nz) · fp64 + (nz + n) · int32 memory transactions.

1 % F l e x i b l e CG m e t h o d
2 % C o m p u t e p r e c o n d i t i o n e r A −> M
3 % I n i t i a l i z e x , p , r = b − A ∗ x , r o l d , t a u = r ’ ∗ r , g a m m a o l d
4 whi le(tau > tau_max)
5 z = M \ r; % = Mˆ{ −1} r , a p p l y p r e c o n d i t i o n e r
6 gamma_new = r’ * z; % DOT p r o d u c t
7 t = r - r_old; % AXPY− t y p e
8 gamma_t = t’ * z; % DOT p r o d u c t
9 r_old = r; % COPY

10 beta = gamma_t / gamma_old; % s c a l a r o p e r a t i o n
11 p = z + beta * p; % AXPY− t y p e
12 q = A * p; % SpMV
13 eta = p’ * q; % DOT p r o d u c t
14 alpha = gamma_new / eta; % s c a l a r o p e r a t i o n
15 gamma_old = gamma_new; % s c a l a r o p e r a t i o n
16 x = x + alpha * p; % AXPY
17 r = r - alpha * q; % AXPY
18 tau = r’ * r; % = | | r | | 2 , DOT p r o d u c t
19 end

Figure 3. Algorithmic formulation (in MATLAB) of the FCG method. For a problem of size n containing nz
nonzero elements in the system matrix stored in CSR format, ignoring the preconditioner application, each

FCG iteration requires (21n+ nz) · fp64 + (nz + n) · int32 memory transactions.

3. BLOCK-JACOBI PRECONDITIONING

The Jacobi method splits the coefficient matrix as A = L+D + U , with a diagonal matrix
D = ({aii}), a lower triangular factor L = ({aij : i > j}), and an upper triangular factor U =
({aij : i < j}). The block-Jacobi variant is an extension that gathers the diagonal blocks of A into
D = (D1, D2, . . . , DN ), with Di ∈ Rmi×mi , i = 1, 2, . . . , N , and n =

∑N
i=1mi. The remaining

elements of A are then partitioned into matrices L and U such that L contains the elements below
the diagonal blocks in D, while U contains those above them [2]. The block-Jacobi method is well
defined if all diagonal blocks are nonsingular. The resulting preconditioner, M = D, is particularly
effective if the blocks succeed in reflecting the nonzero structure of the coefficient matrix, A.
Fortunately, this is the case for many linear systems that, for example, exhibit some inherent block
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structure because they arise from a finite element discretization of a partial differential equation
(PDE) [2].

There are several strategies to integrate a block-Jacobi preconditioner into an iterative solver like
CG. In this work, we adopt an approach that explicitly computes the block-inverse matrix, D−1 =
(D−11 , D−12 , . . . , D−1N ) = (E1, E2, . . . , EN ), before the iterative solution process commences, and
then applies the preconditioner in terms of a dense matrix-vector multiplication (GEMV) per
inverse block Ei. Note that GEMV is still a memory-bounded kernel, independent of the block
size. In practice, this strategy shows numerical stability similar to the conventional alternative that
computes the LU factorization (with partial pivoting) [17] of each block (Di = LiUi) and then
applies the preconditioner using two triangular solvers (per factorized block). By comparison, the
GEMV kernel is highly parallel, while the triangular solves offer only limited parallelism.

4. ADAPTIVE-PRECISION BLOCK-JACOBI PRECONDITIONING

The main goal of this work is to assess the potential benefits of a specialized version of a
block-Jacobi preconditioner that selectively stores part of its data at low precision—a technique
that reduces the memory access volume during the application of a block-Jacobi preconditioner.
Concretely, we employ three precision formats: (1) 16-bit, half-precision arithmetic (fp16); (2)
32-bit, single-precision arithmetic (fp32); and (3) 64-bit, (full) double-precision arithmetic (fp64).
The fp32 and fp64 roughly correspond to the two IEEE standards that are currently supported by
practically all commodity processors used in everything from desktop systems to high-performance
servers. On the other hand, fp16 has only recently received considerable attention because of its
usefulness in deep learning applications, and hardware support for this format is now included in
the most recent many-core architectures from NVIDIA.

For our experiments, we use a PCG Krylov solver to expose the effects of storing parts of a block-
inverse preconditioner at a reduced precision. Before we introduce our preconditioning scheme
and the strategy for selecting the appropriate storage format, we note that, for the type of systems
that can be tackled using a CG method, the diagonal blocks of A in the preconditioner D are all
symmetric. Therefore, a significant amount of storage (and communication cost) can already be
saved by explicitly storing only the lower or upper triangular part of each block. We also recognize
that some computational cost can be saved by exploiting the symmetry and positive definiteness
information of these diagonal blocks. However, as these two cost-saving techniques are orthogonal
to those we propose, we refrain from mixing the distinct strategies.

In general, the design of a block-Jacobi preconditioner with adaptive precision is based on the
following observations.

1. In the preconditioner matrix, D, each one of the blocks, Di, is independent.
2. Except for cases where the iterative solver converges quickly, the overhead incurred by

determining an appropriate storage format for the preconditioner (before the iteration
commences) is irrelevant.

3. The application of each block, Di, (i.e., multiplication with the inverse block, Ei) should be
done with care to guarantee “enough” precision in the result. As we will show in Section 5,
the accuracy of this application is largely determined by the condition number of Di with
respect to inversion, denoted hereafter as κ1(Di) = ‖Di‖1‖D−1i ‖1 = ‖Di‖1‖Ei‖1, [17].

Armed with these observations, we propose the following adaptive-precision block-Jacobi
preconditioner:

1. Before the iteration commences, the inverse of each block, Di, is computed explicitly using
fp64: Di → Ei. We note that even if Di is sparse, its inverse, Ei, is likely a dense matrix. For
this reason, we store the inverse, Ei, following the conventional column-major order using
mi ×mi real numbers.

2. At the same stage (i.e., before the iteration), we compute κ1(Di) = κ1(Ei) = ‖Di‖1‖Ei‖1
and we note that, given Ei is explicitly available, computing κ1(Di) is straightforward and
inexpensive compared with the inversion of the block.
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Compute Ei

Compute 1−norm
of Ei

double precision

no

single precision
Truncate_format to

Success?
yes

no

yes

half precision
Truncate_format to

Success?

Return double Return single Return half

Figure 4. Control flow for deciding whether or not to select a reduced format.

3. In principle, we store Ei, which was computed in fp64, in the format determined by its
condition number—truncating the entries of the block if necessary—as:

fp16 if τLh < κ1(Di) ≤ τUh ,
fp32 if τLs < κ1(Di) ≤ τUs , and

fp64 otherwise,

(3)

with τLh = 0 and τUh = τLs . As we will discuss in Section 5, the values for the bounds τUh and
τUs are selected by taking into account the unit roundoff for each format: uh ≈ 4.88e− 04
for half precision, us ≈ 5.96e− 08 for single precision, and ud ≈ 1.11e− 16 for double
precision.

4. During the iteration, we recover the block Ei stored in the corresponding format in memory,
transform its entries to fp64 once in the processor registers, and apply it in terms of a
fp64 GEMV to the appropriate entries of rk+1 to produce those of zk+1. This is a memory-
bounded operation, and, therefore, its cost is dominated by the overhead of recovering the
data for the preconditioner matrix and the vectors from memory (i.e., MEMOPS). Thus, we
can expect that in practice the FLOPs will be completely “amortized” (i.e., overlapped) with
the data transfers.

The truncation procedure for converting fp64 data to a reduced-precision format requires some
care to deal with overflows/underflows and their consequences, as described below.

• The truncation of a “large” (in magnitude) value in Ei, represented in fp64, can produce an
overflow because the number is too large to be represented in the reduced format, resulting
in an “Inf” value in that format. In those cases, we can either discard the use of the reduced
format for the complete block Ei or replace the truncated value with the largest number (in
magnitude) representable in that format (e.g., for positive values, 65, 504 in fp16 and about
3.40e+ 38 in fp32).

• Conversely, the truncation of a “small” (in magnitude) value, in fp64, may yield an underflow
that returns a value that is zero. This can turn a nonsingular matrix Ei into a singular matrix.
For example, if all entries of Ei are below the minimum representable number in the reduced
format, the result of truncation will produce a block that comprises only zeros, and the
preconditioned solver will not converge. This could be mitigated to some extent by scaling
all the values of the block. Furthermore, even if some of the entries are nonzero the truncated
representation of Ei may still become ill-conditioned, thereby causing numerical difficulties
for the convergence. In order to avoid this issue, we propose checking the condition number of
the truncated representation and not using the corresponding reduced precision if it is above
the relevant threshold, τκ.

Figure 4 summarizes the global precision selection process, and the pseudocode in Figure 5
provides a practical implementation of the truncation procedure and the various thresholds—taking
Ei and κ1(Ei) as inputs. The routine given in the pseudocode, force reduction, simply truncates
the fp64 block to a reduced format. The rest of the code uses several metrics to determine whether
the use of the reduced format is safe.
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1 f u n c t i o n [Ei, success] = truncate_format(Ei, Di_cond_num1,...
2 tau_r_L, tau_r_U, tau_k)
3 %
4 % I n p u t s : m i x m i d e n s e i n v e r s e b l o c k E i ;
5 % c o n d i t i o n n u m b e r o f D i ( a n d E i ) i n D i c o n d n u m 1 ; a n d
6 % t h r e s h o l d s t o d e t e r m i n e u s e o f r e d u c e d f o r m a t :
7 % − t a u r L a n d t a u r U ( w i t h t a u r = t a u h o r t a u s ) , a n d
8 % − t a u k
9 % O u t p u t : m i x m i d e n s e i n v e r s e b l o c k E i

10 % o v e r w r i t t e n w i t h t h e r e d u c e d f o r m a t i f a p p l i c a b l e
11 %
12 success = 0; % FALSE
13 i f (tau_r_L < Di_cond_num1) & (Di_cond_num1 <= tau_r_U)
14 Ei_reduced = force_reduction(Ei); % T r u n c a t e t o r e d u c e d f o r m a t
15 Ei_reduced_nrm1 = norm(Ei_reduced,1);
16 i f (Ei_reduced_nrm1 > 0.0) % E i c o n t a i n s n o n z e r o e n t r i e s
17 % C o m p u t e t h e c o n d i t i o n n u m b e r o f t r u n c a t e d b l o c k v i a e x p l i c i t
18 % i n v e r s e : e a s i e r t o i m p l e m e n t o n GPU t h a n SVD
19 Ei_reduced_cond_num1 = Ei_reduced_nrm1 * norm( inv(Ei_reduced),1);
20 i f (Ei_reduced_cond_num1 < tau_k) % E i i s n o t ( c l o s e t o ) s i n g u l a r
21 Ei = Ei_reduced;
22 success = 1; %TRUE
23 end
24 end
25 end
26 %
27 re turn;

Figure 5. Details of the procedure for deciding whether or not to select a reduced format.

5. ROUNDING ERROR ANALYSIS

As previously elaborated, we invert the diagonal blocks explicitly using double precision, e.g. via
(batched) Gauss-Jordan Elimination [2]. LetEi = D−1i be the inverse of block i computed in double
precision arithmetic with unit roundoff ud. By storing the inverse in reduced precision (Êi) with unit
roundoff u, we introduce the error ∆Ei and get [18], [19, secs. 14.3, 14.4]

Êi = Ei + ∆Ei, ‖∆Ei‖1 ≤ cmi
κ1(Di)‖Êi‖1ud + u‖Êi‖1, (4)

for some constant cmi
. For the vector segments in zi and ri corresponding to the diagonal block i,

the subsequent multiplication in double precision results in [19, sec. 3.5]

ẑi = fl(Êiri) = Êiri + ∆zi, ‖∆zi‖1 ≤ c′mi
ud‖Êi‖1‖ri‖1. (5)

Hence

ẑi = (Ei + ∆Ei)ri + ∆zi = Eiri + ∆zi, (6)

where combining (4) and (5) gives

‖∆zi‖1 = ‖∆Eiri + ∆zi‖1
≤ cmi

κ1(Di)‖Êi‖1‖ri‖1ud + u‖Êi‖1‖ri‖1 + c′mi
ud‖Êi‖1‖ri‖1

=
(
cmiκ1(Di)ud + u+ c′mi

ud
)
‖Êi‖1‖ri‖1. (7)

We may assume that the constant term c′mi
ud becomes negligible when storing the diagonal block

in the reduced precision format with unit roundoff u� ud. With this assumption,

‖∆zi‖1 ≤ cmi

(
κ1(Di)ud + u

)
‖Êi‖1‖ri‖1. (8)
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Figure 6. Boxplot for the distribution of the condition numbers of the diagonal blocks (κ1(Di)) using
supervariable agglomeration with the block size set to 24. For each matrix, the blue central box shows

where most of the condition numbers are located, the red crosses indicate outliers.

Noting that ri = E−1i zi = Dizi, this bound yields

‖∆zi‖1 ≤ cmi

(
κ1(Di)ud + u

)
‖Êi‖1‖Di‖1‖zi‖1

≈ cmi

(
κ1(Di)ud + u

)
κ1(Di)‖zi‖1, (9)

so that

‖∆zi‖1
‖zi‖1

≤ cmi

(
κ1(Di)ud + u

)
κ1(Di). (10)

As expected, the relative error depends on the conditioning of the diagonal block Di. With the unit
roundoff being a format-specific constant (uh ≈ 4.88e− 04 for half precision, us ≈ 5.96e− 08 for
single precision, and ud ≈ 1.11e− 16 for double precision), (10) provides bounds for the relative
error.

Recalling that we are within a preconditioner framework, by ignoring all entries outside the
block-diagonal in the inversion process we may have already introduced a significant error. In fact,
experiments reveal that preconditioners based on block-Jacobi often come with an error as large as
1.0e− 2 to 1.0e− 1. This makes it reasonable to allow for similar errors in (10), which yields the
bounds for the condition numbers that are allowed in the respective formats. In the experimental
section we use the bounds τUh = τLs := 1.0e+ 2, and τUs := 1.0e+ 6.

6. EXPERIMENTAL ANALYSIS

6.1. Experimental framework

In this section, we assess the potential benefits of the adaptive precision block–Jacobi preconditioner
with a collection of experiments performed in GNU Octave version 3.8.1. We implement the PCG
method according to [13] (Figure 2) with an integrated block-Jacobi preconditioner that performs
an explicit inversion of the diagonal blocks. We apply supervariable agglomeration to optimize the
block diagonal structure of the block-Jacobi preconditioner for the specific problems used here [20].
This procedure aims to identify and capture the block structure of the matrix in the Jacobi blocks of
the preconditioner, thereby accumulating multiple blocks into a larger superstructure with the upper
bound of the blocksize set to 24.

For the evaluation, we consider a subset comprised of 63 SPD test problems of small to moderate
dimension from the SuiteSparse matrix collection [8]. We list the matrices along with some key
characteristics in Table I.

In the adaptive precision preconditioner, we use the evaluation strategy shown in Figures 4 and 5
to determine the precision at which the individual diagonal blocks should be stored. According to
the heuristics presented in Section 5, we set τLh := 0, τUh = τLs := 1.0e+ 2, τUs := 1.0e+ 6; and
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ID Matrix # rows # nonzeros cond. number #PCG iterations
double single half adaptive

1 1138 bus 1,138 4,054 1.2100e+07 784 778 – 782
2 494 bus 494 1,666 3.8900e+06 269 269 271 269
3 662 bus 662 2,474 8.2100e+05 179 179 179 179
4 685 bus 685 3,249 4.0500e+05 171 171 – 172
5 bcsstk01 48 400 1.6000e+06 35 34 – 34
6 bcsstk03 112 640 6.2700e+06 46 48 – 48
7 bcsstk04 132 3,648 5.5500e+06 72 72 – 72
8 bcsstk05 153 2,423 3.5300e+04 95 95 – 95
9 bcsstk06 420 7,860 1.1900e+07 255 254 – 254

10 bcsstk07 420 7,860 1.1900e+07 255 254 – 254
11 bcsstk08 1,074 12,960 2.3200e+06 231 231 – 231
12 bcsstk09 1,083 18,437 3.6000e+03 325 325 – 325
13 bcsstk10 1,086 22,070 1.3200e+06 517 517 – 517
14 bcsstk11 1,473 34,241 4.2100e+06 768 764 – 764
15 bcsstk12 1,473 34,241 2.9000e+06 768 764 – 764
16 bcsstk13 2,003 83,883 5.6400e+08 1,639 1,631 – 1,444
17 bcsstk14 1,806 63,454 1.3100e+10 276 276 – 276
18 bcsstk15 3,948 117,816 1.9800e+07 585 584 – 583
19 bcsstk16 4,884 290,378 7.0100e+09 263 261 – 263
20 bcsstk19 817 6,853 5.8600e+10 1,775 1,773 – 1,768
21 bcsstk20 485 3,135 7.4800e+12 2,125 2,113 – 2,114
22 bcsstk21 3,600 26,600 2.6000e+06 565 565 – 565
23 bcsstk22 138 696 2.7600e+04 75 75 – 75
24 bcsstk24 3,562 159,910 7.1800e+10 2,505 2,630 – 2,336
25 bcsstk26 1,922 30,336 8.0800e+06 1,979 1,957 – 1,957
26 bcsstk27 1,224 56,126 1.4900e+04 213 213 – 213
27 bcsstk28 4,410 219,024 6.2800e+09 2,182 2,115 – 2,115
28 bcsstm07 420 7,252 1.3400e+04 46 46 46 46
29 bcsstm12 1,473 19,659 8.8800e+05 26 26 1,220 26
30 lund a 147 2,449 9.8900e+05 89 90 – 90
31 lund b 147 2,441 6.0300e+04 47 47 48 47
32 nos1 237 1,017 7.5900e+06 157 165 – 165
33 nos2 957 4,137 1.8300e+09 2,418 2,409 – 2,409
34 nos3 960 15,844 7.3500e+04 137 137 137 137
35 nos4 100 594 2.7000e+03 46 46 47 47
36 nos5 468 5,172 3.5900e+03 235 235 – 235
37 nos6 675 3,255 8.0000e+06 77 77 – 77
38 nos7 729 4,617 4.0000e+09 68 68 – 68
39 plat1919 1,919 32,399 2.2200e+18 4,117 4,049 3,772 4,081
40 plat362 362 5,786 7.0800e+11 982 1,112 1,115 1,095
41 mhdb416 416 2,312 5.0500e+09 19 19 – 19
42 bcsstk34 588 21,418 2.6700e+04 185 185 – 185
43 msc00726 726 34,518 8.5500e+05 160 160 – 160
44 msc01050 1,050 26,198 9.0000e+15 1,594 1,593 – 1,593
45 msc01440 1,440 44,998 7.0000e+06 929 928 – 928
46 msc04515 4,515 97,707 4.7800e+05 2,348 2,349 – 2,349
47 ex5 27 279 1.3200e+08 10 25 – 10
48 nasa1824 1,824 39,208 2.3100e+05 896 896 – 896
49 nasa2146 2,146 72,250 2.8100e+03 352 353 – 353
50 nasa2910 2,910 174,296 1.3000e+06 1,369 1,369 – 1,369
51 nasa4704 4,704 104,756 6.4500e+06 4,171 4,123 – 4,123
52 mesh1e1 48 306 8.2000e+00 14 14 14 14
53 mesh1em1 48 306 3.4000e+01 23 23 23 23
54 mesh1em6 48 306 8.8500e+00 14 14 15 15
55 mesh2e1 306 2,018 4.0700e+02 79 79 83 83
56 mesh2em5 306 2,018 2.7900e+02 77 77 81 75
57 mesh3e1 289 1,377 9.0000e+00 18 18 18 18
58 mesh3em5 289 1,377 5.0000e+00 17 17 17 17
59 sts4098 4,098 72,356 3.5600e+07 342 342 – 340
60 Chem97ZtZ 2,541 7,361 3.2900e+02 30 30 30 30
61 mhd3200b 3,200 18,316 2.0200e+13 17 17 – 17
62 mhd4800b 4,800 27,520 1.0300e+14 16 16 – 16
63 plbuckle 1,282 30,644 2.9200e+05 260 260 – 260

Table I. Left: Test matrices along with key properties. Right: Iteration count of the PCG method with the
preconditioner stored in double, single, half, or adaptive precision. The “–” symbol indicates cases where

the iterative solver did not reach the relative residual threshold τmax = 1.0e− 9 after 5,000 iterations.
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τκ := 1.0e− 3/ud; see also (3). Specifying an upper block size bound of 24 in the supervariable
agglomeration, we show in Figure 6 the condition number distribution of the blocks for each test
matrix. These condition numbers are one of the metrics considered when selecting the storage
format in the adaptive precision block–Jacobi preconditioner.

Using Octave, we emulate the procedure for truncation of fp64 values to reduced precision
formats (force reduction shown in Figure 5) as follows. First, we transform the full precision
value to a text string and then truncate that string to keep only the two most significant decimal digits
for fp16 and the seven most significant decimal digits for fp32. This is a rough approximation of the
precision level that can be maintained with the bits dedicated to the mantissa in the IEEE standards
for fp16/fp32. To emulate overflow, we set values exceeding the data range of the low precision
format to the largest representable number in the target format, Rmax, which is Rmax = 65, 504
for fp16 and Rmax = 3.40e+ 38 for fp32. We preserve the sign in this truncation process. To
emulate underflow, values that are smaller than the minimum value that can represented in the low
precision format, Rmin, are set to zero, which is Rmin = 6.10e− 5 for fp16 and Rmin = 1.17e− 38
for fp32. We stop the PCG iterations once the relative residual has dropped below the threshold
τmax := 1.0e− 9. We allow for, at most, 5,000 PCG iterations.

6.2. Reduced-precision preconditioning

In the first experiment, we investigate how a reckless/adaptive reduction of the precision for the
representation of the block-Jacobi preconditioner impacts the convergence rate of the PCG iterative
solver. By recklessly reducing the precision format used for storing the block-diagonal inverse,
essential information may be lost, which slows down the convergence of the iterative solver. In
the worst case, the diagonal blocks may become singular, or the entries may fall outside of the
data range that can be represented in the chosen precision; both cases would likely result in the
algorithm’s breakdown. We emphasize that the distinct preconditioners only differ in the format
that is leveraged to store the block inverse. Conversely, the problem-specific diagonal block pattern
is not affected, and all computations are realized in fp64.

The three leftmost columns in the right part of Table I report the iterations required for
convergence of the PCG method when storing the block-inverse preconditioner in fp64, fp32,
or fp16. We observe that storing the preconditioner in fp32 usually has only a mild impact on
the preconditioner quality. In most cases, the PCG iteration count matches the one where the
preconditioner is stored in fp64. In a few cases, the PCG converges even faster when storing
the preconditioner in fp32. Conversely, if the preconditioner is stored in fp16, the PCG does not
converge in most cases. Therefore, fp16 storage cannot be recommended as the default choice. In
the right-most column of Table I, we report the iteration count for the PCG method preconditioned
with adaptive precision block–Jacobi. We observe that, except for some noise, the adaptive precision
block–Jacobi preserves the quality of the preconditioner and the convergence rate of the fp64 solver.
Figure 7 shows that most of the time the adaptively chosen precision is single or half precision, with
relatively few instances o of double.

6.3. Energy model

Having validated that the adaptive precision block–Jacobi preconditioner preserves the convergence
rate of the iterative solver, we next quantify the advantage of the adaptive precision block-Jacobi
over a standard block-Jacobi using double precision. For this purpose, we specifically focus on the
energy efficiency, as this has been identified as an important metric (on par with performance) for
future exascale systems.

In terms of energy consumption, the accesses to main memory (MEMOPS) are at least an order of
magnitude more expensive than FLOPs, and this gap is expected to increase in future systems [12].
For this reason, in the energy model, we ignore the arithmetic operations (including the access to the
data in the processor registers as well as caches) and consider the data transfers from main memory
only. Our energy model for estimating the global energy consumption of the solver builds on the
premise that the energy cost of memory accesses is linearly dependent on the bit length of the data.



12 H. ANZT ET AL.

10 20 30 40 50 60

Test matrix [ID]

0

0.2

0.4

0.6

0.8

1

B
lo

c
k
 d

is
tr

ib
u

ti
o

n

Double precision

Single precision

Half precision

Figure 7. Details on the adaptive precision block-Jacobi. Breakdown of the diagonal blocks stored in fp64,
fp32, or fp16.
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Figure 8. Energy efficiency analysis of the PCG with block-Jacobi preconditioning using different floating
point formats for storing the preconditioner. The energy cost of all methods is normalized to the energy cost

of the standard implementation using fp64 for storing the block-Jacobi preconditioner.

Furthermore, as we only aim to estimate the energy efficiency of the adaptive precision block–
Jacobi preconditioner relative to the standard fp64 block-Jacobi preconditioner, we will set the
(normalized) energy cost of accessing a single bit of data as 1 (energy-unit). The precision formats
we consider employ 64, 32, and 16 bits.

For a problem of size n with nz nonzero elements, the PCG method presented in Section 2 and
preconditioned with a block-Jacobi preconditioner (consisting of N diagonal blocks of dimensions
m1 ×m1, . . . ,mN ×mn) performs:

14n · fp64︸ ︷︷ ︸
vector memory transfers

+ (2n+ nz) · fp64 + (n+ nz) · int32︸ ︷︷ ︸
CSR−SpMV memory transfers

+ 2n · fp64 +

N∑
i=1

m2
i · fpxxi︸ ︷︷ ︸

preconditioner memory transfers

(11)

data transfers (from memory) per iteration, where fpxxi denotes the precision format selected
for the i-th diagonal block of the preconditioner. The data transfer volume of the block-Jacobi
preconditioner thus depends on the format employed to store the block inverse. For example,
with the PCG running in fp64, the approach also employs fp64 to maintain the block-Jacobi
preconditioner. Further, we also consider variants that store the preconditioner entirely in fp32 or
fp16 and a more sophisticated strategy that adapts the format of the distinct preconditioner blocks
to the data.

For the adaptive precision block–Jacobi approach, we visualize the use of fp64, fp32, and fp16
for storing the diagonal blocks (Figure 7). Comparing this information with the data in Figure 6, we
can identify a relationship between the conditioning of the blocks and the storage precision format:
fp64 is primarily employed for those cases comprising very ill-conditioned blocks. Furthermore, the
information in Figure 7 also shows the savings that can be attained in terms of (1) memory usage
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to store the preconditioner and (2) data transfers per iteration to retrieve data from main memory.
However, note that these savings do not take into account the total cost of the PCG method but only
those costs strictly associated with the preconditioner application. Furthermore, the data in Figure 7
does not reflect the potentially slower convergence caused by using reduced-precision storage.

To avoid the previous two pitfalls, in our final experiment we compute the total data transfers
of a single iteration of the PCG method with the block-Jacobi preconditioner stored in fp64, fp32,
fp16, or adaptive precision, see equation (11). To obtain an estimated total data transfer volume, we
then combine the data transfer volume per iteration with the number of iterations needed to reach
convergence in each case—ignoring those cases for which half precision does not converge.

In Figure 8, we show the total energy balance relative to the standard approach that maintains the
block-Jacobi preconditioner in double precision.

Some key observations from this last experiment are listed below.

• Storing the block-Jacobi preconditioner in fp32 often reduces the total energy cost. However,
for those cases where the information loss increases the PCG iteration count, storing the
preconditioner in fp32 can have a negative impact on the energy balance.

• For the (few) cases where the block-inverse matrix can be stored in fp16 without the PCG
losing convergence, the total energy cost can be decreased by up to 50%.

• Using the adaptive precision block–Jacobi preconditioner never increases the total energy
consumption.

• In most cases, the adaptive precision block–Jacobi preconditioner matches or outperforms the
efficiency of storing the preconditioner in fp32. If the problem characteristics allow for it,
the adaptive precision block–Jacobi preconditioner employs fp16 to match the half-precision
efficiency while maintaining convergence for the other cases.

• The adaptive precision block–Jacobi preconditioner “automatically” detects the need to store
a diagonal block in fp64 to avoid convergence degradation.

Finally, we note that, for memory-bounded operations like the block-Jacobi preconditioned CG
considered here, the performance is largely determined by the data transfer volume. Therefore, the
results shown in Figure 8 and the insights gained from that experiment carry over to the runtime
performance of the adaptive precision block-Jacobi preconditioner. In summary, these experiments
prove that the adaptive precision block–Jacobi preconditioner is an efficient strategy for improving
the resource usage, energy consumption, and runtime performance of iterative solvers for sparse
linear systems.

7. CONCLUDING REMARKS AND FUTURE WORK

We proposed and validated a strategy to reduce the data transfer volume in a block–Jacobi
preconditioner. Concretely, our technique individually selects an appropriate precision format to
store the distinct blocks of the preconditioner based on their characteristics but performs all
arithmetic (including the generation of the preconditioner) in fp64. We note that the condition
numbers can be obtained cheaply as our preconditioner is based on explicit inversion of the
diagonal blocks. Furthermore, the overhead from selecting the appropriate storage format in the
preconditioner setup can easily be amortized by the reduced cost of the preconditioner application
in the solver iterations.

Our experimental simulation using Octave on an Intel architecture shows that, in most cases,
storing a block–Jacobi preconditioner in fp32 has only a mild impact on the preconditioner quality.
On the other hand, the reckless use of fp16 to store a block-Jacobi preconditioner fails in most cases
and is therefore not recommended. The adaptive precision block–Jacobi preconditioner basically
matches the convergence rate of the conventional double-precision preconditioner in all cases and
automatically adapts the precision to be used on an individual basis. As a result, the adaptive-
precision preconditioner can decide to store some of the blocks at precisions even less than fp32,
thereby outperforming a fixed-precision strategy that relies on only a single precision in terms of
data transfers and, consequently, energy consumption.
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As part of our future work, we plan to investigate the effect of using other, non IEEE-compliant
data formats in the adaptive block–Jacobi preconditioner, prioritizing the exponent range at the cost
of reducing the bits dedicated to the mantissa. In this endeavor, we expect to reduce the problems
with underflows/overflows while maintaining the “balancing” properties of the preconditioner.
Furthermore, we will also develop a practical implementation of the adaptive precision block–Jacobi
using IEEE formats with 16, 32, and 64 bits for modern GPUs.
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