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EFFICIENT REDUCED BASIS METHODS FOR SADDLE POINT PROBLEMS
WITH APPLICATIONS IN GROUNDWATER FLOW

CRAIG J. NEWSUM∗ AND CATHERINE E. POWELL†

Abstract. Reduced basis methods (RBMs) are recommended to reduce the computational cost of solving
parameter-dependent PDEs in scenarios where many choices of parameters need to be considered, for example in
uncertainty quantification (UQ). A reduced basis is constructed during a computationally demanding offline (or set-
up) stage that allows the user to obtain cheap approximations for parameters choices of interest, online. In this paper
we consider RBMs for parameter-dependent saddle point problems, in particular the one that arises in the mixed
formulation of the Darcy flow problem in groundwater flow modelling. We apply a discrete empirical interpolation
method (DEIM) to approximate the inverse of the diffusion coefficient, which depends non-affinely on the system
parameters. We develop an efficient RBM that exploits the DEIM approximation and combine it with a sparse grid
stochastic collocation mixed finite element method (SCMFEM) to construct a surrogate solution, which then allows
for efficient forward UQ. Through numerical experiments we demonstrate that significant computational savings
can be made when we use the RB-DEIM-SCMFEM scheme over standard high fidelity methods. For groundwater
flow problems, we provide a thorough cost assessment of the new method and show how the size of the reduced
basis, and hence, the extent of the savings, depends on the statistical properties of the input parameters.
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1. Introduction. We focus on the efficient numerical solution of parameter-dependent saddle
point problems with the following abstract form. Let D ⊂ Rd be a given bounded spatial domain
and let V and Q be Hilbert spaces on D, with inner products 〈·, ·〉V , 〈·, ·〉Q and induced norms

‖ · ‖V , ‖ · ‖Q. In addition, let Γ ⊂ RM be an M -dimensional parameter space. Given y ∈ Γ, we
want to find (~u(·,y), p(·,y)) ∈ V ×Q satisfying

(1.1)
a(~u(·,y), ~v,y) + b(~v, p(·,y),y) = l(~v), ∀~v ∈ V,

b(~u(·,y), q,y) = m(q), ∀q ∈ Q.

Weak formulations of many well-known systems of PDEs give rise to saddle point problems of
the form (1.1). For example, the Stokes equations, the steady-state Navier–Stokes equations,
and mixed formulations of the Darcy flow problem, in situations where the coefficients and/or the
spatial domain are represented as functions of parameters y ∈ Γ. For a fixed y = (y1, . . . , yM ) ∈ Γ,
the solution (~u(·,y), p(·,y)) can be approximated using standard techniques such as mixed finite
element methods (so-called high fidelity methods).

In many complex applications (e.g., fluid flow modelling), obtaining a high fidelity approxima-
tion for even a single choice of y may take several hours or days of computation time. If real-time
simulations are required for many y ∈ Γ, then using high fidelity methods is infeasible. To avoid
this computational burden, reduced basis methods (RBMs), see [31, 39], have been developed.
The idea is to project the high fidelity problem with dimension Nh (corresponding, say, to the
number of degrees of freedom in a finite element mesh) onto a lower-dimensional subspace with
dimension NR. When NR � Nh, we expect that the cost of solving the reduced problem will be
significantly cheaper, for each y ∈ Γ of interest. Crucial to the success of RBMs, is that NR is ‘not
too large’, which requires that the underlying solution manifold (as a function of y) is smooth.
There is a large literature on RBMs for scalar elliptic PDEs. However, saddle point problems
are more challenging as two compatible reduced spaces are required. RBMs for Stokes flow with
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parameter-dependent viscosity and spatial domains have been well studied, see [24, 41, 42], and
RBMs for Stokes flow coupled with the elliptic formulation of Darcy flow are studied in [34].

RBMs separate the computational work into two stages, an expensive offline stage where we
carry out tasks whose costs depend on Nh, and a (hopefully) cheaper online stage where we only
perform tasks whose costs depend on NR. It is conventional to think of the offline stage as a
set-up phase, carried out once ahead of the main numerical task. To facilitate this offline-online
separation, it is essential that we can separate the dependence of the system inputs on y ∈ Γ from
their dependence on x ∈ D. Thus, in (1.1), we require that

(1.2) a(·, ·,y) =

K∑
k=1

θk(y)ak(·, ·),

where ak : V × V → R is a parameter-independent bilinear form and θk(y) is a function of y, and
similarly for b(·, ·,y). This allows us to precompute quantities that do not depend on y offline.
Provided that K � Nh, we can assemble and solve a reduced version of (1.1) online, at a cost
that is independent of Nh. When the inputs have non-affine parameter dependence, we can use
empirical interpolation methods [3, 12, 21, 28] to generate approximations of the form (1.2). This
introduces an error, which must be controlled, and balanced against the reduced basis error.

In this paper we focus on the application of RBMs to the numerical solution of systems of
PDEs with uncertain inputs, whose weak formulations give rise to saddle point problems of the
form (1.1). If we represent the uncertain inputs as functions of M random variables (e.g. using a
Karhunen-Loève expansion, see [30]), whose image is the parameter space Γ ⊂ RM , then choosing
a particular y ∈ Γ corresponds to generating one sample of the inputs. Our goal is to propagate
the uncertainty in the inputs through the system and approximate statistical quantities of interest
(QoIs), for example the mean and variance of the solution. This is known as forward uncertainty
quantification (UQ), see [45, 48]. The simplest way to perform forward UQ is to use sampling
methods, which require repeated solution of (1.1) for many choices of y. RBMs offer a promising
way to speed up forward UQ assessments when sampling methods are used, see [10, 14, 15, 22].
They have also been applied to inverse problems [47, 17], and optimal control problems [16].

The two most commonly used sampling methods for forward UQ, see [29], are Monte Carlo
(MC) and stochastic collocation methods (SCMs). The former are simple to implement but only
allow for the approximation of moments. SCMs, on the other hand, provide an interpolant in both
physical and parameter space. This can be used to approximate statistical moments but also acts
as a surrogate that can be used to find approximations to ~u(·,y) and p(·,y) for further choices
of y ∈ Γ (in design or control experiments) and to approximate other QoIs. SCMs were first
applied to scalar elliptic PDEs in [1, 35, 50] and have since been applied to many other problems,
such as the Darcy flow model [23, 25], in a high-fidelity setting. SCMs often converge much faster
than standard MC methods (whose error is O(N−1/2), where N is the number of samples). The
rate of convergence of MC, however, is independent of the number M of parameters. Alternative
methods have been proposed for dealing with high-dimensional problems and these can also be
combined with RBMs to reduce costs. Two such examples are the ANOVA decomposition which
decomposes the high-dimensional problem into low-dimensional problems, see [32], and adaptive
sparse grid collocation [13]. Finally, we mention the stochastic Galerkin method [2], which is not
a sampling method. This leads to a single large linear system that requires specialised solvers, see
for example [37]. In this paper we develop an efficient RBM and combine it with a sparse grid
stochastic collocation mixed finite element method (SCMFEM) for a class of parameter-dependent
saddle point problems. A similar strategy has been employed in [5, 15, 22] for scalar elliptic PDEs.

In Section 2 we describe the reduced formulation of general parameter-dependent saddle point
problems of the form (1.1). We also review sufficient conditions for the well-posedness of both high
fidelity and reduced mixed finite element approximations. In Section 3 we introduce the Darcy
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flow model as a special case, and then derive the linear systems that arise from the high fidelity
and reduced formulations. In Section 4 we develop a reduced basis method which uses a non-
standard training technique to construct a compatible pair of reduced approximation spaces in an
offline stage, as well as a so-called DEIM approximation to the inverse of the diffusion coefficient.
In Section 5 we describe a sparse grid SCMFEM which we then combine with the RB method
and DEIM approximation. Finally, in Section 6 we present numerical experiments to demonstrate
the superior performance of the new RB-DEIM-SCMFEM scheme, over the standard high fidelity
SCMFEM scheme, for performing forward UQ in groundwater flow applications.

2. Parameter-dependent saddle point problems. We begin by considering the reduced
formulation of general parameter-dependent saddle point problems of the form (1.1). The theo-
retical framework presented here is standard (e.g., see [9] and [24]).

We assume that for each y ∈ Γ, a(·, ·,y) : V × V → R and b(·, ·,y) : V ×Q→ R are bounded
bilinear forms and l : V → R and m : Q → R are also bounded. Now, for each y ∈ Γ we assume
that a(·, ·,y) is coercive over

(2.1) V0 = {~v ∈ V : b(~v, q,y) = 0, ∀q ∈ Q} ⊂ V,

the nullspace of V . That is,

(2.2) α(y) := inf
~v∈V0

a(~v,~v,y)

‖~v‖2V
> 0.

We also assume that for each y ∈ Γ, b(·, ·,y) satisfies an inf-sup condition. Specifically,

(2.3) β(y) := inf
q∈Q

sup
~v∈V

b(~v, q,y)

‖~v‖V ‖q‖Q
> 0.

These four conditions are sufficient to guarantee that (1.1) is well-posed for a fixed y ∈ Γ, see [9].
Next, we introduce finite-dimensional approximation spaces Vh ⊂ V and Qh ⊂ Q, and consider

the high fidelity problem: given y ∈ Γ, find (~uh(·,y), ph(·,y)) ∈ Vh ×Qh satisfying

(2.4)
a(~uh(·,y), ~vh,y) + b(~vh, ph(·,y),y) = l(~vh), ∀~vh ∈ Vh,

b(~uh(·,y), qh,y) = m(qh), ∀qh ∈ Qh.

In this work, we assume that Vh and Qh are finite element spaces, so that h denotes the charac-
teristic mesh size. In the language of RBMs, we call (~uh(·,y), ph(·,y)) a snapshot pair. To ensure
well-posedness of the high fidelity problem, we assume that

(2.5) αh(y) := inf
~vh∈V0,h

a(~vh, ~vh,y)

‖~vh‖2V
> 0,

where

(2.6) V0,h = {~vh ∈ Vh : b(~vh, qh,y) = 0, ∀qh ∈ Qh} ⊂ Vh,

is the nullspace of Vh, and secondly that

(2.7) βh(y) := inf
qh∈Qh

sup
~vh∈Vh

b(~vh, qh,y)

‖~vh‖V ‖qh‖Q
> 0.

In particular, this means that αh(y) and βh(y) must be bounded away from zero, independently
of h. Note that neither of these conditions is satisfied automatically. The spaces Vh and Qh must
be compatible for the problem at hand.
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Now, let VR ⊂ Vh and QR ⊂ Qh denote reduced spaces, of smaller dimension than Vh and Qh,
respectively. The reduced problem is: given y ∈ Γ, find (~uR(·,y), pR(·,y)) ∈ VR ×QR satisfying

(2.8)
a(~uR(·,y), ~vR,y) + b(~vR, pR(·,y),y) = l(~vR), ∀~vR ∈ VR,

b(~uR(·,y), qR,y) = m(qR), ∀qR ∈ QR.

If the analogues of conditions (2.5) and (2.7) are satisfied, then (2.8) is well-posed. We need

(2.9) αR(y) := inf
~vR∈V0,R

a(~vR, ~vR,y)

‖~vR‖2V
> 0,

where

(2.10) V0,R = {~vR ∈ VR : b(~vR, qR,y) = 0, ∀qR ∈ QR} ⊂ VR,

is the nullspace of VR, and secondly that

(2.11) βR(y) := inf
qR∈QR

sup
~vR∈VR

b(~vR, qR,y)

‖~vR‖V ‖qR‖Q
> 0.

Reduced saddle point problems are challenging as (2.9) and (2.11) are not automatically satisfied
for arbitrary choices of VR and QR, even if VR ⊂ Vh, QR ⊂ Qh, and Vh and Qh are chosen so that
(2.4) is well-posed. It is an open question what is the ‘best’ choice of VR and QR to ensure that
the reduced basis errors ‖~uh(·,y)− ~uR(·,y)‖V and ‖ph(·,y)− pR(·,y)‖Q decay to zero as quickly
as possible, as NR increases. Some possibilities for Stokes problems are discussed in [24].

If (2.9) and (2.11) are satisfied, we immediately obtain bounds for the reduced basis error,
similar to standard high fidelity results (see [24]). Let amax(y) and bmax(y) denote the boundedness
constants for a(·, ·,y) and b(·, ·,y), respectively. Then, for a given y ∈ Γ we have

(2.12)

‖~uh(·,y)− ~uR(·,y)‖V ≤
(

1 +
amax(y)

αR(y)

)
inf

~vR∈V0,R

‖~uh(·,y)− ~vR(·,y)‖V

+

(
1

αR(y)

)
inf

qR∈QR

‖ph(·,y)− qR(·,y)‖Q,

c.f. [11, Theorem 12.3.7], and

(2.13)

‖ph(·,y)− pR(·,y)‖Q ≤
(
amax(y)

αR(y)

)
‖~uh(·,y)− ~uR(·,y)‖V

+

(
1 +

1

βR(y)

)
inf

qR∈QR

‖ph(·,y)− qR(·,y)‖Q,

c.f. [11, Theorem 12.5.12]. Thus, if αR(y)→ 0 or βR(y)→ 0 as NR →∞, the method is unstable.
A simple approach is to construct the reduced spaces from snapshots (solutions to the high

fidelity problem). Suppose we take Θ =
{
y1, . . . ,yNR

}
, a set of NR points in the parameter

domain, and the set of snapshot pairs {(~uh(·,yi), ph(·,yi)) , i = 1, . . . , NR}. Then, we could choose

(2.14) VR := span {~uh(·,yi)}
NR

i=1, QR := span {ph(·,yi)}
NR

i=1.

As established in [24, 41, 42], however, this does not provide an inf-sup stable pair for (2.8). In
particular, VR is not rich enough for (2.11) to hold. Indeed, it well known from deterministic
mixed finite element analysis, that the spaces should not have the same dimension; VR must be
augmented. Following the approach introduced in [42], we define an operator T : Qh → Vh via

(2.15) 〈Tq,~v〉V = b(~v, q,y), ∀~v ∈ Vh.
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The functions Tq are called supremizer functions since, given q ∈ Qh, we have

(2.16) Tq = arg sup
~v∈Vh

b(~v, q,y)

‖~v‖V
.

Instead of using (2.14), we choose the reduced spaces as

(2.17) VR := span {~uh(·,yi), Tph(·,yi)}
NR

i=1, QR := span {ph(·,yi)}
NR

i=1,

so that dim (VR) = 2 × dim (QR) = 2 × NR. With this choice, it can be shown that (2.11) is
satisfied. Indeed, for all y ∈ Γ, βR(y) ≥ βh(y) (see [42]), so as long as βh(y) does not decay to
zero as h→ 0 (Vh and Qh are compatible), then neither will βR(y), as NR increases.

Let us now briefly consider (2.9). If, for the high fidelity problem (2.4), a(·, ·,y) is coercive on
the whole of Vh (or even V ) rather than just on a strict subset V0,h, then (2.9) follows immediately.
That is, coercivity on Vh in ‖·‖V automatically gives coercivity on V0,R since V0,R ⊂ VR ⊂ Vh ⊂ V .
For example, this is the case for Stokes equations, see [24, 41, 42]. In the problem we study below,
the continuous and high-fidelity problems are only coercive with respect to ‖ · ‖V on V0 and V0,h,
respectively. This does not cause a problem with well-posedness of (2.8), but the a priori error
estimate (2.12) is not automatically obtained from the standard theory.

3. Darcy flow model. We now consider the Darcy flow problem, a system of PDEs that
arises when modelling fluid flow through a porous medium. Typically, the permeability (or diffu-
sion) coefficients are not known at every spatial location x ∈ D (epistemic uncertainty). Moreover,
there may be measurement errors (aleatoric uncertainty). In such situations, it is common to model
the unknown coefficient function as a random field a(x, ω).

Let D ⊂ R2 be a bounded physical domain whose boundary ∂D is decomposed into two
disjoint subsets so that ∂D = ∂DD ∪ ∂DN. In addition, let (Ω,F ,P) be a probability space, where
Ω denotes a sample space, F is a sigma algebra and P is a probability measure. We want to find
a velocity field ~u : D× Ω→ R2 and a pressure field p : D× Ω→ R such that P-a.s.,

(3.1)

a−1(x, ω)~u(x, ω) +∇p(x, ω) = 0, x ∈ D,
∇ · ~u(x, ω) = f(x), x ∈ D,

p(x, ω) = g(x), x ∈ ∂DD,

~u(x, ω) · ~n = 0, x ∈ ∂DN .

We assume that a(x, ω) is second-order and there exist constants amin and amax such that

(3.2) 0 ≤ amin ≤ a−1(x, ω) ≤ amax <∞, a.e. in D× Ω.

The first equation in (3.1) is Darcy’s law ~u = −a∇p, relating the velocity to the pressure gradient
and the second equation relates the fluid mass to source and sink terms. Although both equations
can be combined to obtain a standard scalar elliptic PDE for the pressure, our aim is to propagate
the uncertainty through the PDE model and accurately approximate both p(x, ω) and ~u(x, ω).

If the mean µ(x) = E[a(x, ω)] and covariance function C(x1,x2) of a(x, ω) are known, then
a(x, ω) can be approximated by a function of M random variables ξk : Ω→ R, by using a truncated
Karhunen–Loève (KL) expansion [33],

(3.3) aM (x, ξ(ω)) = µ(x) +

M∑
k=1

√
λkφk(x)ξk(ω).

Here, λk and φk are eigenvalues and eigenfunctions of the integral operator associated with the
covariance function, and we assume the ξk are independent. Alternatively, we may have another
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underlying second-order random field z(x, ω) with known mean and covariance, with a(x, ω) =
exp(z(x, ω)). This is common in groundwater flow modelling (e.g., see [23, 26]). We may then
compute an approximation aM (x, ξ) = exp(zM (x, ξ)), where zM (x, ξ) is a truncated KL expansion.
The important point is that the inverse of the diffusion coefficient is some function of a vector of
independent random variables ξ = (ξ1, . . . , ξM ).

Instead of working with the random variable ξ, with joint probability density function ρ(y),
we may work in terms of a vector of parameters y = (y1, . . . , yM ), with yk = ξk(Ω), which takes
values in Γ := ξ(Ω) ⊂ RM . If we want to approximate samples of the velocity and pressure fields,
we can replace the stochastic problem (3.1) with an equivalent parameter-dependent deterministic
one. We assume that for each y ∈ Γ there exist constants amin(y) and amax(y) such that

(3.4) 0 ≤ amin(y) ≤ a−1
M (x,y) ≤ amax(y) <∞.

Given y ∈ Γ, we then want to find ~u(·,y) : D → R2 and p(·,y) : D → R satisfying

(3.5)

a−1
M (x,y)~u(x,y) +∇p(x,y) = 0, x ∈ D,

∇ · ~u(x,y) = f(x), x ∈ D,
p(x,y) = g(x), x ∈ ∂DD,

~u(x,y) · ~n = 0, x ∈ ∂DN .

Now, let Q = L2(D) and V = H0,N(div,D), where

(3.6) H0,N(div,D) =
{
~v : D → R2 : ~v ∈ (L2(D))2,∇ · ~v ∈ L2(D), ~v · ~n = 0 on ∂DN

}
and define the norm

‖~u‖H(div,D) =
(
‖~u‖2L2(D) + ‖∇ · ~u‖2L2(D)

)1/2

.

For each y ∈ Γ, the weak formulation of (3.5) is: find (~u(·,y), p(·,y)) ∈ V ×Q satisfying

(3.7)

∫
D
a−1
M (x,y)~u(x,y) · ~v(x) d x−

∫
D
p(x,y)∇ · ~v(x) d x = −

∫
∂DD

g(x)~v(x) · ~nds,

−
∫
D
q(x)∇ · ~u(x,y) d x = −

∫
D
f(x)q(x) d x,

for all q(x) ∈ Q and ~v(x) ∈ V . This is a saddle point problem of the form (1.1) with

(3.8) a (~u(·,y), ~v,y) =

∫
D
a−1
M (x,y)~u(x,y) · ~v(x) d x, b (~u(·,y), q) = −

∫
D
q(x)∇ · ~u(x,y) d x .

The above Darcy flow problem serves as a representative example from the class of parameter-
dependent saddle point problems (1.1) where the y dependence only appears in the bilinear form
a(·, ·,y). Moreover, since the inverse of the diffusion coefficient appears, a(·, ·,y) has non-affine
dependence on the parameters y. For this problem, we note that ∇ · V ⊂ Q and so V0 in (2.1)
contains functions in V which are divergence-free. The coercivity condition (2.2) is satisfied on
V0, with α(y) = amin(y). The inf-sup condition (2.3) is also satisfied, see [9]. To perform forward
UQ for (3.7) using sampling methods such as SCMs (see Section 5), we will need to be able to
approximate ~u(·,y) and p(·,y), for many different choices of y, cheaply and efficiently, and to
estimate statistical quantities such as

(3.9) E[~u(x, ·)] =

∫
Γ

ρ(y)~u(x,y) d y, E[p(x, ·)] =

∫
Γ

ρ(y)p(x,y) d y,

as well as higher order moments. Using appropriate mixed finite element methods (MFEMs)
allows us to approximate both the velocity and pressure to the same order of accuracy for each y
of interest and to ensure that mass is locally conserved on the elements, see [18, 23].
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3.1. High fidelity problem. By introducing finite-dimensional subspaces Vh ⊂ V , Qh ⊂ Q,
the discrete analogue of (3.7) is a saddle point problem of the form (2.4). We use Raviart–Thomas
mixed finite elements, see [9] for details, to ensure that (2.7) is satisfied. For these spaces, we
have ∇ · Vh ⊂ Qh so V0,h contains divergence-free functions and (2.5) is satisfied on V0,h with
αh(y) = amin(y). In Section 6, we use lowest-order Raviart–Thomas elements, which guarantees
that, if realisations of the diffusion coefficient are smooth enough, the high-fidelity discretisation
errors satisfy ‖~u(·,y)− ~uh(·,y)‖H(div,D) = O(h) and ‖p(·,y)− ph(·,y)‖L2(D) = O(h).

Next, we derive the linear systems associated with the high fidelity problem. Given a basis
{φi(x), i = 1, . . . , Np} for Qh and a basis {~ϕi(x), i = 1, . . . , Nu} for Vh, where Nu = dimVh and

Np = dimQh, we define the matrices A(y) ∈ RNu×Nu and B ∈ RNp×Nu with entries

[A(y)]ij =

∫
D
a−1
M (x,y)~ϕi(x) · ~ϕj(x) d x, i, j = 1, . . . , Nu,

Bkj = −
∫
D
φk(x)∇ · ~ϕj(x) d x, j = 1, . . . , Nu, k = 1, . . . , Np,

and vectors g ∈ RNu and f ∈ RNp with entries

gi = −
∫
∂DD

g(x)~ϕi(x) · ~nds, i = 1, . . . , Nu, fj = −
∫
D
f(x)φj(x) d x, j = 1, . . . , Np.

Then, for a fixed y ∈ Γ, the parameter-dependent high fidelity problem can be written as

(3.10)

[
A(y) B>

B 0

] [
u(y)
p(y)

]
=

[
g
f

]
,

where u(y) and p(y) are the coefficients that represent the snapshot pair (~uh(·,y), ph(·,y)). The
coefficient matrix is of size Nh × Nh, where Nh = Nu + Np, and is sparse. Solution methods
for indefinite systems of the form (3.10) are discussed in [6]. Iterative methods such as MINRES
[27, 36], with preconditioning [38, 43], which exploit sparsity, can be implemented at O(Nh) cost.

To construct reduced spaces VR and QR that satisfy (2.11) we need to compute NR supremizer
functions Tq, defined as in (2.16), for the pressure snapshots q = ph(·,yi) ∈ Qh, i = 1, . . . , NR.
Given any q ∈ Qh, we can expand Tq ∈ Vh as

(3.11) Tq =

Nu∑
i=1

ti~ϕi.

Recall that there is no y dependence in the bilinear form b(·, ·). Substituting (3.11) into (2.15)

and setting ~v = ~ϕj and q =
∑Np

i=1 qiφi yields

(3.12)

Nu∑
i=1

ti 〈~ϕi(x), ~ϕj(x)〉V = −
Np∑
i=1

(∫
D
∇ · ~ϕj(x)φi(x) d x

)
qi, j = 1, . . . , Nu.

Hence, the vector of coefficients t(yi) associated with the supremizer function Tph(·,yi), i =
1, . . . , NR, can be computed by solving the linear system

(3.13) (M +D)t(yi) = B>q,

where the matrices M and D are defined as

(3.14) Mij =

∫
D
~ϕi(x) · ~ϕj(x) d x, Dij =

∫
D

(∇ · ~ϕi(x)) (∇ · ~ϕj(x)) d x, i, j = 1, . . . , Nu.
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The cost of solving (3.13) for each y ∈ Γ can be O(Nu) if we use iterative methods, but care must
be taken. The matrix M +D is a discrete representation of the H(div,D) norm since

(3.15) ‖~v‖2H(div,D) = v> (M +D) v, ~v ∈ V.

It does not represent an elliptic operator. In the reduced formulation of parameter-dependent
Stokes and steady-state Navier–Stokes problems, computing the supremizer functions involves
solving elliptic (Poisson) problems, see [24, 41, 42]. Standard multigrid methods, for example, will
work well in that case, but not for (3.13). It should also be noted that the matrix M +D can also
be used to construct an h-optimal block-diagonal preconditioner

(3.16) P =

(
M +D 0

0 N

)
,

for the high fidelity system (3.10) see [38], where N is the pressure mass matrix, with entries

(3.17) Nks =

∫
D
φk(x) · φs(x), k, s = 1, . . . , Np.

3.2. Reduced problem. Given reduced spaces VR ⊂ Vh and QR ⊂ Qh, we can derive
a parameter-dependent reduced problem of the form (2.8) with a(·, ·,y) : VR × VR → R and
b(·, ·) : VR×QR → R defined as in (3.8). We construct VR and QR as in (2.17) so that the inf-sup
condition (2.11) is satisfied. However, it is not clear whether (2.9) is satisfied in the H(div,D)
norm, unless ∇ · VR ⊂ QR. Note, however, that we do have coercivity in the L2(D) norm since

(3.18) a(~vR, ~vR,y) ≥ amin(y)‖~vR‖L2(D), ∀~vR ∈ VR.

We assume that we have constructed two reduced basis matrices Qu ∈ RNu×2NR and Qp ∈
RNp×NR that represent discrete versions of the reduced spaces VR and QR, respectively, and define

Q =

[
Qu 0
0 Qp

]
.

We describe how to construct these in Section 4.1. Then, for each y ∈ Γ, the linear system
associated with the reduced Darcy flow problem is,

(3.19) Q>
[
A(y) B>

B 0

]
Q

[
uR(y)
pR(y)

]
= Q>

[
g
f

]
.

The coefficient matrix in (3.19) is of size 3NR× 3NR, but is dense rather than sparse as in (3.10).
Using direct methods, the cost of solving (3.19) for each y ∈ Γ is O(N3

R). Hence, when NR � Nh
we expect that the cost of solving (3.19) will be significantly cheaper than solving (3.10). It may
be, however, that while NR � Nh we have N3

R > Nh, and so solving (3.19) may not actually
be cheaper than solving (3.10). The size of the reduced basis NR is key, and this is of course,
problem-dependent. In [20] the authors consider using preconditioned iterative methods for solving
the dense reduced systems that arise from the reduced formulation of a linear elliptic PDE. For
each y ∈ Γ the cost is O(kN2

R), where k is the number of iterations. This can be an effective
strategy in some problems, as long as the number of iterations k is small.

We can assemble the system (3.19) from the high fidelity matrices and vectors via

AR(y) = Q>uA(y)Qu, BR = Q>p BQu, gR = Q>u g, fR = Q>p f .
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However this will incur a cost that depends on Nh and so we cannot construct (3.19) directly in the
online stage, for each y ∈ Γ of interest. To construct (3.19) in a way that the cost is independent
of Nh, we need to be able to decompose the matrix A(y) as

(3.20) A(y) =

K∑
k=1

Akθk(y).

This means we need an affine expansion of a(·, ·,y) as in (1.2). For the Darcy flow problem, we
require that the inverse of the diffusion coefficient aM (x,y) is of the form

a−1
M (x,y) =

K∑
k=1

θk(y)ak(x).

If this is the case, we can define K parameter independent matrices Ak ∈ RNu×Nu with entries

[Ak]ij =

∫
D
ak(x)~ϕi(x) · ~ϕj(x) d x, i, j = 1, . . . , Nu,

for k = 1, . . . ,K. Exploiting this we have

AR(y) = Q>uA(y)Qu = Q>u

K∑
k=1

Akθk(y)Qu =

K∑
k=1

θk(y)Q>uAkQu.

Hence, we can precompute and store the matrices
{
Q>uAkQu

}K
k=1

offline, allowing for the system
(3.19) to be assembled for the y ∈ Γ of interest online, at a cost independent of Nh.

For the Darcy flow problem, however, the coefficient aM (x,y) appears as a−1
M (x,y) in the

bilinear form a(·, ·,y) and so we do not have a decomposition of the form (3.20). To resolve
this, we apply a discrete empirical interpolation method (DEIM) to obtain an approximation

a−1
M (x,y) ≈

∑K
k=1 θk(y)ak(x). We describe how to do this in Section 4.2. This yields a matrix

approximation Ã(y) ≈ A(y) and we solve the RB-DEIM system

(3.21) Q>
[
Ã(y) B>

B 0

]
Q

[
ũR(y)
p̃R(y)

]
= Q>

[
g
f

]
, Ã(y) :=

K∑
k=1

Akθk(y).

We use uR and pR to denote the solution to the RB system (3.19) and ũR and p̃R to denote the
solution to the RB-DEIM system (3.21).

To end this section, we summarise the key features of the parameter-dependent Darcy flow
saddle point problem. First, the bilinear form a(·, ·,y) depends non-affinely on the vector of
parameters y. We deal with this by using DEIM, taking care to balance the DEIM error with
the reduced basis error associated with VR and QR (see Section 6). Second, the reduced problem
does not automatically inherit coercivity from the high fidelity problem in the H(div,D) norm,
so the standard reduced basis error estimates do not immediately apply. Finally, computing the
supremizer functions Tph(·,yi) that are needed to construct a pair of inf-sup stable reduced spaces
requires the solution of NR discrete H(div,D) problems.

4. Reduced basis method offline. In this section we describe the offline procedure for
constructing the reduced spaces VR and QR. In particular we describe how to construct the
matrices Qu and Qp and a DEIM approximation to the inverse of the diffusion coefficient.



10 CRAIG J. NEWSUM AND CATHERINE E. POWELL

4.1. Reduced basis construction. The reduced basis matrices Qu and Qp are given by

(4.1) Qu := [u(y1), . . . ,u(yNR
), t(y1), . . . , t(yNR

)] ∈ RNu×2NR ,

and

(4.2) Qp := [p(y1), . . . ,p(yNR
)] ∈ RNp×NR ,

where (u(yi),p(yi)) are the coefficients associated with the snapshot pair (~uh(·,yi), ph(·,yi)) and
t(yi) is the vector of coefficients representing the supremizer function Tph(·,yi), i = 1, . . . , NR.
To construct the matrices, we have to solve NR high fidelity mixed finite element problems and NR
discrete H(div,D) problems. In this paper, we select the points {yi}

NR

i=1 using a multilevel approach
which is based on the algorithm presented in [22] for scalar elliptic PDEs. In our experience, it
generally gives the quickest offline times (see Section 6), compared to more standard methods like
greedy algorithms [39, Chapter 7], [31, Section 3.2.2] and the proper orthogonal decomposition
(POD) [39, Chapter 6], [31, Section 3.2.1].

First, we must choose a training set, a finite set of points Θ ⊂ Γ. These points could be
chosen randomly, or deterministically. For example, Θ could be a set of sparse grid points (see
Section 5). The main requirement is that Θ should be rich enough so that the resulting reduced
bases yield accurate enough approximations to the high fidelity problem for any y ∈ Γ that may
be encountered online. If the user has a priori knowledge about the set of points to be encountered
online, then this information can be used to design a suitable training set. In this work, we choose
nested sets of points Θl, indexed by a level number l, so that Θl−1 ⊂ Θl.

Next, we must select an error estimator to assess the error between the high fidelity approxi-
mation and a reduced approximation for a given y ∈ Γ. We use the error indicator

(4.3) ∆R(y) =

∥∥∥∥[gf
]
−
[
A(y) B>

B 0

] [
Qu uR(y)
Qp pR(y)

]∥∥∥∥
2

/ ∥∥∥∥[gf
]∥∥∥∥

2

,

(the discrete relative residual error). This is a simple to compute approximation that, unlike a
posteriori error estimators for the reduced basis error ‖~uh(·,y)−~uR(·,y)‖V +‖ph(·,y)−pR(·,y)‖Q,
does not require the computation of coercivity or inf-sup constants. However, there is no guarantee
that ∆R(y) is an upper bound for the true error, so our RB method is not ‘certified’ in the usual
sense. To control the accuracy, we choose a tolerance ε1 > 0 and select a point y to help construct
the reduced bases only if ∆R(y) > ε1.

To initialise Qu and Qp, we first solve the systems (3.10) and (3.13) for a single point y0,
for example the zero vector. Then, for each level l = 1, . . . , L, we loop through each point
yj ∈ Θl \ Θl−1, for j = 1, . . . ,Ml, where Ml = |Θl \ Θl−1|, solve the reduced system (3.19),
and compute ∆R(yj). If ∆R(yj) > ε1 then we solve the high fidelity problem and update the
current bases immediately with a new snapshot pair corresponding to the point yj , as well as
a supremizer function. Otherwise, we accept that the current reduced approximation for yj is
good enough. The detailed procedure is presented in Algorithm 1. The matrices Qu and Qp are
constructed one column at a time. For numerical stability, we orthonormalise the columns using
a QR factorisation. Once the iteration has terminated, we obtain the matrices Qp ∈ RNp×NR and

Qu ∈ RNu×2NR . Note that Algorithm 1 differs from the standard greedy algorithm as we do not
update our reduced bases with the y ∈ Θl that maximizes ∆R(y) at each step. This means we
only need to solve (3.19) once for each y ∈ Θl. In Section 6 we present numerical experiments
showing that Algorithm 1 is significantly cheaper than the standard greedy algorithm and achieves
similar values of NR in the construction of the matrices Qu and Qp.

The costs involved in Algorithm 1 are summarised in Table 4.1. Let N j
Rl

denote the number
of high fidelity systems that have been solved after l outer iterations and j inner iterations, so
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Algorithm 1 Multilevel sparse grid sampling to construct reduced basis matrices Qu and Qp.

1: Input: Maximum level number L and tolerance ε1
2: Set y0 = Θ0.
3: Solve (3.10) to obtain u(y0) and p(y0).
4: Compute supremizer function t(y0).
5: Initialise Qu = [u(y0), t(y0)] and Qp = [p(y0)].
6: Orthogonalise Qu and Qp with a QR factorisation.
7: for l = 1 : L do
8: Construct Θl \Θl−1 = {y1, . . . ,yMl

}.
9: for j = 1 : Ml do

10: Solve (3.19) with y = yj and compute ∆R(yj).
11: if ∆R(yj) > ε then
12: Solve (3.10) to obtain u(yj) and p(yj).
13: Compute supremizer function t(yj).
14: Update Qu = [Qu,u(yj), t(yj)] and Qp = [Qp,p(yj)].
15: Orthogonalise Qu and Qp with a QR factorisation.
16: end if
17: end for
18: end for
19: Output: Reduced basis matrices Qu and Qp.

Table 4.1
Summary of costs associated with Algorithm 1.

Task Cost

Assemble reduced system matrices AR(y)
∑L
l=1

∑Ml

j=1O
(
N2
hN

j−1
Rl−1

+Nh

(
N j−1
Rl−1

)2
)

Solve reduced systems (3.19)
∑L
l=1

∑Ml

j=1O
((

N j
Rl

)3
)

Evaluate error indicator (4.3)
∑L
l=1

∑Ml

j=1O
(
NhN

j−1
Rl−1

+N2
h

)
Solve (3.10) & (3.13) NR ×O(Nh)

Orthonormalise columns of Qu and Qp
∑NR

k=1O
(
k2Nh

)
that the sizes of the reduced bases at that stage are 2N j

Rl
and N j

Rl
for the velocity and pressure,

respectively. At the lth outer iteration, and jth inner iteration, we have to assemble and solve
(3.19) with the current reduced spaces, and evaluate (4.3) for yj ∈ Θl \ Θl−1. Over the course
of the iteration, we also need to solve NR high fidelity and supremiser systems to augment the
reduced bases, where NR = NML

RL
. Finally, the columns of Qu and Qp are orthonormalised in each

iteration. The total cost therefore depends on N2
h and N3

R.

4.2. DEIM. The discrete empirical interpolation method (DEIM) [12], see also the empiri-
cal interpolation method [3],1 allows us to generate an approximation to a parameter-dependent
function f(x,y), of the form

(4.4) f(x,y) ≈
K∑
k=1

zk(x)θk(y).

1Contrary to what the names suggest, both of these methods are in fact ‘discrete’.
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Algorithm 2 Proper orthogonal decomposition (POD), [39, Algorithm 6.1].

1: Input: snapshot matrix S and tolerance ε2
2: Compute the SVD

S = U

σ1

. . .

σr

V >.
3: Find minimum K such that ∑K

i=1 σ
2
i∑r

i=1 σ
2
i

≥ 1− ε22.

4: Output: [z1, . . . , zK ] = U(:, 1 : K).

Algorithm 3 DEIM algorithm, [39, Algorithm 10.3].

1: Input: snapshot matrix S and tolerance ε2.
2: Do [z1, . . . , zK ] = POD(S, ε2).
3: Compute i = arg maxi=1,...,m(| z1 |).
4: Initialise Z = [z1], P = [ei].
5: for k = 2 : K do
6: Set r = zk −Z(P>Z)−1P> zk.
7: Solve i = arg maxi=1,...,m(| r |).
8: Update Z = [Z, zk], P = [P, ei].
9: end for

10: Output: Matrix of basis functions Z and index matrix P .

We employ the DEIM to approximate the coefficient a−1
M (x,y) in the Darcy flow model. In

the following description we summarise the procedure for a general parameter-dependent function
f(x,y) to simplify notation. In practice, we generally have access to a vector f(y) ∈ Rm, corre-
sponding to the function f(x,y) evaluated at m points x in the spatial domain D (for example,
at points in a finite element mesh). The DEIM projects f(y) onto the subspace spanned by the
K columns of a chosen basis matrix Z ∈ Rm×K , with K � m.

Given a basis matrix Z ∈ Rm×K , the DEIM approximation to f(y) ∈ Rm can be written as

fK(y) = Zc(y) ∈ Rm,

where the K columns of Z represent the functions zk(x) in (4.4) evaluated at m points x ∈ D,
and the entries of c(y) ∈ RK are the scalar coefficients θk(y) in (4.4) corresponding to a particular
choice of y. To construct Z we must first select a set of points {yi}

n
i=1 ⊂ Γ to act as a training

set. Given the training set, we then construct the snapshot matrix

(4.5) S =
[
f(y1), . . . , f(yn)

]
∈ Rm×n,

and compute its SVD, see [49], to obtain S = UΣV >, where Σ is the diagonal matrix of singular
values in descending order and U and V are orthogonal matrices. The matrix Z is chosen to be
the first K columns of U , where K is the smallest number such that∑K

i=1 σ
2
i∑r

i=1 σ
2
i

≥ 1− ε22,

where ε2 is a chosen tolerance, and r is the rank of S. This procedure is summarized in Algorithm 2.
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Once we have a basis matrix Z we could, for a particular y, determine the vector c(y) by
solving f(y) = Zc(y). However, this is an overdetermined system, so we instead demand that
the equations are satisfied for only K points x ∈ D. The procedure for choosing these is called
empirical interpolation and details are given in Algorithm 3. Given a set ofK indices, the algorithm
constructs a matrix P ∈ Rm×K whose columns are the columns of the m × m identity matrix
associated with the chosen indices. Note that applying P> to a vector v ∈ Rm simply extracts K
components of v. P does not need to be constructed. Given Z and P (or equivalently, the set of
K indices), for each y of interest, c(y) is found by solving the projected dense system

(4.6)
(
P>Z

)
c(y) = P> f(y).

We can then write the final DEIM approximation as

fK(y) = Zc(y) = Z(P>Z)−1P> f(y).

The main cost associated with Algorithms 2 and 3 is the SVD, though this is only done
once offline. Given n training points y ∈ Γ and evaluating f(x,y) at m points x ∈ D, the cost
is O(mn2). The number of points n in the training set should be large enough to incorporate
potential variability in the system. Once the DEIM iteration has terminated, we precompute and
store the parameter independent matrices and vectors

(4.7)
{
Q>uAkQu

}K
k=1

, Q>p BQu, Q>p g, Qu f .

The cost of this assembly is K × O(N2
hNR + NhN

2
R). Online, for any given y ∈ Γ of interest,

we additionally need to solve the dense K ×K linear system (4.6) to obtain the coefficients c(y)
needed to compute the matrix Ã(y) in (3.21). The cost of this is O(K3). Therefore, as long as
K does not depend on Nh, the DEIM can be used online. If we also wish to evaluate the error
indicator (4.3) online, then in order to make the cost independent of Nh, additional parameter
independent matrices and vectors will need to be computed offline.

When we combine Algorithms 1 and 3 there are two error tolerances, ε1 and ε2. We find that
choosing ε1 = ε2 provides a less accurate RB-DEIM approximation when compared to the RB
approximation without DEIM. Note that the SVD is performed on the full snapshot matrix S, so
the offline cost is not actually affected by the choice of ε2. To balance the contributions of the
reduced basis and DEIM errors our recommendation is that ε2 < ε1 (see Section 6).

Remark 4.1. When a−1
M (x,y) takes values close to zero, realisations of the DEIM approxima-

tion may be negative, making (3.21) ill-posed. We do not encounter this issue in the numerical
experiments presented in Section 6. However, it may arise when, for example, the standard devi-
ation is large. In that case, the DEIM approximation should be improved by increasing K.

The conventional wisdom is that large offline costs are to be expected and that the computa-
tional savings made online are worth the price paid offline. The offline costs are often not reported.
Our view is that this is problem dependent. In an online experiment where real time information
is required for many choices of y ∈ Γ, the offline cost will not necessarily be important. However,
if the main task is, say, to compute moments of the solution, by combining a RB method with a
sampling method such as a stochastic collocation method (SCM), then the offline/online splitting
is artificial. The user knows a priori for which choices of parameters the high-fidelity problem needs
to be solved. In such scenarios, the cost of constructing the reduced bases must be optimized.

5. Reduced basis collocation. In this section we outline sparse grid stochastic collocation
methods for forward UQ. To begin, we describe how to construct sparse grids on the parameter
domain Γ from combinations of sets of interpolation points in one dimension. The idea was first
introduced by Smolyak in 1963 [46], but we follow [4]. Assuming that the M underlying random
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variables in the problem are independent, we have a parameter domain of the form Γ =
∏M
i=1 Γi,

where Γi ⊂ R. Now, for i = 1, . . . ,M , let Θ1
i =

{
y1
i , . . . , y

ni+1
i

}
⊂ Γi denote a one-dimensional set

of ni + 1 interpolation points such that

(5.1) ni =

{
0, i = 1,

2i−1, i > 1.

Given an approximation level l, the sparse grid on Γ is the set of points

(5.2) Θl := H(l,M) =
⋃

l≤‖i‖1<l+M

Θ1
i1 × · · · ×Θ1

iM ,

where i = (i1, . . . , iM )> ∈ NM is a multi-index. If the one-dimensional points are nested, in the
sense that Θ1

i ⊂ Θ1
i+1, then the formula simplifies to

Θl := H(l,M) =
⋃

‖ i ‖1=l+M−1

Θ1
i1 × · · · ×Θ1

iM .

Now, given a level number l and the corresponding sparse grid Θl =
{
y1, . . . ,yNl

}
, where

Nl = |Θl|, the high fidelity stochastic collocation mixed FEM (SCMFEM) approximation to the
solution ~u : D × Γ → R and p : D × Γ → R of (3.1), where a−1(x, ω) is replaced with a−1

M (x,y)
and y = ξ(ω), is given by

(5.3) ~uh,Θ(x,y) =

Nl∑
i=1

~uh(x,yi)Li(y), ph,Θ(x,y) =

Nl∑
i=1

ph(x,yi)Li(y),

where Li : Γ → R is the M -dimensional Lagrange polynomial satisfying Li(yj) = δij , for j =
1, . . . , Nl. We can use (5.3) as a surrogate in any experiment where it is desired to approximate
the solution to (3.5) at additional points y ∈ Γ that are not collocation points. Computing the
high fidelity SCMFEM approximation requires the solution of (3.10) for all y ∈ Θl. The total cost
is Nl × O(Nh), which is infeasible in complex applications. Approximating statistical moments,
such as (3.9), can be done on-the-fly, but if we wish to use (5.3) as a surrogate then we will need
to store Nl vectors of length Nh for future use.

Reduced basis methods can be used in conjunction with stochastic collocation methods, such
as in [15, 22] for scalar elliptic PDEs. If we replace the high fidelity approximations in (5.3) with
RB-DEIM approximations then the new RB-DEIM-SCMFEM approximations are given by

(5.4) ~uR,Θ(x,y) =

Nl∑
i=1

~uR(x,yi)Li(y), pR,Θ(x,y) =

Nl∑
i=1

pR(x,yi)Li(y).

Using Algorithms 1 and 3, we can compute (5.4) by solving (3.21) for each y ∈ Θl. In Algorithm 1,
we use Θl as the training set and the cost is Nl×O(N3

R+K3). As long as NR � Nh and K � Nh
it will be cheaper to compute (5.4) than (5.3). Again, (3.9) can be approximated on-the-fly, but
if we wish to make further use of (5.4) then we need only store Nl vectors of length 3NR.

In the framework of stochastic collocation we can think of the construction of either (5.3) or
(5.4) as an offline computation, while the evaluation of either (5.3) or (5.4) for parameters y ∈ Γ
that are not collocation points, or some other quantity of interest, as an online computation.
As long as NR � Nh and NR � Nl we expect that reduced basis collocation (with DEIM
approximation if necessary) will outperform high fidelity collocation.
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6. Numerical results. In this section we present some numerical results to illustrate the
efficiency of using the RB-DEIM-SCMFEM scheme for the Darcy flow problem (3.1) with random
coefficients. All computations are carried out using Matlab on an Intel Xeon CPU with 2.50GHz.
All linear systems, including (3.13), are solved using the Matlab backslash function.

6.1. Non-affine test problems. Let D be a square domain and set f(x) = 0. We consider
(3.1) with a(x, ω) = exp (z(x, ω)), where z(x, ω) is a random field whose approximation, as a
function of M random variables, is zM (x, ξ(ω)), where ξ(ω) = [ξ1(ω), . . . , ξM (ω)]>. Choosing
independent random variables ξk ∼ U(−

√
3,
√

3) leads to the parameter domain Γ = [−
√

3,
√

3]M .
Now, working in terms of y ∈ Γ, we assume that

(6.1) zM (x,y) =

M∑
k=1

√
λkφk(x)yk,

which has the structure of a truncated Karhunen–Loève expansion (3.3) with mean µ(x) = 0. We
consider three examples. In the first two cases, λk → 0 algebraically as k → ∞, and in the third
case, λk → 0 exponentially as k →∞.

Example 6.1. Let D = [−1, 1]2, set p = 1 on {−1}× [−1, 1], p = 0 on {1}× [−1, 1], and choose
homogeneous Neumann conditions for the velocity on (−1, 1) × {−1, 1}. Here, we choose λk and
φk(x) in (6.1) to be eigenvalues and eigenfunctions, respectively, of the covariance function

(6.2) C(x1,x2) = σ2 exp

(
−‖x1−x2 ‖1

c

)
, x1,x2 ∈ D,

where c is the correlation length, which we fix to be c = 2, and σ is the standard deviation of the
random field z(x, ω). These eigenpairs can be explicitly computed, see [33, Example 7.55].

Example 6.2. Let D = [0, 1]2, set p = 1 on {0} × [0, 1], p = 0 on {1} × [0, 1], and choose
homogeneous Neumann conditions for the velocity on (0, 1) × {0, 1}. This time, following an
example in [19], we choose

√
λk = ᾱk−σ̃, and

φk(x) := cos (2πβ1(k)x1) cos (2πβ2(k)x2), x = (x1, x2)T ∈ D,

where k ∈ N, β1(k) = (k − l(k))(l(k + 1))/2, β2(k) = l(k) − β1(k), l(k) = b−1/2 +
√

1/4 + 2kc.
The parameter σ̃ controls the rate of decay of the terms

√
λk. We consider two cases: σ̃ = 2 with

ᾱ = 0.547, and σ̃ = 4 with ᾱ = 0.832.

Example 6.3. We choose the spatial domain D and the boundary conditions as in Example 6.2.
In addition, following [33, Example 9.37], we choose λ0 = 1/4, φ0(x) = 1, and

λij :=
1

4
exp

(
−π(i2 + j2)

)
, φij(x) := 2 cos (iπx1) cos (jπx2), x = (x1, x2)T ∈ D,

for i, j ≥ 1. The indices i and j are associated with two one-dimensional problems. The values
λij , and corresponding functions φij , are then ordered in terms of a single index k as in (6.1).

In each case, choosing aM (x,y) = exp (zM (x,y)) yields a problem of the form (3.5). For
the spatial discretisation we use lowest-order square Raviart–Thomas elements associated with
two meshes: the first gives Np = 4, 096 and Nu = 8, 192 and the second gives Np = 65, 536 and
Nu = 131, 072. We construct the reduced basis matrices Qu and Qp using Algorithm 1 where the
training set Θl is chosen as a set of Clenshaw–Curtis sparse grid points. Unless stated otherwise, we
set l = 4. Since a−1

M (x,y) does not depend affinely on y we also construct a DEIM approximation
using Algorithm 3 with tolerance ε2 = ε1/10 and a training set of 2000 randomly selected points
y ∈ Γ. We use the DEIM approximation to compute the matrices and vectors in (4.7) offline. This
allows us to assemble and evaluate (3.21) online, at a cost that is independent of Nh = Nu +Np.
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Table 6.1
Values of NR and K required for Example 6.1 on two spatial meshes, as we vary the tolerance ε1, with fixed

training set Θ4, and maximum relative residual errors δ1 and δ2 over 100 points y ∈ Γ.

M ε1 NR K δ1 δ2

8

1e-3 10 38 6.71e-4 6.70e-4
1e-4 26 60 6.15e-5 6.20e-5
1e-5 44 84 7.44e-6 7.48e-6
1e-6 67 114 1.01e-6 1.01e-6

12

1e-3 15 55 6.08e-4 6.14e-4
1e-4 37 87 6.79e-5 6.80e-5
1e-5 59 124 8.80e-6 8.98e-6
1e-6 96 166 8.52e-7 8.63e-7

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

M ε1 NR K δ1 δ2

8

1e-3 10 38 5.25e-4 5.17e-4
1e-4 26 60 6.97e-5 6.99e-5
1e-5 37 84 5.83e-6 5.82e-6
1e-6 59 114 8.65e-7 8.66e-7

12

1e-3 14 55 4.89e-4 4.89e-4
1e-4 30 88 8.13e-5 8.12e-5
1e-5 53 124 6.56e-6 6.61e-6
1e-6 85 168 9.19e-7 9.23e-7

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

Comparison with high fidelity approximation. First, we consider Example 6.1. We fix
σ = 0.25 in (6.2) and choose two values for the number of terms M in (6.1): M = 8 and M = 12,
which corresponds to retaining 87% and 89% of the integral of the variance of the underlying
random field z(x, ω), respectively. After constructing the reduced bases and DEIM approximation,
we look at the relative residual error in the high fidelity linear system, and compare the accuracy
of solutions to the RB-DEIM model (3.21) and the RB model (3.19). Specifically, we compute

δ1 = max
y∈Θ

(∥∥∥∥[gf
]
−
[
A(y) BT

B 0

] [
Qu uR(y)
Qp pR(y)

]∥∥∥∥
2

/ ∥∥∥∥[gf
]∥∥∥∥

2

)
,

δ2 = max
y∈Θ

(∥∥∥∥[gf
]
−
[
A(y) BT

B 0

] [
QuũR(y)
Qpp̃R(y)

]∥∥∥∥
2

/ ∥∥∥∥[gf
]∥∥∥∥

2

)
,

as we decrease ε1, where Θ ⊂ Γ is a set of 100 randomly selected vectors of parameters. Re-
sults are presented in Table 6.1. We observe that the accuracies of the RB and the RB-DEIM
approximations are similar in all cases, so that the reduced basis and DEIM contributions to the
error are balanced. Hence ε2 = ε1/10 is a good choice for this problem. Furthermore we observe
that both NR, the required dimension of QR, and K, the required number of terms in the DEIM
approximation, are effectively independent of Nh but do increase as we decrease the tolerance ε1
and increase the number of parameters M .

Next, we look at the time taken to assemble and solve the high fidelity systems (3.10), the
reduced systems (3.19) associated with non-affine coefficients, and the reduced systems (3.21)
which incorporate DEIM approximation, denoted T , t and τ respectively, while decreasing the
tolerance ε1. Once the reduced bases have been constructed using the training set Θ4, we compute
the average time taken to assemble and solve (3.10), (3.19), and (3.21), over an additional 100
points y ∈ Γ. The results are presented in Table 6.2. We observe that the average high fidelity
time T depends on Nh but does not, of course, depend on ε1. The average RB time t depends on
both Nh and ε1 since we have to assemble AR(y) directly. The average RB-DEIM time τ does not
depend on Nh but does depend on ε1. In all cases the average cost of solving the reduced system
with integrated DEIM approximation is the cheapest option. When Nh = 196, 608, the largest
value of NR is 85 and so NR � Nh. Of course, increasing M and decreasing ε1 further will cause
τ to increase and at some stage, τ will become larger than T .

Now, we compare the time taken to estimate E[~u] and E[p] using the RB-DEIM-SCMFEM
approximation (5.4) and the high fidelity SCMFEM approximation (5.3) as we increase the number
of collocation points Nl. The offline stage of the RB-DEIM-SCMFEM scheme involves constructing
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Table 6.2
Average time in seconds to solve the high fidelity systems (3.10) (T ), RB systems (3.19) (t) and RB-DEIM

systems (3.21) (τ), over 100 points y ∈ Γ for Example 6.1 on two spatial meshes with training set Θ4.

M ε1 NR K T t τ

8

1e-3 10 38 5.01e-2 1.65e-2 2.30e-4
1e-4 26 60 5.02e-2 2.19e-2 6.62e-4
1e-5 44 84 5.01e-2 2.67e-2 1.43e-3
1e-6 67 114 5.01e-2 3.95e-2 5.04e-3

12

1e-3 15 55 5.00e-2 1.84e-2 3.41e-4
1e-4 37 87 5.03e-2 2.55e-2 1.93e-3
1e-5 59 124 5.00e-2 3.36e-2 3.97e-3
1e-6 96 166 5.00e-2 7.28e-2 8.34e-3

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

M ε1 NR K T t τ

8

1e-3 10 38 1.23e0 2.91e-1 7.74e-4
1e-4 26 60 1.23e0 5.30e-1 1.10e-3
1e-5 37 84 1.22e0 8.11e-1 1.68e-3
1e-6 59 114 1.23e0 1.18e0 4.10e-3

12

1e-3 14 55 1.23e0 3.63e-1 9.71e-4
1e-4 30 88 1.21e0 6.35e-1 1.62e-3
1e-5 53 124 1.22e0 1.07e0 3.59e-3
1e-6 85 168 1.23e0 1.63e0 1.20e-2

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

the reduced bases using Algorithm 1 and constructing a DEIM approximation using Algorithm 3.
The online stage involves computing the approximation to E[~u] and E[p]. Results are presented
in Table 6.3. The times for the online stage of the RB-DEIM-SCMFEM scheme are significantly
quicker than the times for the high fidelity SCMFEM scheme, since the online cost does not depend
on Nh. We also see that the total time (offline + online) for the RB-DEIM-SCMFEM scheme is
quicker than for the high fidelity SCMFEM scheme since for a fixed Nh, NR does not increase
significantly as Nl increases.

Cost comparison with greedy RBM. Next, we compare the performance of our RBM,
which uses Algorithm 1 to construct Qu and Qp, with the standard greedy method. Algorithm 1
differs both in terms of the training set used and the method for selecting the points with which
to form snapshots. In the standard greedy algorithm, randomly generated points are used, and in
each iteration, the reduced bases are updated with the snapshot pair corresponding to the point
y ∈ Θ that maximises the estimated error ∆R(y), continuing until ∆R(y) < ε1 for all y ∈ Θ.
First, we select the same training set used in Algorithm 1 and perform the greedy algorithm on
each sparse grid level. Next, we perform the greedy algorithm with Nl randomly selected points.
We use the DEIM approximation as before. In Table 6.4 we present the values of NR, K, and the
total time in seconds taken to perform the offline stage using the three approaches. We observe
no more than a 10% difference in the values of NR. However, the times recorded for Algorithm 1
are significantly lower than for the greedy approaches. The gains are substantial. This is because
we only consider each point in the training set once, whereas the greedy approaches consider
every point in each iteration. The results highlight the advantage of using a multilevel sparse grid
approach, as more updates occur on the lower levels where there are fewer points.
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Table 6.3
Time in seconds for the RB-DEIM-SCMFEM scheme with ε1 = 10−5, and the high fidelity SCMFEM scheme,

to compute the expected solution for Example 6.1 on two spatial meshes as we increase Nl.

RB-DEIM-SCMFEM SCMFEM
M l Nl NR K offline online high fidelity

8

3 849 43 84 28.8 1.7 43.0
4 3937 44 83 111.0 7.3 198.7
5 15,713 45 83 430.5 28.0 781.6
6 56,737 46 83 1,553.6 96.1 2873.6

12

3 2,649 55 123 88.6 10.9 134.8
4 17,265 59 124 538.9 76.8 875.8
5 93,489 61 124 2,970.3 447.3 4,777.2

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

RB-DEIM-SCMFEM SCMFEM
M l Nl NR K offline online high fidelity

8

3 849 35 84 497.6 1.2 1,013.9
4 3,937 37 84 1895.0 5.8 4,685.2
5 15,713 40 84 7,352.9 22.2 18,835.2
6 56,737 41 84 27,089.6 80.5 68,305.7

12

3 2,649 52 124 1548.9 8.8 3,182.5
4 17,265 53 124 9,327.1 57.6 20,746.1
5 93,489 53 124 53,685.8 300.0 116,049.5

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

Table 6.4
Values of NR and K and time in seconds for the offline stage where Qu and Qp are constructed using

either Algorithm 1, the greedy algorithm with sparse grid points, or the greedy algorithm with random points for
Example 6.1 with M = 8 on two spatial meshes.

Algorithm 1 Greedy (sparse grid) Greedy (random)
ε1 NR K time (seconds) NR K time (seconds) NR K time (seconds)

1e-3 10 38 77.0 12 38 80.6 14 38 959.4
1e-4 26 60 93.1 27 60 203.5 25 60 1,891.9
1e-5 44 84 106.9 40 83 243.5 40 84 3,466.9
1e-6 67 114 157.7 66 114 986.1 63 113 6,414.7

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

Algorithm 1 Greedy (sparse grid) Greedy (random)
ε1 NR K time (seconds) NR K time (seconds) NR K time (seconds)

1e-3 10 38 1,171.7 12 38 1,251.1 10 38 11,485.3
1e-4 23 60 1,538.6 23 60 2,131.9 23 60 25,822.1
1e-5 37 83 1,887.1 37 83 4,720.9 36 84 51,806.8
1e-6 59 114 2,542.9 55 113 7,109.5 57 114 97,549.5

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

Issues affecting the size of the reduced bases. We have seen that the RB-DEIM-
SCMFEM scheme is efficient if NR � Nh. Hence, a natural question is: what features of the
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problem affect NR? Let Z = V × Q with ‖z‖Z := ‖~u‖V + ‖p‖Q. For a fixed y ∈ Γ, the high fi-
delity solution zh(·,y) = (~uh(·,y), ph(·,y)) ∈ Zh = Vh ×Qh satisfies (2.4) and the reduced solution
zR(·,y) = (~uR(·,y), pR(·,y)) ∈ ZR = VR × QR satisfies (2.8). The quicker ‖zh(·,y) − zR(·,y)‖Z
decays to zero as NR increases, for all y ∈ Γ of interest, the smaller the value of NR we will need
to ensure that the reduced basis error is smaller than a prescribed tolerance ε. One way to obtain
bounds for reduced basis errors is to seek bounds for the Kolmogorov width, see [39, Chapter 5].
For saddle point problems, see [16], this is defined as

(6.3) dN (Γ) = inf
ZN⊂Zh,dimZN=N

(
sup
y∈Γ

inf
zN∈ZN

‖zh(·,y)− zN (·,y)‖Zh

)
.

For a fixed approximation space ZN of dimension N , the term in parentheses measures the worst
case (in a point-wise sense on Γ) best approximation error. The Kolmogorov width characterises
the smallest such error over all possible choices of N -dimensional spaces ZN . The rate at which
the Kolmogorov width decays with respect to N then tells us the rate at which the reduced basis
error decays, see [8, 15]. It can be shown, see [16], that a bound for the Kolmogorov width is

(6.4) dN (Γ) ≤ C
M∑
k=1

exp (−rkNk), rk = log

(
2τk
|Γk|

(
1 +

√
1 +
|Γk|2
4τ2
k

))
,

where τk is the size of the region in the complex plane into which both ~u(·,y) and p(·,y) admit
an analytic extension with respect to yk. The bound (6.4) exploits a result in [1, Theorem 4.1] for
the error associated with a tensor product approximation to a scalar-valued function constructed
on a grid with Nk + 1 points in each direction so that N =

∏M
k=1(Nk + 1). The authors in [7]

consider the saddle point problem (3.5) posed on D×Γ, where Γ = [−1, 1]M and a−1
M (x,y) is a

truncated Karhunen–Loève expansion. Assuming the mean and covariance of a−1(x, ω) are given,
it is shown in [7, Lemma 4.1] that

(6.5) τk :=
amin√

λk‖φk(x)‖L∞(D)

, k = 1, . . . ,M,

where λk, φk(x) are eigenpairs of the covariance associated with a−1(x, ω). Combined with the
bound in (6.4) this suggests that the quicker the terms λk decay as k →∞, the smaller the space
ZN needs to be to obtain an adequate reduced basis solution. This is what we observe for our
parameter-dependent saddle point problem where we construct a reduced space ZR with dimension
N = 3NR. We now illustrate this.

Consider Example 6.1 with M = 8. Again, we build the reduced bases using the training
set Θ4, for which |Θ4| = 3, 937 (when M = 8). In Table 6.5, we record the values of NR and K
returned by Algorithm 1 and Algorithm 3, respectively, as we increase the standard deviation σ
in (6.2) and vary the tolerance ε1. Note that σ in (6.2) controls the magnitude of the λk in (3.3).
We observe that increasing σ, which increases λk, does indeed cause NR and K to increase.

Next, we look at the effect that the rate of decay of the coefficients
√
λk in (6.1) has on the

values of NR returned by Algorithm 1 and the values of K returned by Algorithm 3. We refer
to zM (x,y) from Example 6.1 as KL1, zM (x,y) from Example 6.2 with σ̃ = 2 as KL2, zM (x,y)
from Example 6.2 with σ̃ = 4 as KL3, and zM (x,y) from Example 6.3 as KL4. Note that in the
KL1 case,

√
λk = O(k−1), see [33, Example 7.58], and so these are the slowest decaying terms,

while the values λk in the KL4 case decay exponentially. These are the fastest decaying terms.
Results are presented in Table 6.6 for several values of ε1. We observe that the KL1 case generally
requires larger values of NR and K, while the KL4 case requires smaller values of NR and K.

We now examine the effect that the different rates of decay of the coefficients
√
λk have on

the convergence with respect to NR of the reduced basis error. First, we compute the maximum
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Table 6.5
Values of NR and K required for Example 6.1 with M = 8 on two spatial meshes, as we increase the standard

deviation σ, with fixed training set Θ4.

σ 0.1 0.25 0.5 1
ε1 NR K NR K NR K NR K

1e-3 9 23 10 38 21 58 36 90
1e-4 15 34 26 60 39 86 67 130
1e-5 27 56 44 84 66 120 108 177
1e-6 41 73 67 114 101 161 163 229

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

σ 0.1 0.25 0.5 1
ε NR K NR K NR K NR K

1e-3 8 23 10 38 19 58 29 90
1e-4 11 34 23 60 34 86 55 130
1e-5 25 56 37 84 56 120 92 178
1e-6 37 73 59 114 87 161 146 230

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

Table 6.6
Values of NR and K required for Example 6.1 (KL1), Example 6.2 with σ̃ = 2 (KL2), Example 6.2 with σ̃ = 4

(KL3) and Example 6.3 (KL4) with M = 8, on two spatial meshes with fixed training set Θ4.

KL1 KL2 KL3 KL4
ε1 NR K NR K NR K NR K

1e-3 10 38 20 22 14 12 10 11
1e-4 26 60 34 29 18 18 17 14
1e-5 44 84 42 39 22 21 20 19
1e-6 67 114 53 51 29 27 25 24

(a) Nh = 12, 288, Np = 4096, Nu = 8192.

KL1 KL2 KL3 KL4
ε1 NR K NR K NR K NR K

1e-3 10 38 24 22 13 12 11 11
1e-4 26 60 33 29 19 18 12 14
1e-5 37 84 44 39 22 21 16 19
1e-6 59 114 67 50 30 27 21 24

(b) Nh = 196, 608, Np = 65, 536, Nu = 131, 072.

relative pointwise error (over 100 randomly selected points y ∈ Γ) between the reduced and high
fidelity pressure and velocity approximations, which we denote by

(6.6) δpR = max
y∈Θ

(
‖ph(·,y)− pR(·,y)‖Q

‖ph(·,y)‖Q

)
, δuR = max

y∈Θ

(
‖~uh(·,y)− ~uR(·,y)‖V

‖~uh(·,y)‖V

)
.

In addition, we also compute the error between the high fidelity SCMFEM and RB-DEIM-
SCMFEM approximations of the mean of the pressure and the mean of the velocity, which we
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(a) Maximum pointwise pressure error (δpR).
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(b) Error in expectation of pressure (ηpR).
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(c) Maximum pointwise velocity error (δuR).
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(d) Error in expectation of velocity (ηuR).

Fig. 6.1. Errors δpR, δuR, ηpR, ηuR for Example 6.1 (KL1), Example 6.2 with σ̃ = 2 (KL2), with σ̃ = 4 (KL3)
and Example 6.3 (KL4) with M = 8, Nh = 12, 288, Np = 4096, Nu = 8192 and training set Θ4 as we decrease ε1.

denote by

(6.7) ηpR =
‖E[pR,Θ]− E[ph,Θ]‖Q

‖E[ph,Θ]‖Q
, ηuR =

‖E[~uR,Θ]− E[~uh,Θ]‖V
‖E[~uh,Θ]‖V

.

We fix Nh = 12, 288 and use the training set Θ4 to construct the reduced bases. We present
the errors δpR, δuR, ηpR, ηuR in Figure 6.1 as we decrease ε1. For the KL1, KL2 and KL3 cases,
we also indicate the decay rates of the

√
λk terms for comparison. Each point on the curves in

Figure 6.1 corresponds to ε1 = 10−3, 10−4, 10−5, 10−6, respectively. We observe that for the KL1
case, the errors δpR, δuR, ηpR, ηuR decay the slowest, while for the KL4 case, the errors decay the
fastest. We also observe that as NR increases, both the pointwise approximations and the RB-
DEIM-SCMFEM approximations of the mean converge. However, the velocity error δuR is usually
observed to be larger than ε1 while the pressure error δpR is smaller. It appears that the reduced
velocity approximation is converging slower than the reduced pressure approximation. This was
also observed in [24] for a Stokes flow problem.
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Convergence comparison with greedy RBM. We now examine the decay of the reduced
basis error incurred when Qu and Qp are constructed using Algorithm 1 as opposed to a standard
greedy method. Note that theoretical bounds on the Kolmogorov width assume we use the latter.
In Figure 6.2 we plot δuR and δpR as we increase NR for both Algorithm 1 and the greedy strategies
described earlier. Similar rates of decay are observed for each approach.
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(a) Nh = 12, 288, Np = 4096, Nu = 8192.
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Fig. 6.2. Errors δuR and δpR for Example 6.1 with M = 8 as ε1 → 0, where Qu and Qp are constructed using
Algorithm 1 with training set Θ4, the greedy algorithm with training set Θ4, or the greedy algorithm with N4 = |Θ4|
randomly generated samples.
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(a) Errors δpR, ηpR, δuR, ηuR, and residual δ2.
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Fig. 6.3. (a) Errors δpR, ηpR, δuR, ηuR, and maximum relative residual δ2 for Example 6.1 (KL1) with M = 8 and
f = 0, (b) velocity component errors δu1

R and δu2
R for Example 6.1 with M = 12 and f(x1, x2) = 2(x1+x2−x21−x22).

In both experiments, Nh = 12, 288, Np = 4096, Nu = 8192.

Unlike the standard greedy RBM, Algorithm 1 uses the discrete relative residual error as an
error indicator. In Figure 6.3a we plot the errors δpR, ηpR, δuR and ηuR for Example 6.1 (the KL1
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case) again, as well as δ2, as we vary the tolerance ε1. Recall that we have δ2 ≈ δ1 ≤ ε1. We
observe that δpR, δuR and δ2 decay at a similar rate, although δuR is larger than δ2. However, for the
expectation, ηuR is close to δ2. While it is not certified in the usual sense, our RBM does a good
enough job in delivering estimates of the quantities of interest in this problem.

Coercivity. Finally, recall that it is desirable to have coercivity with respect to ‖ · ‖H(div,D)

so that we obtain a priori error estimates for the velocity error using standard theory. Here,
‖~v‖2V = ‖~v‖2L2(D) + ‖∇ · ~v‖2L2(D). For a given y ∈ Γ let

δu1

R (y) =
‖~uh(·,y)− ~uR(·,y)‖L2(D)

‖~uh(·,y)‖L2(D)
, δu2

R (y) =
‖∇ · (~uh(·,y)− ~uR(·,y)) ‖L2(D)

‖∇ · (~uh(·,y)) ‖L2(D)
.

If both δu1

R (y) and δu2

R (y) decay at the same rate as NR increases, this suggests that the velocity
approximation is stable with respect to the H(div,D) norm. In Figure 6.3b, we plot δu1

R (y) and
δu2

R (y) for a single representative y ∈ Γ for a test problem and observe that this is the case.

6.2. Groundwater flow test problem. Finally, we consider a test problem of the form
(3.5) with f(x) = 0 from the software package PIFISS [44]. Let the spatial domain D = ∪5

k=1Dk

be made up of 5 non-overlapping subdomians Dk, as depicted in Figure 6.4, which is based on the
geometry of a real underground location, see [40]. On the boundary, we set p = 1 on the left edge
(the inflow), p = 0 on the right edge (the outflow), and choose homogeneous Neumann conditions
for the velocity on all other edges. We use the MATLAB PDE toolbox to construct two non-uniform
spatial meshes. For the coefficient, let aM (x,y)|Dk

= yk, i = 1, . . . , 5 so realisations of aM (x,y)
are piecewise constant in each subdomain Dk. For the high fidelity approximation, for each y ∈ Γ,
we apply lowest-order triangular Raviart–Thomas elements. The snapshot pair (~uh(·,y), ph(·,y))
corresponding to the specific choice of parameters y = [1.04, 17.2, 0.31, 2.60, 17.2]>, which comes
from the deterministic groundwater flow model described in [40], is plotted in Figure 6.5.

5

4

3

2

1

Fig. 6.4. Computational domain D for the groundwater flow test problem.

Now, we treat the coefficients as uncertain, and choose aM (x,y)|Dk
= exp (yk) for k = 1, . . . , 5,

where each yk is the image of a Gaussian random variable ξk ∼ N(µk, σk), with mean µk and
standard deviation σk chosen so that

E[exp (ξ1)] = 1.04, Var (exp (ξ1)) = 0.832,

E[exp (ξ2)] = 17.2, Var (exp (ξ2)) = 13.76,

E[exp (ξ3)] = 0.31, Var (exp (ξ3)) = 0.248,

E[exp (ξ4)] = 2.60, Var (exp (ξ4)) = 2.08,

E[exp (ξ5)] = 17.2, Var (exp (ξ5)) = 13.76.
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Fig. 6.5. High fidelity approximation to the groundwater flow problem with Nh = 13, 686, Np = 5424,
Nu = 8262 corresponding to the inputs y1 = 1.04, y2 = 17.2, y3 = 0.31, y4 = 2.60, y5 = 17.2.

That is, on each subdomain Dk, aM is a lognormal random variable. Then, we have

aM (x,y)−1 =

5∑
k=1

exp(−yk)1Dk
(x).

This is an affine function of M = K = 5 parameters and so we do not need to perform DEIM.
We construct RB matrices Qu and Qp using Algorithm 1 with tolerance ε1 and the training set
Θl is chosen to be a sparse grid based on Gauss points. Note that Gauss points are not nested.
When we update the RB matrices Qu and Qp at each iteration of Algorithm 1 we also compute
the offline matrices and vectors in (4.7) and the quantities needed to evaluate the error indicator
(4.3). Since K is small here, we find that this is the cheapest offline strategy. In Table 6.7, we
record the average time taken to assemble and solve the high fidelity system (3.10) and the reduced
system (3.19) as we decrease the tolerance ε1. In all cases we see that NR � Nh and so the cost
of solving (3.19) is substantially cheaper than solving (3.10).

Table 6.7
Average time in seconds to assemble and solve the high fidelity systems (3.10) (T ) and the RB systems (3.19)

(t) over 100 points y ∈ Γ for the groundwater flow problem on two spatial meshes with training set Θ4.

Nh Np Nu ε1 NR T t

13,686 5424 8262

1e-3 39 7.32e-2 6.64e-4
1e-4 60 6.93e-2 1.04e-3
1e-5 82 6.87e-2 1.61e-3
1e-6 106 6.70e-2 2.56e-3

217,464 86,784 130,680

1e-3 36 2.13e0 5.57e-4
1e-4 59 2.14e0 1.06e-3
1e-5 84 2.14e0 1.75e-3
1e-6 108 2.08e0 5.03e-3

Finally, we compare the time taken to estimate E[~u] and E[p] using the RB-SCMFEM approx-
imation and the high fidelity SCMFEM approximation, as we increase the number of collocation
points Nl = |Θl|. The offline stage of the RB-SCMFEM scheme involves constructing the reduced
matrices Qu and Qp, and the online stage involves computing the approximation to E[~u] and E[p].
The results are presented in Table 6.8. Since Gaussian random variables are unbounded, the set
of sparse grid points Θl is also unbounded as we increase the level number l. We see that NR in-
creases as we increase l. In all cases, however, NR is small enough that applying the RB-SCMFEM
scheme is significantly cheaper than applying the high fidelity SCMFEM scheme. In particular,
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Table 6.8
Time in seconds for the RB-SCMFEM scheme and high fidelity SCMFEM scheme for the groundwater flow

problem on two spatial meshes with ε1 = 10−5 as we increase Nl.

RB-SCMFEM SCMFEM
Nh Np Nu l Nl NR offline online high fidelity

13,686 5424 8262

3 351 64 23.0 0.4 24.0
4 1,471 82 40.2 2.4 98.0
5 5,503 95 75.6 12.0 368.3
6 18,943 103 183.9 48.8 1,292.0

217,464 86,784 130,680

3 351 64 510.9 0.4 746.0
4 1,471 84 795.0 2.6 3,058.0
5 5,503 96 1,002.1 14.3 11,523.5

from the last line of Table 6.8 we see that the high fidelity SCMFEM scheme is over 10 times as
expensive as our reduced basis method.

7. Concluding remarks. In this paper we described the application of reduced basis meth-
ods to parameter-dependent saddle point problems of the form (1.1) and developed an efficient
method for performing forward UQ for the groundwater flow problem (3.1). We presented a
non-standard training algorithm for constructing a pair of compatible reduced bases that uses a
multilevel approach based on sparse grid points, and a simple error indicator. We also described
how to combine this with a DEIM approximation to the inverse of the diffusion coefficient. We
demonstrated that with these variations we gain substantially lower offline times when compared
to the standard greedy algorithm. We showed that assembling and solving the RB-DEIM system
(3.21) is much cheaper than assembling and solving the high fidelity system (3.10). We combined
the reduced basis method with a stochastic collocation mixed finite element method and imple-
mented the resulting RB-DEIM-SCMFEM scheme for a range of test problems, demonstrating that
significant computational savings can be made over standard high fidelity SCMFEM schemes, even
when the offline times are taken into account. Our experiments reveal, however, that reduced ba-
sis methods are most effective for performing forward UQ for PDE models with quickly decaying
coefficient terms, a modest number of parameters and low variances.
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