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ABSTRACT

Rotation numbers have played a central role in the study of (unforced) monotone circle
maps. In such a case it is possible to obtain a priori bounds of the form ρ - 1

n ≤ 1
n(yn-y0) ≤ ρ + 1

n,
where 1

n(yn-y0) is an estimate of the rotation number obtained from an orbit of length n with

initial condition y0, and ρ is the true rotation number. This allows rotation numbers to be
computed reliably and efficiently. Although Herman has proved that quasi-periodically
forced circle maps also possess a well defined rotation number, independent of initial con-

dition, the analogous bound does not appear to hold. In particular, two of the authors have
recently given numerical evidence that there exist quasi-periodically forced circle maps for
which yn-y0-ρn is not bounded. This renders the estimation of rotation numbers for quasi-

periodically forced circle maps much more problematical. In this paper, we derive a new
characterization of the rotation number for quasi-periodically forced circle maps based
upon integrating iterates of an arbitrary smooth curve. This satisfies analogous bounds to

above and permits us to develop improved numerical techniques for computing the rota-
tion number. Additionally, we consider the boundedness of yn-y0-ρn. We show that if this
quantity is bounded (both above and below) for one orbit, then it is bounded for all orbits.

Conversely, if for any orbit yn-y0-ρn is unbounded either above or below, then there is a re-
sidual set of orbits for which yn-y0-ρn is unbounded both above and below. In proving these
results we also present a min-max characterization of the rotation number. We evaluate the

performance of an algorithm based on this, and on the whole find it to be inferior to the in-
tegral based method.



1 INTRODUCTION

1.1 PRINCIPAL AIMS AND RESULTS

Many applications of nonlinear dynamics involve forced systems. Whilst forcing by a single
frequency has long been extensively studied, that by two (or more) incommensurate fre-

quencies has received comparatively less attention and is in general much more poorly un-
derstood. The simplest framework in which this can be studied is that of skew products over
a rigid irrational rotation, that is maps of the form

θn+1 = θn + ω mod 1 (1.1)

yn+1 = g(θn,yn)

Here θn∈T
1, the unit circle and ω is irrational, whilst yn is assumed to lie in some finite di-

mensional manifold Y (which in this paper will always be one dimensional). It will be con-
venient to write

f(θ) = θ + ω mod 1

and

F(θ,y) = (f(θ),g(θ,y)) (1.2)

for the overall skew product map on T1×Y. We shall furthermore define g(n) by F n(θ,y) =
(f n(θ), g(n)(θ,y)).

One particularly interesting class of such systems is given by quasi-periodically forced circle

maps, which correspond to Y = T1 (e.g. [Ding et al., 1989a; 1989b; Feudel et al., 1995; 1997;
Chastell et al., 1995; Sturman, 1999; Glendinning et al., 2000]). It is usually more convenient
to work with the lift (to Y = R) of such a map; this is given by a g : T1×R → R which satisfies

g(θ,y+1) = g(θ,y)+1. This gives rise to a circle map in the usual way by taking ~g : T1×T
1 → T1 to

be ~g(θ,y) = g(θ,y) mod 1. Then (f,~g) is a map of the 2-torus T2 = T1×T
1. In this paper we shall

additionally restrict ourselves to the case where (f,~g) is a homeomorphism (a continuous

invertible map with a continuous inverse) which in turns implies that ~g=(θ,•) : T1 → T1 is a
homeomorphism of T1 for each θ∈T

1, and that g is continuous in θ. One would expect such
maps to play as central a role for quasi-periodically forced systems as circle maps do in the

class of general systems. A paradigm example (e.g. [Ding et al., 1989a; 1989b; Feudel et al.,
1995; 1997; Chastell et al., 1995; Sturman, 1999; Glendinning et al., 2000]), comparable to
the Arnold sine map (eg [Arnold, 1957; 1983]), is given by

g(θ,y) = y + Ω + 
A

2π
sin 2πy + B sin 2πθ (1.3)

This is a homeomorphism as long as A  ≤ 1. The condition that ~g is a homeomorphism can
be expressed in terms of the lift g as a requirement that g be strictly monotone, that is g(θ,y)
< g(θ,y') for all y < y' and all θ∈T

1. In fact all of the results in this paper hold without the

strictness assumption and we therefore define
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Definition 1.1 A quasi-periodically forced map (f,g) on T1×R is monotone if for all y ≤ y' and

all θ∈T
1

g(θ,y) ≤ g(θ,y') (1.4)

This property will turn out to play a central role in our work. Note that by induction we
trivially have g(n)(θ,y) ≤ g(n)(θ,y') for all n∈N, all y ≤ y' and all θ∈T

1.

Monotonicity is of fundamental importance in the study of unforced circle maps and we
shall therefore first review its consequences in this context. Thus, suppose that h : R → R is
the lift of a monotone map of the circle, so that it satisfies h(y+1) = h(y)+1 and h(y) < h(y') for

all y < y'. Then it has a unique rotation number defined by

ρ = lim
n→∞

h y y
n

n( )−

which is independent of the choice of y. This in fact turns out to still be the case if h is not
continuous; it is the monotonicity which ensures the existence and uniqueness of ρ [Rhodes

and Thompson, 1986; 1991].

The rotation number can be used to classify monotone circle maps and to organize their
bifurcation diagram. Of particular interest are those regions for which ρ is rational. For the

classic Arnold sine map

h(y) = y + Ω + 
A

2π
sin 2πy (1.5)

these have a well known “tongue” shape and are usually referred to as Arnold tongues. Note
that if h has rotation number p/q then hq - p has rotation number 0, and hence the ρ  = 0

tongue serves as an archetype for all the others.

A natural question to ask is how to compute the rotation number for a particular map. A
naive approach is simply to take an initial point  y0, iterate it some large number n times and

then compute 1
n(hn(y0) - y0). This turns out to work surprisingly well, largely due to the

following bounds, which can easily be derived for all monotone circle maps [Rhodes and
Thompson, 1986; 1991]:

ρ - 
1
n ≤ h y y

n

n( )− ≤ ρ + 
1
n (1.6)

for all y. This can also be expressed as

(hn(y) - y) - ρn ≤ 1 (1.7)

This bound gives tight control of how the rotation of orbits around the circle fluctuates

about its average. One immediate consequence is that if ρ = 0 then every orbit yn = hn(y0) is
bounded and in particular must remain in the region yn - y0  ≤ 1. This can be used to pro-
vide rigorous error bounds in the numerical estimation of ρ. Thus, for instance, in estimat-

ing the extent of the ρ  = 0 tongue, we can immediately exclude parameter regions where
hn(0)  > 1 for any n. Furthermore, if ρ ≠ 0, then we are guaranteed that hn(0)  > 1 for all
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sufficiently large n. Similar statements, using hnq(0)-p instead of hn(0) apply to the general
p/q tongue. Finally, another immediate consequence of (1.6) is the continuity of ρ with re-
spect to parameters for continuous h.

Our main aim in this paper is to see to what extent these results can be generalized to the
quasi-periodically forced case. We now have two rotation numbers, one in the θ direction

and the other in the Y direction. The former is trivially equal to ω and will not concern us
further. The latter is defined by

ρ = lim
n→∞

g y y
n

n( )( , )θ −
(1.8)

whenever the limit exists. The principal difficulty is that we no longer have ordering for ar-

bitrary pairs of points. In other words, if θ ≠ θ', then we have no information about the rela-
tive position of g(n)(θ,y) and g(n)(θ',y'). This makes it impossible to apply the standard proof
for the existence of a rotation number in the unforced case. Nevertheless, Herman shows

that the monotonicity in each fibre, combined with the unique ergodicity of f are sufficient
to prove

Theorem 1.1 [Herman, 1983] If F is a homeomorphism of the torus T1×T
1 of the form (1.2),

then the limit (1.8) exists for all (θ,y), and is independent of (θ,y). Furthermore, the limit
converges uniformly in (θ,y).

Thus, as before, one can talk of the rotation map of the map F. We shall give an elementary

proof of this theorem as a corollary of our work below in §3.3. However, it no longer appears
possible to derive bounds analogous to (1.6) in the quasiperiodic case (see §1.2 below). This
makes the numerical estimation of ρ by computing ~ρn = 1

n(g(n)(θ0,y0) - y0) for a single initial

(θ0,y0) potentially inaccurate and certainly fraught with uncertainty. This is illustrated in
Figure 1.1 where we see that indeed (1.6) is not satisfied, and that large oscillations occur in
~ρn as n grows. These make it difficult to estimate the limit of ~ρn. One obvious improvement

is to average over a number of different initial conditions, shown in Figure 1.2. Whilst this
leads to a more accurate result, we see that it does not reduce the oscillations making it dif-
ficult both to estimate the limiting value, and the accuracy of our estimates.

Instead, in this paper we present a new integral characterization of the rotation number, for
which we are able to derive a uniform estimate analogous to (1.6). This allows us to devise a
family of algorithms for numerically estimating ρ for which we can obtain explicit error

bounds, exactly as in the unforced case. Furthermore, it turns out that in many circum-
stances such algorithms have superior performance to the simplistic ones outlined above.
To explain our characterization, we begin by examining how curves are iterated under maps

of the form (1.2):

Definition 1.2 The graph of a continuous function ψ : T1 → R is the set

graph ψ = { (θ,ψ(θ)) : θ∈T
1 } �
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Note that this is a curve winding once around the cylinder T1×R. For n∈N, let ψn : T1 → R be
the function whose graph is Fn(graph ψ):

ψn(θ) = g(n)(θ,ψ(θ))

Our principal result is then

Theorem 1.2 If F is a monotone continuous quasi-periodically forced circle map and ψn is

defined as above then

ρ - 
1
n ≤ 1

n∫ ψn - ψ dθ ≤ ρ + 
1
n (1.9)

Observe the close analogy of this to the fundamental bound (1.6) for the unforced case. A
proof of this theorem given in §3 below.

Remark 1.1 Those familiar with the theory of skew products should note that ψn is not the
standard graph transform of ψ, which is given by ~ψn(θ) = g(n)(f -n(θ),ψ(f -n(θ))). The latter gives
the y co-ordinate of Fn(graph ψ) at θ, whilst ψn(θ) gives the co-ordinate at f n(θ) (Figure 1.3).

Since Lebesque measure is invariant under f, we trivially have

∫ ϕ °f -n dθ = ∫ ϕ dθ (1.10)

0.016

0.017

0.018

0.019

0.020

2000 4000 6000 8000 10000

ρ n

n

~

Figure 1.1. Estimate of rotation number for the map (1.3), with parameter values A = 0.8, B =
3.0 and Ω = 0.01, obtained by iterating a single randomly chosen orbit for n iterations and

computing ~ρn = 1
n(g(n)(θ0,y0) - y0). The solid line indicates an accurate estimate ρ* = 0.0173598

of the limit value, obtained using Algorithm 1.4 (described below, with k = 1000 points, a
transient of m = 1000, and n = 105 iterates). The dashed line give the bounds ρ* ± 1

n, analo-
gous to (1.6).
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for any integrable ϕ : T1 → R and any n∈Z. Hence in (1.9) we can replace ψn by the graph

transform ~ψn. In fact we can replace the integrand on the right hand side of (1.10) by ϕ °Rα,
for any α∈R, where Rα : T1 → T1 is the rigid rotation Rα(θ) = θ + α mod 1.

0.0168

0.0172

0.0176

0.0180

0.0184

2000 4000 6000 8000 10000

ρ n

n

~

A

0.01734

0.01735

0.01736

0.01737

0.01738

0.01739

8000 8500 9000 9500 10000

ρ n

n

~

B

Figure 1.2. Estimate of rotation number for the same map as Figure 1.1. A) Average calcu-
lated using 10 (light grey) and 100 (dark grey) randomly chosen orbits. The limit value (solid

line) and bounds (dashed line) are as in Figure 1.1. B) Detail of A, showing continuing os-
cillations in the estimate. Only the data for the average of 100 orbits is shown.
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1.2 BOUNDED V. UNBOUNDED ORBITS

Recall that for an unforced circle map of rotation number ρ, the quantity ρn provides a very
tight estimate of how far an orbit has moved in n iterations. In particular (1.7) implies that
hn(y) - y - ρn is bounded. Unfortunately, it seems that this is no longer true in the quasi-

periodically forced case, and in particular [Feudel et al., 1995] present strong numerical evi-
dence that there exist parameter values for the map (1.3) where yn grows approximately
logarithmically. This is thus an example of a map for which ρ  = 0 but g(n)(θ,y) - y is not

bounded. It turns out that in general if this occurs for one orbit, then it occurs for all typical
orbits. Conversely if there exists an orbit for which g(n)(θ0,y0) - y is bounded, then g(n)(θ,y) - y
is uniformly bounded for all (θ,y)∈T

1×R. An appropriate generalization holds for other rota-

tion numbers. Thus define:

Definition 1.3 We say that the orbit of (θ,y) is ρ-bounded above if there exists a constant K
such that g(n)(θ,y) - y - ρn ≤ K for all n∈N and ρ-bounded below if g(n)(θ,y) - y - ρn ≥ -K for all n∈
N. An orbit is ρ-bounded if it is both ρ-bounded above and below. It is ρ-unbounded if it is
not ρ-bounded and similarly for ρ-unbounded above and ρ-unbounded below.

If there exists a ρ-bounded orbit, then the map has rotation number ρ, but the converse

does not necessarily hold. In §4 below, we prove:

Theorem 1.3 Suppose that a monotone continuous quasi-periodically forced circle map F
has rotation number ρ. Then there exists at least one orbit that is ρ-bounded above and one
orbit that is ρ-bounded below. If there exists an orbit that is ρ-bounded (both above and

below), then all orbits are ρ-bounded. If there is no ρ-bounded orbit then there exists a re-
sidual subset U ⊂ T1 such that all (θ,y)∈U×R are ρ-unbounded both above and below.

Numerical evidence suggests that the ρ-unbounded situation can occur [Feudel et al., 1995],

however we know of no rigorous proof of this. In such a case the set U can clearly be chosen
to be f-invariant, and hence must be of either zero or full Lebesgue measure. The fact that

(f -n( ), (f -n( )))

Fn

f -n( )
f -n

Fn(f -n( ), (f -n( )))

f n
f n( )

Fn

( , ( ))

Fn( , ( ))Fn(graph )

Figure 1.3 The function ψn = g(n)(θ,ψ(θ)) and the graph transform ~ψn(θ) = g(n)(f -n(θ),ψ(f -n(θ))).
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all numerical orbits in the [Feudel et al., 1995] example appear to be unbounded suggests

that U in fact has full measure, though we can see no way of proving this.

As part of the proof of the above theorem we also derive the following “min-max” charac-
terization of the rotation number, which motivates a number of numerical algorithms de-

scribed in the next section.

Theorem 1.4 Suppose that a monotone continuous quasi-periodically forced circle map F
has rotation number ρ and let ψ : T1 → R be an arbitrary function. Then

inf
θ∈T

1
 sup

n∈N

 
1
n (g(n)(θ,ψ(θ)) - ψ(θ) - 1) = ρ = sup

θ∈T
1

inf
n∈N

 
1
n (g(n)(θ,ψ(θ)) - ψ(θ) + 1)

This is proved under the guise of Corollary 5.3 below.

1.3 NUMERICAL METHODS FOR ESTIMATING THE ROTATION NUMBER

We consider the following methods for numerically computing the rotation number of a

quasi-periodically forced circle map. The first two have been widely used in the literature
[Feudel et al., 1995; 1997; Glendinning et al., 2000], whilst the remainder are motivated by
the theoretical results described above. A numerical evaluation of these methods is given in

the next section.

Algorithm 1.1 Choose an initial condition (θ0,y0)∈T
1×R and some large n∈N. Then an esti-

mate for ρ is given by (Figure 1.1)

~ρ1,n =
1
n (g(n)(θ0,y0) - y0) �

Somewhat better results can be obtained by choosing many different initial conditions.

Algorithm 1.2 Choose a random set of initial conditions {(θ0,y0), …, (θk-1,yk-1)} ⊂  T1×R and
some large n∈N. Estimate ρ using (Figure 1.2)

~ρ2,n =
1
k

i

k

=

−

∑
0

1
1
n (g(n)(θi,yi) - yi) �

The disadvantage of these methods is that we have no estimate of the error in determining ρ
for a particular choice of n and k. Theorem 1.2 on the other hand offers error bounds that
are explicit and apart from the inaccuracies involved in evaluating an integral also rigorous.

It suggests the following.

Algorithm 1.3 Choose a smooth function ψ : T1 → R; in the absence of a priori information,
we may as well take ψ to be constant. Choose some k∈N and subdivide T1 into k equally
spaced intervals, so that θi = i

k for i = 0, …, k-1. Iterate each point (θi,ψ(θi)) for n iterations

and estimate the integral in (1.9) using the trapezoidal rule. Thus:

~ρ3,n =
1
k

i

k

=

−

∑
0

1
1
n (g(n)(θi,ψ(θi)) - ψ(θi)) �
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Note the close similarity to Algorithm 1.2: the only difference is in the choice of initial

points. Remarkably, not only does this lead to rigorous error bounds, but also appears to
give a more accurate estimate of ρ.

We also remark that for periodic functions, the trapezoidal rule is about as accurate a

method as one can get for the numerical evaluation of an integral [Davis and Rabinowitz,
1984], and hence there is no point attempting to use more sophisticated quadrature for-
mulas. Of course, the error analysis of the trapezoidal rule assumes that the funciton to be

integrated is smooth, and the higher the degree of smoothness, the higher the order of the
error estimates. In our case, if ψ and g are smooth, then so will ψn be. However, especially if
the system possesses a strange non chaotic attractor, the derivatives of ψn can grow without

bound as n → ∞ [Feudel et al., 1995]. Hence, in principle a numerical estimate of the inte-
gral of ψn could be become quite inaccurate. In practice, however, this does not seem to be a
problem, as we shall see when we evaluate this algorithm in the next section.

When the map F has an invariant or periodic curve, it seems natural to use this as ψ in the

above scheme. Observe that if we knew the invariant curve precisely and used it for ψ then
we would have

∫ ψn dθ = ∫ ψ dθ

and hence would have an exact evaluation of the rotation number (which of necessity is 0

when there is an invariant curve) for any n. Similarly if the curve was periodic, we would get
an exact result for any n which was a multiple of the period.

Unfortunately, we will in general not know the invariant curve a priori. However, if it is at-
tracting (and typically inside a phase-locked tongue an attracting curve will exist) we can

approximate it by simply iterating an arbitrary curve for some initial number of iterations
m. In effect we incorporate a transient in Algorithm 1.3 leading to

Algorithm 1.4 Choose a smooth function ψ : T
1 → R and k,m,n∈N. Subdivide T1 into k

equally spaced intervals, so that θi = i
k for i = 0, …, k-1. Iterate each point (θi,ψ(θi)) for an ini-

tial transient of length m and then for a further n iterations. This gives the following esti-
mate of the rotation number

~ρ4,n =
1
k

i

k

=

−

∑
0

1
1
n (g(n+m)(θi,ψ(θi)) - g(m)(θi,ψ(θi))) �

We now turn to algorithms motivated by Theorem 1.4, and in particular by Lemma 5.1:

Algorithm 1.5 Choose a smooth function ψ : T1 → R and k,n∈N. Subdivide T1 into k equally
spaced intervals, so that θi = i

k for i = 1, …, k. Iterate each point (θi,ψ(θi)) n times and set

α-
n(θi) = max

1≤ ≤m n
 
1
m (g(m)(θi,ψ(θi)) - ψ(θi) - 1)

α+
n(θi) = min

1≤ ≤m n
 
1
m (g(m)(θi,ψ(θi)) - ψ(θi) + 1)
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α-
n = min

1≤ ≤i k
 α-

n(θi)

α+
n = max

1≤ ≤i k
 α+

n(θi)

As in Algorithm 1.4, we can also add an initial transient. Then apart from the effects of dis-

cretizing T1 (which is analogous to the discretization involved in evaluating the integrals in
the previous two algorithms), we have

α-
n ≤ ρ ≤ α+

n

Furthermore, Lemma 5.2 shows that as we increase the number of iterations, the width of
the interval [α-

n,α+
n] shrinks to zero; that is

lim
n→∞

 α-
n = ρ = lim

n→∞
 α+

n �

Finally we remark that often we do not actually want to estimate ρ(F), but rather obtain

bounds for it, for instance as part of a bracketing or root finding routine for the edges of a
tongue. Since Theorem 1.2 provides a priori bounds for Algorithm 1.3 and Algorithm 1.4, it
is easy to modify these for this purpose:

Algorithm 1.6 Choose a candidate ρ, a smooth function ψ : T1 → R and k,m,n∈N. Subdivide

T
1 into k equally spaced intervals, so that θi = i

k for i = 0, …, k-1. Iterate each point (θi,ψ(θi))
for an initial transient of length m and then for a maximum of n iterations. If at any j ≤ n we
have

1
k

i

k

=

−

∑
0

1

g(j+m)(θi,ψ(θi)) > jρ  +  1  +  
1
k

i

k

=

−

∑
0

1

g(m)(θi,ψ(θi)) (1.11)

then ρ(F) > ρ, and similarly for an upper bound If we reach n iterations without satisfying
this inequality then the algorithm does not given a bound on ρ(F). Of course in that case we
can apply Algorithm 1.4 to estimate ρ(F) without further work. �

The advantage of this approach over simply iterating for the full n iterates and then seeing
whether ~ρ4,n > ρ + 1

n is that when ρ(F) is significantly larger than ρ, we can satisfy (1.11) with j
much less than n, and hence deduce that ρ(F) > ρ with much less work. A min-max ap-

proach to the same problem is suggested by Lemma 4.5. This implies that if for each θ∈T
1

there exists a m(θ)∈N such that g(m(θ))(θ,ψ(θ))-ψ(θ)-m(θ)ρ  > 1,. then ρ(F) > ρ. Similarly if
g(m(θ))(θ,ψ(θ))-ψ(θ)-m(θ)ρ  < -1 for all θ∈T

1, then ρ(F) < ρ. We can also incorporate an initial

transient. This leads to the following scheme

Algorithm 1.7 Choose a smooth function ψ : T
1 → R and k,m,n∈N. Subdivide T1 into k

equally spaced intervals, so that θi = i
k for i = 0, …, k-1. Iterate each point (θi,ψ(θi)) for an ini-

tial transient of length m and then for up to n iterations. If at any j ≤ n we have g(j+m)(θi,ψ(θi))

> jρ+g(m)(θi,ψ(θi))+1, stop and go on to the next point. If this happens for all i = 0, …, k-1,
then ρ(F) > ρ. If for any i we reach n iterations (i.e. g(j)(θi,ψ(θi)) ≤ jρ+g(m)(θi,ψ(θi))+1 for all j = 1,
…, n) then stop; the algorithm fails to give a bound for ρ(F) in this case. �



2 NUMERICAL RESULTS

Since most readers will probably be mainly interested in the algorithms for estimating the
rotation number, we present an evaluation of these first, before giving rigorous proofs of the

above theorems in subsequent sections. Our tests were performed using the map (1.3), ini-
tially focusing on the parameter values  A = 0.8, B = 3.0 and Ω = 0 where [Feudel et al., 1995]
suggest the system has a strange nonchaotic attractor with unbounded orbits (because of

the symmetry in the map, Ω = 0 implies that ρ = 0 and hence ρ-bounded and bounded are
synonymous). This represents the most difficult situation possible for which to estimate a
rotation number. If the map has a smooth invariant (or periodic) circle, then even

Algorithm 1.1 can give an excellent estimate of the rotation number, particularly when n is a
convergent of ω (ie a Fibonacci number when ω is the golden mean). Even when the system
has a strange nonchaotic attractor, but all orbits are bounded, then such bounds imply

bounds on the convergence of (1.8) and hence of Algorithm 1.1. On the other hand when
there exist ρ-unbounded orbits, then we expect (1.8) to converge particularly poorly.

Unfortunately, preliminary numerical investigations showed that because of the symmetry

of the map at Ω = 0, some of the improvements in performance exhibited by Algorithm 1.3
were caused by subtle cancellations (due to the symmetry), and were thus to some extent
spurious. We therefore broke the symmetry by setting Ω = 0.01, and this is the value for the

numerical work presented here.

The disadvantage of the choice Ω = 0.01 is that we no longer know a priori the rotation
number, unlike the case Ω = 0, where ρ = 0. This makes it more difficult to evaluate the error

in the various estimates of the rotation number. We overcame this by using a much larger
number of iterations than used in the remainder of our work to compute an accurate esti-
mate ρ* ≈ 0.0173598… . This was done using both Algorithm 1.3 and Algorithm 1.4, with k =

1000 points, n = 105 iterates, and a transient of m = 1000 in the case of Algorithm 1.4. A curve
of the form ~ρn = ρ* + cn-1 was then fitted to estimate ρ*.

We have already presented results for Algorithm 1.1 and Algorithm 1.2, in Figure 1.1 and

Figure 1.2 respectively. We see that increasing the number of orbits used improves the ac-
curacy of the estimate, but does not reduce the oscillations in the convergence. We addi-
tionally tried using a transient, similar to that in Algorithm 1.4, in these algorithms but

found that it led to no significant improvement (results not shown).

By contrast, using Algorithm 1.3 leads both to more accurate results, and to much more
regular convergence (Figure 2.1). The convergence in the case of 1000 orbits is particularly

smooth, making it very easy to fit a line of the form ~ρn = ρ* + cn-1 to estimate ρ*, in contrast
to Algorithm 1.2. On the other hand, increasing the number of orbits from 100 to 1000 actu-
ally makes little difference to accuracy. Note that the bounds (1.9) are satisfied even by

Algorithm 1.2 when we take a large number of orbits. It would be interesting to see whether
this will always be the case in the limit of taking a large number of points (ie k → ∞).

Figure 2.2 shows the effect of including a transient. Whereas we found that this had little

effect for Algorithm 1.2 (results not shown), it significantly appears to improve the accuracy
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of Algorithm 1.3, as shown in Figure 2.2. Increasing the length of the transient to m = 1000

gave little significant improvement to the results (not shown). Figure 2.2B represents the
best possible results we were able to achieve, and comparison to Figure 2.1B shows the
dramatic improvement that is possible over a random choice of orbits.

Next, we turn to the algorithms based on the min-max characterization of the rotation
number given by Theorem 1.4. Figure 2.3 shows that α-

n and α+
n provide reasonably tight

bounds for the rotation number. Observe that unlike the previous algorithms, α-
n and α+

n

0.0172

0.0173

0.0174

0.0175

0.0176

2000 4000 6000 8000 10000

ρ n

n

~

A

0.0172

0.0173

0.0174

0.0175

0.0176

2000 4000 6000 8000 10000

ρ n

n

~

B

Figure 2.1. Comparison of Algorithm 1.2 (light grey) and Algorithm 1.3 (dark grey) for the
same map as Figure 1.1, using A) 100 orbits and B) 1000 orbits. The solid line gives the esti-
mate ρ* = 0.0173598 and the dashed line gives the bounds ρ* ± 1

n, as in (1.9).
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converge to the rotation number in a monotone fashion, as is obvious from their definition.

This definition also implies that increasing the number of orbits widens the interval within
which we estimate the rotation number to be. We thus get a less accurate, but presumably
more reliable estimate of the rotation number. This is apparent in Figure 2.3 and is again in

contrast to the previous algorithms where using more points leads to improved accuracy.
Including a transient in Algorithm 1.5 leads to some improvement in performance, but this
is not dramatic (results not shown).

0.01734

0.01736

0.01738

0.01740

0.01742

2000 4000 6000 8000 10000

ρ n

n

~

A

0.01734

0.01736

0.01738

0.01740

0.01742

2000 4000 6000 8000 10000

n

B

ρ n~

Figure 2.2. Effect of including a transient of length m = 100 in Algorithm 1.3, ie a comparison
between Algorithm 1.3 (light grey) and Algorithm 1.4 (dark grey) for the same map as Figure
1.1, using A) 100 orbits and B) 1000 orbits. The solid line gives the estimate ρ* = 0.0173598.
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The results of Algorithm 1.5 are not directly comparable with those of Algorithm 1.3, ie we

cannot directly compare Figure 2.3 with Figure 2.1. This is because α±
n are estimates of

bounds for the rotation number, whilst ~ρ3,n is an estimate of the rotation number itself. The
appropriate comparison is therefore between α±

n and ~ρ3,n ± 1
n. This is shown in Figure 2.4.

0.016

0.017

0.018

0.019

2000 4000 6000 8000 10000

ρ n

n

~

Figure 2.3. Evaluation of Algorithm 1.5 for the same map as Figure 1.1, using 100 orbits
(light gray) and 1000 orbits (dark grey). The solid line gives the estimate ρ* = 0.0173598 and

the dashed line gives the bounds ρ* ± 1
n, as in (1.9).

0.016

0.017

0.018

0.019

2000 4000 6000 8000 10000

ρ n

n

~

Figure 2.4. Comparison of the bounds derived from Algorithm 1.5 (dark grey, same data as

in Figure 2.3) and those obtained from Algorithm 1.3 (light grey, derived from data in Figure
2.1B). In both case 1000 orbits with no transient were used. The bounds for Algorithm 1.3
were obtained by computing ~ρ3,n ± 1

n. The solid line and dashed lines are as in Figure 2.3.
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We see that since ~ρ3,n is such a good estimate, the bounds ~ρ3,n ± 1
n are close to optimal, whilst

those given by α±
n are significantly wider. Furthermore, at least in our implementation,

Algorithm 1.3 is about 1.5 times faster than Algorithm 1.5 and hence it appears that for the
purposes of numerical estimation of the rotation number the integral representation given

by Theorem 1.2 is superior to the min-max approach of Theorem 1.4.

The situation is reversed when we compare Algorithm 1.6 with Algorithm 1.7, where the
min-max approach is much more efficient. This is illustrated in Figure 2.5 where we show

the total number of iterations of the map (1.3) that each algorithm requires to show that
ρ(Ω) > 0, as a function of Ω, at the usual parameter values A = 0.8 and B = 3.0. Note that there
is evidence [Feudel et al., 1995; Glendinning et al., 2000] that for these values of A and B, the

tongue ρ = 0 has zero width, ie that ρ(Ω) > 0 for Ω > 0 and this is confirmed by Figure 2.5.

It is interesting that the two algorithms exhibit different scaling with Ω. The relatively slow
growth of Ntot as Ω → 0  suggests that the computer only sees a few orbits that are ρ-

unbounded below, in apparent contradiction to the remark after Theorem 1.3. This is simi-
lar to the apparent discrepancies between theory and numerical experiment observed in
[Sturman, 2000]. Also observe that in the case of Algorithm 1.6, 1/j = k/Ntot is a good esti-

mate for ρ(Ω). Thus for Ω ≤ 10-3, we have a very good fit to ρ(Ω) ~ Ω-1. This is confirmed by
estimating ρ(Ω) directly using Algorithm 1.4 with k  = 1000, n = 105, m  = 1000, shown in
Figure 2.6. This gives an almost perfect fit to ρ(Ω) = cΩ-1 for Ω ≤ 10-3, with c ≈ 6.37… . Other

reasonable choices of k, n and m yield identical results. It would interesting to see whether
one can give a theoretical explanation of this.

103

104

105

106

107

108

109

10-7 10-6 10-5 10-4 10-3 10-2 10-1

Algorithm 1.6
Algorithm 1.7

N
to

t

Ω

Figure 2.5. Comparison of Algorithm 1.6 and Algorithm 1.7. We show the total number of
iterates Ntot of map (1.3), as a function of Ω required to show that the rotation number is
strictly positive, ie that we are not in the ρ = 0 tongue. The other parameter values A = 0.8

and B = 3.0 are as before. In both cases, k = 1000 orbits were used. For Algorithm 1.6, Ntot =
jk, where j is the first iterate to satisfy (1.11), whilst for Algorithm 1.7, Ntot = j(1) + j(1) + … +
j(k), where j(i) is the first iterate such that g(j(i)+m)(θi,ψ(θi)) > g(m)(θi,ψ(θi))+1.
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3 PROOF OF THEOREM 1.2

3.1 ELEMENTARY RESULTS

We begin with a number of elementary results, which are identical to their analogues for
unforced circle maps. Recall that we define g(n) by F n(θ,y) = (f n(θ),g(n)(θ,y)).

Lemma 3.1 If F is a skew product of the form (1.2), then g(n+m)(θ,y) = g(m)(f n(θ),g(n)(θ,y)) for all

n,m∈N and all (θ,y)∈T
1×R.

Proof By definition we have (f n+m(θ),g(n+m)(θ,y)) = F n+m(θ,y) = F m(f n(θ),g(n)(θ,y)) = (f m(f n(θ)),
g(m)(f n(θ), g(n)(θ,y))). Matching the second co-ordinates gives the required result. �

Corollary 3.2 If F is a monotone quasi-periodically forced map then so is F n, and hence in

particular

g(n)(θ,y) ≤ g(n)(θ,y')

for all y ≤ y', all θ∈T
1 and all n∈N.

Proof This follows by straightforward induction using the previous lemma with m = 1. The

result holds for n = 1 by definition. Suppose it holds for some n > 1, so that g(n)(θ,y) ≤ g(n)(θ,y')
for all y ≤ y' and all θ∈T

1. Then if y ≤ y', the inductive hypothesis implies that g(f n(θ),g(n)(θ,y))
≤ g(f n(θ),g(n)(θ,y')). Hence by the previous lemma g(n+1)(θ,y) ≤ g(n+1)(θ,y'), as required. �

Definition 3.1 Let ξ(n) : T1×R → R be the function

ξ(n)(θ,y) = g(n)(θ,y) - y

10-6

10-5

10-4

10-3

10-2

10-1

10-7 10-6 10-5 10-4 10-3 10-2 10-1

ρ

Ω

Figure 2.6. Estimate of the rotation number ρ(Ω) of map (1.3), as a function of Ω with A = 0.8

and B = 3.0, using Algorithm 1.4 with k = 1000, n = 105, m = 1000.
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The next lemma is also trivial, but when combined with Corollary 3.2, yields a key estimate

which in turn implies that ξ(n) is in a certain sense sub-additive. This latter property under-
lies the whole proof of Theorem 1.2.

Lemma 3.3 If F is a monotone quasi-periodically forced circle map then ξ(n) is periodic in y
for any θ∈T

1, that is

ξ(n)(θ,y+k) = ξ(n)(θ,y)

for all (θ,y)∈T
1×R, all n∈N and all n∈Z.

Proof This follows by straightforward induction. It clearly suffices to just prove the result for
k = 1. Since g(θ,y+1) = g(θ,y)+1, we have by definition that ξ(1)(θ,y+1) = g(θ,y+1) - y - 1 = g(θ,y)

+ 1 - y - 1 = ξ(1)(θ,y). Now suppose that for a given n, we have ξ(n)(θ,y+1) = ξ(n)(θ,y) for all (θ,y)∈
T

1×R. Then ξ(n+1)(θ,y+1) = g(n+1)(θ,y+1) - y - 1 = g(f n(θ),g(n)(θ,y+1)) - y - 1 by Lemma 3.1. By defi-
nition and the inductive hypothesis, g(n)(θ,y+1) = ξ(n)(θ,y+1) + y + 1 = ξ(n)(θ,y) + y + 1 = g(n)(θ,y)

+ 1, and hence ξ(n+1)(θ, y+1) = g(f n(θ),g(n)(θ,y)+1) - y - 1 = g(f n(θ),g(n)(θ,y)) +1 - y - 1 = ξ(n+1)(θ,y),
as required. �

Corollary 3.4 [Herman, 1979] If F is a monotone quasi-periodically forced circle map then

for all θ∈T
1, y,y'∈R and n∈N

ξ(n)(θ,y) - ξ(n)(θ,y') ≤ 1 (3.1)

Proof Since ξ(n)(θ,y') = ξ(n)(θ,y'+k) for all n∈Z, and the result is trivial if y = y', we may assume
without loss of generality that y < y' < y+1. Now ξ(n)(θ,y) = g(n)(θ,y) - y ≤ g(n)(θ,y') - y and since -y

< -y'+1 we have ξ(n)(θ,y) ≤ g(n)(θ,y') - y' + 1 = ξ(n)(θ,y') + 1. Hence

ξ(n)(θ,y) - ξ(n)(θ,y') ≤ 1 (3.2)

On the other hand, ξ(n)(θ,y) = ξ(n)(θ,y+1) = g(n)(θ,y+1) - y - 1 ≥ g(n)(θ,y') - y - 1. Since -y > -y', this
yields ξ(n)(θ,y) ≥ g(n)(θ,y') - y' - 1 = ξ(n)(θ,y') - 1. Hence

ξ(n)(θ,y) - ξ(n)(θ,y') ≥ -1 (3.3)

Combining (3.2) and (3.3) gives the required result. �

Applying this to ξ(n+m) and unravelling the definitions leads to the following sub-additive
property for ξ(n):

Corollary 3.5 If F is a monotone quasi-periodically forced circle map then for all θ∈T
1, y,y'∈R

and n,m∈N we have

ξ(n+m)(θ,y) - ξ(m)(f n(θ),y') - ξ(n)(θ,y) ≤ 1 (3.4)

Proof By Lemma 3.1, we have
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ξ(n+m)(θ,y) = g(n+m)(θ,y) - y

= g(m)(f n(θ),g(n)(θ,y)) - y

= g(m)(f n(θ),g(n)(θ,y)) - g(n)(θ,y) + g(n)(θ,y) - y

= ξ(m)(f n(θ),g(n)(θ,y)) + ξ(n)(θ,y)

But by (3.1) we have ξ(m)(f n(θ),g(n)(θ,y)) - ξ(m)(f n(θ),y')  ≤ 1 for any y'∈R, immediately giving

the required bound (3.4). �

3.2 ITERATION OF CURVES

Definition 3.2 Given any function ψ : T1 → R, define ξn : T1 → R by

ξn(θ) = ξ(n)(θ,ψ(θ))

Observe that this is the amount of vertical distance that the point (θ,ψ(θ)) moves in n itera-

tions. If the rotation number exists, then we should have 1
n ξn(θ) → ρ  for all θ∈T

1. We first
show that in an appropriate sense {ξn} is both a sub- and a super-additive sequence of func-
tions. More precisely.

Lemma 3.6 If F is a monotone quasi-periodically forced circle map then for all θ∈T
1 and

n,m∈N we have

ξn+m(θ) - ξm(f n(θ)) - ξn(θ,y) ≤ 1 (3.5)

Proof Let y'(θ) = ψ(f n(θ)), then ξm(f n(θ)) = ξ(m)(f n(θ),y'(θ)). Thus by (3.4) we have ξn+m(θ) -
ξm(f n(θ)) - ξn(θ,y)  = ξ(n+m)(θ,ψ(θ)) - ξ(m)(f n(θ),y'(θ)) - ξ(n)(θ,ψ(θ))  ≤ 1, as required. �

Definition 3.3 With ξn as above, if ψ and F are measurable define

ρn = ∫ ξn dθ

and

ρ+
n = ρn + 1

ρ-
n = ρn - 1

Corollary 3.7 If F is a monotone measurable quasi-periodically forced circle map then ρ+
n is a

sub-additive sequence and ρ-
n a super-additive one, that is

ρ+
n+m ≤ ρ+

m + ρ+
n

ρ-
n+m ≥ ρ-

m + ρ-
n

Proof Since Lebesque measure is invariant under f, we trivially have
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∫ ϕ °f -n dθ = ∫ ϕ dθ

for any integrable ϕ : T1 → R and any n∈Z. Hence by (3.5) we have

-1 ≤ ρn+m - ρm - ρn ≤ 1 (3.6)

and hence by definition ρ+
n+m - 1 - ρ+

m + 1 - ρ+
n + 1 ≤ 1, so that ρ+

n+m ≤ ρ+
m + ρ+

n as claimed. Simi-

larly ρ-
n+m + 1 - ρ-

m - 1 - ρ-
n - 1 ≥ -1, so that ρ-

n+m ≥ ρ-
m + ρ-

n. �

Now recall that by the sub-additive lemma (e.g. [Katok and Hasselblatt, 1995]) if {an} is a
sub-additive sequence, then 1

nan converges to a limit a (with possibly a = -∞ if 1
nan is not

bounded below). Furthermore a ≤ 1
nan for any n∈N. Hence we immediately have:

Lemma 3.8 If F is a monotone quasi-periodically forced circle map then ρ+
n and ρ-

n converge
to a common limit ρ̂, and

ρ̂ - 
1
n ≤ 1

n ρn ≤ ρ̂ + 
1
n (3.7)

for all n∈N.

Proof By repeated application of Corollary 3.7 we have nρ-
1.≤ ρ-

n.and ρ+
n ≤ nρ+

1. By definition ρ-
n

< ρ+
n, so that ρ-

1.< 1
nρ+

n and 1
nρ-

n. < ρ+
1. Thus 1

nρ+
n is bounded below and 1

nρ-
n is bounded above.

Hence both converge to finite limits, say ρ̂+ and ρ̂- respectively. Since ρ-
n.= ρ+

n - 2, we have ρ̂- =

ρ̂+ = ρ̂. Furthermore, by the sub-additive lemma, ρ̂ ≤ 1
nρ+

n = 1
n(ρn+1). Hence ρ̂-1

n ≤ 1
nρn. Similarly ρ̂

≥ 1
nρ-

n = 1
n(ρn-1) so that ρ̂+1

n ≥ 1
nρn. �

3.3 THE ROTATION NUMBER

Observe that (3.7)is exactly the same bound as (1.9), except that it is in terms of ρ̂ rather
than ρ. All that remains to do to prove Theorem 1.2 is therefore to show that ρ̂ is in fact the
rotation number. This can readily be deduced from the uniform convergence of 1

n(g(n)(θ,y)-y)

(Theorem 1.1). However, Herman’s proof of this result is not easily accessible at an ele-
mentary level. For the benefit of the reader, we therefore present a much simpler argument
based on the sub-additive bound (3.4). It turns out that this gives a simultaneous proof of

both Theorem 1.1 and Theorem 1.2. First recall (e.g. see [Katok and Hasselblatt, 1995] or
[Arnold, 1998]):

Definition 3.4 Suppose that T : X → X is a measurable map on a metrizable space X. We say
that a sequence of functions ϕn : X → R is sub-additive if ϕn+m(x) ≤ ϕn(x) + ϕm(T n(x)) for all x∈
X.

Theorem 3.1 (Sub-Additive Ergodic Theorem, e.g. see [Katok and Hasselblatt, 1995] or
[Arnold, 1998]) Let T : X → X be a measurable map, µ a T-invariant measure and {ϕn} an inte-

grable sub-additive sequence. Then the limit

lim
n→∞

 
1
n ϕn(x) =

_
ϕ(x) (3.8)

exists for µ-almost every x. Furthermore 
_
ϕ is T-invariant, integrable and 1

n 
_
ϕn → 

_
ϕ in L1.
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Note that that the T-invariance of 
_
ϕ means that if µ is ergodic then 

_
ϕ is constant µ-almost

everywhere. Observe that (3.5) means that ϕn = ψn+1 is sub-additive for any initial ψ, and
hence for instance taking ψ(θ) = y0 we see that 1

n(g(n)(θ,y0) - y0) converges to a constant for
Lebesque almost all θ. If, however, we want to show convergence for all (θ,y)∈T

1×R, we need

some kind of uniformity of convergence in Theorem 3.1. This is not unreasonable to hope
for given that f is uniquely ergodic and:

Theorem 3.2 (see e.g. [Katok and Hasselblatt, 1995]) Suppose that T : X → X  is a uniquely
ergodic measurable map on a compact metrizable space X, and ϕ : X → R is a continuous

function. Then the time average

lim
n→∞

 
1
n 

i

n

=

−

∑
0

1

ϕ(T i(x)) (3.9)

converges uniformly to ∫ ϕ dµ for all x (where µ is the unique invariant measure).

Unfortunately, it is turns out that the generalization of this theorem to the sub-additive case
is false [Derriennic and Krengel, 1981]. In other words one does not get uniform conver-
gence in (3.8) even for uniquely ergodic systems. However, observe that in our case (3.5)

implies that ψn+1 is sub-additive and ψn-1 is super-additive (i.e. -ψn+1 is also sub-additive).
It is thus sufficient to obtain uniformity from above for the convergence of 1

n(ψn+1) and from
below for that of 1

n(ψn-1). This is provided by the following theorem, which is essentially

proved in [Stark, 1997], though not explicitly stated there. Since the proof is an elementary
estimate, it is given here for the benefit of the reader. The theorem can also be easily de-
duced from the results of Slomczynski [1995][1997]. A subset of these results was independ-

ently derived in [Sturman and Stark, 2000], where they are used to characterize certain
properties of invariant sets for quasi-periodically forced systems.

Theorem 3.3 (Semi-Uniform Sub-Additive Ergodic Theorem) Suppose that T : X → X is a
uniquely ergodic measurable map on a compact metrizable space X, and {ϕn} a sub-additive

sequence of continuous functions ϕn : X → R. Then given ε > 0, there exists an N∈N such that
for all n ≥ N we have

1
n ϕn(x) ≤

_
ϕ + ε

for all x∈X, where 
_
ϕ is the limit (3.8), which is necessarily constant almost everywhere with

respect to the unique T-invariant measure.

Proof Denote 
_
ϕn = 1

n ∫ ϕn dµ and observe that 
_
ϕn → 

_
ϕ as n → ∞. Hence given ε>0, choose n

such that 
_
ϕn ≤ 

_
ϕ + ε. Let K be the supremum of ϕ1, …, ϕn over X (using the compactness of X).

Then for any k∈N, and any 0 ≤ j < n, by repeatedly applying the sub-additive condition we
obtain

ϕkn(θ) ≤ ϕj(θ) + ϕn-j(f (k-1)n+j(θ)) + 
i

k

=

−

∑
0

2

ϕn(f in+j(θ))

Summing over j = 0, …, n-1 we obtain



21Rotation Numbers

ϕkn(θ) ≤ 1
n

j

n

=

−

∑
0

1

i

k

=

−

∑
0

2

ϕn(f in+j(θ)) + 
1
n

j

n

=

−

∑
0

1

 [ ]ϕj(θ) + ϕn-j(f (k-1)n+j(θ))  

≤
j

k n

=

− −

∑
0

1 1( )
1
n ϕn(f j(θ)) + 2K

Since  ϕn is continuous and T is uniquely ergodic, by Theorem 3.2 there exists N such that

for all m ≥ N we have

1
m

j

m

=

−

∑
0

1
1
n ϕn(f j(θ)) ≤ ∫ 

1
n ϕn dθ + ε

Hence for all k such that n(k-1) ≥ N we have

ϕkn(θ) ≤ (k-1)n(
_
ϕn + ε) + 2K

≤ (k-1)n
_
ϕ + 2(k-1)nε + 2K

Finally, for any m ≥ M + 2n, write m = kn + j, with 0 ≤ j < n. Thus (k-1)n = m - j - n > M. By
sub-additivity, ϕm(θ) ≤  ϕkn(θ) +  ϕj(f kn(θ)), and hence

ϕm(θ) ≤ (k-1)n
_
ϕ + 2(k-1)nε + 3K

Now, (k-1)n < m, and thus

1
m ϕm(θ) ≤

_
ϕ + 2ε + 

3
mK

Hence for m ≥ max { M+2n, K
 3ε } we obtain

1
m ϕm(θ) ≤

_
ϕ + 3ε

as required. �

As an immediate consequence we obtain proofs of both Theorem 1.1 and Theorem 1.2.
Thus pick an arbitrary y0. By (3.4), both ξ(n)(θ,y0)+1 and -ξ(n)(θ,y0)+1 are sub-additive se-

quences of functions (and are continuous if F is). By Lemma 3.8, we have

lim
n→∞

 
1
n ∫ (ξ(n)(θ,y0)+1) dθ = ρ̂

lim
n→∞

 
1
n ∫ (-ξ(n)(θ,y0)+1) dθ = -ρ̂

Hence by Theorem 3.3, given ε>0, there exists N such that for all n≥N and θ∈T
1 we have

1
n(ξ(n)(θ,y0)+1) ≤ ρ̂ + ε

1
n(-ξ(n)(θ,y0)+1) ≤ -ρ̂ + ε

Hence
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ρ̂ - ε - 
1
n ≤ 1

n ξ(n)(θ,y0) ≤ ρ̂ + ε - 
1
n

n≥N and θ∈T
1. Thus by Corollary 3.4, we have for all n≥N and all (θ,y)∈T

1×R that

ρ̂ - ε ≤ 1
n ξ(n)(θ,y) ≤ ρ̂ + ε

This shows both that ρ̂ = ρ, completing the proof of Theorem 1.2 and that 1
n(g(n)(θ,y) - y) con-

verges uniformly to ρ̂, thus giving a proof of Theorem 1.1. Note also that we have shown that
ρ̂ is independent of the choice of initial curve ψ, which can also be done directly using (3.1).

�

4 BOUNDED AND UNBOUNDED ORBITS

In this section we give a proof of Theorem 1.3. To simplify the notation, it is convenient to

define:

Definition 4.1 For a fixed ρ, define ζ(n) : T1×R → R to be the function

ζ(n)(θ,y) = g(n)(θ,y) - y - ρn

A very similar calculation to Corollary 3.4 gives

Lemma 4.1 With ζ(n) defined as above, we have

ζ(m+n)(θ0,y0) = ζ(m)(θn,yn) + yn - y0 - ρn

= ζ(m)(θn,yn) + ζ(n)(θ0,y0)

for all n,m∈N and (θ0,y0)∈T
1×R.

Proof By Lemma 3.1, we have

ζ(n+m)(θ0,y0) = g(n+m)(θ0,y0) - y0 - ρ(m+n)

= g(m)(f n(θ0),g(n)(θ0,y0)) - y0 - ρ(m+n)

= ζ(m)(θn,yn) + yn + ρm - y0 - ρ(m+n)

Furthermore, by definition yn = g(n)(θ0,y0) = ζ(n)(θ0,y0) + y0 + ρn, so that ζ(m)(θn,yn) + yn - y0 - ρn =
ζ(m)(θn,yn) + ζ(n)(θ0,y0), as required. �

The next two lemmas establish the basic dichotomy between the ρ-bounded and the ρ-

unbounded situations. More precisely, they show that the sets of ρ-bounded, ρ-unbounded
above and ρ-unbounded below orbits are each either empty or residual.

Lemma 4.2 If there exists an orbit that is ρ-unbounded above then there exists a residual

subset U ⊂  T1 such that all (θ,y)∈U×R are ρ-unbounded above. Similarly if there is a ρ-
unbounded below orbit then there is a residual subset on which orbits are ρ-unbounded
below.
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Proof Suppose that for some (θ0,y0) we have

limsup
n→∞

ζ(n)(θ0,y0) = ∞

Choose M∈N. Given any n∈N, we claim that there exists an m(n) such that ζ m(n)(θn,yn) ≥ M+2.
This is because if not, so that ζ(m)(θn,yn) < M+2 for all m∈N, then by Lemma 4.1, ζ(n+m)(θ0,y0) <
M+2+yn-y0-ρn, and hence ζ(k)(θ0,y0) ≤ K+M+2+yn-y0-ρn, where K = max {y0, …, yn-1}. This con-

tradicts the assumption that the orbit of (θ0,y0) is ρ-unbounded above.

By the continuity of g, we can choose open intervals UM
n  such that ζ m(n)(θ,yn) ≥ M+1 for all θ∈

UM
n . Then by Corollary 3.4, ζ m(n)(θ,y) ≥ M for all (θ,y)∈UM

n ×R. Define

UM =
n∈N

U UM
n

Since {θn} is dense in T1, this is a dense open set, and clearly if θ∈UM, there exists some m∈N

for which ζ(m)(θ,y) ≥ M for all y∈R. Now define the residual set U by

U =
M ∈N

I UM

If θ∈U, then θ∈UM for all M∈N. Hence for each M∈N there exists an m such that ζ(m)(θ,y) ≥ M
for all y∈R. Thus

limsup
n→∞

ζ(n)(θ,y) = ∞

for all (θ,y)∈U×R. �

Lemma 4.3 If there exists an orbit that is ρ-bounded then there exists a residual subset U ⊂

T
1 such that the orbit of any (θ,y)∈U×R is ρ-bounded.

Proof Suppose that for some (θ0,y0)∈T
1×R we have

ζ(n)(θ0,y0) ≤ C

for all n∈N for some constant C > 0. Then by Lemma 4.1, ζ(m)(θn,yn) = ζ(m+n)(θ0,y0) - ζ(n)(θ0,y0)
and hence ζ(m)(θn,yn)  ≤ 2C, for all m∈N. Hence, as in Lemma 4.2 above, we can choose
open intervals Umn such that ζ(m)(θ,yn)| ≤ 2C+1 for all θ∈Umn. Then by Corollary 3.4,

ζ(m)(θ,y)  ≤ 2C+2 for all (θ,y)∈Umn×R. Define

Um =
n∈N

U Umn

Since {θm} is dense in T1, this is a dense open set, and ζ(m)(θ,y)  ≤ 2C+2 for all (θ,y)∈Um×R.
Now let

U =
m∈N

I Um

This is a residual set, and if θ∈U, then θ∈Um for all m∈N. Hence ζ(m)(θ,y)  ≤ 2C+2 for all m∈N

for all (θ,y)∈U×R. In other words the orbit of (θ,y) is ρ-bounded. �
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The two lemmas together have the immediate corollary

Corollary 4.4 If there exists a ρ-bounded orbit then all orbits are ρ-bounded.

Proof Suppose not, so that there exists a ρ-bounded orbits, but not all orbits are ρ-bounded.
Thus there exists either a ρ-unbounded above or a ρ-unbounded below orbit. Without loss
of generality, assume the former. Then the above two lemmas show that there exist residual

sets U0,U1 ⊂  T1 such that if (θ,y)∈U0×R then the orbit of (θ,y) is ρ-bounded, whilst if (θ,y)∈
U1×R then the orbit of (θ,y) is ρ-unbounded. The intersection of U0 and U1 is residual, and
hence in particular non-empty. But if θ lies in the intersection then the orbit of (θ,y), for any

y∈R, is both ρ-bounded and ρ-unbounded above, which is clearly not possible. �

To prove Theorem 1.3, it remains to show that if there exists a ρ-unbounded above orbit,
then there exists one which is ρ-unbounded below, and vice versa. This follows from the

following characterization of the rotation number, which is the closest generalization of
(1.6) that we have been able to derive in the quasi-periodically forced case.

Lemma 4.5 Suppose that for all θ∈T
1 there exists a y(θ)∈R and a m(θ)∈N such that

ζ(m(θ))(θ,y(θ)) > 1. Then ρ(F) > ρ. Similarly if ζ(m(θ))(θ,y(θ)) < -1, then ρ(F) < ρ.

Proof Let ε(θ) = 1
2(ζ(m(θ))(θ,y(θ)) - 1). By continuity, for each θ∈T

1 choose an open interval U(θ)
⊂ T1 such that ζ(m(θ))(θ',y(θ)) > 1+ε(θ) for all θ'∈U(θ). The U(θ) form an open cover of T1, so

since T1 is compact we may choose a finite sub-cover, say U(Θ1), …, U(Θk). For convenience,
write Ui = U(Θi) and define ε = min { ε(Θ1), …, ε(Θk)} and M = max { m(Θ1), …, m(Θk) }.

Now, given any (θ0,y0)∈T
1×R inductively define sequences {ni}, {ki} and {mi} by n0 = 0, ki is

such that θni
∈Uki

, mi = mki
(Θki

) and nk+1 = ni + mi. Since θni
∈Uki

 we have ζ(mi)(θni
,y(θ)) > 1+ε and

hence by Corollary 3.4, ζ(mi)(θni
,yni

) > ε. Now, by Lemma 4.1, ζ(ni+1)(θ0,y0) = ζ(mi+ni)(θ0,y0) =
ζ(mi)(θni

,yni
) + ζ(ni)(θ0,y0). Hence ζ(ni+1)(θ0,y0) ≥ ζ(ni)(θ0,y0) + ε. By induction ζ(ni)(θ0,y0) ≥ εi for all i∈N.

On the other hand mi ≤ M for all i∈N, and hence ni ≤ Mi. Thus

limsup
n→∞

 
1
n ζ(n)(θ0,y0) ≥ limsup

i→∞
 
1
ni

 ζ(ni)(θ0,y0)

≥
ε

M

But by Theorem 1.1 we have for any (θ0,y0)∈T
1×R that

ρ(F) = limsup
n→∞

 
1
n (g(n)(θ0,y0) - y0)

= limsup
n→∞

 
1
n (ζ(n)(θ0,y0) + ρn)

≥
ε

M + ρ

Hence ρ(F) > ρ, as claimed. �

We immediately get:

Corollary 4.6 If the rotation number of F is ρ, then not all orbits can be ρ-unbounded above
(or below).
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Corollary 4.7 If the rotation number of F is ρ, and there exists a ρ-unbounded above orbit,

then there exists one which is ρ-unbounded below, and vice versa.

Proof If there exists a ρ-unbounded above orbit then by Lemma 4.3, there cannot be any ρ-
bounded orbits. By Corollary 4.6 there must be an orbit that is not ρ-unbounded above.

Since it cannot be ρ-bounded, it must be ρ-unbounded below, as required. �

We thus see that if there is an ρ-unbounded orbit, then (by Lemma 4.2) there are residual
sets of orbits that are respectively ρ-unbounded above and ρ-unbounded below. Taking the

intersection, we obtain a residual set of orbits that are ρ-unbounded both above and below,
thereby completing the proof of Theorem 1.3.

5 MIN-MAX CHARACTERIZATIONS OF THE ROTATION NUMBER

In this final section, we show that Lemma 4.5 leads to a characterization of the rotation
number which can be used for numerical estimation. Like Theorem 1.2 this provides rigor-
ous bounds on ρ. Given a arbitrary function ψ : T1 → R define

α-
n(θ) = max

1≤ ≤m n
 
1
m (g(m)(θ,ψ(θ)) - ψ(θ) - 1)

α+
n(θ) = min

1≤ ≤m n
 
1
m (g(m)(θ,ψ(θ)) - ψ(θ) + 1)

Observe that for each m the function g(m)(θ,0) is bounded below since g is continuous and T1

is compact. Hence by Corollary 3.4, so is g(m)(θ,ψ(θ))-ψ(θ), and thus α-
n(θ) is also bounded

below for each fixed n. Similarly α+
n(θ) is bounded above. Define

α-
n = inf

θ∈T
1
 α-

n(θ)

α+
n = sup

θ∈T
1

 α+
n(θ)

As a straightforward consequence of at Lemma 4.5, we obtain

Lemma 5.1 If F has rotation number ρ, then

α-
n ≤ ρ ≤ α+

n

Proof For each θ∈T
1 there exists an m(θ)∈N such that

1
m(θ)(g(m(θ))(θ,ψ(θ)) - ψ(θ) - 1) = α-

n(θ)

≥ α-
n

Hence, given any ε>0

g(m(θ))(θ,ψ(θ)) - ψ(θ) - m(θ)(α-
n - ε) > 1

This holds for all θ∈T
1, and so by Lemma 4.5 we have ρ > α-

n-ε. Since ε was arbitrary, we must
have ρ ≥ α-

n, as required. A similar argument gives ρ ≤ α-. �
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Of course, this is not particularly useful unless α+
n and α-

n converge to ρ as n → ∞. First note

that for each θ∈T
1, α-

n(θ) and α+
n(θ) are bounded monotone sequences and hence converge to

a limit. A similar argument to Lemma 4.5 gives

Lemma 5.2 If α+
n and α-

n are defined as above and ρ is the rotation number of F, then

lim
n→∞

 α-
n = ρ = lim

n→∞
 α+

n

Proof Given ε>0, for each θ∈T
1 we must have 1

n(g(n)(θ,ψ(θ))-ψ(θ)-1) ≥ ρ-ε for arbitrarily large

n∈N. If not, so that 1
n(g(n)(θ,ψ(θ))-ψ(θ)-1) < ρ-ε for all sufficiently large n, we would have

lim
n→∞

 
1
n (g(n)(θ,ψ(θ))-ψ(θ)-1) ≤ ρ - ε

and which contradicts the fact that the rotation number of F is ρ. Choose m(θ) such that
m(θ)ε > 1 and

1
m(θ)(g(m(θ))(θ,ψ(θ)) - ψ(θ) - 1) ≥ ρ - ε

By Corollary 3.4 we have

1
m(θ)(g(m(θ))(θ,0) - 1) ≥ ρ - ε - 

1
m(θ)

≥ ρ - 2ε

By continuity, for each θ∈T
1 choose an open interval U(θ) ⊂ T1 such that

1
m(θ)(g(m(θ))(θ',0) - 1) ≥ ρ - 3ε

for all θ'∈U(θ). Applying Corollary 3.4 again, we finally obtain

1
m(θ)(g(m(θ))(θ',ψ(θ ')) - ψ(θ') - 1) ≥ ρ - 4ε

for all θ'∈U(θ). The U(θ) form an open cover of T1, so choose a finite subcover say U(θ1), …,
U(θk). For θ∈U(θk) we have α-

n(θ) ≥ ρ  - 4ε for any n ≥ m(θk). Hence if we define M = max {

m(θ1), …, m(θk) }, then α-
n(θ) ≥ ρ - 4ε for all θ∈T

1 for any n ≥ M. Hence α-
n ≥ ρ - 4ε for all n ≥ M

and so

lim
n→∞

 α-
n ≥ ρ - 4ε

Since ε is arbitrary, and by Lemma 5.1 we have α-
n ≤ ρ for all n, this gives

lim
n→∞

 α-
n = ρ

as required. The argument for α+
n is identical. �

As a corollary, we obtain the proof of Theorem 1.4. First note that since 1
n(g(n)(θ,y)-y) con-

verges (to ρ) for any (θ,y)∈T
1×R, the sequence 1

n(g(n)(θ,ψ(θ))-ψ(θ)) is bounded for any θ∈T
1,

and hence we may define
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α-(θ) = sup
n∈N

 
1
n (g(n)(θ,ψ(θ)) - ψ(θ) - 1)

Since α-(θ) ≥ α-
n(θ) ≥ α-

n for all n, we see that α-(θ) is bounded below and we may define

α- = inf
θ∈T

1
 α-(θ)

Similarly, we set

α+(θ) = inf
n∈N

 
1
n (g(n)(θ,ψ(θ)) - ψ(θ) + 1)

and

α+ = sup
θ∈T

1

 α+(θ)

Given this notation, Theorem 1.4 can be stated as

Corollary 5.3 If F has rotation number ρ, then

α- = ρ = α+

Proof By definition, we have α- ≤ α-(θ) and

α-(θ) = lim
n→∞

 α-
n(θ)

for all θ∈T
1. Given ε>0 there thus exists N∈N such that α-(θ)-ε ≤ α-

n(θ) for all n ≥ N. Thus α--ε ≤
α-

n(θ), and hence α--ε ≤ α-
n for all n ≥ N. Conversely, α-(θ) ≥ α-

n(θ) ≥ α-
n for all n and thus α- ≥ α-

n

for all n. Thus α-
n ≤ α- ≤ α-

n+ε for all n ≥ N. By the previous lemma α-
n → ρ as n → ∞ and hence

ρ ≤ α- ≤ ρ+ε. But ε was arbitrary, and so ρ = α-, as required. The argument for α+(θ) is identi-
cal. �
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