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A NEW ALGORITHM FOR COMPUTING THE ACTIONS OF
TRIGONOMETRIC AND HYPERBOLIC MATRIX FUNCTIONS∗

AWAD H. AL-MOHY†

Abstract. A new algorithm is derived for computing the actions f(tA)B and f(tA1/2)B, where
f is cosine, sinc, sine, hyperbolic cosine, hyperbolic sinc, or hyperbolic sine function. A is an n× n
matrix and B is n×n0 with n0 � n. A1/2 denotes any matrix square root of A and it is never required
to be computed. The algorithm offers six independent output options given t, A, B, and a tolerance.
For each option, actions of a pair of trigonometric or hyperbolic matrix functions are simultaneously
computed. The algorithm scales the matrix A down by a positive integer s, approximates f(s−1tA)B
by a truncated Taylor series, and finally uses the recurrences of the Chebyshev polynomials of the
first and second kind to recover f(tA)B. The selection of the scaling parameter and the degree of
Taylor polynomial are based on a forward error analysis and a sequence of the form ‖Ak‖1/k in such
a way the overall computational cost of the algorithm is optimized. Shifting is used where applicable
as a preprocessing step to reduce the scaling parameter. The algorithm works for any matrix A and
its computational cost is dominated by the formation of products of A with n × n0 matrices that
could take advantage of the implementation of level-3 BLAS. Our numerical experiments show that
the new algorithm behaves in a forward stable fashion and in most problems outperforms the existing
algorithms in terms of CPU time, computational cost, and accuracy.

Key words. matrix cosine, matrix sine, sinc function, hyperbolic cosine, hyperbolic sine, Taylor
series, ordinary differential equation, variation of the constants formula, trigonometric integrators,
Chebyshev polynomials, MATLAB
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1. Introduction. The matrix cosine and sine functions appear in the solution
of the system of second order differential equations

(1.1)
d2y

dt2
+Ay = g(y(t)), y(0) = y0, y′(0) = y′0.

The exact solution of this system and its derivative is given by the variation of the
constants formula [8, 23]

y(t) = cos(tA1/2)y0 + t sinc(tA1/2)y′0(1.2)

+

∫ t

0

(t− τ) sinc((t− τ)A1/2)g(y(τ))dτ,

y′(t) = −A1/2 sin(tA1/2)y0 + cos(tA1/2)y′0(1.3)

+

∫ t

0

(t− τ) cos((t− τ)A1/2)g(y(τ))dτ,

where A1/2 denotes any matrix square root of A and sinc : Cn×n → Cn×n is defined
as

(1.4) sincX =

∞∑
k=0

(−1)kX2k

(2k + 1)!
.
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The matrix function sinc clearly satisfies the relation XsincX = sinX. The first term
of (1.3) can be rewritten using the quality

A1/2 sin(tA1/2) = tA sinc(tA1/2).

This is important to clear any ambiguity that a square root of A is needed. We will see
below how the actions of cos(tA1/2) and sinc(tA1/2) can be simultaneously computed
without explicitly computing A1/2 whereas it is impossible to evaluate the action of
sin(tA1/2) without forming A1/2 explicitly because sin is an odd function.

The variation of the constants formula forms the basis of numerical schemes to
solve the problem. For instance, at time tn = nh, y(tn) and y′(tn) can be numerically
approximated by yn and y′n, respectively, via the trigonometric scheme

yn+1 = cos(hA1/2)yn + h sinc(hA1/2)y′n +
h2

2
sinc(hA1/2)ĝ(yn),(1.5)

y′n+1 = −hA sinc(hA1/2)yn + cos(hA1/2)y′n +
h

2
cos(hA1/2)ĝ(yn) +

h

2
ĝ(yn+1),(1.6)

where ĝ(y) = ψ(hA1/2)g(φ(hA1/2)y) provided that ψ and φ are suitably chosen con-
tinuous filter functions; see [7, sect. 2], [8, sect. 2], or [11, sect. XIII.2.2]. Many
filter functions are proposed in literature and most of them involve several actions of
sinc(hA1/2) to evaluate ĝ(y). For example Hairer and Lubich [10] chose ψ = sinc and
φ = 1 while Griman and Hochbruck proposed ψ = sinc2 and φ = sinc [8].

The system (1.1) arises from semidiscretization of some second order PDE’s by
finite difference or finite elements methods [21]. The hyperbolic matrix functions:
coshA, sinhA, and sinchA, where sinchA = sinc(iA), arise in the solution of coupled
hyperbolic systems of PDE’s [19]. They also have an application in communicability
analysis in complex networks [5]. The matrix A is usually large and sparse, so finding
methods to compute the action of these matrix functions on vectors are so crucial to
reduce computational cost.

The computation of the action of the matrix exponential has received significant
research attention; see [2] and the references therein. However it is not the case for
trigonometric and hyperbolic matrix functions. A possible reason is that the second
order system (1.1) can be presented in a block form of a first order system of ODE’s
and the matrix exponential is used to solve the problem as in (6.1) below. Grimm and
Hochbruck [9] proposed the use of a rational Krylov subspace method instead of the
standard one for certain problems to compute cos(tA1/2)b and sinc(tA1/2)b. Recently,
Higham and Kandolf [16] derived an algorithm to compute the action of trigonometric
and hyperbolic matrix functions. They adapted the existing algorithm of Al-Mohy
and Higham [2], expmv, for computing the action of the matrix exponential so that the
evaluation of cos(A)B and sin(A)B (or cosh(A)B and sinh(A)B) requires the action
of eA on the matrix [B,B]/2 ∈ Cn×2n0 .

The calculation of cosA and sinA for dense A of medium size is will-studied.
Serbin and Blalock [22] proposed an algorithm for cosA. It begins by approximating
cos(2−sA) by a Taylor or Padé approximant, where s is a nonnegative integer, and
then applies the double angle formula cos(2A) = 2 cos2(A)− I on the approximant s
times to recover the original matrix cosine. An algorithm by Higham and Smith [17]
uses the [8/8] Padé approximant with the aid of a forward error analysis to specify the
scaling parameter s. Hargreaves and Higham [12] develop an algorithm with a variable
choice of the degree of Padé approximants based on forward error bounds in such a way
the computational cost is minimized. They also derive an algorithm that computes
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cosA and sinA simultaneously. Recently, Al-Mohy et al. [3] derive new backward
stable algorithms for computing cosA and sinA separably or simultaneously using
Padé approximants and rational approximations obtained from Padé approximants
to the exponential function. They use triple angle formula to have an independent
algorithm for sinA. In spite of the fact that the algorithms based on the double and
triple angle formulas for computing cosA and sinA, respectively, prove great success,
it doesn’t seem that these formulas can be adapted to compute the action of these
matrix functions.

In this paper we derive a new algorithm for computing the action of the trigono-
metric and hyperbolic matrix functions of the form f(tA)B and f(tA1/2)B with-
out computing A1/2. The form f(tA1/2)B appears in the variation of constants for-
mula (1.2)–(1.3). In contrast, the algorithm of Higham and Kandolf cannot compute
f(tA1/2)B without explicitly computing A1/2, which is completely impractical. More-
over, their algorithm cannot immediately return sinc(tA)B or sinch(tA)B.

The paper is organized as follows. In section 2 we exploit the recurrences of the
Chebyshev polynomials and explain how the actions of trigonometric and hyperbolic
matrix functions can be computed. In section 3 we present forward error analysis using
truncated Taylor series and computational cost analysis to determine optimal scaling
parameters and degrees of Taylor polynomials for various tolerances. Preprocessing by
shifting and termination criterion are discussed in section 4. We write our algorithm
in section 5 and then give numerical experiments in section 6. Finally we draw some
concluding remarks in section 7.

2. Computing the actions f(tA)B and f(tA1/2)B. In this section we ex-
ploit trigonometric formulas and derive recurrences to computing the action of the
matrix functions cosX, sincX, sinX, coshX, sinchX, and sinhX on a thin matrix
B. For an integer k we have

(2.1) cos(kX) + cos((k − 2)X) = 2 cos(X) cos((k − 1)X).

Let Tk(X,B) = cos(kX)B and simply denote it by Tk, where k ≥ 0. Thus we obtain
the three term recurrence

Tk + Tk−2 = 2 cos(X)Tk−1 = 2T1(X,Tk−1), k ≥ 2.(2.2)

Observe that (2.2) is the recurrence that generates Chebyshev polynomials of the first
kind for T0 = 1 and T1 = x [20]. The heaviest computational work in the recurrence
(2.2) lies in T1(X,Tk−1) for all k ≥ 1. Let r be a rational approximation to the cosine
function, which we assume to be good near the origin, and choose a positive integer
s ≥ 1 so that cos(s−1A) is well-approximated by r(s−1A). Thus

T1(s−1A, Tk−1) = cos(s−1A)Tk−1 ≈ r(s−1A)Tk−1.

The recurrence (2.2) with X = s−1A yields

Ts(s
−1A,B) = cos(A)B.

We choose for r a truncated Taylor series

rm(x) =

m∑
j=0

(−1)jx2j

(2j)!
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and compute the matrix V = rm(s−1A)B using consecutive matrix products as shown
by the next pseudocode.

Code Fragment 2.1.
1 V = B
2 for k = 1:m
3 β = 2k, γ = 2k − 1
4 B = AB

5 B = (AB)
(
s2βγ

)−1
6 V = V + (−1)kB
7 end

Similarly we approximate sincx by truncating the Taylor series in (1.4) as

r̃m(x) =

m∑
j=0

(−1)jx2j

(2j + 1)!
.

The matrix V := r̃m(s−1A)B can be evaluated using Code Fragment 2.1 after replac-
ing γ in line 3 by γ = 2k + 1. To evaluate rm(s−1A1/2)B or r̃m(s−1A1/2)B , we only
need to delete line 4 of Code Fragment 2.1.

Next, to compute sinc(A)B consider the three term recurrence

(2.3) Uk − Uk−2 = 2Tk, k ≥ 2, U0 = B, U1 = 2T1 = 2 cos(X)B.

It is the recurrence that yields the Chebyshev polynomials of the second kind [20]. By
induction on k, it easy to verify that

(2.4) sin(X)Uk−1 = sin(kX)B.

Assume for a temporarily fixed positive integer q ≥ 2 that (2.4) holds for all k with
q ≥ k ≥ 2. The inductive step follows from

sin(X)Uq+1 = 2 sin(X)Tq+1 + sin(X)Uq−1

= 2 sin(X) cos((q + 1)X)B + sin(qX)B

=
[
sin((q + 2)X)− sin(qX)

]
B + sin(qX)B = sin((q + 2)X)B.

Since (2.4) holds for every X we conclude that

(2.5) sinc(X)Uk−1 = k sinc(kX)B.

For X = s−1A the recurrences (2.2) and (2.3) can intertwine the computation of
Ts = cos(A)B and Us−1. The matrix sinc(A)B can be recovered by computing the
action sinc(s−1A)Us−1 ≈ r̃m(s−1A)Us−1 that can be achieved by a single execution
of Code Fragment 2.1 with V = Us−1 and γ = 2k + 1 in line 3. Observe that the
calculation of Us−1 via (2.3) involves only s− 2 additions of n×n0 matrices provided
that Tk, 1 ≤ k ≤ s, are already computed from (2.2). Such operations are negligible.
However, we can save about the half of these operations by observing that

(2.6)
1

2
Us−1 =

{
T1 + T3 + T5 · · ·+ Ts−1, if s is even,
1
2T0 + T2 + T4 + · · ·+ Ts−1, if s is odd,

which can be easily derived from (2.3).
Given the relations between trigonometric and hyperbolic functions, we can re-

place cos in (2.2) and (2.3) by cosh and replace sinc in (2.5) by sinch so that the
recurrence relations return cosh(A)B, sinch(A)B, and sinh(A)B.

4



3. Forward error analysis and computational cost analysis. We use the
truncated Taylor series rm and r̃m to approximate the cos and sinc functions, respec-
tively. Given a matrix A ∈ Cn×n and tolerance tol, we need to determine the positive
integer s so that

(3.1) ‖ cos(s−1Aσ)− rm(s−1Aσ)‖ ≤ tol,

where σ is either 1 or 1/2. We have

cos(s−1Aσ)− rm(s−1Aσ) =

∞∑
j=m+1

(−1)j(s−1Aσ)2j

(2j)!
.

By [1, Thm. 4.2(b)] and since the tail of the Taylor series of the cosine is an even
function, we obtain

‖ cos(s−1Aσ)− rm(s−1Aσ)‖ ≤
∞∑

j=m+1

αp(s
−1Aσ)2j

(2j)!

= cosh(αp(s
−1Aσ))−

m∑
j=0

αp(s
−1Aσ)2j

(2j)!
=: ρm(αp(s

−1Aσ)),(3.2)

where

(3.3) αp(X) = max
(
d2p, d2p+2

)
, dk = ‖Xk‖1/k

and p is any positive integer satisfying the constraint m+ 1 ≥ p(p− 1). In addition,
it is straightforward to verify that

(3.4) ‖sinc(s−1Aσ)− r̃m(s−1Aσ)‖ ≤
∞∑

j=m+1

αp(s
−1Aσ)2j

(2j + 1)!
≤ ρm(αp(s

−1Aσ)).

Similarly the forward errors of the approximations of cosh, and sinch by Taylor poly-
nomials have exactly the same bound ρm.

Next we analyze the computational cost and determine how to choose the scaling
parameter and the degree of Taylor polynomial. Define

(3.5) θm = max{ θ : ρm(θ) ≤ tol }.

Thus given m and p if s is chosen so that s−1αp(A
σ) ≤ θm, then the inequality

ρm(αp(s
−1Aσ)) ≤ tol will be satisfied and therefore the absolute forward error will be

bounded by tol. Table 3.1 lists selected values of θm for tol = 2−10 (half precision),
tol = 2−24 (single precision), and tol = 2−53 (double precision). These values were
determined as described in [15, App.]. For each m, the optimal value of the scaling
parameter s is given by s = max(dαp(Aσ)/θme, 1). The computational cost of evalu-
ating Ts in view of Code Fragment 2.1 is 2σms matrix–matrix multiplications of the
form AB. That is, 2σn0ms matrix–vector products since B has n0 columns. By (2.6),
Us−1 is obtained with a negligible cost. sinc(A)B can be then recovered by a single in-
vocation of Code Fragment 2.1 for V = Us−1 and γ = 2k+1; this requires only 2σn0m
matrix–vector products. After that one multiplication is needed to recover sin(A)B
from sinc(A)B; that is n0 matrix–vector products. We build our cost analysis on an
assumption that the output of our algorithm is cos(Aσ)B and sinc(Aσ)B. Note that
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when σ = 1/2, sin(Aσ)B cannot be obtained without computing A1/2. Thus the total
cost is

(3.6) 2σn0m(s+ 1) = 2σn0m
(
max(dαp(Aσ)/θme, 1) + 1

)
matrix–vector products. We observe that this quantity tends to be decreasing as m
increases though the decreasing is not necessarily monotonic. The sequence {m/θm}
is strictly decreasing while the sequence {αp(X)} has a generally nonincreasing trend
for any X. Thus the larger is m, the less the cost. However, a large value of m could
lead to unstable calculation of Taylor polynomials rm(Aσ)B for large ‖Aσ‖ in floating
point arithmetic. Thus we impose a limit mmax on m and seek m∗ that minimizes the
computational cost over all p such that p(p−1) ≤ mmax +1. For the moment we drop
the max in (3.6), whose purpose is simply to cater for nilpotent Aσ with Aσj = 0 for
j ≥ 2p. Moreover, we remove constant terms since they essentially don’t effect the
optimization for the value of m∗. Thus we consider the sequence

Cm(Aσ) = mdαp(Aσ)/θme

to be minimized subject to some constraints. Note that ‖Aσ‖ ≥ d2 ≥ d2k in (3.3) for
all k ≥ 1 and so

(3.7) ‖Aσ‖ ≥ α1(Aσ) = d2 = ‖A2σ‖1/2 ≥ αp(Aσ)

for all p ≥ 1. Hence we don’t need to consider the case p = 1 when minimizing Cm(Aσ)
since Cm(Aσ) ≤ mdα1(Aσ)/θme . Let pmax denote the largest positive integer p such
that p(p− 1) ≤ mmax + 1. Let m∗ be the smallest value of m at which the minimum

Cm∗(Aσ) = min
{
mdαp(Aσ)/θme : 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax

}
,(3.8)

is attained [2, Eq. (3.11)]. The optimal scaling parameter then is

s = max(Cm∗(Aσ)/m∗, 1).

Our experience and observation indicate that pmax = 5 andmmax = 25 are appropriate
choices for our algorithm. However the algorithm supports user-specified values of
pmax and mmax.

The forward error analysis and cost analysis are valid for any matrix norm, but it
is most convenient to use the 1-norm since it is easy to be efficiently estimated using
the block 1-norm estimation algorithm of Higham and Tisseur [18]. We estimate the

quantities dk = ‖Aσk‖1/k1 , where k is even as defined in (3.3), which are required to
form αp(A

σ). The algorithm of Higham and Tisseur estimates ‖Aσk‖1 via about two
actions of Aσk and two actions of (A∗)σk, all on matrices of ` columns, where the
positive integer ` is a parameter (typically set to 1 or 2). The number σk is a positive
integer since k is even, so fractional powers of A is completely avoided. Therefore
obtaining αp(A

σ) for p = 2: pmax costs approximately

(3.9) 8σ`

pmax+1∑
p=2

p = 4σ`pmax(pmax + 3)

matrix–vector products. Thus in view of (3.6) if it happens that

2σn0mmax

(
‖A‖σ1/θmmax + 1

)
≤ 4σ`pmax(pmax + 3),
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or equivalently

(3.10) ‖A‖σ1 ≤ θmmax

(
2`

n0mmax
pmax(pmax + 3)− 1

)
then the computational cost of evaluating Ts and r̃m(s−1Aσ)Us−1 with m determined

by using ‖A‖σ1 or ‖A2σ‖1/21 in place of αp(A
σ) in (3.8) is no larger than the cost (3.9)

of computing the sequence {αp(Aσ)}. Thus we should certainly use ‖A‖σ1 if σ = 1 or

‖A‖1/21 if σ = 1/2 in place of αp(A
σ) for each p in light of the inequalities in (3.7).

In the case σ = 1, we still have another chance to avoid estimating αp(A) for
p > 2. If the inequality (3.10) is unsatisfied, the middle bound d2 in (3.7) can be
estimated and its actual cost, ν matrix–vector products, can be counted. We check
again if the bound

(3.11) d2 ≤ θmmax

(
2`

n0mmax
pmax(pmax + 3)− ν − 1

)
holds. We sum up our analysis for determining the parameters m∗ and s in the
following code.

Code Fragment 3.1 ([m∗, s, Θσ] = parameters(A, σ, tol)). This code deter-
mines m∗ and s given A, σ, tol, mmax, and pmax. Let Θσ denote the number of
the actual matrix–vector products needed to estimate the sequence {αp(Aσ)}.

1 if (3.10) is satisfied
2 m∗ = argmin1≤m≤mmax

md‖A‖σ1/θme
3 s = d‖A‖σ1/θm∗e
4 goto line 16
5 end
6 if σ = 1
7 Compute d2
8 if (3.11) is satisfied
9 m∗ = argmin1≤m≤mmax

mdd2/θme
10 s = dd2/θm∗e
11 goto line 16
12 end
13 end
14 Let m∗ be the smallest m achieving the minimum in (3.8).
15 s = max

(
Cm∗(Aσ)/m∗, 1

)
16 end

As explained in [2, sect. 3], if we wish to compute f(tAσ)B for several values of
t, we need not invoke Code Fragment 3.1 for each t1/σA. The trick is that since
αp(tA

σ) = |t|αp(Aσ), we can precompute the matrix S ∈ R(pmax−1)×mmax given by

(3.12) Spm =

{
αp(A

σ)

θm
, 2 ≤ p ≤ pmax, p(p− 1)− 1 ≤ m ≤ mmax,

0, otherwise

and then for each t obtain Cm∗(tAσ) as the smallest nonzero element in the matrix
d|t|Sediag(1, 2, . . . ,mmax), where m∗ is the column index of the smallest element. The
benefit of basing the selection of the scaling parameter on αp(A) instead of ‖A‖ is
that αp(A) can be much smaller than ‖A‖ for highly nonnormal matrices.
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Table 3.1
Selected constants θm for tol = 2−10 (half), tol = 2−24 (single), and tol = 2−53 (double).

2m 6 10 14 18 22 26 30 34 38 42 46 50

half 1.6e0 3.0e0 4.4e0 5.8e0 7.3e0 8.8e0 1.0e1 1.2e1 1.3e1 1.5e1 1.6e1 1.8e1
single 1.8e0 4.2e0 6.9e0 9.7e0 1.3e1 1.5e1 1.8e1 2.1e1 2.4e1 2.7e1 3.0e1 3.3e1
double 3.8e-2 2.5e-1 6.8e-1 1.3e0 2.1e0 3.0e0 4.1e0 5.1e0 6.3e0 7.5e0 8.7e0 1.0e1

4. Preprocessing and termination criterion. In this section we discuss sev-
eral strategies to improve the algorithm stability and reduce its computational cost.
The algorithmic scaling parameter s plays an important role that the smaller the s
the better the stability of the algorithm in general, and the lower the computational
cost. That why we rely on αp(A) instead of merely using ‖A‖ to produce the scaling
parameter. Al-Mohy and Higham [2, sect. 3.1] proposed an argument reduction and
a termination criterion. They have found empirically that the shift µ = n−1trace(A)

[14, Thm. 4.21] that minimizes the Frobenius norm of the matrix Ã = A − µI leads

to smaller values of αp(Ã) than αp(A). We use this shift here if the required outputs
are cos(A)B and sin(A)B or cosh(A)B and sinh(A)B. There are cases where shifting
is impossible to recover. This happens when the required outputs include sinc(A)B,
sinch(A)B, or any form of f(A1/2)B.

We can recover the original cosine and sine of A from the computed cosine and
sine of Ã using the formulas

(4.1) cosA = cosµ cos Ã− sinµ sin Ã, sinA = cosµ sin Ã+ sinµ cos Ã.

The functions coshA and sinhA have analogous formulas containing coshµ and sinhµ,
which could overflow for large enough |Re(µ)|. Same problem arises for cosµ and sinµ
if |Im(µ)| is large enough. Al-Mohy and Higham successfully overcome this problem
in their algorithm for the matrix exponential by undoing the effect of the scaled shift
right after the inner loop of [2, Alg. 3.2]. It is possible to do so for trigonomet-
ric and hyperbolic matrix functions. We can undo the effect of the scaled shift in
cos(s−1Ã)Tk−1 for each k in the recurrence (2.2) using the formula in (4.1), which re-

quires sin(s−1Ã)Tk−1. The next code shows how sin(s−1Ã)Tk−1 can be formed using

the already generated power actions, Ã2kB.
Code Fragment 4.1. Given Ã = A − µI ∈ Cn×n, B ∈ Cn×n0 , and a suitable

chosen scaling parameter s, this code returns C = rm(s−1A)B ≈ cos(s−1A)B.
1 V = B, Z = B
2 for k = 1:m
3 β = 2k, γ = 2k − 1, q = 1/(2k + 1)

4 B = ÃB

5 B = (ÃB)
(
s2βγ

)−1
6 V = V + (−1)kB
7 Z = Z + (−1)kqB
8 end

9 C = cos(µ/s)V − s−1 sin(µ/s)ÃZ
The recovery of sin(s−1A)Us−1 (recall (2.4)) can be obtained by a single execution

of Code Fragment 4.1 for V = Z = Us−1 after setting γ = 2k+1 and q = 2k+1 in line

3. Thus sin(s−1A)Us−1 ≈ s−1 cos(µ/s)ÃV + sin(µ/s)Z. Comparing Code Fragment
2.1 with Code Fragment 4.1 assuming the same scaling parameter s, undoing the shift
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requires n0 matrix–vector products for each k = 1: s bringing the total of the extra
cost to (s+ 1)n0 matrix–vector products: sn0 for Ts and n0 to recover sin(A)B from

sin(s−1Ã)Us−1 using (2.4) and the formula in (4.1). However, the scaling parameter

s selected based on Ã is potentially smaller than that selected based on A making the
overall cost of the algorithm potentially smaller.

For the early termination of the evaluation of Taylor polynomials, we use the
criterion proposed by Al-Mohy and Higham [2, Eq. (3.15)] implemented in line 34 of
Algorithm 5.1 below.

5. Algorithm. In this section we write in details our algorithm for comput-
ing the trigonometric and hyperbolic matrix functions of the forms: f(tA)B and
f(tA1/2)B.

Algorithm 5.1 ([C, S] = funmv(t, A,B, tol,option)). Given t ∈ C, A ∈ Cn×n,
B ∈ Cn×n0 , and a tolerance tol, this algorithm computes C and S for any chosen
option of the table. The parameters σ, k0, and shiftare set to their corresponding
values of the last column depending on the chosen case.

option outputs (σ, k0, shift)

1 C ≈ cos(tA)B S ≈ sin(tA)B (1, 1, 1)

2 C ≈ cosh(tA)B S ≈ sinh(tA)B (1, 0, 1)

3 C ≈ cos(tA)B S ≈ sinc(tA)B (1, 1, 0)

4 C ≈ cosh(tA)B S ≈ sinch(tA)B (1, 0, 0)

5 C ≈ cos(tA1/2)B S ≈ sinc(tA1/2)B ( 1
2 , 1, 0)

6 C ≈ cosh(tA1/2)B S ≈ sinch(tA1/2)B ( 1
2 , 0, 0)

1 if shift, µ = trace(A)/n, A = A− µI, end
2 if t‖A‖1 = 0
3 m∗ = 0, s = 1 % The case tA = 0.
4 else
5 [m∗, s, Θσ] = parameters(t1/σA, σ, tol) % Code Fragment 3.1
6 end
7 undoin = 0, undout = 0 % undo shifting inside or outside the loop.
8 if option 1 and |Im(tµ)| > 0
9 φ1 = cos(tµ/s), φ2 = sin(tµ/s), undoin = 1

10 elseif option 1 and tµ ∈ R\{0}
11 φ1 = cos(tµ), φ2 = sin(tµ), undout = 1
12 elseif option 2 and |Re(tµ)| > 0
13 φ1 = cosh(tµ/s), φ2 = sinh(tµ/s), undoin = 1
14 elseif option 2 and tµ ∈ C\R
15 φ1 = cosh(tµ), φ2 = sinh(tµ), undout = 1
16 end
17 T0 = 0
18 if 2|s, T0 = B/2, end
19 U = T0, T1 = B
20 for i = 1: s+ 1
21 if i = s+ 1
22 U = 2U , T1 = U

9



23 end
24 V = T1, Z = T1, B = T1
25 c1 = ‖B‖∞
26 for k = 1:m∗
27 β = 2k
28 if i ≤ s, γ = β − 1, q = 1/(β + 1) else γ = β + 1, q = γ, end
29 if σ = 1, B = AB, end
30 B = (AB)

(
(t/s)2/(βγ)

)
31 c2 = ‖B‖∞
32 V = V + (−1)k0kB
33 if undoin, Z = Z + ((−1)k0kq)B, end
34 if c1 + c2 ≤ tol‖V ‖∞, break, end
35 c1 = c2
36 end
37 if undoin
38 if i ≤ s
39 V = V φ1 +A(Z((−1)k0tφ2/s))
40 else
41 V = A(V (tφ1/s)) + Zφ2
42 end
43 end
44 if i = 1, T2 = V , elseif i ≤ s, T2 = 2V − T0, end % using (2.2).
45 if i ≤ s− 1 and (2|s xor 2|i)
46 U = U + T2 % using (2.6).
47 end
48 T0 = T1, T1 = T2
49 end
50 C = T2
51 if undoin
52 S = V
53 elseif option 1 or option 2
54 S = A(V (t/s))
55 else
56 S = V/s
57 end
58 if undout
59 C = φ1C + ((−1)k0φ2)S
60 S = φ1S + φ2T2
61 end

Due to the stopping criterion in line 34, assume that the inner loop is terminated
when k takes values mi, i = 1: s+ 1. Thus the total cost of the algorithm is

2σn0

s+1∑
i=1

mi + (undoin)n0(s+ 1) + (shift− undoin)n0 +Θσ

matrix–vector multiplications. Since mi and Θσ are bounded by m∗ and (3.9), respec-
tively, an upper bound of the computational cost of the algorithm can be obtained
after the execution of Code Fragment 3.1 in line 5. This advantage allows users to
estimate the overhead of the algorithm. When σ = 1/2, the algorithm saves about
50 percent of the computational cost comparing to the other options. Therefore it
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Fig. 6.1. Experiment 1. Normwise relative errors in computing cos(A)b using different preci-
sions. condd, conds, and condh represent cond(cos, A) multiplied by 2−53, 2−24, and 2−10, respec-
tively.
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Fig. 6.2. Double precision data of Figure 6.1 presented as a performance profile.

is better not to provide A1/2 even if it is easy to evaluate. As an example, take
A = diag(1, 2, · · · , 100), b = [1, 1, · · · , 1]T , and t = 1. Executing funmv(t, A,B)
(option 5) requires 51 matrix–vector products whereas funmv(t, A1/2, B) (option 3)
requires 102. Note that it is possible to obtain sin(tA)B and sinh(tA)B in options
3 and 4, respectively. However this is impossible in options 5 and 6 because of the
absence of A1/2. The present of shifting in options 1 and 2 makes it impossible to
obtain sinc(tA)B and sinch(tA)B as we pointed out in the previous section.

6. Numerical experiments. In this section we give some numerical tests to
illustrate the accuracy and efficiency of Algorithm 5.1. We use MATLABr R2015a
on a machine with Core i7. The experiments involve the following algorithms:

1. funmv: the MATLAB code of Algorithm 5.1,
2. trigmv and trighmv: MATLAB codes implementing the recently authored

algorithm by Higham and Kandolf [16, Alg. 3.2]. trigmv returns the actions
cos(A)b and sin(A)b while trighmv returns the actions cosh(A)b and sinh(A)b.
The codes are available in https://bitbucket.org/kandolfp/trigmv
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Fig. 6.3. Experiment 1. Normwise relative errors in computing cosh(A)b using different pre-
cisions. condd, conds, and condh represent cond(cosh, A) multiplied by 2−53, 2−24, and 2−10,
respectively.
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Fig. 6.4. Double precision data of Figure 6.3 presented as a performance profile.

3. expmv: MATLAB code for the algorithm of Al-Mohy and Higham [2, Alg. 3.2]
that compute the action of the matrix exponential eAB. The code is available
in https://github.com/higham/expmv.

4. cosm and sinm: [3, Alg’s 4.2 & 5.2] of Al-Mohy, Higham, and Relton for
explicitly computing cosA and sinA, respectively. The multiplication by b
follows to obtain cos(A)b or sin(A)b. The MATLAB codes of the algorithms
are available in https://github.com/sdrelton/cosm_sinm.

Experiment 1. In this experiment we test the stability of funmv (option 1) com-
paring with trigmv and cosm. We use the test matrices described in [1, sect. 6]
and used also in [2, sect. 6]. For each matrix A of these test matrices, a vector b is
randomly generated. We approximate x := cos(A)b by x̂ using funmv and trigmv

with the tolerances of half, single, and double precisions. The approximation of x
by cosm is carried out in double precision since the algorithm is only intended for
that. The “exact” x is computed at 100 digit precision with the Symbolic Math
Toolbox. The relative forward errors ‖x − x̂‖2/‖x‖2 for each tolerance is plotted in
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Figure 6.1, where the solid lines represent the condition number of the matrix cosine
cond(cos, A) multiplied by the associate tolerance tol sorted in a descending order.
The condition number with respect to Frobenius norm is estimated using the code
funm condest fro from the Matrix Function Toolbox [13].

Figure 6.2 displays a performance profile for the double precision data plotted in
Figure 6.1 which includes the data of cosm. For each method, the parameter p is the
proportion of problems in which the error is within a factor of α of the smallest error
over all methods. The experiment reveals that our algorithm behaves as stable as the
existing algorithms. The performance profile shows that cosm outperforms the other
methods while funmv and trigmv have similar behavior.

We repeat the experiment for cosh(A)b using funmv (option 2), trighmv, and
cosm with argument iA. The results are reported in Figure 6.3 and Figure 6.4. Both
methods behave in a stable manner but funmv outperforms trighmv in view of the
performance profile.

The figures corresponding to sin(A)b and sinh(A)b are similar to those of cos(A)b
and cosh(A)b, respectively; that why we don’t report them here.

Experiment 2. In this experiment we compute cos(A)b for large and sparse matri-
ces. We compare funmv (option 1) with trigmv in terms of CPU time, matrix–vector
products, and relative forward errors in 1-norm. We use cosm to compute the reference
solution in double precision. The test matrices are prescribed in [16, Example 4.2] and
[2, Experiment 5]. The first three matrices of Table 6.1 belong to the Harwell-Boeing
collection and are obtained from the University of Florida Sparse Matrix Collection
[4]. The matrix triw and poisson are from the MATLAB gallery. The matrices
and problem details are
• orani678 (nonsymmetric), n = 2529, b = [1, 1, · · · , 1]T ;
• bcspwr10 (symmetric), n = 5300, b = [1, 0, · · · , 0, 1]T ;
• gr_30_30, n = 900, b = [1, 1, · · · , 1]T ;
• triw denotes -gallery(’triw’,2000,4) (upper triangular with −1 in the main

diagonal and −4 elsewhere), n = 2000, b = [cos 1, cos 2, · · · , cosn]T ;
• poisson denotes -gallery(’poisson’,99) (symmetric negative definite), n =

9801, b = [cos 1, cos 2, · · · , cosn]T . This matrix arises from a finite difference
discretization of the two–dimensional Laplacian in the unit square.

The results are shown in Table 6.1. The three blocks of the table display the
computations with different tolerances that represent double, single, and half preci-
sions. The symbol tratio denotes CPU time for method divided by CPU time for funmv
and the symbol mv denotes the number of matrix–vector products required by each
methods. Obviously funmv proves superiority. It does outperform trigmv in terms
of CPU running time and computational cost. the number of matrix–vector products
of funmv is about the half of that of trigmv for most cases. No wonder since trigmv

requires the action of the matrix exponential on a matrix of two columns—namely
B = [b, b]/2—to yield cos(tA)b.

Experiment 3. In this experiment we use funmv (option 5) to compute the com-
bination y(t) = cos(tA1/2)b + t sinc(tA1/2)z. Note that trigmv is inapplicable for
this problem because it requires an explicit computation of possibly dense A1/2. The
computation of a matrix square root is a challenging problem itself and infeasible
for large scale matrices. Another difficulty is that trigmv cannot immediately yield
x := sinc(tA1/2)b, yet x requires solving the system A1/2 x = sin(A1/2)b, which could
be dense or ill–conditioned.

Thus we invoke our algorithm for the matrix B = [b, z]. The combination above
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Table 6.1
Experiment 2: tratio denotes time for method divided by time for funmv.

(a) Double precision

funmv trigmv cosm

t tratio mv Error tratio mv Error tratio
orani678 100 1 1111 6.0e-15 1.4 2024 4.5e-15 9.9e2
bcspwr10 10 1 379 3.8e-14 1.7 618 3.8e-14 2.5e3
gr_30_30 2 1 133 6.1e-14 1.3 188 7.8e-14 3.2e2

triw 10 1 27005 7.1e-14 1.2 56560 1.4e-13 2.2e-1
poisson 500 1 9757 4.0e-13 2.2 19036 2.2e-13 1.0e3

(b) Single precision

funmv trigmv cosm

t tratio mv Error tratio mv Error tratio
orani678 100 1 719 2.1e-9 1.5 1224 4.1e-8 1.8e3
bcspwr10 10 1 265 3.0e-10 1.6 402 4.7e-10 3.7e3
gr_30_30 2 1 97 3.8e-9 1.2 136 5.5e-9 5.1e2

triw 10 1 13011 8.2e-13 1.1 26708 5.1e-9 4.4e-1
poisson 500 1 6415 1.3e-8 2.2 12436 2.5e-7 1.5e3

(c) Half precision

funmv trigmv cosm

t tratio mv Error tratio mv Error tratio
orani678 100 1 551 1.6e-4 1.3 848 1.9e-3 2.3e3
bcspwr10 10 1 215 7.3e-6 1.5 324 1.3e-5 4.4e3
gr_30_30 2 1 93 3.1e-4 1.3 108 5.4e-6 4.9e2

triw 10 1 7381 1.1e-6 1.1 15028 5.4e-5 7.6e-1
poisson 500 1 5223 2.7e-4 2.1 9810 4.2e-4 1.9e3

can be viewed as an exact solution of the system (1.1) with g ≡ 0, y(0) = b and
y′(0) = z. We compare the approximation of y(t) using our algorithm with that
obtained from the formula

(6.1) exp

(
t

[
0 I
−A 0

])[
b
z

]
=

[
y(t)
y′(t)

]
,

which is a particular case of the expression given in [14, Prob. 4.1]; see also [16, Eq. (1.1)].
We use the Algorithm of Al-Mohy and Higham expmv to evaluate the left hand side
of (6.1). The approximation of y(t) is obtained by reading off the upper half of the
resulting vector. For a reference solution we use the MATLAB function expm to com-
pute the left hand side of (6.1). We use the matrices and the vectors b prescribed in
Experiment 2 except poisson due to memory limitation because of the use of expm.
We take z = [sin 1, sin 2, · · · , sinn]T for all matrices. For fairer comparison we mul-
tiply by two the number of matrix–vector products mv counted by the code expmv

because the dimension of the input matrices is 2n×2n. Table 6.2 presents the results.
Obviously our algorithm outperforms the alternative block version of the problem in
terms of CPU time and computational cost with slightly better relative forward errors
for single and half precisions. Using the MATLAB function profile to analyze the
execution time for funmv and expmv in the experiment as a whole, the CPU time of
funmv represents around 22 percent of the CPU time of both functions.

7. Concluding remarks. The algorithm we developed here has direct appli-
cations to solving second order systems of ODE’s and their trigonometric numerical
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Table 6.2
Experiment 3: tratio denotes time for method divided by time for funmv.

(a) Double precision

funmv expmv expm

t tratio mv Error tratio mv Error tratio
orani678 100 1 920 3.2e-14 1.3 2046 3.2e-14 7.1e2
bcspwr10 10 1 190 4.5e-15 2.6 616 4.4e-15 1.6e4
gr_30_30 2 1 86 2.0e-15 1.5 180 1.7e-15 3.3e2

triw 10 1 1694 3.3e-14 3.8 4144 3.9e-14 3.3e1

(b) Single precision

funmv expmv expm

t tratio mv Error tratio mv Error tratio
orani678 100 1 558 1.5e-9 1.5 1348 2.8e-8 1.3e3
bcspwr10 10 1 134 6.9e-11 3.0 496 2.3e-10 2.3e4
gr_30_30 2 1 58 3.2e-11 1.4 96 1.9e-10 4.6e2

triw 10 1 930 3.9e-11 3.6 2216 4.7e-9 5.8e1

(c) Half precision

funmv expmv expm

t tratio mv Error tratio mv Error tratio
orani678 100 1 400 1.2e-4 1.6 992 1.8e-3 1.8e3
bcspwr10 10 1 80 2.4e-6 4.4 444 3.0e-5 3.6e4
gr_30_30 2 1 46 2.1e-7 1.1 60 1.8e-5 5.2e2

triw 10 1 650 6.9e-6 3.1 1370 2.5e-4 8.0e1

schemes. A single invocation of Algorithm 5.1 for inputs h, A, and B = [yn, y
′
n, ĝ(yn)]

returns the six vectors cos(hA1/2)yn, cos(hA1/2)y′n, cos(hA1/2)ĝ(yn), sinc(hA1/2)yn,
sinc(hA1/2)y′n, and sinc(hA1/2)ĝ(yn) that make up the vectors yn+1 and y′n+1 in the
scheme (1.5) and (1.6). The evaluation of this scheme draws our attention back to the
end of section 3. Since the algorithm has to be executed repeatedly for a fixed matrix
A and different B and perhaps different scalar h, it is recommended to precompute
the matrix Spm (3.12) and provide it as an external input to reduce the cost of the
whole computation.

Algorithm 5.1 has several features. First, it computes the action of the composi-
tion f(tA1/2)B without explicitly computing A1/2. Second, it returns results in finite
number of steps that can be predicted before executing the main phase of the algo-
rithm. Third, the algorithm is easy to implement and works for any matrix and the
only external parameter that control the computation is tol. Fourth, the algorithm
spends most of its work on multiplying A by vectors. Thus it fully benefits from
the sparsity of A and fast implementation of matrix multiplication. Fifth, we can
use Algorithm 5.1 (option 2) to compute the action of the matrix exponential since
eAB = cosh(A)B + sinh(A)B. Finally, though we derive the values of θm in (3.5) for
half, single, and double precisions, θm can be evaluated for any arbitrary precision.
Algorithm 5.1 can be extended to be a multiprecision algorithm as in [6] since the
function ρm (3.2) has an explicit expression that is easy to be handled by optimization
software.

All these features make our algorithm attractive for black box use in a wide range
of applications.
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