
A Block Krylov Method to Compute the Action
of the Frechet Derivative of a Matrix Function on
a Vector with Applications to Condition Number

Estimation

Kandolf, Peter and Relton, Samuel D.

2017

MIMS EPrint: 2016.33

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

SIAM J. SCI. COMPUT. c© 2017 SIAM. Published by SIAM under the terms
Vol. 39, No. 4, pp. A1416–A1434 of the Creative Commons 4.0 license

A BLOCK KRYLOV METHOD TO COMPUTE THE ACTION OF
THE FRÉCHET DERIVATIVE OF A MATRIX FUNCTION ON A

VECTOR WITH APPLICATIONS TO CONDITION NUMBER
ESTIMATION∗

PETER KANDOLF† AND SAMUEL D. RELTON‡

Abstract. We design a block Krylov method to compute the action of the Fréchet derivative of
a matrix function on a vector using only matrix-vector products, i.e., the derivative of f(A)b when A
is subject to a perturbation in the direction E. The algorithm we derive is especially effective when
the direction matrix E in the derivative is of low rank, while there are no such restrictions on A. Our
results and experiments are focused mainly on Fréchet derivatives with rank 1 direction matrices.
Our analysis applies to all functions with a power series expansion convergent on a subdomain of
the complex plane which, in particular, includes the matrix exponential. We perform an a priori
error analysis of our algorithm to obtain rigorous stopping criteria. Furthermore, we show how our
algorithm can be used to estimate the 2-norm condition number of f(A)b efficiently. Our numerical
experiments show that our new algorithm for computing the action of a Fréchet derivative typically
requires a small number of iterations to converge and (particularly for single and half precision
accuracy) is significantly faster than alternative algorithms. When applied to condition number
estimation, our experiments show that the resulting algorithm can detect ill-conditioned problems
that are undetected by competing algorithms.

Key words. matrix function, matrix exponential, Fréchet derivative, condition number, Krylov
subspace, block Krylov subspace

AMS subject classifications. 65F30, 65F60

DOI. 10.1137/16M1077969

1. Introduction. Given a matrix function f : Cn×n → Cn×n, one commonly
needs to compute f(A)b for a large, sparse matrix A and a vector b ∈ Cn. For
example, when f(A) = eA is the matrix exponential, this computation arises when
solving evolution equations with exponential integrators (e.g., [12], [13], [15]) or in
network analysis (e.g., [6], [7]). In particular, [7] also uses the Fréchet derivative of
the matrix exponential, which we introduce shortly.

To approximate f(A)b one might use a Krylov subspace method. Since f(A) =
p(A) for some scalar polynomial p(x), we construct the space

(1.1) Km(A, b) = span
{
b, Ab,A2b, . . . , Am−1b

}
and find a vector in this subspace which is close to f(A)b. We hope that, as the
parameter m increases, the difference between the true value of f(A)b and our ap-
proximation will decrease. More sophisticated methods that replace the polynomial

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section May 31,
2016; accepted for publication (in revised form) May 18, 2017; published electronically August 8,
2017.

http://www.siam.org/journals/sisc/39-4/M107796.html
Funding: The work of the first author was supported by a DOC Fellowship from the Austrian

Academy of Science at the Department of Mathematics, University of Innsbruck, Austria. The
work of the second author was supported by European Research Council Advanced Grant MATFUN
(267526).
†Institut für Mathematik, Universität Innsbruck, Austria (peter.kandolf@uibk.ac.at, https://

numerical-analysis.uibk.ac.at/p.kandolf).
‡Leeds Institute of Health Sciences, University of Leeds, Leeds, LS2 9NL, UK (s.d.relton@leeds.

ac.uk, http://www.samrelton.com).

A1416

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

http://www.siam.org/journals/sisc/39-4/M107796.html
mailto:peter.kandolf@uibk.ac.at
https://numerical-analysis.uibk.ac.at/p.kandolf
https://numerical-analysis.uibk.ac.at/p.kandolf
mailto:s.d.relton@leeds.ac.uk
mailto:s.d.relton@leeds.ac.uk
http://www.samrelton.com

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1417

subspace (1.1) by a rational Krylov subspace, utilizing the inverse of shifted versions
of A, have also been developed (see Güttel [8] for a recent survey). For the matrix
exponentialthere are a number of alternatives to using a Krylov subspace, such as the
Leja method [3] and methods based upon Taylor series approximation [1], which have
been compared in a recent review paper [2].

In any numerical computation it is important to know the condition number of the
problem: when the algorithm used is backward stable, we know that the relative error
is approximately bounded above by the condition number times the unit roundoff.
Therefore, being able to estimate the condition number efficiently is critical when
determining how accurate a solution can be expected.

Before discussing the condition number of the f(A)b problem, we must first define
the Fréchet derivative of the matrix function f . The Fréchet derivative is an operator
Lf (A, ·) : Cn×n → Cn×n, which is linear in its second argument and for any matrix
E ∈ Cn×n satisfies

f(A+ E)− f(A) = Lf (A,E) + o(‖E‖),

where o(‖E‖) represents a remainder term that, when divided by ‖E‖, tends to zero
as ‖E‖ → 0.

If we first consider the matrix function f(A), without applying it to a vector, its
relative condition number is closely related to the Fréchet derivative of the function.
We have (see [10, Chap. 3])

condrel(f,A) := lim
ε→0

sup
‖E‖≤ε‖A‖

‖f(A+ E)− f(A)‖
ε‖f(A)‖ = max

‖E‖=1

‖Lf (A,E)‖‖A‖
‖f(A)‖ .

For the action of the matrix function, Deadman [5, p. 4] defines the relative condition
number of f(tA)b. If one ignores the dependence on t by setting t = 1, he defines

(1.2) cond(f,A, b) := lim
ε→0

sup
‖E‖≤ε‖A‖
‖∆b‖≤ε‖b‖

‖f(A+ E)(b+∆b)− f(A)b‖
ε‖f(A)b‖

for any induced matrix norm and goes on to show that

(1.3) cond(f,A, b) := lim
ε→0

sup
‖E‖≤ε‖A‖
‖∆b‖≤ε‖b‖

‖Lf (A,E)b+ f(A)∆b+ o(‖E‖) + o(‖∆b‖)‖
ε‖f(A)b‖ ,

where the o(‖E‖) and o(‖∆b‖) terms disappear as ε → 0. In order to estimate this
condition number efficiently we need to compute Lf (A,E)b, for multiple matrices E,
in a highly efficient manner. The details of how to estimate this condition number
are discussed further in section 5.

The primary goal of this paper is to give an efficient means of evaluating Lf (A,E)b
for E of rank 1 based upon block Krylov subspace methods. This can easily be
extended to E of rank k, since Lf (A,E) is linear in E. We also provide a priori
error analysis for our algorithm in order to derive a rigorous stopping criterion. As a
secondary goal we show how our algorithm can be applied to improve the computation
of the condition number cond(f,A, b).

The paper is organized as follows. In section 2 we give some background infor-
mation on the block Krylov method that we use throughout the rest of our analysis.
Following this, in sections 3 and 4, we derive an algorithm to compute Lf (A,E)b for a

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1418 PETER KANDOLF AND SAMUEL D. RELTON

rank 1 matrix E and perform our a priori error analysis. In section 5 we show how our
algorithm can be used to estimate cond(f,A, b), before performing a battery of numer-
ical experiments in section 6. Finally, in section 7 we give some concluding remarks.

2. Block Krylov method. The algorithm for computing Lf (A,E)b that we
introduce in section 3 is based upon the block Krylov decomposition; this section
introduces the notation required throughout the rest of this work.

We define a block Krylov subspace, with block size p, as the set

(2.1) K(A, [x1, . . . , xp]) := span{x1, . . . , xp, Ax1, . . . , Axp, A
2x1, . . . , A

2xp, . . . }.

In practice we use a basis only for the span of the first M = mp vectors, which we call
Km(A, [x1, . . . , xp]). There are numerous variations of the block Arnoldi method avail-
able for computing a basis of this space, many of which can be found in [18, sect. 6.12].
In this work we have chosen to use the block Arnoldi–Ruhe algorithm introduced
in [16] to compute a subspace with p ≥ 1 starting vectors.

Algorithm 1 Block Arnoldi–Ruhe algorithm [16], [18].
Given a block size p ≥ 1, the vectors x1, . . . , xp, and the size of the desired subspace
M = mp, the following algorithm outputs an orthonormal basis, {vj} for j = 1:M ,
that spans the block Krylov subspace Km(A, [x1, . . . , xp]). When M is not a multiple
of p, the algorithm returns an orthonormal basis which spans the first M vectors from
the block Krylov subspace.

1 Compute p initial orthonormal vectors {vi}i=1,...,p that have the same span
as {xi}i=1,...,p by extracting the columns of Q from QR = [x1, . . . , xp].

2 for j = p : M + p− 1
3 k = j − p+ 1
4 w = Avk
5 for i = 1: j
6 hi,k = w∗vi
7 w = w − hi,kvi
8 end for
9 hj+1,k = ‖w‖2

10 vj+1 = w/hj+1,k
11 end for

Note that, for p = 1, the algorithm reverts to the standard Arnoldi process. One
potential advantage of this algorithm over other variants is that the dimension of
the subspace approximation M is not necessarily forced to be a multiple of p. This
property can be of advantage in some applications, as it may require less computa-
tional effort to achieve convergence, but is not employed here. The following analysis
assumes that M is a multiple of p.

When the subspace dimension M is a multiple of p, the algorithm can be rewritten
to use level-3 BLAS routines, to take advantage of the induced block parallelism. To
increase the stability of the algorithm we can also add a reorthogonalization step at
the end of each iteration. In the rest of our analysis we will denote by m the number
of steps and by M the dimension of the resulting block Krylov subspace.

For M = mp we have analogues of the standard Arnoldi decomposition which are
useful for our later analysis. Before giving these relationships, we need to define our
notation. First, let us define Ui to be the n×p matrix with columns vp(i−1)+1, . . . , vpi

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1419

from Algorithm 1 and Vm = [U1, . . . , Um]. Second, let H̄m be the band Hessenberg
matrix with nonzero entries hij from Algorithm 1. We split the matrix in the following
fashion:

H̄m =
[

Hm

0p×(m−1)p Hm+1,m

]
, with

Hm ∈ Cmp×mp,
Hm+1,m ∈ Cp×p,

and denote by Jm the final p columns of the identity matrix IM . In this case we have
the following analogues of the Arnoldi decomposition (see [18, p. 161]):

AVm = VmHm + Um+1Hm+1,mJ
T
m(2.2)

= Vm+1H̄m,

V TmAVm = Hm.(2.3)

3. Algorithm derivation. In this section we derive the basic algorithm upon
which the rest of our work builds. For the analysis in the next two sections we
take the direction matrix E = ηyz∗ in the Fréchet derivative to be of rank 1 with
η ∈ R and ‖y‖2 = ‖z‖2 = 1. Furthermore, without loss of generality, we will assume
that ‖b‖2 = 1. We can easily generalize the development to rank k matrices, as
the Fréchet derivative is linear in its second argument. In fact, for a rank 2 matrix
E = α1y1z

∗
1 + α2y2z

∗
2 we have Lf (A,E)b = α1Lf (A, y1z∗1)b + α2Lf (A, y2z∗2)b, which

we might expect to be in the block Krylov space K(A, [y1, y2, b]). More generally, we
would ideally like to use a block Krylov space with block size k+1 for an E of rank k.
Analyzing this extension more formally is outside the scope of the current article but
would make an interesting idea for future research.

We start by proving that the quantity that we wish to compute is in the Krylov
subspace Km(A, y) for some m > 0.

Theorem 1. Given A, E ∈ Cn×n such that f is defined and Fréchet differentiable
at A and such that E = ηyz∗, then Lf (A,E)b ∈ Km(A, y) for some m > 0, where
Km(A, y) is the Krylov subspace with starting vector y of dimension m.

Proof. Assuming that the scalar function f is sufficiently differentiable, we can
form a 2× 2 block matrix to get

f

([
A E
0 A

])
=
[
f(A) Lf (A,E)

0 f(A)

]
.

We refer to [10, sect. 3.2] for the derivation of this formula. Therefore, we can
multiply both sides by a vector from the right-hand side to obtain

f

([
A E
0 A

])[
0
b

]
=
[
f(A) Lf (A,E)

0 f(A)

] [
0
b

]
=
[
Lf (A,E)b
f(A)b

]
,(3.1)

so that the quantity we desire is in the upper half of the resulting vector.
Now for X ∈ Cl×l we know that f(X) = p(X) for some polynomial p of degree

at most l − 1 [10, Chap. 1], and therefore Lf (A,E)b is in the span of the top half of
the vectors formed by the matrix-vector products[

A E
0 A

]k [0
b

]

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1420 PETER KANDOLF AND SAMUEL D. RELTON

for k = 0 : l− 1, where l ≤ 2n. To complete the proof it remains to show that the top
half of these vectors are in Km(A, y), which we achieve via induction. The base case
for k = 0 is obvious. For k = 1 and recalling that E = ηyz∗, we have[

A ηyz∗

0 A

] [
0
b

]
=
[
ηy(z∗b)
Ab

]
,

where the top half of the result is in K1(A, y) and the bottom half is in K1(A, b). For
induction, suppose we have a vector

ck =
[
yk
bk

]
,

where yk ∈ Kk(A, y) and bk ∈ Kk(A, b). Applying our 2× 2 block matrix, we obtain[
A ηyz∗

0 A

]
ck =

[
A ηyz∗

0 A

] [
yk
bk

]
=
[
Ayk + ηy(z∗bk)

Abk

]
=:
[
yk+1
bk+1

]
,

where yk+1 ∈ Kk+1(A, y) and bk+1 ∈ Kk+1(A, b), completing the proof.

With this result we know that Lf (A, yz∗)b ∈ Km(A, y), and our hope is that in
practice a Krylov subspace with m < n is required. Unfortunately, we have been un-
able to see how to approximate Lf (A, yz∗)b solely from the space Km(A, y). However,
we will show that, by using the block Krylov subspace Km(A, [y, b]), we can compute
an approximation to Lf (A, yz∗)b. Since K(A, b) is already required for computing
f(A)b with a Krylov method, this is not an unreasonable restriction.

When the scalar function f is analytic on and inside a contour Γ enclosing
Λ(A), the spectrum of A, we can represent f(A) using the Cauchy integral formula
(see [10, Def. 1.11])

(3.2) f(A) :=
1

2πi

∫
Γ

f(ω)(ωI −A)−1dω.

Taking the Fréchet derivative of this representation using the chain rule [10, Prob. 3.8],
we obtain

(3.3) Lf (A, ηyz∗) =
η

2πi

∫
Γ

f(ω)(ωI −A)−1yz∗(ωI −A)−1dω.

For the next step, assume that we have a block Krylov subspace Km(A, [y, b]), so
that we can form the approximation (ωI −A)−1y ≈ Vm(ωI −Hm)−1e1, and similarly
(ωI − A)−1b ≈ Vm(ωI −Hm)−1ẽ, where e1 is the first unit vector and ẽ = V ∗mb. By
employing these two approximations, we see that

Lf (A, ηyz∗)b ≈ η

2πi

∫
Γ

f(ω)Vm(ωI −Hm)−1e1z
∗Vm(ωI −Hm)−1ẽ dω

= ηVmLf (Hm, e1(z∗Vm))ẽ(3.4)
= ηVmLf (Hm, e1z̃

∗)ẽ,(3.5)

=: L(m),

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1421

where z̃ = V ∗mz and L(m) is our approximation to Lf (A, ηyz∗)b from the Krylov
subspace Km(A, [y, b]).

Overall, we have shown that if the block Krylov subspace Km(A, [y, b]) can be
used to approximate both (ωI − A)−1y and (ωI − A)−1b, then we can approximate
L(m) ≈ Lf (A, ηyz∗)b by computing the Fréchet derivative at the (potentially much
smaller) matrix Hm. We note that Hm ∈ C2m×2m, as we use a block Krylov subspace
of block size 2.

To make this into an iterative algorithm we must now introduce a stopping cri-
terion. We note that, in exact arithmetic, the algorithm will converge in at most
n/2 iterations since we add two vectors in each iteration. If we want to compute the
answer to some relative tolerance, tol, we can continue adding vectors into our Krylov
subspace by increasing m until

‖L(m) − L(m−1)‖/‖L(m)‖ ≤ tol or m = floor(n/2).(3.6)

This results in the following basic algorithm.

Algorithm 2
Let A be an n×n matrix, and f a matrix function that is defined and Fréchet differen-
tiable at A while being analytic on and inside a contour enclosing Λ(A). Furthermore,
suppose that y, z, and b are three vectors satisfying ‖y‖2 = ‖z‖2 = ‖b‖2 = 1. Finally,
let η ∈ R and a tolerance tol > 0 be given. Then the following algorithm approximates
Lf (A, ηyz∗)b.

1 for m = 1: floor(n/2)
2 Compute Km(A, [y, b]) with the corresponding Hm and Vm.
3 Compute L(m) = ηVmLf (Hm, e1(z∗Vm))ẽ, where ẽ = V ∗mb.
4 if m > 1 and ‖L(m) − L(m−1)‖/‖L(m)‖ ≤ tol,
5 break out of loop
6 end if
7 end for
8 return L(m)

The above algorithm can be used to compute an approximation to Lf (A,E)b but
has one major issue: the rather crude stopping criterion can lead to early termination
of the algorithm if any stagnation in the convergence is encountered. Therefore, our
next section aims to design an a priori error bound so that (an upper bound on) the
number of iterations required to achieve a given tolerance can be found analytically.

4. A priori error analysis. As mentioned above, the goal of this section is
to improve the reliability of the stopping criterion in Algorithm 2 by performing an
a priori error analysis. Our methodology is based upon that of Saad [17] for the
matrix exponential, though we need to make a number of modifications to account
for the Fréchet derivative. More specifically, we aim to show that our approximation
to the Fréchet derivative at each step is equivalent to forming a bivariate polynomial
in A and E. Once this has been achieved, we can use a bivariate power series as the
remainder function and bound its norm. Since the size of this bound will decrease
with m, we can find the number of iterations required to guarantee a given tolerance
in our approximation.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1422 PETER KANDOLF AND SAMUEL D. RELTON

During our analysis we will repeatedly use the fact that if a power series f(x) =∑∞
i=0 aix

i has radius of convergence r, then for A,E ∈ Cn×n with ‖A‖ < r we have
(see [10, Prob. 3.6])

(4.1) Lf (A,E) =
∞∑
i=1

ai

i∑
j=1

Aj−1EAi−j .

Our first step towards an a priori error estimate is to relate polynomials of the above
form with corresponding polynomials in Hm, the block-Hessenberg matrix, which is
the subject of the following lemma.

Lemma 2. Let A be any matrix and Vm, Hm the results of m steps of the block
Arnoldi method applied to A with initial vectors [y, b]; also let E = ηyz∗. Then for
integers 0 ≤ i, j ≤ m− 1 we have

(4.2) AiEAjb = ηVmH
i
me1z

∗VmH
j
mẽ, where ẽ = V ∗mb, and

(4.3)
j∑
s=0

αs

s∑
k=0

AkEAs−kb = ηVm

(
j∑
s=0

αs

s∑
k=0

Hk
me1z

∗VmH
s−k
m

)
ẽ.

Proof. It suffices to prove (4.2), from which (4.3) follows easily. Writing out E in
full, we have

AiEAjb = η(Aiy)z∗(Ajb).

Now, upon applying a result by Saad [17, Lem. 3.1], we have Aiy = VmH
i
me1. Fur-

thermore, since we know that Ab = VmHmẽ, where ẽ = V ∗mb, we can apply a trivial
modification of Saad’s result to get Ajb = VmH

j
mẽ. Making these substitutions, we

obtain

AiEAjb = ηVmH
i
me1z

∗VmH
j
mẽ,

which completes the proof.

Now, our plan is to approximate Lf (A,E)b using a truncation of the power series
expansion (4.1). As a corollary of our previous result, we show that truncating this
series to order m − 1 is equivalent to forming a polynomial using the basis of our
Krylov subspace. In particular, let us define

(4.4) sm−1(A,E) =
m−1∑
i=1

ai

i∑
j=1

Aj−1EAi−j

to be a truncation of the power series (4.1).

Corollary 3. Using the polynomial sm−1(x, e) defined in (4.4), we have
sm−1(A, ηyz∗) = ηVmsm−1(Hm, e1z

∗Vm)ẽ.

Proof. This is a special case of (4.3) in Lemma 2.

Therefore, the approximation Lf (A, ηyz∗)b ≈ sm−1(A,E)b is mathematically
equivalent to utilizing the approximation Lf (A, ηyz∗)b ≈ ηVmsm−1(Hm, e1z

∗Vm)ẽ.
Using this result, we can now write an expression for the error which we will then
bound. Before we do, let us define the remainder function as follows:

rm(A,E) := Lf (A,E)− sm−1(A,E).

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1423

This function quantifies how close our approximating polynomial sm−1(A,E) is to
the actual Fréchet derivative Lf (A,E). In the following lemma we will relate the
remainder of Lf (A,E) to the corresponding remainder of ηVmLf (Hm, e1z

∗Vm)V ∗m.

Lemma 4. Let A be any matrix and Vm, Hm the results of m steps of the block
Arnoldi method applied to A with starting block [y, b]; also let E = ηyz∗. Then

(4.5) Lf (A,E)b− ηVmLf (Hm, e1z
∗Vm)ẽ = η [rm(A, yz∗)b− Vmrm(Hm, e1z

∗Vm)ẽ] ,

where the remainder rm(x, e) is defined above.

Proof. By rearranging the definition of the remainder polynomial, we have

Lf (A,E)b = sm−1(A,E)b+ rm(A,E)b

= ηVmsm−1(Hm, e1z
∗Vm)ẽ+ rm(A,E)b by Corollary 3

= ηVm [Lf (Hm, e1z
∗Vm)ẽ− rm(Hm, e1z

∗Vm)ẽ] + rm(A,E)b.

Now as rm(A,E)b = η rm(A, yz∗)b we have

Lf (A,E)− ηVmLf (Hm, e1z
∗Vm)ẽ = η [rm(A, yz∗)b− Vmrm(Hm, e1z

∗Vm)ẽ] ,

as required.

Following this lemma, taking the norm of both sides, we have

‖Lf (A,E)b− ηVmLf (Hm, e1z
∗Vm)ẽ‖2 = ‖η[rm(A, yz∗)b− Vmrm(Hm, e1z

∗Vm)ẽ]‖2
≤ η (‖rm(A, yz∗)b‖2+‖Vmrm(Hm, e1z

∗Vm)ẽ‖2)

≤ η (‖rm(A, yz∗)‖2 + ‖rm(Hm, e1z
∗Vm)‖2) ,(4.6)

where the final inequality is justified by the fact that ‖Xq‖2 ≤ ‖X‖2 for any X and q
where ‖q‖2 = 1 and by the unitary invariance of the the 2-norm. Recall that (without
loss of generality) at the start of section 3 we made the assumption that ‖b‖2 = 1 and
therefore ‖ẽ‖2 = 1.

With this result, we can now obtain a priori error bounds on our approximation
which depend upon the size of the Krylov subspace. Using the polynomial sm−1(x, e)
as defined in (4.4) at the mth iteration of the Krylov method, we obtain the remainder
function

rm(A,E) = Lf (A,E)− sm−1(A,E)

=
∞∑
i=m

ai

i∑
j=1

Aj−1EAi−j .(4.7)

Our next lemma bounds this remainder term from above using the power series
tm(x) =

∑∞
i=m |ai|ixi−1.

Lemma 5. Let f have a Taylor series convergent in a disc of radius r, let ‖A‖2 <
r, and let f be Fréchet differentiable at A. Furthermore, let E ∈ Cn×n be given. Then
the remainder function (4.7) is bounded above by

‖rm(A,E)‖2 ≤ ‖E‖2 tm(‖A‖2).

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1424 PETER KANDOLF AND SAMUEL D. RELTON

Proof. We can see that

‖rm(A,E)‖2 =

∥∥∥∥∥∥
∞∑
i=m

i∑
j=1

aiA
j−1EAi−j

∥∥∥∥∥∥
2

≤
∞∑
i=m

|ai|
i∑

j=1

‖A‖j−1
2 ‖E‖2‖A‖i−j2

≤ ‖E‖2
∞∑
i=m

|ai|i‖A‖i−1
2

= ‖E‖2 tm(‖A‖2).

This leads to the following corollary.

Corollary 6. For functions f and matrices A satisfying the criteria of Lemma 5,
with E = ηyz∗ and b given such that ‖b‖2 = ‖y‖2 = ‖z‖2 = 1, the error in approxi-
mating Lf (A,E)b by ηVmLf (Hm, e1z

∗Vm)ẽ is bounded above by

‖Lf (A,E)b− ηVmLf (Hm, e1z
∗Vm)ẽ‖2 ≤ 2ηtm(‖A‖2),

where tm is defined just prior to Lemma 5.

Proof. Combine the upper bound (4.6) with Lemma 5, noting that ‖Hm‖2 ≤ ‖A‖2
and that tm is a monotonically increasing function.

To obtain more concrete bounds it is helpful to look at a specific function. For
example, let us consider the matrix exponential. In this case we have the coefficients
ai = 1/i! and hence tm(x) =

∑∞
i=m x

i−1/(i− 1)!, which is similar to the power series
considered by Saad [17, Lem. 4.2 and Thm. 4.3]. Using Saad’s result, we have the
upper bound tm(x) ≤ (xm−1ex)/(m− 1)!, and therefore we have proven the following
corollary.

Corollary 7. When considering the matrix exponential in Corollary 6, we ob-
tain the upper bound

‖Lf (A,E)b− ηVmLf (Hm, e1z
∗Vm)ẽ‖2 ≤

2η‖A‖m−1
2 e‖A‖2

(m− 1)!
.

Proof. See above.

The analysis in this section has allowed us to use a relative a priori error bound to
terminate our iterative algorithm, as opposed to simply taking the relative difference
between iterates in Algorithm 2. The resulting algorithm is given below.

5. Application to condition number estimation. In this section we use
our new algorithm for computing Lf (A,E)b to design an algorithm for estimating
the condition number of f(A)b, building upon work by Deadman [5]. In particular,
Deadman proves the following bounds on cond(f,A, b), which we defined in (1.3).

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1425

Algorithm 3
Let A be an n×n matrix, and f a matrix function that is defined and Fréchet differen-
tiable at A while being analytic on and inside a contour enclosing Λ(A). Furthermore,
suppose that y, z, and b are three vectors satisfying ‖y‖2 = ‖z‖2 = ‖b‖2 = 1. Finally,
let η ∈ R and tol > 0 be given. Then the following algorithm attempts to approximate
Lf (A, ηyz∗)b within a relative tolerance tol.

1 for m = 1: floor(n/2)
2 Compute Km(A, [y, b]) with the corresponding Hm and Vm.
3 Compute L(m) = ηVmLf (Hm, e1(z∗Vm))ẽ, where ẽ = [IM0]V ∗mb.
4 Set α equal to the a priori error estimate given by Corollary 6 or 7.
5 α = α/‖L(m)‖2 % Make the bound relative
6 if m > 1 and α < tol,
7 break out of loop
8 end if
9 end for

10 return L(m)

Lemma 8. Given A ∈ Cn×n, b ∈ Cn, an induced matrix norm ‖ · ‖, and a matrix
function f which is defined and Fréchet differentiable at A, the condition number
cond(f,A, b) satisfies the following bounds:

1
‖f(A)b‖ max

(
‖A‖ max

‖E‖=1
‖Lf (A,E)b‖, ‖f(A)‖‖b‖

)
≤ cond(f,A, b)

≤ 1
‖f(A)b‖

(
‖A‖ max

‖E‖=1
‖Lf (A,E)b‖+ ‖f(A)‖‖b‖

)
.

Proof. For a proof, see [5, p. 5].

Deadman then proceeds to work in the 1-norm and shows that

(5.1) cond(f,A, b) ≈
(
2
√
nγ‖A‖1 + ‖f(A)‖1‖b‖1

)
/‖f(A)b‖1,

where ‖A‖1 and ‖f(A)‖1 can be estimated using the 1-norm estimation algorithm
by Higham and Tisseur [11]. The quantity γ is a 2-norm estimate of the matrix
Kf (A, b) ∈ Cn×n2

(not to be confused with the Krylov subspace), which is a linear op-
erator such that Kf (A, b) vec(E) = vec(Lf (A,E)b) for any matrix E ∈ Cn×n [5, p. 7].
It is simple to show that Kf (A, b) = (b⊗In)Kf (A), where ⊗ represents the Kronecker
product and Kf (A) is the Kronecker form of the Fréchet derivative [10, Chap. 3].

Instead of following Deadman by approximating the 1-norm condition number,
we choose to estimate the 2-norm condition number, for which this approximation
becomes

(5.2) cond(f,A, b) ≈ (2γ‖A‖2 + ‖f(A)‖2‖b‖2)/‖f(A)b‖2.

Note that this avoids introducing the
√
n factor in the first term which, for large

sparse matrices, could potentially dominate the approximation. We can then estimate
‖f(A)‖2 and ‖A‖2 using a power method. This leaves only the estimation of γ.

To estimate γ we first need to introduce the adjoint of a Fréchet derivative,
L?f (A,E). For simplicity we will focus on matrix functions with real power series
(such as the matrix exponential) for which we know that L?f (A,E) = Lf (A∗, E). For
further details on the adjoint, see Higham [10, p. 66], for example.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1426 PETER KANDOLF AND SAMUEL D. RELTON

Algorithm 4 Condition number estimate; cf. [5, Alg. 3.3].
For the function f , A ∈ Cn×n, and b ∈ Cn this algorithm computes an estimate
γ ≤ ‖Kf (A, b)‖2.

1 Choose a nonzero starting vector y0 ∈ Cn.
2 it max = 10 % Choose the maximum number of iterations.
3 for k = 0 : it max
4 yk+1 = Lf (A,L?f (A, ykb∗))b
5 γk+1 =

√
‖yk+1‖2

6 if |γk+1 − γk| < 0.1γk+1, γ = γk+1, quit, end
7 yk+1 = yk+1/‖yk+1‖2
8 end
9 y = yk+1

Using the adjoint, the value γ ≈ ‖Kf (A, b)‖2 is estimated from the following
algorithm, given by Deadman [5].

The major cost of this algorithm is computing the derivative on line 4, which can
be computed by extracting the top n elements of the vector

(5.3) f

([
A L?f (A, ykb∗)
0 A

])[
0
b

]
.

Let us denote the 2× 2 block matrix in the above equation by X, and the vector by
v. Furthermore, we denote by fAmv(X, v) a method that computes f(X)v using only
matrix-vector products. This quantity could be computed using a Krylov method or
any other method requiring only matrix-vector products. However, such a method
will have to deal with the inner subproblem of computing matrix-vector products
with L?f (A, ykb∗), found in the top-right block of the matrix in (5.3). Following the
approach taken by Deadman, since L?f (A, ykb∗) = Lf (A∗, ykb∗) for functions with real
power series expansions, we could compute L?f (A, ykb∗)v as the top n elements of

f

([
A∗ ykb

∗

0 A∗

])[
0
v

]
.

Now, since the direction term in the Fréchet derivative is of rank 1, our new algorithm
can compute this inner subproblem in an extremely efficient manner. Note that, since
the condition number does not generally need to be known to high precision, our
new algorithm can be run with a low tolerance for even greater efficiency. Before we
give the overall algorithm, we first define the following code fragment for efficiently
computing the quantity given by (5.3).

Code Fragment 9 (w = Xu). This code computes the matrix-vector product[
w1
w2

]
=
[
A L?f (A, ykb∗)
0 A

] [
u1
u2

]
,

where the direction term in the Fréchet derivative is of rank 1 and computed by Algo-
rithm 2 or 3.

1 w1 = Au1 + Lf (A∗, ykb∗)u2
2 w2 = Au2
3 return w = [wT1 , w

T
2]T

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1427

Algorithm 5
Given A ∈ Cn×n, yk ∈ Cn and b ∈ Cn with ‖b‖2 = ‖yk‖2 = 1. The user-supplied
routine fAmv for which fAmv(X, v) = f(X)v uses only matrix–vector products w = Xu
is evaluated by Code Fragment 9. The algorithm computes x = Lf (A,L?f (A, yb∗))b.

1 v = [0, bT]T

2 x = fAmv(X, v) computes f(X)v by employing Code Fragment 9.
3 x = x(1:n)
4 return x

Note: The matrix X ∈ C2n×2n denotes the 2× 2 block matrix in (5.3).

Altogether, this leads to Algorithm 5 which is used to compute Lf (A,L?f (A, ykb∗))b
on line 4 of Algorithm 4.

By combining the bound on the condition number (5.2) with the estimate of γ
in Algorithm 4, where we replace line 4 with Algorithm 5, we obtain the following
algorithm for estimating the 2-norm condition number.

Algorithm 6
Given f , A, and b satisfying the criteria of Algorithms 2 and 3, and assuming that an
algorithm for computing f(A)b is available, the following algorithm computes f(A)b
and estimates its condition number κ ≈ cond(f,A, b) in the 2-norm.

1 Compute f(A)b using any algorithm.
2 Estimate ‖A‖2 and ‖f(A)‖2 using the power method.
3 Compute γ using Algorithm 4, replacing line 4 with Algorithm 5.
4 κ = (2γ‖A‖1 + ‖f(A)‖2‖b‖2)/‖f(A)b‖2.

6. Numerical experiments. In this section we will perform a number of nu-
merical experiments to test the accuracy and efficiency of our new algorithms. All
experiments were performed using MATLAB 2015a on a Linux machine (specifically
the 64-bit variant—glnxa64), and all timings use only one processor which we achieved
by using the option -singleCompThread. We also deactivated the Java virtual ma-
chine (and hence ran MATLAB without a GUI) by using -nojvm, to further increase
the reliability of the results. The Python code is run using the Anaconda distribution
of Python 2.7, with the libraries scipy 0.17.0 and numpy 1.10.4, linked to Intel MKL
BLAS.

We use the matrix exponential (almost) exclusively throughout our tests, since
this allows us to test the performance of our algorithm using expmv [1], which has
implementations in both MATLAB and Python. We can use expmv to compute
Lexp(A,E)b using the 2 × 2 block formula from (3.1). We will refer to expmv used
within the block formula for the Fréchet derivative as the “block algorithm.”

Throughout our experiments the direction matrix E will be rank-1 such that
E = yz∗, where y and z have elements sampled from a random normal N(0, 1)
distribution.

We will also need to compute Lexp(A,E)b in a highly accurate manner, so that we
can compute the relative error achieved by our algorithm. We compute this by forming
the 2 × 2 block formula (3.1) in variable-precision arithmetic from the MATLAB
Symbolic Toolbox. We compute the function f(X) to high precision by taking an
eigendecomposition V DV −1 = X + ∆X using 200 digits, where ‖∆X‖2 = 10−100 is
used to ensure that, with probability 1, the matrix is diagonalizable. We can then

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1428 PETER KANDOLF AND SAMUEL D. RELTON

form V f(D)V −1 and round back to double precision floating point.
Our first two experiments are designed to investigate the behavior of Algorithms 2

and 3. We compare the relative errors achieved by the block algorithm and Algo-
rithm 2 when aiming for half, single, or double precision accuracy over a range of test
matrices. We also compare the amount of work performed by each algorithm.

Our second experiment shows the convergence of our new algorithm as m, the
number of block Krylov iterations, increases. This allows us to compare the effective-
ness of the two stopping criteria in Algorithms 2 and 3. We also include a convergence
profile using the matrix function ϕ(A) = A−1(eA − I) in this experiment.

The third experiment illustrates the performance of our new algorithm on large
sparse matrices. We also illustrate the storage advantages of our algorithm in com-
parison to the block algorithm.

Finally, in our fourth experiment, we investigate the application of our algorithm
to computing a bound on the condition number of eAb for several different matrices.

Experiment 1 (behavior in floating point arithmetic). This experiment is de-
signed to test the behavior of the method in floating point arithmetic. To do this, we
will check that the algorithms attain the prescribed relative error. In particular we
use the tolerances half, single, and double, which in IEEE floating point arithmetic
correspond to 2−11, 2−24, and 2−53, respectively.

The test matrices used in this experiment are taken from the Matrix Computation
Toolbox [9], where we set their dimension to n = 100 and compute Lexp(A, yz∗)b for
y, z, and b with elements sampled from a normal N(0, 1) distribution. For reference
we also compute Lexp(A, yz∗)b by applying expmv to the 2 × 2 block matrix shown
in (3.1), i.e., the block algorithm. We compute the exact solution, from which we
calculate the relative error obtained, using variable precision arithmetic as described
previously.

In an attempt to control the, sometimes extremely large, condition numbers of
the matrix functions, we rescaled all the matrices to have unit 2-norm. Nevertheless,
several of the matrices were still too ill-conditioned to yield reasonable results with ei-
ther method. The excluded matrices were those with indices [4, 7, 12, 17, 18, 29, 35, 40]
from the Matrix Computation Toolbox.

In Figure 6.1 we see the relative error obtained by each algorithm. The results
show that, for each test matrix, both algorithms obtain a relative error close to the
desired accuracy. In particular this shows that our new algorithm appears to behave
in a forwards stable manner.

In Figure 6.2 we show the amount of work required by each algorithm. We define
one unit of work to be the effort (in flops) required to compute one matrix-vector
product with an n× n matrix. Therefore, if our new algorithm is using an m × m
matrix on the current iteration, then each matrix-vector product contributes m2/n2

units of work. We see that the block algorithm performs a similar amount of work
regardless of the accuracy desired: they are barely distinguishable on the graph since
all three lines overlap one another. Meanwhile, our new algorithm is often cheaper
when aiming for double precision accuracy, and over a factor of 10 times cheaper for
single and half precision accuracy.

In Figure 6.3 we see how the savings in work described above translates to savings
in time. In order to obtain reliable timings we ran each code 500 times and display
the mean time. We see that Algorithm 2 is faster when the desired accuracy is half or
single precision. However, with a few exceptions, it is slower when we desire double
precision accuracy. This is partially due to the fact that inside our implementation we

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1429

Alg. 2 Block Alg. half single double

0 5 10 15 20 25 30 35 40 45
10−16

10−11

10−6

problem

re
l.

er
ro

r
in

‖·
‖ 2

Fig. 6.1. Relative errors obtained for the computation of Lexp(A, E)b by the new algorithm and
the 2 × 2 block form when aiming for half, single, and double precision accuracy.

Alg. 2 Block Alg. half single double

0 5 10 15 20 25 30 35 40 45

102

103

problem

w
or

k

Fig. 6.2. Units of work required to compute Lexp(A, E)b for the examples in Figure 6.1. Each
unit of work is equivalent to one matrix-vector product with an n × n matrix.

evaluate the stopping criterion, (3.6), at the end of every iteration. We may be able to
improve the runtime by, for example, checking the stopping criterion less frequently.

Experiment 2 (convergence profile). In our second experiment we illustrate the
convergence behavior of Algorithms 2 and 3 with respect to the degree m of the
block Arnoldi process; see Figure 6.4. This will allow us to compare the two different
stopping criteria used in Algorithms 2 and 3.

For the convergence profile we have chosen the matrix A to be the poisson2D
matrix from the University of Florida Sparse Matrix Collection [4]. The vectors b, y,
and z are chosen randomly with elements sampled from a normal N(0, 1) distribution.
As before, we begin by computing Lexp(A, yz∗)b.

For the computation shown in Figure 6.4 the stopping criteria are ignored, so that
we continue iterating until m = floor(n/2). The exact solution is computed in variable

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A1430 PETER KANDOLF AND SAMUEL D. RELTON

Alg. 2 Block Alg. half single double

0 5 10 15 20 25 30 35 40 45

10−2

10−1

problem

[s
ec

]

Fig. 6.3. Wall time (in seconds) required for the computation of the examples in Figure 6.1.

2 4 6 8 10 12 14 16 18 20 22 2410−17

10−11

10−5

101

m

re
l.

er
ro

r
in
‖·
‖ 2

error a priori ‖L(m) − L(m−1)‖/‖L(m)‖

Fig. 6.4. Convergence behavior of Algorithm 2 and the a priori error estimate as well as the
heuristic early termination criterion for the matrix function exp(A). The error is measured in the
2-norm.

precision arithmetic with 200 digits in the manner described at the beginning of this
section. The graphs are cropped at m = 25 as, by this point, full double precision
accuracy has already been achieved.

As we might expect, we see that the a priori estimate overestimates the number
of iterations required to compute the Fréchet derivative at the desired accuracy but
certainly provides an upper bound on the number of iterations required. On the
other hand, we can see that the heuristic stopping criterion, ‖L(m)−L(m−1)‖/‖L(m)‖,
captures the rate of convergence well.

In our second convergence profile we switch to computing Lϕ(A, yz∗)b, where
ϕ(A) = A−1(exp(A) − I), using the same matrix and vectors as above. The matrix
function ϕ(x) is used extensively in exponential integrators [14]. In order to use
our a priori error bound we must tailor Lemma 5, and the corollaries following it,
for use with the ϕ(x) function. In particular, this function has the Taylor series
ϕ(x) =

∑∞
i=0 x

i/(i + 1)!. Therefore the a priori error (defined just before Lemma 5)

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1431

2 4 6 8 10 12 14 16 18 20 22 2410−17

10−11

10−5

101

m

re
l.

er
ro

r
in
‖·
‖ 2

error a priori ‖L(m) − L(m−1)‖/‖L(m)‖

Fig. 6.5. Convergence behavior of Algorithm 2 and the a priori error estimate as well as the
heuristic early termination criterion for the matrix function ϕ(A). The error is measured in the
2-norm.

can be bounded as follows:

tm(x) =
∞∑
i=m

i

(i+ 1)!
xi−1

=
∞∑
i=m

xi−1

(i− 1)!

(
1

i+ 1

)

≤ 1
m+ 1

∞∑
i=m

xi−1

(i− 1)!

≤ 1
m+ 1

(
2η‖A‖m−1

2 e‖A‖2

(m− 1)!

)
.

The final inequality is obtained by applying Corollary 7. The results of our experiment
when using this a priori error bound are given in Figure 6.5.

As we can see, the behavior here is very similar to that observed for the matrix
exponential in Figure 6.4: the a priori error estimate tends to overestimate the number
of block Krylov steps required to reach the desired tolerance, whereas the simplistic
error bound from Algorithm 2 follows the true error in each iteration closely.

Experiment 3 (sparse test matrices). In this experiment we compare Algorithm 2
and the block algorithm for matrices of larger scale. We use examples from the
University of Florida Sparse Matrix Collection [4] and the MUFC Twitter matrix.1

From Table 6.1 we can see that the results for larger scale matrices are similar
to those seen in Experiment 1. We choose single precision as the desired accuracy,
which is achieved in all of the examples. In order to get an estimate for the error,
we compute a reference solution by calling the block algorithm with double precision
accuracy.

Some further comments are in order for the MUFC Twitter matrix, found in the
final row of Table 6.1. This matrix is of size 148918 × 148918 with 193032 nonzero

1Data provided under a Creative Commons licence by The University of Strathclyde and Bloom
Agency, http://www.mathstat.strath.ac.uk/outreach/twitter/mufc.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

http://www.mathstat.strath.ac.uk/outreach/twitter/mufc

A1432 PETER KANDOLF AND SAMUEL D. RELTON

Table 6.1
Relative error in the 2-norm and the time (in seconds) for various test matrices when aiming

for single precision accuracy.

Alg. 2 Block alg.
Matrix Time 2-norm err. Time 2-norm err. n

Gleich/minnesota 6.00e-02 3.90e-09 2.46e+00 3.19e-10 2642
FEMLAB/poisson2D 8.32e-03 4.93e-10 5.75e-02 9.33e-11 367

Pajek/USAir97 1.32e-02 2.73e-09 5.17e-02 1.64e-09 332
Gset/G45 5.31e-02 8.46e-09 4.32e-01 2.51e-10 1000

HB/gre 1107 1.36e-02 1.24e-09 5.08e-01 7.02e-10 1107
vanHeukelum/cage8 2.20e-02 4.83e-09 3.98e-01 1.42e-10 1015

MUFC Twitter 4.39e+00 1.16e-08 6.17e+00 1.40e-08 148918

Table 6.2
Relative errors and condition numbers errors when computing the exponential of large sparse

matrices using Algorithm 6 for the 2-norm and [5, Alg. 4.1] for the 1-norm.

Matrix 2-norm err. 2-norm cond u 1-norm err. 1-norm cond u
Gleich/minnesota 9.17e-11 1.11e-7 3.62e-11 3.18e-7

FEMLAB/poisson2D 4.34e-11 2.42e-8 4.01e-11 4.26e-8
Pajek/USAir97 9.14e-10 3.24e-7 7.68e-10 1.97e-6

Gset/G45 1.0 4.88e+4 1.0 5.48e-6
HB/gre 1107 1.46e-10 3.65e-8 1.09e-10 5.84e-8

vanHeukelum/cage8 3.29e-10 2.59e-7 1.25e-10 7.41e-7

entries, and therefore the rank-1 direction term matrix E in the Fréchet derivative
(which is dense) needs approximately 165.2 GB of storage. As a result, using the
expmv algorithm directly is not possible on a standard workstation. The result given
for the block algorithm in Table 6.1 for this matrix required some modification of the
expmv algorithm, allowing it to use only matrix-vector products.

Experiment 4 (condition numbers). Our final experiment shows how our algo-
rithm can be used to bound the condition number of computing eAb by combining
Algorithms 3 and 6. For each of the matrices in Table 6.1, minus the MUFC Twitter,
which was too large for the intermediate calculations during Code Fragment 9 to fit
in memory, we report the relative error obtained when comparing our new algorithm
to the exact solution and the estimated condition number (multiplied by the machine
epsilon u = 2−53) in Table 6.2. The exact solution is computed using variable pre-
cision arithmetic, as explained at the beginning of this section. In order to avoid
overflow, the matrices were scaled such that ‖A‖2 = 1, and the vectors b were chosen
to have elements sampled from a normal N(0, 1) distribution. In all cases we can see
that the relative error is bounded above by the condition number times u, meaning
that our method behaves in a forwards stable manner.

For comparison we have also included the 1-norm relative error and 1-norm con-
dition number, where the latter is computed via the Python code corresponding to
[5, Alg. 4.1].2 It is interesting to note that, for the extremely ill-conditioned matrix
“Gset/G45,” estimating the condition number with Algorithm 6 would inform the
user that the computed solution is untrustworthy, while the 1-norm algorithm returns
a condition number estimate that is orders of magnitude smaller than the observed
relative error. This discrepancy is likely due to the design choice mentioned by Dead-
man [5, p. 13] of choosing only a single set of parameters for computing all the matrix

2Download available at https://github.com/edvindeadman/fAbcond; accessed on 14.12.2015.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://github.com/edvindeadman/fAbcond

A BLOCK KRYLOV METHOD FOR Lf (A, E)b A1433

exponentials required by the algorithm: clearly this can lead to poor condition number
estimates in some cases.

7. Conclusions. We have derived a new method for computing the action of the
Fréchet derivative of a matrix function on a vector for low rank direction matrices E,
making use of block Krylov subspace approximations. After introducing the method,
we showed how one can obtain rigorous a priori error bounds to ensure that the
action of the Fréchet derivative is computed to sufficient accuracy. Our numerical
experiments confirm that our error bounds are effective in practice. Furthermore, we
observe that typically the size of the required Krylov subspace is much smaller than
the size of the original matrix. This allows the action of the Fréchet derivative to be
computed much more efficiently than by other currently used methods.

We have also shown how our algorithm can be used to efficiently estimate the
condition number of computing f(A)b in the 2-norm. The growing use of matrix
functions in a variety of areas within applied mathematics makes it vital to have
efficient condition number estimates available. Our experiments also show that our
condition number estimator can detect ill-conditioned problems, where the returned
solution is likely to be suspect, that are not detected by competing algorithms.

Looking towards the future, the block Krylov scheme used by our algorithms
is relatively basic at this stage. By incorporating data reuse, implicit restarting,
rational Krylov approximations, and other state-of-the-art techniques, it is likely that
the action of the Fréchet derivative could be computed even more efficiently. This
would have a dramatic impact on the computation of the condition number, for which
multiple Fréchet derivative computations are required.

REFERENCES

[1] A. H. Al-Mohy and N. J. Higham, Computing the action of the matrix exponential, with
an application to exponential integrators, SIAM J. Sci. Comput., 33 (2011), pp. 488–511,
https://doi.org/10.1137/100788860.

[2] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer, Comparison of software for
computing the action of the matrix exponential, BIT, 54 (2014), pp. 113–128, https:
//doi.org/10.1007/s10543-013-0446-0.

[3] M. Caliari, M. Vianello, and L. Bergamaschi, Interpolating discrete advection-diffusion
propagators at Leja sequences, J. Comput. Appl. Math., 172 (2004), pp. 79–99, https:
//doi.org/10.1016/j.cam.2003.11.015.

[4] T. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, 2011, http://www.
cise.ufl.edu/research/sparse/matrices/.

[5] E. Deadman, Estimating the condition number of f(A)b, Numer. Algorithms, 70 (2014),
pp. 287–308, https://doi.org/10.1007/s11075-014-9947-4.

[6] E. Estrada and D. J. Higham, Network properties revealed through matrix functions, SIAM
Rev., 52 (2010), pp. 696–714, https://doi.org/10.1137/090761070.

[7] E. Estrada, D. J. Higham, and N. Hatano, Communicability betweenness in complex net-
works, Phys. A, 388 (2009), pp. 764–774, https://doi.org/10.1016/j.physa.2008.11.011.

[8] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and op-
timal pole selection, GAMM Mitt., 36 (2013), pp. 8–31, https://doi.org/10.1002/gamm.
201310002.

[9] N. J. Higham, The Matrix Computation Toolbox, http://www.maths.manchester.ac.uk/
∼higham/mctoolbox.

[10] N. J. Higham, Functions of Matrices: Theory and Computation, SIAM, Philadelphia, PA,
2008, https://doi.org/10.1137/1.9780898717778.

[11] N. J. Higham and F. Tisseur, A block algorithm for matrix 1-norm estimation, with an
application to 1-norm pseudospectra, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1185–
1201, https://doi.org/10.1137/S0895479899356080.

[12] D. Hipp, M. Hochbruck, and A. Ostermann, An exponential integrator for non-autonomous
parabolic problems, Electron. Trans. Numer. Anal., 41 (2014), pp. 497–511.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.1137/100788860
https://doi.org/10.1007/s10543-013-0446-0
https://doi.org/10.1007/s10543-013-0446-0
https://doi.org/10.1016/j.cam.2003.11.015
https://doi.org/10.1016/j.cam.2003.11.015
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/
https://doi.org/10.1007/s11075-014-9947-4
https://doi.org/10.1137/090761070
https://doi.org/10.1016/j.physa.2008.11.011
https://doi.org/10.1002/gamm.201310002
https://doi.org/10.1002/gamm.201310002
http://www.maths.manchester.ac.uk/~higham/mctoolbox
http://www.maths.manchester.ac.uk/~higham/mctoolbox
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/S0895479899356080

A1434 PETER KANDOLF AND SAMUEL D. RELTON

[13] M. Hochbruck, C. Lubich, and H. Selhofer, Exponential integrators for large systems of
differential equations, SIAM J. Sci. Comput., 19 (1998), pp. 1552–1574, https://doi.org/
10.1137/S1064827595295337.

[14] M. Hochbruck and A. Ostermann, Exponential integrators, Acta Numer., 19 (2010), pp. 209–
286, https://doi.org/10.1017/S0962492910000048.

[15] D. L. Michels, G. A. Sobottka, and A. G. Weber, Exponential integrators for stiff elasto-
dynamic problems, ACM Trans. Graph., 33 (2014), pp. 7:1–7:20, https://doi.org/10.1145/
2508462.

[16] A. Ruhe, Implementation aspects of band Lanczos algorithms for computation of eigenvalues
of large sparse symmetric matrices, Math. Comp., 33 (1979), pp. 680–687, https://doi.
org/10.1090/S0025-5718-1979-0521282-9.

[17] Y. Saad, Analysis of some Krylov subspace approximations to the matrix exponential operator,
SIAM J. Numer. Anal., 29 (1992), pp. 209–228, https://doi.org/10.1137/0729014.

[18] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, PA, 2003,
https://doi.org/10.1137/1.9780898718003.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license

D
ow

nl
oa

de
d

08
/1

0/
17

 to
 1

29
.1

1.
77

.2
03

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
C

C
B

Y
 li

ce
ns

e

https://doi.org/10.1137/S1064827595295337
https://doi.org/10.1137/S1064827595295337
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1145/2508462
https://doi.org/10.1145/2508462
https://doi.org/10.1090/S0025-5718-1979-0521282-9
https://doi.org/10.1090/S0025-5718-1979-0521282-9
https://doi.org/10.1137/0729014
https://doi.org/10.1137/1.9780898718003

