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ACCELERATING THE SOLUTION OF LINEAR SYSTEMS BY
ITERATIVE REFINEMENT IN THREE PRECISIONS∗

ERIN CARSON† AND NICHOLAS J. HIGHAM‡

Abstract. We propose a general algorithm for solving a n×n nonsingular linear system Ax = b
based on iterative refinement with three precisions. The working precision is combined with possibly
different precisions for solving for the correction term and for computing the residuals. Via rounding
error analysis of the algorithm we derive sufficient conditions for convergence and bounds for the
attainable normwise forward error and normwise and componentwise backward errors. Our results
generalize and unify many existing rounding error analyses for iterative refinement. With single
precision as the working precision, we show that by using LU factorization in IEEE half precision as
the solver and calculating the residuals in double precision it is possible to solve Ax = b to full single
precision accuracy for condition numbers κ2(A) ≤ 104, with the O(n3) part of the computations
carried out entirely in half precision. We show further that by solving the correction equations by
GMRES preconditioned by the LU factors the restriction on the condition number can be weakened
to κ2(A) ≤ 108, although in general there is no guarantee that GMRES will converge quickly. Taking
for comparison a standard Ax = b solver that uses LU factorization in single precision, these results
suggest that on architectures for which half precision is efficiently implemented it will be possible to
solve certain linear systems Ax = b up to twice as fast and to greater accuracy. Analogous results
are given with double precision as the working precision.

Key words. iterative refinement, linear system, multiple precision, mixed precision, rounding
error analysis, backward error, forward error, GMRES, preconditioning

AMS subject classifications. 65G50, 65F10,

1. Introduction. Iterative refinement is a method for improving an approxi-
mate solution y to a linear system Ax = b by computing the residual r = b − Ay,
solving the correction equation Ad = r, forming the update y ← y + d, and repeat-
ing these steps as necessary. We consider a general iterative refinement algorithm
that includes a variety of existing ones as special cases. The algorithm contains three
precisions:

• u is the precision at which the data A, b and the solution x are stored (the
working precision),

• uf is the precision at which the factorization of A is computed,
• ur is the precision at which residuals are computed.

The precisions are assumed to satisfy

(1.1) ur ≤ u ≤ uf .

The algorithm also contains a fourth precision:
• us is the precision at which the correction equation is (effectively) solved,

with u ≤ us ≤ uf .
Whereas u, uf , and ur are intended to be possibly different precisions supported by
the computing environment (ideally the hardware), us is essentially a parameter that
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describes how accurately the correction equation is solved; it will take the value uf
or u in the cases of interest. The precise meaning of us is explained below.

Algorithm 1.1. Let the nonsingular matrix A ∈ Rn×n and b ∈ Rn be given
in precision u. This algorithm uses iterative refinement to generate a sequence of
approximations xi, all stored in precision u, to the solution of Ax = b.

1 Solve Ax0 = b in precision uf and store x0 at precision u.
2 for i = 0:∞
3 Compute ri = b−Axi at precision ur and round ri to precision us.
4 Solve Adi = ri at precision us and store di at precision u.
5 xi+1 = xi + di at precision u.
6 end

Note that a different solver can be used on step 1 than on step 4. In practice,
these solvers will be related, so although the precision uf does not appear in the loop,
information computed in step 1 at precision uf will be used in step 4.

Algorithm 1.1 includes as special cases both old and more recent forms of iterative
refinement, as we now explain.

In traditional iterative refinement the solver is LU factorization and residuals
are computed at twice the working precision, which corresponds to uf = us = u
and ur = u2. This form of iterative refinement was programmed by Wilkinson in
1948 [35] and used at that time by Wilkinson and his colleagues on desk calculating
machines and Hollerith punched card machines [13], [37]. It was in common use up
until the 1970s, owing to the fact that inner products could be cheaply accumulated
at twice the working precision on many computers of that era. Early error analyses
are given by Wilkinson for fixed point arithmetic [36] and Moler [26] for floating point
arithmetic.

In fixed precision refinement all computations are at the same precision: uf =
us = u = ur. This form of refinement started to be considered in the 1970s and was
analyzed by Jankowski and Woźniakowski [21] for a general solver and by Skeel [31]
for LU factorization. Higham [16] extended Skeel’s analysis to a general solver and
in [17] gave a further extension to allow for residuals computed in extra precision.
LAPACK [3] implements fixed precision iterative refinement.

In the 2000s iterative refinement attracted renewed interest because on modern
computer architectures single precision arithmetic is usually at least twice as fast as
double precision arithmetic. With the base precision u equal to double precision, uf
and us equal to single precision, ur = u, and a solver based on LU factorization, the
most expensive part of the computation is done entirely in single precision. This usage
is proposed and analyzed by Langou et al. [23] and has been exploited extensively by
Dongarra and his coauthors; see [1, sec. 9] for a recent overview and further references.

Error analyses of the methods above all require A to be safely bounded away
from singularity relative to the working precision. Carson and Higham [9] give a new
forward error analysis of iterative refinement that identifies a mechanism that allows
accurate solutions to be obtained to systems for which A has condition number as
large as the order of the reciprocal of the unit roundoff. Their analysis requires the
update equation in line 4 of Algorithm 1.1 to be solved with relative error less than
1, and they achieve this by the use of GMRES preconditioned with the LU factors.

Table 1.1 summarizes the main existing floating point error analyses. In the table
we categorize a forward error bound as componentwise if it employs the condition
numbers cond(A) or cond(A, x) defined in (2.2) below and normwise if it only employs
κ(A) defined in (2.1). A backward error analysis is classed as componentwise or
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Table 1.1
Summary of existing rounding error analyses for iterative refinement in floating point arithmetic

indicating (a) whether the analyses apply to LU factorization only or to an arbitrary solver, (b)
whether the backward or forward error analyses are componentwise (“comp”) or normwise (“norm”),
and (c) the assumptions on the precisions uf , us, u, ur in Algorithm 1.1 (uf = u and us = uf
unless otherwise stated).

Forward Backward
Year Solver error error Precisions

Moler [26] 1967 LU norm – u ≥ ur
Stewart [33] 1973 LU norm – u ≥ ur
Jankowski et al. [21] 1977 arb. norm norm u = ur
Skeel [31] 1980 LU comp comp u ≥ ur
Higham [16] 1991 arb. comp comp u = ur
Higham [17], [18] 1997 arb. comp comp u ≥ ur
Tisseur [34] 2001 arb. norm norm u ≥ ur
Langou et al. [23] 2006 LU norm norm uf ≥ u = ur
Carson and Higham [9] 2017 arb. comp – u ≥ ur
This work 2017 arb. comp comp, norm uf ≥ us ≥ u ≥ ur

Table 1.2
Parameters for four IEEE arithmetic precisions.

Type Size Range Unit roundoff u

half 16 bits 10±5 2−11 ≈ 4.9× 10−4

single 32 bits 10±38 2−24 ≈ 6.0× 10−8

double 64 bits 10±308 2−53 ≈ 1.1× 10−16

quadruple 128 bits 10±4932 2−113 ≈ 9.6× 10−35

normwise according as it bounds the absolute value or the norm of the residual vector
(we do not regard a componentwise analysis as implying a normwise one, as simply
taking norms in a componentwise bound does not necessarily yield the strongest
normwise result).

Half precision (16 bit) floating point arithmetic, defined as a storage format in
the 2008 revision of the IEEE standard [20], is now starting to become available in
hardware, for example in the NVIDIA P100 and V100 GPUs and the AMD Radeon
Instinct MI25 GPU, on which it runs twice as fast as single precision arithmetic
with a proportional saving in energy consumption. It is therefore now of interest
to consider iterative refinement with uf corresponding to half precision. Table 1.2
summarizes key parameters for four IEEE arithmetic precisions. Table 1.3 presents
another view of iterative refinement, from the point of view of different ways in which
it can be implemented in hardware-based IEEE arithmetic. We note that another
context where low precision arithmetic is of interest is the hybrid iterative refinement
method of Douglas, Mandel, and Miranker [11], which solves the correction equation
using low-precision analog circuitry and computes residuals using higher-precision
digital circuitry and effectively has ur = u and uf > u.

The goal of this work is to develop new iterative refinement algorithms based on
three precisions. We show that by using LU factorization in IEEE half precision as the
solver, single precision for the working precision, and double precision for the compu-
tation of the residuals, it is possible to solve Ax = b to full single precision accuracy
for condition numbers κ2(A) ≤ 104, with the O(n3) part of the computations carried
out entirely in half precision. We show further that by using GMRES preconditioned
by the LU factors as the solver on step 4, the restriction on the condition number can
be weakened to κ2(A) ≤ 108. These results provide the ability to solve Ax = b at up
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Table 1.3
Different scenarios for iterative refinement in IEEE arithmetic. The columns represent different

choices for uf , u, and ur, where in the notation of Algorithm 1.1 the data is stored at precision
u, the solves in steps 1 and 4 are carried out in precision uf = us, and residuals are computed at
precision ur. The last column indicates whether any existing backward or forward error analysis is
applicable to this situation when LU factorization is used as the solver.

Precision
Usage Half Single Double Existing analysis?

Traditional data, solve residual
√

Traditional data, solve, residual
√

2000s solve data, residual
√

New solve data, residual
√

New solve data residual ×
New solve data, residual

√

to twice the speed and the same accuracy as by traditional iterative refinement with
LU factorization in single precision and double precision residuals.

In order to understand the behavior of the new algorithms we provide a thorough
rounding error analysis of Algorithm 1.1 in its full generality. In doing so, we

• provide rigorous componentwise forward error bounds and both component-
wise and normwise backward error bounds,

• make minimal assumptions about the solvers used in steps 1 and 4, so that
the analysis is applicable to all the situations mentioned above, as well as to
others that can be envisaged,

• treat the precisions uf , us, u, and ur as independent parameters.

Our results generalize and unify most existing analyses, including the recent forward
error analysis of [9]. We make one omission: we do not try to prove a “one step
of iterative refinement in fixed precision implies componentwise backward stability”
result [16], [31], which is of lesser practical importance. However, such a result can
be obtained by extending our analysis, under further assumptions on the solver.

Iterative refinement is often used as a way to restore stability when a factoriza-
tion has been computed in a way that preserves structure and reduces cost at the
expense of potential stability, as for example with sparse matrices [7], [38] or symmet-
ric quasidefinite matrices [14]. Our analysis can be applied to these situations, since
we make very general assumptions on the solver.

Our attention is focused exclusively on iterative refinement as described in Al-
gorithm 1.1. We do not consider here recursive (also known as binary cascade, or
k-fold) iterative refinement, in which each solve on step 4 of the algorithm is carried
out by a recursive application of iterative refinement, possibly with increasing pre-
cision [22], [32]. We also do not consider hybrid schemes, such as that in [8], that
combine iterative refinement with some other iterative method in such a way that the
basic structure of the algorithm is changed.

2. Preliminaries. We now summarize our notation and our assumptions on
the solver. We will use the standard model of floating point arithmetic [18, sec. 2.2].
Given an integer k, we define

γk = ku/(1− ku).

A superscript on γ will denote that u carries that superscript as a subscript; thus, for
example, γrk = kur/(1− kur).
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For a nonsingular matrix A and a vector x, we need the normwise condition
number

(2.1) κ∞(A) = ‖A−1‖∞‖A‖∞

and the componentwise condition numbers

(2.2) cond(A) = ‖ |A−1||A| ‖∞, cond(A, x) =
‖ |A−1||A||x| ‖∞

‖x‖∞
,

where |A| = (|aij |). These condition numbers measure the sensitivity of the solution
of Ax = b to small normwise and componentwise perturbations, respectively [18,
chap. 7].

Inequalities between vectors or matrices are interpreted componentwise. We de-
note by flr(·) the evaluation of the argument of flr in precision ur.

We assume that the solver used in step 4 of Algorithm 1.1 produces a computed
solution d̂i to Adi = r̂i satisfying three conditions:

d̂i = (I + usEi)di, us‖Ei‖∞ < 1,(2.3)

‖r̂i −Ad̂i‖∞ ≤ us(c1‖A‖∞‖d̂i‖∞ + c2‖r̂i‖∞),(2.4)

|r̂i −Ad̂i| ≤ usGi|d̂i|,(2.5)

where Ei, c1, c2, and Gi are functions of n, A, r̂i, and us. The first assumption simply
says that the normwise relative error ‖d̂i−di‖∞/‖di‖∞ is bounded by a multiple of us
and is less than 1. The second assumption says that the normwise relative backward
error η(d̂i) is of order at most max(c1, c2)us, where for an approximate solution y to
Ax = b, η(y) is given by [18, Thm. 7.1], [30]

η(y) := min{ ε : (A+∆A)y = b+∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖ }

=
‖b−Ay‖

‖A‖ ‖y‖+ ‖b‖
.

The third condition will be needed in order to analyze the componentwise relative
backward error, which for an approximate solution y to Ax = b is given by [18,
Thm. 7.3], [29]

ω(y) := min{ε : (A+∆A)y = b+∆b, |∆A| ≤ ε|A|, |∆b| ≤ ε|b|}(2.6)

= max
i

|b−Ay|i
(|A||y|+ |b|)i

,(2.7)

where ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise. Table 2.1 summarizes
the sizes of c1, c2, Ei, and Gi in (2.3)–(2.5) for the solvers that will be considered in
sections 7 and 8.

We present the rounding error analysis of Algorithm 1.1 in the next three sec-
tions, which provide forward error bounds, normwise backward error bounds, and
componentwise bounds, respectively. The importance of scaling to avoid underflow
and overflow when half precision is used is explained in section 6. In section 7 we
specialize the results to the case where the solver is LU factorization and explain
the numerical properties of iterative refinement in three precisions: half, single, and
double. In section 8 we use GMRES preconditioned by the LU factors as the solver
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Table 2.1
Summary of the sizes of the quantities in assumptions (2.3)–(2.5) for solution of the correction

equation with LU factorization (section 7) and GMRES-IR (section 8). Note that f(n) = O(n2).

us‖Ei‖∞ us max(c1, c2) us‖Gi‖∞

IR w/LU fact. 3nuf‖|A−1||L̂||Û |‖∞ 3nuf
‖|L̂||Û |‖∞
‖A‖∞

3nuf‖|L̂||Û |‖∞
GMRES-IR uf(n)(1 + γf

nκ∞(A))2 O(u) O(u‖A‖∞)

and show that the resulting algorithm is able to solve accurately a wider range of
problems than algorithms whose solver is based on LU factorization. In section 9
we compare some of our new forms of iterative refinement with the single precision–
double precision form proposed by by Langou et al. [23]. Numerical experiments are
given in section 10 that test the predictions of the analysis. Conclusions are given in
section 11.

3. Forward error analysis. For our forward error analysis of Algorithm 1.1 we
will need the following lemma, which we state for a general p-norm (1 ≤ p ≤ ∞).

Lemma 3.1. Let w, z ∈ Rn. Then w = Cz for a matrix C ∈ Rn×n with ‖C‖p =
‖w‖p/‖z‖p.

Proof. Let g be the vector dual to z with respect to the p-norm, so that gT z = 1
and ‖g‖q‖z‖p = 1, where 1/p + 1/q = 1 [18, sec. 6.1]. Setting C = wgT , we have
Cz = w and ‖C‖p = ‖w‖p‖g‖q = ‖w‖p/‖z‖p.

In the analysis we will need to bound the vector b−Ax̂i = A(x− x̂i) in terms of
x− x̂i. We can write

(3.1) ‖A(x− x̂i)‖∞ = µi‖A‖∞‖x− x̂i‖∞,

where µi satisfies

κ∞(A)−1 ≤ µi ≤ 1.

We also have the componentwise bound

|A(x− x̂i)| ≤ |A||x− x̂i|.

We can capture both inequalities by writing

b−Ax̂i = A(x− x̂i) = Ci(x− x̂i),

where

|Ci| ≤ |A|,(3.2a)

‖Ci‖∞ =
‖A(x− x̂i)‖∞
‖x− x̂i‖∞

= µi‖A‖∞,(3.2b)

the equalities following from Lemma 3.1 and (3.1). By using the matrices Ci we can
derive a general result that can be expressed in terms of either componentwise or
normwise condition numbers.

Consider first the computation of ri. There are two stages. First, ŝi = flr(b −
Ax̂i) = b−Ax̂i +∆si is formed in precision ur, so that

|∆si| ≤ γrp(|b|+ |A||x̂i|),
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where p is the maximum number of nonzeros in any row of [A b] [18, sec. 3.5]; thus
p = n + 1 for a dense matrix A and vector b. Second, the residual is rounded to
precision us, so r̂i = fls(ŝi) = ŝi + fi, where |fi| ≤ us|ŝi|. Hence

(3.3) r̂i = b−Ax̂i +∆ri, |∆ri| ≤ us|b−Ax̂i|+ (1 + us)γ
r
p(|b|+ |A||x̂i|).

We rewrite the bound for ∆ri as

(3.4) |∆ri| ≤ us|Ci||x− x̂i|+ (1 + us)γ
r
p(|b|+ |A||x̂i|),

where Ci satisfies (3.2).
For step 4 of Algorithm 1.1 we have, by (2.3),

d̂i −A−1r̂i = usEiA
−1r̂i (us‖Ei‖∞ ≤ 1)

= usEiA
−1(b−Ax̂i +∆ri)

= usEi(x− x̂i +A−1∆ri).

Hence, using (3.4),

|d̂i −A−1r̂i| ≤ us|Ei|
(
|x− x̂i|+ |A−1|

[
us|Ci||x− x̂i|+ (1 + us)γ

r
p(|b|+ |A||x̂i|)

])
≤ us|Ei|(I + us|A−1||Ci|)|x− x̂i|+ us(1 + us)γ

r
p |Ei||A−1|(|b|+ |A||x̂i|).(3.5)

For step 5, using the variant [18, eq. (2.5)] of the rounding error model we have

(3.6) x̂i+1 = x̂i + d̂i +∆xi, |∆xi| ≤ u|x̂i+1|.

Hence, using (3.3),

x̂i+1 = x̂i +A−1r̂i + d̂i −A−1r̂i +∆xi

= x+A−1∆ri + (d̂i −A−1r̂i) +∆xi.(3.7)

Therefore, by (3.4) and (3.5),

|x̂i+1 − x| ≤ us|A−1||Ci||x− x̂i|+ (1 + us)γ
r
p |A−1|(|b|+ |A||x̂i|)

+ us|Ei|
(
I + us|A−1||Ci|

)
|x− x̂i|

+ us(1 + us)γ
r
p |Ei||A−1|(|b|+ |A||x̂i|) + u|x̂i+1|

= us
(
(I + us|Ei|)|A−1||Ci|+ |Ei|

)
|x− x̂i|

+ (1 + us)γ
r
p(I + us|Ei|)|A−1|(|b|+ |A||x̂i|) + u|x̂i+1|.

We summarize the analysis in a theorem.
Theorem 3.2. Let Algorithm 1.1 be applied to a linear system Ax = b, where

A ∈ Rn×n is nonsingular, and assume the solver used on step 4 satisfies (2.3). For
i ≥ 0 the computed iterate x̂i+1 satisfies

|x− x̂i+1| ≤ Fi|x− x̂i|+ fi,

where

Fi = us(I + us|Ei|)|A−1||Ci|+ us|Ei|,
fi = (1 + us)γ

r
p(I + us|Ei|)|A−1|(|b|+ |A||x̂i|) + u|x̂i+1|
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and

‖Fi‖∞ ≤ 2us min
(
cond(A), κ∞(A)µi

)
+ us‖Ei‖∞,(3.8)

‖fi‖∞ ≤ 2(1 + us)γ
r
p‖|A−1||A|(|x|+ |x̂i|)‖∞ + u‖x̂i+1‖∞.

We note that both terms are needed in the expression min(cond(A), κ∞(A)µi) in
(3.8). When A is diagonal, for example, the first term in the min is the smaller, since
cond(A) = 1, whereas the second term is the smaller when cond(A) ≈ κ∞(A) � 1
and µi � 1.

We can now state a result about the convergence and attainable accuracy of
Algorithm 1.1.

Corollary 3.3. Under the conditions of Theorem 3.2, as long as

(3.9) φi = 2us min
(
cond(A), κ∞(A)µi

)
+ us‖Ei‖∞

is sufficiently less than 1, the forward error is reduced on the ith iteration by a factor
approximately φi until an iterate x̂ is produced for which

(3.10)
‖x− x̂‖∞
‖x‖∞

. 4pur cond(A, x) + u.

When us = u this result can be compared with two earlier results for general
solvers. It is stronger than [17, Thms. 3.1, 3.2], [18, Thms. 12.1, 12.2] because of the
presence of the term κ∞(A)µi, whose significance we will explain in section 8. It is
also stronger than [9, Thm. 2.1], which does not have the cond(A) term in (3.9).

Note that φi in (3.9) depends only on us. This means that the rate of convergence
of iterative refinement depends only on the effective precision of the solves, and is not
affected by the precision at which the data is stored or the residual is computed. By
contrast, the limiting precision (3.10) depends on ur and u, but not on us.

Note also that the precision uf used for the initial solve in step 1 does not appear
in Theorem 3.2 or Corollary 3.3. However, uf does affect the accuracy of x̂0 and
hence the number of iterations required.

4. Normwise backward error analysis. Now we turn our attention to the
behavior of the normwise backward error.

Multiplying (3.7) by A gives

(4.1) Ax̂i+1 − b = ∆ri +Ad̂i − r̂i +A∆xi.

Writing hi = r̂i −Ad̂i, by assumption (2.4) we have

‖hi‖∞ ≤ us(c1‖A‖∞‖d̂i‖∞ + c2‖r̂i‖∞)

≤ us(c1‖A‖∞‖A−1‖∞(‖r̂i‖∞ + ‖hi‖∞) + c2‖r̂i‖∞),

which, assuming c1κ∞(A)us < 1, gives

‖hi‖∞ ≤ us
c1κ∞(A) + c2

1− c1κ∞(A)us
‖r̂i‖∞.
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Hence, from (4.1), using (3.6) and two invocations of (3.3),

‖b−Ax̂i+1‖∞ ≤ us‖b−Ax̂i‖∞ + (1 + us)γ
r
p(‖b‖∞ + ‖A‖∞‖x̂i‖∞)

+ us
c1κ∞(A) + c2

1− c1κ∞(A)us
‖r̂i‖+ u‖A‖∞‖x̂i+1‖∞

≤ us
(

1 + (1 + us)
c1κ∞(A) + c2

1− c1κ∞(A)us

)
‖b−Ax̂i‖∞

+

(
1 +

us(c1κ∞(A) + c2)

1− c1κ∞(A)us

)
(1 + us)γ

r
p(‖b‖∞ + ‖A‖∞‖x̂i‖∞)

+ u‖A‖∞‖x̂i+1‖∞.

We summarize our findings in the next two results.
Theorem 4.1. Let Algorithm 1.1 be applied to a linear system Ax = b with a

nonsingular matrix A ∈ Rn×n satisfying c1κ∞(A)us < 1, and assume the solver used
on step 4 satisfies (2.4). Then for i ≥ 0 the computed iterate x̂i+1 satisfies

‖b−Ax̂i+1‖∞ ≤ αi‖b−Ax̂i‖∞ + βi,

where

αi = us

(
1 + (1 + us)

c1κ∞(A) + c2
1− c1κ∞(A)us

)
,

βi =

(
1 +

us(c1κ∞(A) + c2)

1− c1κ∞(A)us

)
(1 + us)γ

r
p(‖b‖∞ + ‖A‖∞‖x̂i‖∞) + u‖A‖∞‖x̂i+1‖∞.

Corollary 4.2. Under the conditions of Theorem 4.1, if φ = (c1κ∞(A) + c2)us
is sufficiently less than 1 then the residual is reduced on each iteration by a factor
approximately φ until

‖b−Ax̂i‖∞ . γrp(‖b‖∞ + ‖A‖∞‖x̂i−1‖∞) + u‖A‖∞‖x̂i‖∞.

Under the conditions of the corollary, making the reasonable assumption that
‖x̂i−1‖∞ ≈ ‖x̂i‖∞ and using ur ≤ u, we have, ultimately,

(4.2) ‖b−Ax̂i‖∞ . pu(‖b‖∞ + ‖A‖∞‖x̂i‖∞).

In other words, η(x̂i) . pu, that is, x̂i is a backward stable solution to the working
precision.

Early error analyses of iterative refinement did not consider the residual, because
when the solver is LU factorization with partial pivoting the residual of the original
computed solution is already small, assuming there is no large element growth in the
factorization. Starting with the work of Jankowski and Woźniakowski [21], it was
appreciated that iterative refinement could cure instability in the solver, even in fixed
precision. Our analysis shows this clearly: instability in the solver is captured by
large values of c1 and c2 in (2.4), but as long as (c1κ∞(A) + c2)us is sufficiently less
than 1, Corollary 4.2 guarantees that iterative refinement will yield a small backward
error.

Note that there is little or no benefit to the componentwise backward error of
computing residuals at extra precision, since αi in Theorem 4.1 is independent of ur
and the limiting residual is no smaller when ur < u.
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5. Componentwise backward error analysis. We now determine conditions
under which Algorithm 1.1 achieves a small componentwise relative backward error.

From (3.6) we have

(5.1) |x̂i| ≤ (1 + u)|x̂i+1|+ |d̂i|.

Using this inequality, along with assumption (2.5), (3.3), and (3.6) in (4.1), gives

|b−Ax̂i+1| ≤ us|b−Ax̂i|+ (1 + us)γ
r
p(1 + u)(|b|+ |A||x̂i+1|)

+ Z1|d̂i|+ u|A||x̂i+1|,(5.2)

where

(5.3) Z1 = usGi + (1 + us)γ
r
p |A|.

From (2.5), using (3.3) and (5.1),

|d̂i| ≤ |A−1|(|r̂i|+ usGi|d̂i|)

≤ |A−1|
[
(1 + us)|b−Ax̂i|+ (1 + us)γ

r
p(|b|+ |A||x̂i|) + usGi|d̂i|

]
≤ |A−1|

[
(1 + us)|b−Ax̂i|+ (1 + us)(1 + u)γrp(|b|+ |A||x̂i+1|)

]
+ |A−1|Z1|d̂i|.

Premultiplying by Z1 gives

Z1|d̂i| ≤ Z1|A−1|
[
(1+us)|b−Ax̂i|+(1+us)(1+u)γrp(|b|+ |A||x̂i+1|)

]
+Z1|A−1|Z1|d̂i|,

that is,

(I −Z1|A−1|)Z1|d̂i| ≤ Z1|A−1|
[
(1 + us)|b−Ax̂i|+ (1 + us)(1 + u)γrp(|b|+ |A||x̂i+1|)

]
.

Solving for Z1|d̂i|, we obtain

(5.4) Z1|d̂i| ≤M1Z1|A−1|
[
(1 + us)|b−Ax̂i|+ (1 + us)(1 + u)γrp(|b|+ |A||x̂i+1|)

]
,

where

(5.5) M1 = (I − Z1|A−1|)−1,

and if we assume that ‖Z1|A−1| ‖∞ ≤ 1/2 then M1 exists, has nonnegative entries,
and satisfies ‖M1‖∞ ≤ 2. Substituting (5.4) in (5.2) gives

|b−Ax̂i+1| ≤
(
usI + (1 + us)M1Z1|A−1|

)
|b−Ax̂i|

+ (1 + us)(1 + u)γrp(I +M1Z1|A−1|)(|b|+ |A||x̂i+1|) + u|A||x̂i+1|.

We obtain the following result.
Theorem 5.1. Let Algorithm 1.1 be applied to a linear system Ax = b with a

nonsingular matrix A ∈ Rn×n and assume the solver used on step 4 satisfies (2.5).
Assume also that

(5.6) us‖Gi|A−1| ‖∞ + (1 + us)γ
r
p cond(A−1) ≤ 1/2

for all i. Then for i ≥ 0 the computed iterate x̂i+1 satisfies

|b−Ax̂i+1| ≤Wi|b−Ax̂i|+ yi,
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where

Wi = usI + (1 + us)M1Z1|A−1|,
yi = (1 + us)(1 + u)γrp(I +M1Z1|A−1|)(|b|+ |A||x̂i+1|) + u|A||x̂i+1|,

where Z1 and M1 are defined in (5.3) and (5.5), respectively.
To interpret the theorem, note first that M1 = I +O(us), so

Wi . usI +
(
usGi + γrp |A|

)
|A−1|,

which implies

(5.7) ‖Wi‖∞ . us + us‖Gi|A−1| ‖∞ + γrp cond(A−1),

and so ‖Wi‖∞ < 1 in view of (5.6). Note that we can expect Gi ≥ |A| in prac-
tice, so the dominant term in this bound will be us‖Gi|A−1| ‖∞. We conclude that
‖Wi‖∞ � 1 if the solver is not too unstable and A is not too ill conditioned relative
to precision us.

In the limit the yi term dominates, but it is not a scalar multiple of |A||x̂i+1|+ |b|.
This is not a problem if we wish to take norms and use this analysis to obtain a bound
for the normwise backward error that exploits the more descriptive bound (2.5). In
order to bound ω(x̂i+1) we need a simple lemma [17, Lem. 1.2].

Lemma 5.2. For A ∈ Rn×n and x ∈ Rn we have

|A||x| ≤ ‖A‖∞ξ(x)|x|,

where ξ(x) = maxj |xj |/minj |xj |, with xj denoting the jth component of x.
Using the lemma we have

|yi| . γrp
(
1 + ‖ (usGi + γrp |A|)|A−1| ‖∞

)
× ξ(|b|+ |A||x̂i+1|)(|b|+ |A||x̂i+1|) + u|A||x̂i+1|.

Hence, ultimately, the componentwise relative backward error of xi+1 satisfies

(5.8) ω(x̂i+1) . γrp
(
1 + us‖Gi|A−1| ‖∞ + γrp cond(A−1)

)
ξ(|b|+ |A||x̂i+1|) + u.

This bound will be of order u as long as the solver is not too unstable, A is not too
ill conditioned, and ξ(|b|+ |A||x̂i+1|) is not too large. The latter condition essentially
requires the vector |b|+ |A||x| to be not too badly scaled, which is a natural require-
ment, because when |b| + |A||x| has a zero component the problem of computing a
solution with a small componentwise relative backward error is ill posed; see [5], [18,
p. 241].

Table 5.1 summarizes the sufficient conditions for convergence and the bounds
on the limiting forward error and backward errors derived in this section and the
previous two sections.

6. Scaling. Our analysis makes no assumptions on the floating point arithmetic
other than that the three precisions obey the standard model and satisfy (1.1). As
is usual in rounding error analyses we have ignored the possibility of underflow and
overflow. In general, this is reasonable, but if we take uf to be a low precision,
specifically if uf is IEEE half precision, then underflow or overflow is quite likely
in step 4 of Algorithm 1.1, since the range of half precision numbers is only 10±5.
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Table 5.1
Summary of the results of sections 3–5: conditions for convergence and the limiting size of the

forward error, normwise backward error, and componentwise backward error.

Error Convergence condition Bound on limiting value

Forward 2us min(cond(A), κ∞(A)µi)
+ us‖Ei‖∞ < 1

4pur cond(A, x) + u

Normwise backward (c1κ∞(A) + c2)us < 1 pu
Componentwise backward us‖Gi|A−1| ‖∞ + (1 + us)

× γrp cond(A−1) ≤ 1/2
γrp(1 + us‖Gi|A−1|‖∞ + γrp cond(A−1))
× ξ(|b|+ |A||x|) + u

In this case it is important to incorporate scaling in step 4. When the solver is
LU factorization we can use any scheme for avoiding overflow in solving triangular
systems. One such scheme is implemented in the LAPACK subroutine xLATRS, which
performs scaling based on a coarse bound on the solution size to reliably avoid overflow
[4], [10]. Here we propose a simple scaling that can be used with any solver, though
it may not be optimal for any given solver. We replace steps 4 and 5 of Algorithm 1.1
by

4 θ = ‖ri‖∞, r̃i = ri/θ. Solve Adi = r̃i at precision us and store di at
precision u.

5 xi+1 = xi + θdi at precision u.
Since ‖r̃i‖∞ = 1, we have 1/‖A‖∞ ≤ ‖di‖∞ ≤ ‖A−1‖∞, so this scaling avoids the
largest element of di overflowing or underflowing as long as 1/‖A‖∞ does not underflow
and ‖A−1‖∞ does not overflow.

7. Iterative refinement with LU factorization. We now explore the conse-
quences of the results of our error analysis for the standard form of iterative refinement
based on LU factorization. We recover known results and, in subsection 7.3, obtain
new results for iterative refinement in three precisions.

Suppose that the solve on step 1 of Algorithm 1.1 is carried out by LU factorization
with an appropriate form of pivoting and that the solves on step 4 are done with the
LU factors. Throughout this section we take us = uf . For notational simplicity we
assume that any necessary row or column interchanges have been applied to A before
the factorization starts, so that the factorization is A = LU .

Standard backward error analysis shows that the solution to Ay = c computed at
precision uf satisfies

(7.1) (A+∆A)ŷ = c, |∆A| ≤ γf3n|L̂||Û |,

where L̂ and Û are the computed LU factors [18, Thm. 9.4]. Hence we can take

us|Ei| ≈ 3nuf |A−1||L̂||Û | in (2.3). Since, from [18, Thm. 9.3] it follows that |A| ≤
(1+γfn)|L̂||Û |, the Ei term in (3.9) will dominate, and so in Corollary 3.3 we can take

(7.2) φ ≡ φi = 3nuf‖ |A−1||L̂||Û | ‖∞ & 3nuf cond(A).

Using [18, Lem. 9.6] it is possible to obtain a bound of the form φ ≤ f(n)ρnuf κ∞(A),
where f is a cubic polynomial and ρn is the growth factor for the LU factorization.

In order to be sure that iterative refinement converges, and does so at a rea-
sonable rate, we need φ � 1 and this is assured if A is not too ill conditioned and
the factorization is not too unstable with respect to the precision uf at which the
factorization and substitutions are carried out.

We now consider three different scenarios for the three precisions uf , u, and ur.
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7.1. Traditional refinement with residuals in extra precision. Consider
the case where uf = u and ur = u2, which corresponds to traditional iterative re-
finement with residuals calculated at twice the working precision. Here, the limiting
accuracy is, from (3.10),

(7.3) 4pu2 cond(A, x) + u ≤ 4pu cond(A) · u+ u ≤
(

4
3φ+ 1

)
u,

so as long as φ in (7.2) is sufficiently less than 1 we are assured of achieving a solution
with normwise relative error of order u. We therefore recover a stronger version of
the well known result first obtained by Moler [26], with cond(A) in place of κ∞(A) in
the convergence condition.

7.2. Fixed precision refinement. With uf = u and ur = u we have fixed pre-
cision iterative refinement, and φ is unchanged from the previous case. The difference
is that the limiting accuracy is now

(7.4) 4pu cond(A, x) + u ≈ 4pu cond(A, x).

Normwise and componentwise backward stability are shown by (4.2) and (5.8), under
the conditions stated there. As originally shown by Skeel [31], the benefit of fixed
precision iterative refinement for the forward error is that it gives a limiting accuracy
of order cond(A, x)u instead of order κ∞(A)u for the original computed solution, and
this is irrespective of any instability in the factorization as long as φ � 1 continues
to hold.

7.3. Mixed precision refinement with lower precision solves. The third
scenario of interest is where we compute the LU factorization and carry out the
substitutions at less than the working precision. We consider four particular cases,
all of which yield new results. We show the relevant choices of IEEE precisions, in
the form “(uf , u, ur).”

Case 1: u = ur = u2
f (half, single, single) or (single, double, double). This form

of refinement has been analyzed and exploited by Langou et al. [23], and is also used
by Arioli and Duff [6] and, for symmetric systems, by Hogg and Scott [19]. From
(7.2), convergence is assured if

(7.5) φ = 3n‖ |A−1||L̂||Û | ‖∞u1/2 < 1,

and assuming this condition holds the limiting accuracy is, from (3.10) and (7.5),

4pu cond(A, x) + u ≤ u1/2 · 4pu1/2 cond(A) . 4
3φu

1/2 < 4
3u

1/2,

which is stronger than the limiting accuracy proportional to κ∞(A)u obtained in
[23]. Compared with fixed precision refinement we have a more stringent convergence
requirement and the same limiting accuracy, but now the O(n3) flops part of the
computation is done at precision u1/2, which is a significant computational saving.
The normwise and componentwise backward errors both reach order u under the
assumptions that A is not too ill conditioned or the factorization too unstable with
respect to precision u1/2, and also that |A||x|+ |b| is not too badly scaled in the case
of the componentwise backward error.

Case 2: ur = u2, u = u2
f (half, single, double) or (single, double, quad). Now we

have three precisions in play—a case for which there is no existing analysis. Conver-
gence is again assured if (7.5) holds, and if it does we now achieve a normwise relative
error of order

4pu2 cond(A, x) + u ≤ u3/2 · 4p cond(A, x)u1/2 + u . 4
3u

3/2 + u ≈ u.
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Table 7.1
Different choices of IEEE standard precision for Algorithm 1.1 with LU factorization (assumed

numerically stable) as the solver (and with us = uf ). The fourth column shows a bound on κ∞(A)
that must hold for the analysis to guarantee convergence (under suitable conditions described in the
text) with limiting backward or forward errors of the orders shown in the final three columns.

Backward error
uf u ur κ∞(A) normwise comp’wise Forward error

half single single 104 single single cond(A, x) · 10−8

half single double 104 single single single
half double double 104 double double cond(A, x) · 10−16

half double quad 104 double double double

single single single 108 single single cond(A, x) · 10−8

single single double 108 single single single
single double double 108 double double cond(A, x) · 10−16

single double quad 108 double double double

Now we achieve full accuracy at precision u, albeit still only for problems with κ∞(A)
no larger than u−1/2. Nevertheless, this is a significant gain over case 1 in return for
a few residuals computed at precision u2. The limiting backward errors are of order
u, as in the previous case.

Case 3: u = ur = u4
f (half, double, double). In this more extreme case the fac-

torization is done at one quarter of the working precision. The convergence condition
is, from (7.2), φ = 3n‖ |A−1||L̂||Û | ‖∞u1/4 < 1, and the limiting accuracy is now, from
(3.10),

4pu cond(A, x) + u ≤ u3/4 · 4pu1/4 cond(A) + u ≤ 4
3φu

3/4 + u . u3/4.

Again, the limiting backward errors are of order u.
Case 4: u = u4

f , ur = u2 (half, double, quad). In this most extreme case the
convergence condition is the same as in case 3, and the limiting accuracy is now
4pu2 cond(A, x) + u . u. Again, the limiting backward errors are of order u.

Take uf to be half precision. Case 2 shows that for a sufficiently well conditioned
linear system Ax = b with single precision data we can obtain the solution correct to
single precision accuracy by doing only O(n2) operations in single or double precision
with the dominant O(n3) part of the work at half precision. Case 3 shows that for
double precision data the convergence condition is the same but the limiting accu-
racy is of order cond(A, x)u, and the computational saving over working entirely at
precision u is even greater. In case 4 the limiting accuracy improves to u.

The statements about cost in this subsection assume that the number of required
iterations is small and independent of n, which will be the case as long as φ in
Corollary 3.3 is sufficiently less than 1.

We summarize the usages described in this section in Table 7.1.

8. Mixed precision refinement with preconditioned GMRES. Carson
and Higham [9] introduce a new form of iterative refinement that corresponds to
Algorithm 1.1 with uf = u and ur = u2 and a special way of solving the correction
equation on line 4. The algorithm is intended to handle the situation where A is
extremely ill conditioned, possibly even singular to working precision, so that κ∞(A)

could exceed u−1. It computes an LU factorization A ≈ L̂Û then solves the equation
Ad = r̂ on step 4 by applying GMRES to the system

(8.1) Ãd ≡ Û−1L̂−1Ad = Û−1L̂−1r̂,
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with all computations done at precision u except that the matrix–vector products
with Ã needed by GMRES are evaluated at precision u2. Carson and Higham give
an error analysis similar to that in section 3 (but with uf = us = u), making the
key observation that µi in (3.1) is typically much less than 1 in the early stages of
iterative refinement.

We now consider a more general GMRES-based algorithm involving three preci-
sions rather than two. This is a special case of Algorithm 1.1 and we write it out in
detail for clarity.

Algorithm 8.1 (GMRES-IR). Let the nonsingular matrix A ∈ Rn×n and b ∈ Rn
be given in precision u. This algorithm uses GMRES-based iterative refinement using
LU factors as preconditioners to generate a sequence of approximations xi, all stored
in precision u, to the solution of Ax = b.

1 Compute an LU factorization A = LU in precision uf .
2 Solve Ax0 = b in precision uf using the LU factors and store x0 at precision u.
3 for i = 0:∞
4 Compute ri = b−Axi at precision ur and round ri to precision u.

5 Solve Ãdi ≡ Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision u, with

matrix–vector products with Ã computed at precision ur, and
store di at precision u.

6 xi+1 = xi + di at precision u.
7 end
The analysis in [9, sec. 3] shows that if ur = u2 we can take in (2.3)

(8.2) us‖E‖∞ ≡ uf(n)κ∞(Ã),

where f is a quadratic polynomial and

(8.3) κ∞(Ã) ≤
(
1 + γfn‖ |A−1||L̂||Û | ‖∞

)2
. (1 + γfnκ∞(A))2,

these inequalities being pessimistic.
The reason for including the fourth precision us in Algorithm 1.1 is now clear:

even though the LU factors in step 1 of Algorithm 8.1 are computed at precision uf ,
the solve in step 5 that uses these factors achieves an error of order us = u. That the
LU factors were computed at precision uf is irrelevant to the preconditioned system,

as long as the preconditioner L̂Û remains nonsingular. All that matters is that the
factors yield an Ã with condition number much smaller than that of A.

The convergence condition φi � 1 from the forward error analysis, where φi is
defined in (3.9), therefore holds if

(8.4) 2uκ∞(A)µi + f(n)u(1 + γfnκ∞(A))2 � 1.

As mentioned above, and explained in detail in [9], µi is much less than 1 in the early
iterations, so this condition is in practice dominated by the second term, for which
we need f(n)u(γfn)2κ∞(A)2 � 1, and hence certainly κ∞(A) < u−1/2u−1

f ; so (8.4)
can hold for κ∞(A) greater then u−1

f . Then the limiting accuracy is, from (3.10),
4pur cond(A, x) + u. With uf = u and ur = u2 this reproduces the results of [9],
giving a limiting accuracy of

(8.5) 4pu2 cond(A, x) + u . 4pu,

provided cond(A, x)u ≤ 1.
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Table 8.1
Different choices of IEEE precision for Algorithm 8.1 The middle column shows a bound on

κ∞(A) that must hold for the analysis to guarantee convergence with the limiting backward or forward
errors shown in the final three columns.

Backward error
uf u ur κ∞(A) normwise comp’wise Forward error

half half single 104 half half half
half single double 108 single single single
half double quad 1012 ∗ double double double

single single double 108 single single single
single double quad 1016 double double double

* This bound is from the forward error analysis. The backward error analysis requires only
κ∞(A) ≤ 1016.

Now we set uf = u1/2 and ur = u2. Provided that

(8.6) 2uκ∞(A)µi + f(n)u
(
1 + nu1/2κ∞(A)

)2 � 1,

which, given the behavior of µi, essentially requires κ∞(A)� u−1, Algorithm 8.1 will
converge and achieve a limiting accuracy of (8.5). To be specific, this means that by
taking uf to be IEEE half precision, u single precision, and ur double precision, we
can potentially solve systems with κ∞(A) possibly as large as u−1 to single precision
accuracy while performing the LU factorization at half precision, so that only O(n2)
of the flops are at single or double precision. We can go even further, by setting
uf = u1/4 and ur = u2. Now (8.4) implies the condition κ∞(A)� u−3/4 and gives a
limiting accuracy of (8.5) again.

In order to achieve this potential we need the number of iterative refinement
steps (outer iterations) and the number of iterations in the GMRES solves (inner
iterations), each of which involves a matrix–vector product and two triangular solves
in precision ur, to be small. If GMRES takes O(n) iterations to converge, each solve
will require O(n3) operations in precision ur, and so any potential savings from using

a lower precision LU factorization will be lost. In the case of normal Ã, the theoretical
convergence rate of GMRES is completely determined by the spectrum of Ã. While
a small κ∞(Ã) often corresponds to fast GMRES convergence, this is not always the
case. For example, a cluster of eigenvalues close to the origin can cause stagnation of
the GMRES residual until the nth iteration, regardless of the condition number of the
matrix [24]. Since the GMRES convergence rate for normal A is well understood, this
suggests potential strategies for improving the convergence rate in the event that a
lower precision LU factorization causes slow GMRES convergence. We briefly discuss
such strategies at the end of Section 10.

For nonnormal matrices, however, the convergence rate of GMRES is still not
well understood, and the spectrum of Ã is irrelevant to the rate of GMRES con-
vergence [15]. Nevertheless, our numerical experiments in Section 10.2.2 show that
GMRES-IR in three precisions can be efficient even for ill-conditioned nonnormal
matrices in some cases.

We also need to check the behavior of the residual for Algorithm 8.1. It is shown
in [9] that the preconditioned system Ãdi = Û−1L̂−1ri, is solved with backward error
of order u, and it is easy to show that this implies that the same is true of the original
correction equation Adi = ri, so that we can take c1 and c2 in (2.4) to be of order
1 and Gi to have norm of order ‖A‖∞ in (2.5). It follows from Corollary 4.2 that
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a normwise backward error of order u will be obtained if κ∞(A)u is sufficiently less
than 1. Similarly, the analysis of section 5 shows that a componentwise backward
error of order u will be obtained if cond(A)u is sufficiently less than 1, under the
usual assumptions on the problem. In the case where uf = u, both these conditions
are much stricter than the condition (8.4) required for our forward error result—
essentially because the backward error analysis is not able to exploit the behavior of
the µi that is so favorable to the forward error analysis.

In Table 8.1 we summarize the practical usages of Algorithm 8.1 with IEEE
arithmetic. The fourth line in the table corresponds to the algorithm proposed in [9].
The second line in the table summarizes our finding that the LU factorization can
be computed in half precision instead of single precision and the algorithm will still
obtain a result correct to single precision for κ∞(A) up to 108—in other words, we
can obtain as good a result at potentially half the cost.

Finally, we note that when uf is half precision we could encounter overflow in
computing x0 on step 2, even if we scale as described in section 6. In this case we
can simply set x0 = 0. All our analysis is still valid, and when iterative refinement
is rapidly converging this may have little effect on the number of iterations. As we
mention in Section 10, we encounter this situation for one problem in our numerical
experiments, when (uf , u, ur) = (half, single, quad) and κ∞(A) > 1012.

9. Comparison with single–double implementations. Dongarra and his
co-authors have made extensive use over the last decade of iterative refinement with
double precision as the working precision and LU factorization computed in single
precision as the solver, motivated by the fact that single precision arithmetic runs
twice as fast as double precision arithmetic on modern architectures [1, sec. 9], [23].
Code implementing this form of refinement is available in the PLASMA library as
routine gesv [2]. Table 9.1 shows how our new forms of iterative refinement compare
with this approach. We see that:

• By changing to computing residuals in quadruple precision we can guarantee
a forward error of order u (that is, the cond(A, x) factor is removed).

• By reducing the precision of the LU factorization from single to half there
is no loss in forward error or backward error, but the bound on κ∞(A) for
convergence to be guaranteed drops from 108 to 104.

• By switching to GMRES-IR and using quadruple precision residuals we can
solve a larger class of problems (κ∞(A) bounded by 1016, or 1012 for the
forward error bounds to hold when uf is half precision) and are guaranteed
a forward error of order u.

10. Numerical experiments. We have implemented Algorithms 1.1 and 8.1,
with the scaling of section 6, in MATLAB version R2015b, using the built-in single
and double precision arithmetics along with the fp16 half-precision class written by
Moler [25], [27].

In all the tests in this section we use dense matrices of order n = 100 generated
by the built-in MATLAB function gallery(’randsvd’,kappa,mode) with specified
2-norm condition number kappa. Unless otherwise specified, we use the default mode
3, which generates a random matrix with geometrically distributed singular values.
The right-hand sides b are generated as MATLAB randn vectors. For reproducibility,
we issue the MATLAB function call rng(1) to set the random number generator seed
before generating each problem A, b. We use the MATLAB lu function to compute the
LU factorization with partial pivoting. For quadruple precision, we use the Advanpix
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Table 9.1
Comparison of results for iterative refinement using the solvers given in the first column. The

first row corresponds to the usage of Dongarra and his co-authors.

Backward error
uf u ur κ∞(A) normwise comp’wise Forward error

LU single double double 108 double double cond(A, x) · 10−16

LU single double quad 108 double double double
LU half double double 104 double double cond(A, x) · 10−16

LU half double quad 104 double double double
GMRES-IR single double quad 1016 double double double
GMRES-IR half double quad 1012 ∗ double double double

* This bound is from the forward error analysis. The backward error analysis requires only
κ∞(A) ≤ 1016.

Multiprecision Computing Toolbox [28] with the setting mp.Digits(34), which is
compliant with the IEEE 754-2008 standard [20].

In each figure in this section, plots on the left show the behavior of the forward
error ferr (red), normwise relative backward error nbe (blue), and componentwise
relative backward error cbe (green). The dotted black line shows the value of the
working precision u. Corresponding plots on the right show bounds on the sizes of
the quantities in φi in the condition (3.9) for convergence of the forward error. Here
we plot 2usκ∞(A)µi (cyan), 2us cond(A) (orange), and us‖Ei‖∞ (magenta). The
quantity φi (which is the minimum of the cyan and orange values plus the magenta
value) is plotted in black. The dotted black line marks 1. The x-axes are chosen to
enable easy comparison between plots for different choices of uf , u, and ur.

In describing the choice of precisions we will use notation of the form (uf , u, ur) =
(half,double, quad), which means that uf , u, and ur take the values corresponding to
IEEE half, double, and quadruple precisions, respectively.

We begin with an experiment that demonstrates the potential benefits of GMRES-
IR (Algorithm 8.1). The working precision is double precision. We generate the matrix
A using gallery(’randsvd’,1e9,2). For this matrix, κ∞(A) = 2.0e+10, and for the
linear system Ax = b with the randomly generated b vector, cond(A, x) = 5.2e+09. In
Figure 10.1 we show convergence results for iterative refinement with LU factorization
using (uf , ur) = (single,double) on the first row, (single, quad) on the second row, and
(double, quad) on the third row. The fourth row of plots shows results using GMRES-
IR with (uf , ur) = (single, quad). Above the plots in the last row, we show ‘GMRES
its’, which is a list in which the ith element is the number of iterations that GMRES
took to converge in refinement step i (using the convergence criterion that the relative
GMRES residual 2-norm is less than or equal to 10−4). From the first row, we see
that this system is too ill conditioned to be solved using iterative refinement with a
single precision LU factorization; neither the forward error nor the backward errors
converge. From the second row, we see that as expected, computing the residuals
more precisely has no effect on convergence. The only way to improve convergence
using standard iterative refinement is to use higher precision in the LU factorization;
we see from the third row that with a double precision LU factorization this results
in fast convergence. The fourth row of plots shows the potential gains from using
GMRES-IR. Here, even though the LU factors are computed in single precision, the
forward errors and backward errors all reach the level of the working precision after
two refinement steps, which incur only five GMRES iterations in total.
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We now investigate the behavior of both iterative refinement with LU factorization
and GMRES-IR (Algorithms 1.1 and 8.1, respectively) in more detail.

10.1. Iterative refinement with LU factorization. We begin by testing it-
erative refinement (Algorithm 1.1) with LU factorization as the solver, first with two
precisions and then three precisions. For each test in this section we list κ2(A) (which
we specify as kappa when generating the randsvd matrix), κ∞(A), and cond(A, x)
above the corresponding plots.

10.1.1. Iterative refinement in two precisions. When ur = u and uf =
u1/2, so that LU factorization is done at half the working precision, we expect back-
ward errors to converge to level u and forward errors to converge to level cond(A, x)u
for matrices with condition number up to 1/uf ; see Table 7.1.

Results with (uf , u, ur) = (single,double,double) are shown in Figure 10.2 for a
matrix with condition number well within the limit of 1/uf (top row) and a matrix
that is extremely ill conditioned with respect to uf (bottom row). The observed
behavior is consistent with the theory: the forward and backward errors all converge
to the expected levels (note the effect of the cond(A, x) term in the forward error
limit). In the second test (bottom row), we see that κ∞(A) for the generated matrix
is already close to 1/uf . This causes the convergence factor φi to be close to 1, and
thus many refinement steps are required for convergence. Note from the plots on the
right that φi is dominated by the us‖Ei‖∞ terms.

10.1.2. Iterative refinement in three precisions. We now demonstrate the
potential benefits of iterative refinement in three precisions. In Figure 10.3 we take
(uf , u, ur) = (single,double, quad) and use the same matrices as in Figure 10.2. Com-
paring Figure 10.3 with Figure 10.2 shows the benefit of computing the residuals at
twice the working precision: the forward error converges to level u in both cases,
without any dependence on the cond(A, x). Also note that the use of extra precision
in the residual computation has no effect on the rate of convergence (compare the
values of φi in the right-hand plots).

10.2. GMRES-based iterative refinement. We now test GMRES-IR (Algo-
rithm 8.1) with the combinations of precisions described in Table 8.1. For these tests,
within the GMRES method we use the convergence criterion that the relative residual
in the 2-norm is no greater than 10−2, 10−4, and 10−6 when u is half precision, single
precision, and double precision, respectively. Above the plots for each test, we give
κ2(A), κ∞(A), cond(A, x), and κ∞(Ã) = κ∞(Û−1L̂−1A).

10.2.1. GMRES-IR in two precisions. We first test GMRES-IR when two
different precisions are used: uf = u and ur = u2. This is the special case that was
investigated in [9]. Here we expect convergence of the forward and backward errors
to level u for matrices with κ∞(A) up to 1/u; see Table 8.1.

In Figure 10.4, we use (uf , u, ur) = (half,half, single) and in Figure 10.5 we use
(uf , u, ur) = (single, single,double). For each combination of precisions, we show
results for a matrix with condition number well within the 1/u limit (top row) and a
matrix that is on the edge of numerical singularity, i.e., κ∞(A) & 1/u (bottom row).
For the reasonably well-conditioned matrices, the results are as expected. For the case
where κ∞(A) & 1/u, the results are better than expected. Despite A being extremely
ill conditioned, GMRES-IR succeeds in obtaining backward and forward errors on the
level u, and does so requiring very few GMRES iterations in each refinement step.
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Notice that with uf = u, κ∞(Ã) can be substantially less than κ∞(A) even when
κ∞(A) is of the order of 1/u; see, e.g., the bottom row in Figure 10.5.

We note also that the orange pluses in, e.g., Figure 10.5 are at or above 1. That
φi is nevertheless substantially less than 1 is thanks to the min function in (3.9) and
the ameliorating effect of µi, which was first pointed out in [9].

10.2.2. GMRES-IR in three precisions. We now show the benefit of using
three precisions in GMRES-IR, with ur < u < uf . According to the theory, the
forward and backward errors should converge to level u for matrices with κ∞(A) ≤
1/u. In other words, in GMRES-IR we can compute the LU factorization in precision
u1/2 and still attain the same bounds on the backward and forward errors as if it were
computed in precision u.

Tests with (uf , u, ur) set to (half, single,double) and (single,double, quad) are
shown in Figures 10.6 and Figure 10.7, respectively. Again for each set of precisions,
we show results for a matrix with condition number well within the 1/u limit (top
rows) and for a matrix which is extremely ill-conditioned with respect to precision u
(bottom rows).

The results here are consistent with the theory: in all cases we have convergence
of the backward and forward errors to level u. We note that the use of lower precision
for the LU factorization can work very well for reasonably well-conditioned matrices.
For example, in the top row of Figure 10.7 where κ∞(A) = 1.1e+04, only four total
GMRES iterations across two refinement steps are required to obtain the desired
forward and backward errors. We note that standard iterative refinement with LU
factorization also performs well on this problem (see Figure 10.3).

It is important to point out that the number of GMRES iterations in each refine-
ment step increases significantly with κ∞(A) for this class of problems. In the bottom
rows in both figures, where A is extremely ill-conditioned with respect to u, nearly
n GMRES iterations are required for each solve. Since Ã is applied in precision ur
in each GMRES iteration, this will not be efficient compared with simply computing
the LU factorization more accurately.

To show that this approach can indeed still be efficient for some problems, we
now run analogous experiments for problems generated using randsvd mode 2, which
generates matrices having only one small singular value. The results are shown in
Figures 10.8 and 10.9 for GMRES-IR with (uf , u, ur) set to (half, single,double) and
(single,double, quad), respectively. For mode 2 matrices, the number of GMRES
iterations per refinement step grows more modestly with κ∞(A). For example, in
the bottom row of Figure 10.9, convergence requires only 7 total GMRES iterations
even though κ∞(A) > 1/u. Also note here that κ∞(Ã) is still very large compared
with κ∞(A), which emphasizes the fact that the GMRES convergence rate cannot be
connected with the condition number of the preconditioned matrix.

Finally, we consider the more extreme case of GMRES-IR using precisions (uf ,
u, ur) = (half,double, quad). The analysis summarized in Table 8.1 predicts that
the forward and backward errors should converge to level u ≈ 10−16 for matrices
with κ∞(A) up to 1012. In other words, in GMRES-IR we can compute the LU
factorization in a quarter of the working precision without increasing the forward or
backward errors.

We show tests for randsvd mode 3 matrices in Figure 10.10 and randsvd mode 2
matrices in Figure 10.11. The story is largely the same as in the case of (uf , u, ur) =
(single,double, quad) in Figures 10.7 and 10.9. For randsvd mode 3 matrices, al-
though the errors reach the levels predicted by the theory, each solve may require too
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many GMRES iterations to be practical unless A is well conditioned (see Figure 10.10).
However, Figure 10.11 shows that for randsvd mode 2 matrices the number of GM-
RES iterations is much more favorable for ill conditioned A. Note that in the bottom
row in Figure 10.10, we encounter overflow in computing the initial solution x0 and
thus take x0 = 0.

10.3. Discussion. The experiments show that the behaviors in practice of Algo-
rithm 1.1 and Algorithm 8.1 (GMRES-IR) match well the predictions of the analysis,
and even exceed it for GMRES-IR. An important difference between the two algo-
rithms is that GMRES-IR converges quickly in all cases (at most three iterations
in Figures 10.4–10.11), whereas Algorithm 1.1 using LU factorization can be much
slower. This is related to the fact, visible in the right-hand columns of the plots,
that Algorithm 1.1 with LU factorization is “on the edge” as regards the conver-
gence criteria (φi is close to 1), whereas GMRES-IR satisfies the criteria much more
comfortably.

Our experiments confirm that the LU factorization can be computed at less than
the working precision while still obtaining backward errors and forward errors at the
working precision.

The overall efficiency of GMRES-IR depends on the number of GMRES iterations
required. Using less than working precision in the LU factorization can in some
cases diminish the effectiveness of L̂Û as a preconditioner in GMRES-IR, resulting
in an undesirably high number of GMRES iterations. This can in turn reduce or
outweigh any potential computational savings from computing a lower precision LU
factorization.

For ease of comparison between approaches, our experiments use a consistent GM-
RES tolerance based on the working precision (10−2 for single, 10−4 for double, and
10−6 for quadruple). In practice, however, the GMRES tolerance could be adjusted to
minimize the total number of GMRES iterations performed across refinement steps.
The analysis in [9, sec. 3] shows that the smaller κ∞(Ã), the larger we can set the
GMRES convergence tolerance while still meeting the constraint (2.3); of course, if
the tolerance parameter is made too large, this can increase the number of refinement
steps required for convergence.

Of course, whether changing the GMRES tolerance will result in fewer GMRES
iterations depends on the convergence trajectory of GMRES, which in turn depends
heavily on properties of the linear system. For nonnormal matrices, κ∞(Ã) and even

the full spectrum of Ã, have no direct connection to the GMRES convergence rate,
so we cannot draw any theoretical conclusions.

For normal A, however, we can connect spectral properties of Ã with the con-
vergence rate of GMRES. Although further investigation is out of the scope of this
work, we briefly mention some potential approaches for improving GMRES-IR per-
formance in cases where the coefficient matrix is normal and GMRES convergence for
the resulting preconditioned matrix Ã constructed using lower precision LU factors
is slow. One possibility is to add an additional preconditioner in order to eliminate
eigenvalues or clusters of eigenvalues that cause difficulties for GMRES. One could
also incorporate a deflation-based technique to eliminate these parts of the spectrum.
Another approach (for any A) is to try a different Krylov subspace iterative method;
though it may not have the same guarantees on backward stability, it may provide a
faster convergence rate in practice.
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11. Conclusions. This work makes two main contributions to the solution of
Ax = b. The first contribution is to show that by using three precisions instead
of two in iterative refinement, it is possible to accelerate the solution process and
to obtain more accurate results for a wider class of problems. To be concrete, let
the working precision in which A, b, and the iterates xi are stored be IEEE single
precision and consider the following four forms of iterative refinement, all employing
LU factorization.

• Method 1 (traditional): factorize A at single precision, compute residuals at
double precision.

• Method 2 (Langou et al. [23], with single and double precision therein replaced
by half and single precision, respectively): factorize A at half precision, com-
pute residuals at single precision.

• Algorithm 1.1: factorize A at half precision, compute residuals at double
precision.

• GMRES-IR (Algorithm 8.1): factorize A at half precision, compute residuals
at double precision, compute updates using preconditioned GMRES.

Method 1 is guaranteed to provide forward and backward errors of order u ≈ 10−8

as long as κ∞(A) < 108. Method 2 is potentially up to twice as fast, since it factorizes
at half precision, but it requires κ∞(A) < 104 to guaranteed convergence and it
delivers a forward error of order cond(A, x)u. Algorithm 1.1 improves on Method
2 by delivering a forward error of order u under the same assumption on κ∞(A).
GMRES-IR provides a further improvement because it requires only κ∞(A) < 108 for
convergence, like Method 1. Moreover, it is likely to converge faster than Method 2
and Algorithm 1.1.

The overall speed of GMRES-IR in three precisions depends on the number of
GMRES iterations, which is hard to predict and can be large. However, we have shown
experimentally that for some problems GMRES can converge in a small number of
iterations. (When GMRES-IR is used with just two precisions, as originally proposed
in [9], fast convergence of GMRES is always observed in our experience.)

Further work is needed to tune the GMRES convergence tolerance, to investigate
alternative GMRES preconditioning strategies, and to investigate the speed of the
algorithms in computing environments where half, single, and double precisions are
supported in hardware.

These results can be viewed in a different way by comparison with a standard
Ax = b solver based on LU factorization in precision u. By using Algorithm 1.1 or
GMRES-IR with uf = u1/2 we can solve the system more accurately and up to twice
as fast, the speed advantage arising because the O(n3) part of the work is potentially
all done at lower precision.

The second contribution of this work is to give general backward error and forward
error analyses of iterative refinement that include almost all previous ones as special
cases and improve on some existing results. Crucially, the analyses include four pre-
cisions as parameters, which is necessary in order for them to apply to GMRES-IR.
Our numerical experiments confirm the predictions of the theory regarding conditions
for convergence and the limiting backward and forward errors of Algorithms 1.1 and
8.1. The analyses should be useful for understanding further algorithmic variants that
may be proposed, for example ones based on approximate LU factors (such as those
from incomplete factorizations), or on different iterative solvers.

Our MATLAB codes are available at https://github.com/eccarson/ir3.

https://github.com/eccarson/ir3
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Iterative refinement with LU factorization, (uf , u, ur) = (single, double, double)
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Iterative refinement with LU factorization, (uf , u, ur) = (single, double, quad)
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Iterative refinement with LU factorization, (uf , u, ur) = (double, double, quad)
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GMRES-IR with (uf , u, ur) = (single, double, quad); κ∞(Ã) = 5.2e+ 04, GMRES its: (2,3)
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Fig. 10.1. Comparison of iterative refinement with LU factorization and GMRES-IR for solving
Ax = b using various precisions. The matrix is generated using gallery(’randsvd’,100,1e9,2).
For this problem, κ2(A) = 1e + 09, κ∞(A) = 2.0e + 10, and cond(A, x) = 5.2e + 09.
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κ2(A) = 1e+03, κ∞(A) = 1.1e+04, cond(A, x) = 1.9e+03
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κ2(A) = 1e+07, κ∞(A) = 6.9e+07, cond(A, x) = 9.1e+06
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Fig. 10.2. Iterative refinement with LU factorization using (uf , u, ur) = (single, double, double).
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Fig. 10.3. Iterative refinement with LU factorization using (uf , u, ur) = (single, double, quad).
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κ2(A) = 1e+01, κ∞(A) = 2.1e+02, cond(A, x) = 4.4e+01, κ∞(Ã) = 7.3e+00, GMRES its: (4)
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κ2(A) = 1e+02, κ∞(A) = 1.4e+03, cond(A, x) = 3.2e+02, κ∞(Ã) = 3.0e+02, GMRES its: (5,16,10)
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Fig. 10.4. GMRES-IR using (uf , u, ur) = (half, half, single).

κ2(A) = 1e+06, κ∞(A) = 7.4e+06, cond(A, x) = 1.0e+06, κ∞(Ã) = 1.1e+00, GMRES its: (2)

0 1 2

re-nement step

10-10

10-6

10-2

102

ferr
nbe
cbe

0 1 2

re-nement step

10-8

10-4

100

2us51(A)7i

2uscond(A)
uskEik1
?i

κ2(A) = 1e+08, κ∞(A) = 6.0e+08, cond(A, x) = 8.3e+07, κ∞(Ã) = 5.5e+01, GMRES its: (6,7)
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Fig. 10.5. GMRES-IR using (uf , u, ur) = (single, single, double).
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κ2(A) = 1e+01, κ∞(A) = 2.1e+02, cond(A, x) = 4.4e+01, κ∞(Ã) = 7.7e+00, GMRES its: (7,7)
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κ2(A) = 1e+06, κ∞(A) = 7.4e+06, cond(A, x) = 1.0e+06, κ∞(Ã) = 5.8e+05, GMRES its: (90,100,91)
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Fig. 10.6. GMRES-IR using (uf , u, ur) = (half, single,double).

κ2(A) = 1e+03, κ∞(A) = 1.1e+04, cond(A, x) = 1.9e+03, κ∞(Ã) = 1.0e+00, GMRES its: (2,2)
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κ2(A) = 1e+15, κ∞(A) = 5.3e+15, cond(A, x) = 6.3e+14, κ∞(Ã) = 1.4e+10, GMRES its: (91,92,92)
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Fig. 10.7. GMRES-IR using (uf , u, ur) = (single, double, quad).
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κ2(A) = 1e+01, κ∞(A) = 2.1e+02, cond(A, x) = 5.5e+01, κ∞(Ã) = 1.4e+01, GMRES its: (5,6)
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κ2(A) = 1e+05, κ∞(A) = 2.0e+06, cond(A, x) = 5.2e+05, κ∞(Ã) = 7.7e+06, GMRES its: (7,24,9)
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Fig. 10.8. GMRES-IR using (uf , u, ur) = (half, single,double). The matrices are generated
using randsvd mode 2 (cf. Figure 10.6, which uses mode 3).

κ2(A) = 1e+03, κ∞(A) = 2.0e+04, cond(A, x) = 5.2e+03, κ∞(Ã) = 1.0e+00, GMRES its: (1,2)
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κ2(A) = 1e+15, κ∞(A) = 1.9e+16, cond(A, x) = 5.1e+15, κ∞(Ã) = 1.6e+10, GMRES its: (3,4)
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Fig. 10.9. GMRES-IR using (uf , u, ur) = (single, double, quad). The matrices are generated
using randsvd mode 2 (cf. Figure 10.7, which uses mode 3).
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κ2(A) = 1e+01, κ∞(A) = 2.1e+02, cond(A, x) = 4.4e+01, κ∞(Ã) = 7.4e+00, GMRES its: (9,9,9)
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κ2(A) = 1e+12, κ∞(A) = 5.7e+12, cond(A, x) = 6.8e+11, κ∞(Ã) = 6.0e+11, GMRES its: (100,100)
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Fig. 10.10. GMRES-IR using (uf , u, ur) = (half, double, quad). The matrices are generated
using randsvd mode 3.

κ2(A) = 1e+01, κ∞(A) = 2.1e+02, cond(A, x) = 5.5e+01, κ∞(Ã) = 1.4e+01, GMRES its: (8,8,8)
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κ2(A) = 1e+12, κ∞(A) = 2.0e+13, cond(A, x) = 5.2e+12, κ∞(Ã) = 1.4e+13, GMRES its: (17,19,19)
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Fig. 10.11. GMRES-IR using (uf , u, ur) = (half, double, quad). The matrices are generated
using randsvd mode 2.
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