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Abstract. The bifurcations of strange nonchaotic attractors in quasi-periodically
forced systems are poorly understood. A simple two-parameter example is in-
troduced which unifies previous observations of the non-smooth pitchfork bi-
furcation. There are two types of generalized pitchfork bifurcation which occur
in this example, and the corresponding bifurcation curves can be calculated
analytically. The example shows how these bifurcations are organized around
a codimension two point in parameter space.

1. Introduction. In the mid 1980s Grebogi, Ott, Yorke and co-workers published
a series of papers [2, 4, 5, 11, 20, 21, 22] which established two fundamental results.
First they showed that strange nonchaotic attractors, attractors with complicated
geometry but on which the dynamics is not chaotic, can exist over ranges of pa-
rameter values with positive measure in parameter space [11] and second, that
these attractors can be observed in a variety of quasi-periodically forced oscillators
[2, 4, 20, 21]. The first result shows that these strange nonchaotic attractors are
mathematically important, and the second that they are also physically important.
Some experimental investigations have also been undertaken [6, 29]. Given that
quasi-periodic forcing – forcing with more than one independent frequency – is the
natural extension of periodic forcing which is a standard topic in physics and engi-
neering, it is surprising how little is known about this case. In particular, it seems
that the possibility of having new classes of attractors was overlooked for many
years.

The analysis of these attractors is still in its infancy. The stroboscopic map
(or Poincaré map) for quasi-periodically forced systems, obtained by observing the
system after every period of one of the forcing terms, takes the form

xn+1 = xn + ω, yn+1 = f(xn, yn) (1)

where x is an angular variable and may be taken mod 1, y denotes the phase space
of the oscillator, and f is periodic in x: f(x, y) = f(x + 1, y). The parameter ω is
irrational and represents the constant phase through which a second independent
frequency advances over one period of the strobing frequency. To simplify analysis
we shall restrict attention to equations of this form, see [1, 3, 5, 7, 9, 12, 18, 19, 22,
23, 28] for further details and examples. Since ω is irrational, the map (1) has no
fixed points or periodic orbits; the simplest invariant objects are continuous curves.
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Having established that strange nonchaotic attractors arise in physically relevant
models, it is natural to investigate how they are created and destroyed as parameters
are varied. There is as yet no systematic bifurcation theory for these objects,
but one remarkable feature has emerged from numerical and theoretical studies
[11, 17, 26]: in many systems, strange nonchaotic attractors are created abruptly
from the bifurcation of smooth invariant curves. A simple example of this is found
in the original example of Grebogi et al [11]:

xn+1 = xn + ω, yn+1 = 2σ cos(2πxn) tanh yn (2)

with x taken mod 1 as before and σ > 0. The line L = {(x, y) | y = 0} is invariant
and typical orbits on L are stable if σ < 1 and unstable if σ > 1 [11]. On the other
hand, since all points with x = 1

4 or with x = 3
4 are mapped to L, L forms part

of the attractor for all values of σ. If σ > 1 then this combination of pinching and
instability implies the existence of a strange nonchaotic attractor [8, 11, 13].

A second type of transition of strange nonchaotic attractors has been observed
numerically: a strange nonchaotic attractor seems to lose stability creating a pair
of stable invariant curves separated by an unstable invariant curve [17, 26]. Again,
this may be thought of as a generalized pitchfork bifurcation: a stable object (the
strange nonchaotic attractor) loses stability to create a pair of stable sets separated
by an unstable set. There have been no examples in the literature for which the
locus of such a bifurcation can be calculated explicitly, and so it has not been clear
how much weight can be attached to these numerical observations as the bifurcation
thresholds are not known, and questions about continuity or smoothness are hard
to answer using numerical simulations.

The aim of this paper is to show that the two types of generalized pitchfork
bifurcation described above are really part of the same generalized bifurcation (the
non-smooth pitchfork bifurcation) by which two stable invariant sets are created
from one stable set. In the next section an example is constructed for which all the
bifurcation curves of one invariant set (the equivalent of L above) can be calculated
analytically, making it possible to provide much stronger numerical confirmation
that the second type of bifurcation occurs as reported in [17, 26], rather than (for
example) by a process of fractalization [16]. In fact, results of [13] can be used
to prove mathematically that the bifurcations occur as observed numerically. The
bifurcation curves are organized about a codimension two point so that in typical
parameter paths passing on one side of this point there is a standard pitchfork
bifurcation of invariant curves, whilst for parameter paths which pass on the other
side of the codimension two point an invariant curve loses stability creating a strange
nonchaotic attractor which is then destroyed in a bifurcation creating a pair of stable
invariant curves. Thus the net effect of the pair of bifurcations involving the strange
nonchaotic attractor is the same as a standard pitchfork bifurcation. We conjecture
that this is a general phenomenon and that similar bifurcations will be observed in
a variety of quasi-preiodically forced systems.

2. The quasi-periodically forced map. The quasi-periodically forced map which
will be the focus of the remainder of this paper is a natural generalization of (2):

xn+1 = xn + ω, yn+1 = 2σ(α + cos 2πxn) tanh yn (3)

where, as usual, x is taken mod 1, ω is irrational and the real parameters α and σ
are positive. If α = 0 then the map reduces to the original model of [11]. As in (2),
the line (or circle)

L = {(x, y) | y = 0} (4)
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Figure 1. Schematic diagram of part of the positive quadrant of
the (α, σ) parameter plane showing the three regions of behaviour
separated by the bifurcation curves U , V and W defined in the
main text.

is invariant, and the transverse Liapunov exponent of typical points on L is

λ =
∫ 1

0
ln |2σ(α + cos 2πx)| dx

= 1
2

∫ 1

0
ln(2σ(α + cos 2πx))2 dx

(5)

Fortunately, the integral on the second line of (5) is known (using 4.226(1) of [10])
and a simple calculation gives

λ =
{

ln σ if 0 ≤ α ≤ 1
ln σ + ln

(
α +

√
α2 − 1

)
if α > 1

(6)

As shown in Fig. 1, (6) defines two curves, U and W , in the positive quadrant
of the (α, σ) parameter plane on which the typical transverse Liapunov exponent
of L is zero. In α < 1 we have

U = {(α, σ) | σ = 1, 0 < α ≤ 1} (7)

and in α > 1
V = {(α, σ) | σ = (α +

√
α2 − 1)−1, α ≥ 1} (8)

The invariant line L is stable for values of (α, σ) which lie below the union of these
two curves (region I of Fig. 1). To describe the full bifurcation picture a third curve
is needed:

W = {(α, σ) | α = 1, σ ≥ 1} (9)

W is the boundary of the region of parameter space in which the map (3) is invert-
ible and on which L is unstable. Note that all three of these curves terminate at
the point (1, 1). The regions in parameter space separated by these curves may be
labelled I-III as shown in Fig. 1. The associated dynamics which can be observed
numerically is shown in Figs. 2 and 3, where the parameters are chosen close to
one of the bifurcation curves U , V or W . It is these observations which will be
explained in the next section.

3. Dynamics. In Region I the results of [13] applied to |yn+1| can be used to prove
that the attractor is just the straight line L on which the dynamics is an irrational
rotation. This is relatively uninteresting, so details will only be given for the other
two regions.
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Figure 2. Strange nonchaotic attractors in Region II. In this
and the next figure, the x−axis is horizontal and the y−axis is
vertical. (a) α = 0.7, σ = 1.0001; 40000 iterates of (0.25, 0.3) are
shown, having discarded the first 5000. (b) α = 0.9999, σ = 1.3;
40000 iterates of (0.25, 0.3) are shown, having discarded the first
5000.

3.1. Region II. Region II has α < 1 and σ > 1. Fig. 2 shows examples of
numerically calculated attractors in this region. These certainly give the impression
of being strange nonchaotic attractors, and this can be proved.

As σ > 1, typical transverse Liapunov exponents of L are positive, so this set is
unstable. Since α < 1, the factor of α + cos 2πx in the definition of yn+1 in (3) is
zero for some values of x. This leads to the pinching effect commented upon earlier,
all points on the lines {(x, y) |x = γ} where cos 2πγ = −α2, map to (γ +ω, 0) on L,
which implies that some points on L have Liapunov exponents equal to −∞. As in
the original case of Grebogi et al, (2), it follows that there is a strange nonchaotic
attractor [8, 11, 13]. More precisely, the attractor is bounded above and below by
semi-continuous invariant curves. Recall that a real function f(x) is upper semi-
continuous at x if, for any sequence (xk) tending to x, f(x) ≥ lim sup f(xk). It is
upper semi-continuous if it is upper semi-continuous for all x. A function f is lower
semi-continuous if −f is upper semi-continuous. From [13] it is possible to show
that the attractor contains two bounding graphs y = ψ(x) and y = −ψ(x) with the
following properties:

(i) ψ(x) ≥ 0 for all x ∈ [0, 1);
(ii) the union of the upper and lower bounding graphs, Ψ = {(x, y) | |y| = ψ(x)},

is invariant;
(iii) typical transverse Liapounov exponents on Ψ are negative;
(iv) ψ is discontinuous at almost all x ∈ [0, 1);
(v) ψ is upper semi-continuous (see [?]);
(vi) ψ(x) = 0 on a dense, but measure zero, set of values of x ∈ [0, 1).

The last four properties more than justify calling Ψ a strange nonchaotic attractor.
The two strange nonchaotic attractors pictured here are at parameter values

close to the boundary of Region II. In particular, Fig. 2(a) shows the attractor very
close to U (Equ. (7)), so the line L has only just lost stability. This is reflected
in the fact that the attractor is fairly concentrated about L. In Fig. 2(b), the
parameters are chosen close to the boundary V (Equ. (8)) beyond which the map
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Figure 3. Two attractors which exist in Region III with param-
eters chosen close to the boundary V . (a) α = 1.0001, σ = 1.3;
40000 iterates of (0.25, 0.3) are shown, having discarded the first
1000. (b) α = 0.7, σ = (α +

√
α2 − 1)−1 + 0.0001; 20000 iterates

of (0.25, 0.3) are shown, having discarded the first 10000.

is invertible and the pinching effect no longer occurs. This attractor is very similar
in character to the attractor of Grebogi et al [11]. Figure 3(a) shows one of the
attractors at parameter values on the other side of V : it is clearly a smooth curve
as expected.

3.2. Region III. In Region III the map is invertible (α > 1) and the line L is
unstable: σ > (α+

√
α2 − 1)−1. Fig. 3(a) shows one of the attractors of the system

close to the boundary V (Equ. (8)), and Fig. 3(b) shows one of the attractors in
Region III close to the boundary W (Equ. (9)). In both cases there is a second
attractor below L which is the image of the attractor shown under the symmetry
y → −y.

The curve in Fig. 3(a) is very close to the upper boundary of the strange non-
chaotic attractor of Fig. 2(b), as should be expected since the parameter values
differ by only 0.0002, or 0.02%, and the invariant curve of Fig. 3(b) has much
smaller amplitude and bifurcates from the line L.

In Region III the map is invertible and yn > 0 implies that yn+1 > 0 (and
yn < 0 implies that yn+1 < 0) so the results of Keller [13] apply with only minor
reinterpretation: there is a continuous (in fact, differentiable [24, 25, 27]) attracting
invariant curve y = φ(x) in y > 0 and its symmetric image in y < 0, establishing
the dynamics observed numerically.

4. Interpretation. In the previous section it was shown that the behaviour in
each of the regions of Fig. 1 is theoretically understood and is as illustrated in the
figures. Now consider any simple path through parameter space from the bottom
left hand corner of Fig. 1 to the upper right hand corner, for example, from ( 1

4 , 1
4 )

to (2, 2), which does not pass through the codimension two point (1, 1). Such a
path will either pass above (1, 1) or below (1, 1), and the net effect of changing
the parameter on this path is that L loses stability and a pair of stable invariant
curves are created. This is the effect of a standard pitchfork bifurcation of invariant
curves. and indeed, if the path is chosen to pass below (1, 1), the path will cross
W , on which just such a standard pitchfork bifurcation of invariant curves occurs.

On the other hand, if the path passes above (1, 1) then it must cross two bifur-
cation curves: U and V . Crossing U , the line L loses stability, but there is still a
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pinching effect (α +cos 2πx = 0 has real solutions), so a strange nonchaotic attrac-
tor is created in Region II. This strange nonchaotic attractor is bounded by two
semi-continuous graphs which intersect the line L at a dense set of points. This
bifurcation can be thought of as a generalized pitchfork bifurcation in the sense
that an object (L) loses stability and a new attracting invariant set with two com-
ponents, the bounding curves ±ψ, is created. The complication is that these three
sets are entangled to create a single strange nonchaotic attractor.

When the parameter path crosses V the pinching effect no longer occurs and L
becomes uniformly unstable: all transverse Liapunov exponents are positive on L.
Two smooth invariant curves are created: one in y < 0 and the other in y > 0,
and these tend to the lower and upper bounding curves of the strange nonchaotic
attractor as the parameter tends to V from Region III as suggested by Fig. 2(b) and
Fig. 3(a). Again, the bifurcation can be seen as a generalized pitchfork bifurcation
in the sense that an attractor (the strange nonchaotic attractor) is destroyed to
give two attractors separated by a repeller (the line L).

The two parameter paths described above both have the net effect of creating two
stable curves and one unstable curve from one stable curve. In this sense, the two
parameter diagram of Fig. 1 unifies the different generalized pitchfork bifurcations
and shows how the different mechanisms of producing this change fit together into
one coherent picture.

Although the example presented is a natural extension of examples which have
been studied elsewhere [11], it shares one important drawback with the earlier ex-
amples: over an important range of parameter values (α < 1) it is not invertible,
and hence cannot be the Poincaré map of a differential equation. This is not an
unusual circumstance in the first examples of novel phenomena (think, for exam-
ple, of the use of non-invertible circle maps to model the break up of invariant tori
[14, 15] or the use of the logistic map to understand period-doubling cascades),
and we expect the gross features of the generalized pitchfork bifurcations presented
here to apply to differential equations even if the fine details differ somewhat. In
differential equations, we expect to see regions of parameter space in which compli-
cated dynamics can be observed associated with pitchfork bifurcations, but it may
be that the clean transition: (attracting invariant curve) → (strange nonchaotic
attractor) → (two attracting invariant curves) is less clear cut in differential equa-
tions, with regions of parameter space in which strange nonchaotic attractors exist
for a positive measure set of parameter values rather than for all parameter values
as in Region II.

5. Conclusion. Although the transition from a strange nonchaotic attractor to
a pair of stable invariant curves has been observed numerically, the evidence has
always been unclear since the precise bifurcation point has been unknown. The
example presented here provides a test case in which the bifurcation can be located
precisely (the bifurcation curve V in Fig. 1) and can be confirmed both numeri-
cally and theoretically. Moreover, the analytic derivation of the bifurcation curves
together with the mathematical results of Keller [13] leads to a new bifurcation
diagram associated with a codimension two point, and this diagram shows how the
standard pitchfork bifurcation of invariant curves fits in with the more novel bifur-
cations involving strange nonchaotic attractors. We expect features associated with
this bifurcation to be observed in a variety of quasi-periodically forced systems.
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