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ABSTRACT 

We consider the theoretical and the computational aspects of some 

nearness problems in numerical linear algebra. Given a matrix A, a matrix 

norm and a matrix property P, we wish to find the distance from A to the 

class of matrices having property P, and to compute a nearest matrix from 

this class. 

It is well-known that nearness to singularity is measured by the reciprocal 

of the matrix condition number. We survey and compare a wide variety of 

techniques for estimating the condition number and make recommendations 

concerning the use of the estimates in applications. 

We express the solution to the nearness to unitary and nearness to Hermitian 

positive (semi-) definiteness problems in terms of the polar decomposition. A 

quadratically convergent Newton iteration for computing the unitary polar factor 

is presented and analysed, and the iteration is developed into a practical 

algorithm for computing the polar decomposition. Applications of the algorithm 

to factor analysis, aerospace computations and optimisation are described; and 

the algorithm is used to derive a new method for computing the square root of 

a symmetric positive definite matrix. This leads us, in the remainder of the 

thesis, to consider the theory and computation of matrix square roots. 

We analyse the convergence properties and the numerical stability of several 

well-known Newton methods for computing the matrix square root. By means of a 

perturbation analysis and supportive numerical examples it is shown that two of 

these Newton iterations are numerically unstable. The polar decomposition 

algorithm, and a further Newton square root iteration are shown not to suffer 

from this numerical instability. 

For a nonsingular real matrix A we derive conditions for the existence of 



a real square root, and for the existence of a real square root which is a 

polynomial in A; the number of square roots of the latter type is determined. 

We show how a Schur method recently proposed by Bjorck and Hammarling can be 

extended so as to compute a real square root of a real matrix in real arithmetic. 

Finally, we investigate the conditioning of matrix square roots and derive an 

algorithm for the computation of a well-conditioned square root. 
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CHAPTER 1 

INTRODUCTION 

1.1 Nearness Problems 

mxn JllXn ( 1) Let ¢ (JR ) denote the set of all IID<n matrices with complex rea 

elements. Consider the problem 

A + 

minimise 
"'mxn E r:: ..., 

property 
having 
p 

llEll, (1.1.1) 

The problem has three ingredients: the given matrix A, a matrix norm 

II· II on and a matrix property p defined on Assuming that 

(1.1.1) has a solution, E . , it is of interest to find the distance 
min 

llE . II from A to the class of matrices having property P, a nearest 
min 

matrix from this class, A+ E . (which in general will not be unique), 
min 

and algorithms for computing these quantities. 

In the particular problems that we will consider, the matrix E . 
min 

is found to satisfy the condition that it is real when A is real. Hence 

we will not need to consider separately the problem analogous to (1.1.1) in 

which A, E r:: IR.mxn. 

The nearness problem (1.1.1) is of wide importance in numerical analysis; 

it arises in two distinct situations. In the first, the matrix A has the 

form A = X + ~X, where X is a desired matrix which solves a given problem 

and is known to possess property P. ~X represents rounding and/or truncation 

errors incurred when X is evaluated by a numerical algorithm in finite 

precision arithmetic; for example X may be the solution to a matrix 

differential equation (see §3.6.2), or the elements of X may be given as 

derivatives or integrals which have to be approximated numerically (see 

Example 1.1.1 below). An intuitively appealing way of "improving" the 
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approximation A to X is to replace A by the nearest matrix, N say, 

(in some norm II· II) having property P. While there is in general no 

guarantee that llN - XII < llA - XII, N does have property P, which may be 

a vital requirement (this is illustrated in Example 1.1.1), and N cannot 

be a much worse approximation to X than is A, because, from the definition 

of N, 

llN - xii ~ llN - All + llA - xii ~ 211A - XII. 

If N cannot be computed it would still be useful to have an estimate of 

llA NII, since this quantity is a lower bound for the error llA - XII. 

The second situation in which problem ( 1.1.1) arises is where A is 

the input data to a problem Q and A is known a priori not to possess a 

property P which, for problem Q, is undesirable (for example problem 

Q may be undefined for matrices having property P); it is required. to 

know how close A is to a matrix having the undesirable property. If a 

small-normed perturbation to A is sufficient to induce property P then 

problem Q may be ill-conditioned for A (we give a precise definition 

of conditioning in section 1.2). Ill-conditioning may reflect an ill-posed 

source problem; thus the identification of a small value for llE . II 
min 

(1.1.1) may suggest a need for the source problem to be reformulated. 

in 

Examples of this second type of nearness problem are nearness to instability 

(Van Loan, 1984), which is of importance in control theory, and nearness 

to singularity, which we consider in Example 1.1.2 below. 

Before discussing some specific nearness problems we consider the choice 

of norm and define some terminology. In numerical linear algebra the four 
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most commonly-used matrix norms on cnxn are, for A (a .. ) 

n 
1 - norm llAll 1 max I I a .. I. 

l~j~n i=l 1.J 

n 
00 - norm llAll max I I a .. 1, 

00 j =l 1.J l~i~n 

I 

2 - norm : llAll 2 =p(A*A) 2 , 

(spectral norm) 

n I 

I a .. I 2\ 
2 

Frobenius norm : llAllF ( l trace 
(Euclidean norm) \i,j=l 1.J ) 

where p(B) denotes the spectral radius of B 

p(B) =max {IA.I : det(B - AI)= O}, trace (B) = 

1.J 

I 

(A*A) 2 , 

nxn 
(b .. ) E Ii: , 
niJ 
l. b .. , and 

i=l 11. 

E 
nxn 

([; , 

(1.1.2) 

(1.1. 3) 

(1.1. 4) 

(1.1.5) 

that is, 

B* (b .. ) 
JI. 

denotes the conjugate transpose. The first three matrix norms are examples 

of the ones subordinate to the vector p-norms, 

f I Ix. lp)P-
\i=1 1. l 

n 1 
, 1 ~ p < oo, 

llAll - max 
p xto 

llAxll 
-- p, 
llxll 

p 

llxll 
p 

max Ix. I 
1 

. 1. 
. ~i~n 

, p 00 

See Stewart (1973, p. 179) for proofs of the equaliti.es (l.1.2), (1.1.3), 

(1.1.4). All the norms above extend readily to 

The following standard terminology will be used. A 
nxn 

(a .. ) E 0: is 
1.J 

Hermitian if A A* , 

Hermitian positive semi-definite if A A* , x*Ax ~ 0 for X E <Cn, 

Hermitian positive definite if A A* , x*Ax > 0 for 0 + X E ll:n 

skew-Hermitian if A - A* , 

unitary if A*A I , 

, 
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normal if AA* A*A 
' 

upper (lower) triangular if a .. ij 0 for i > j (i < j)' 

strictly upper (lower) triangular if a .. 0 for i ~ J (i ~ j). 
iJ 

Analogous definitions hold for A e:: lR.nxn, with "Hermitian" replaced by 

"synnnetric", "x e:: ¢n" replaced by "x e:: lR.n" and "unitary" replaced by 

"orthogonal"; A* can be written 
T 

A = (a .. ) 
Ji 

when A is real. 

The 2-norm and the Frobenius norm share the favourable property that 

f . U, V ~ ~nxn or any unitary c. 11> 

llUAVll llAll. 

A matrix norm which satisfies this invariance condition is termed a unitariZy 

invariant norm. For a characterisation of the unitarily invariant norms 

nxn 
on¢ see Fan and Hoffman (1955). As we shall see, the unitarily invariant 

norms play a special role in problem (1.1.1). 

The final definition that we require is that of the matrix square root; 

¢nxn 
is a square root of A e:: if X2 = A. If A is Hermitian 

positive (semi-) definite then there is a unique Hermitian positive (semi-) 

definite square root of A (for a proof see Corollary 5.3.6 or Marcus and 
l 

Mine (1965)); this square root is denoted by A2 • 

We now consider three specific nearness problems that are important in 

practical computation. 

Example 1.1.1. Nearness to Synnnetry/Hermitian. 

Given 11onxn 
A e:: \j, we have to find a Hermitian 

llA - XII ~ llA - Yll 

such that 
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Y* "' ..i-nxn. for all Y = c.. "' (As the heading suggests, the case of most practical 

interest is that in which the matrices are real, but we will consider this 

. ..i-nxn.) problem, and subsequent ones, in the more general setting of "' 

This problem was solved for the unitarily invariant norms by Fan and 

Hoffman (1955); they show that for each such norm a solution is given by 

The proof is simple. For any Hermitian Y, 

llA - ~II II HA - A*) II 

!ll(A - Y) + (Y*- A*)ll 

~ !llA - Yll + !ll(Y - A)*ll 

llA - Yll, 

where we have used the fact that for any unitarily invariant norm, llAll = llA*ll 

(this follows easily from the singular value decomposition of A, which is 

defined in (1.3.2)). 

The uniqueness, or otherwise, of ~ as a best Hermitian approximation 

to A in the unitarily invariant norms seems to be an open question; see 

Halmos (1972). However, in the particular case of the Frobenius norm, it 

is known that ~ is unique (Keller (1975)). To show this we use the 

results that if W = -w* and Z = z* then, from (1.1.5) and the fact that 

trace (AB) = trace(BA), 

llw + zll
2 

F 
trace (W + Z)*(W + Z) 

trace (w*w + z*z + w*z + z*w) 
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llwll~ 
2 

+ II Z II F + tr ace ( - WZ + ZW) 

The result implies that for any Hermitian Y, 

2 
llA - YllF = II (A - ~) + (~ - Y) llF 

2 
> llA - ~llF unless Y = ~· 

The solution ~ has the interesting interpretation thatit is the 

"Hermitian part" of A, for 

A !(A+ A*) + ~(A - A*) 

+ 

where x
8 

is skew-Hermitian. A proof similar to the one above shows that 

for any unitarily invariant norm, x8 is a nearest skew-Hermitian matrix to 

A. 

An important application of the nearness to symmetry problem is found 

in optimisation. A discrete Newton method for minimising F(x), n 
F : lR + JR, 

approximates the Hessian matrix 

G(x) = [~ = G(x) T 
OX.: axJ 

i J 

by finite differences of the gradient vector 

g(x) = VF(x). 

(1.1.6) 

(1.1. 7) 
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For example the ith column of G(x) can be approximated by the forward 

difference 

y. = hl (g(x + h.e.) - g(x)), 
i . i i 

i 

where h. is a scalar and e. is the ith column of the identity matrix. 
i i 

The resulting approximation Y= (y1, Y2• ... , Y) 
n 

to G(x) is not, in 

general, symmetric, yet it is a natural requirement that the accepted 

approximation to the Hessian be symmetric. Most practitioners recommend 

that the Hessian G(x) be approximated by the nearest symmetric matrix to 

y T (in the 2-norm, say), !CY+ Y) (Gil~Murray and Wright, 1981,p.116; 

Dennis and Schnabel, 1983, p.103). 

Example 1.1.2. Nearness to Singularity. 

. ~nxn For a nonsingular A E ~ the nearness to singularity problem 

is to find 

v(A) min llEll. 
A+E singular 

For the p-norms it is well-known that 

v (A) 
p 

1 

(Kahan, 1966; Moler, 1978; Golub and Van Loan, 1983, p.26; Higham, 1983b). 

In practice we are usually more interested in the relative distance from A 

to the nearest singular matrix, v(A)/llAll =K (A)- 1
, where 

p p p 

(1.1.8) 

is the condition number of A with respect to inversion. As will be 

explained in Chapter 2, the condition number K plays an important role in 
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numerical linear algebra because it measures the sensitivity of many matrix 

problems to perturbations in the data. But the computation of K(A), although 

a routine task (for the 1-, 00- and Frobenius norms), is moderately 

expensive relative to the cost of solving a single linear system (for example). 

Therefore there is much interest in methods for computing inexpensive 

estimates for the condition number. Chapter 2 is concerned with the problem 

of condition number estimation and describes a variety of applications. 

Example 1.1.3. Nearness to Normality. 

Recall that A s ~nxn is normal if AA* = A*A, that is, A commutes 

with its conjugate transpose. There are many known characterisations of a 

normal matrix (fifty-nine conditions which are equivalent to AA* = A*A are 

listed in Grone, Johnson, Sa and Wolkowicz (1982)!). The most fundamental 

characterisation is that A is normal if and only if there exists a unitary 

matrix Z such that 

z* A Z diag(\.). 
l. 

(1.1. 9) 

Thus the normal matrices are those with a complete set of orthonormal 

eigenvectors. From this property it is readily shown that the eigenvalue 

problem for a normal matrix is well-conditioned (Wilkinson, 1965, p.88). 

It follows that, when solving the eigenvalue problem for a particular As ¢nxn, 

the quantity 

d (A) min II E II 
A+E normal 

is of some interest, particularly if A is a computed approximation to a 

matrix which is known a priori to be normal. 



- 9 -

Although much research has been directed at the nearness to normality 

problem (particularly in the context of bounded linear operators on a Hilbert 

space), the problem appears to be unsolved. ¢
nxn 

For the most thorough 

treatment known to the author is given in Causey (1964), wherein questions of 

existence, uniqueness and characterisation of best normal matrix approximations 

are investigated. For the more general setting of a Hilbert space, references 

include Halmos (1974), Holmes (1974), Rogers (1976), Phillips (1977); 

unfortunately, many of the results obtained in these papers are vacuous 

¢nxn. when applied to 

Some interesting results and ideas relating to the use of normal matrix 

approximations in control theory are given in Daniel and Kouvaritakis (1983, 

1984). 

Several papers consider Henrici's "departure from normality" (Henrici, 

1962) which, for the Frobenius norm, can be defined 

where 

n I 

- \' Jt..12)2 
L 1. . ' 

i=l 

z*Az = T = diag(t..) + M, z*z 
1. 

I, (1.1.10) 

is a Schur decomposition of A, with M strictly upper triangular (Golub 

and Van Loan, 1983, p. 192). Upper and lower bounds for ~F(A) are derived 

in Henrici (1962), Eberlein (1965), Loizou (1969), Kress, de Vries and 

Wegmann (1974); see also Golub and Van Loan (1983, pp. 207,208). Henrici 

establishes the upper bound 
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Since dF(A) ~ ~F(A) (as is easily seen by considering the perturbation 

E = - ZMZ*) Henrici's upper bound is also an upper bound for dF(A). 

Some insight into the nearness to normality problem can be gained by 

considering the subclasses of the normal matrices obtained by restricting 

the spectrum 0..} 
1 

in (1.1.9) to appropriate regions R of the complex 

plane. Taking for R the real line JR, the imaginary axis i JR, the 

nonnegative real line JR+, and the unit circle {z E ¢: I zl = l}, we obtain 

the 

(i) Hermitian 

(ii) Skew-Hermitian 

(iii) Hermitian positive semi-definite 

(iv) unitary 

matrices, respectively. The solution to the nearness problem for the 

first two classes was given in Example 1.1.1. The problem was solved for 

the third class, using the 2-norm, by Halmos (1972). Halmos' solution is 

o (A) - min II E 11 2 

where 

A 

A+E Hermitian 
positive semi-definite 

= min{r > 0: r 2I - c 2 is Hermitian positive semi-definite, 

B + (r2 I - C2)! is Hermitian positive semi-definite}, 

(1.1.11) 

!CA+ A*) + i(- ~(A - A*)) 
2 

- B + i C, 

that is, B is the Hermitian part of A and C = c* is the skew-Hermitian 

part of A scaled by minus the imaginary unit. (By analogy with the n = 1 
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case, B and C are called the real and imaginary parts of A, respectively, 

although the elements of B are not real in general.) Halmes shows that a 

nearest Hermitian positive semi-definite matrix to A in the 2-norm is given 

by 

x (1.1.12) 

We identify the nearest unitary matrix, and consider its computation , 

in Chapter 3, and we give there a simple proof and an interesting interpretation 

of Halmos' result for the important case where A is itself Hermitian. 

Before describing in detail the contents of the thesis, we define and 

explain two concepts which play a fundamental role in the analysis of any 

numerical method. 

1.2 Conditioning and Stability 

Throughout the thesis we will pay close attention to the concepts of 

conditioning and stability, as they apply to the particular problems and 

algorithms being considered. These concepts are best defined with reference 

to a general matrix problem Q, whose input data l.S A E: 
¢mxn and whose 

solution is x = Q(A) E: 
d;pxq. For example, if Q is the problem of matrix 

inversion then m = n p = q and Q(A) 
-1 = A • The conditioning of problem 

Q, for a particular A, concerns the relation between small changes in 

A and the resulting changes in Q(A). It is usual to consider the class 

of perturbations A +A + E, where E E: ¢mxn is a general matrix, and to 

measure the size of the perturbation E relative to A, using a matrix norm 

II· II on 
mxn 

<C • 
mn 

quantity 

In this setting, the conditioning is measured by the 

lim 
o-+0 

II E II sup ~ o II A II 
mn mn 

llQ(A+E) - Q(A) II /llQ(A) II 
pg pq 
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which is a condition number of A for the problem Q (Rice, 1966). 

(Alternatively, one may impose restrictive conditions such as le .. !~ Eja .. j, 
1.J l.J 

in which E may be described as a relative perturbation to A element-wise 

of size at most E.) 

From the definition of CQ(A) we see that, roughly, a small relative 

change of size o in A can induce a relative change of size CQ(A)o in 

Q(A), but no larger. Problem Q is said to be ill-conditioned for a particular 

the A if CQ(A) is "large" and weU-conditioned if CQ(A) is "small"; 

definitions of "large" and "small" depend on the overall setting in which the 

problem is being considered. 

As the name of K(A) in (1.1.8) suggests, for the problem of matrix 

inversion CQ(A) = K(A); see Rice (1966). 

Conditioning is, then,a mathematical property of the problem Q. In 

contrast, stability, or the lack of it, is a property of an algorithm for 

solving problem Q (at least in the sense in which we will use the term). 

We will use the following definition of a stable algorithm. 

Definition 1.2.1. Stable Algorithm. 

An algorithm G for solving the matrix problem Q in floating point 

arithmetic with unit roundoff u is stable if, for every A for which the 

problem is defined and for which the algorithm runs to completion, the 

computed solution X satisfies 

x Q(A + E) (1.2.1) 

for some E such that 

llEll ~ E llAll, (1.2.2) 

where E is a small multiple of u. D 



- 13 -

See Golub and Van Loan (1983, p.32) for the definition of the unit 

roundoff u (sometimes called the machine precision). Stated loosely, an 

algorithm is stable if, relative to the machine precision, it solves a nearby 

problem. 

The importance of a stable algorithm is that it introduces little more 

uncertainty into the numerical solution X of problem Q than was originally 

present; for rounding errors incurred in the computation of A, or in 

storing A on the computer, necessarily introduce uncertainties of size at 

least ullAll into the initial data. As C.W. Gear explains in Gear (1977), 

for a stable algorithm "there is as much reason to believe the computed 

solution as the true solution of the model". 

Contributions to the backward error E, and the forward error 

Q(A) Q(A + E) in (1.2.1) are of two distinct types. First, there are the 

errors that are implicit in the mathematical derivation of the algorithm, 

resulting from truncating an infinite series or terminating an iteration. 

Second, when the algorithm is implemented in finite precision arithmetic 

there are rounding errors, which propagate through the algorithm. For the 

algorithms whose stability we will examine, the main source of errors will 

be the second, because, but for premature termination of iterations, the 

algorithms would yield, in the absence of roundoff, the exact solutions of 

the problems. 

Note that failure of the stability condition to hold for an algorithm 

G does not necessarily imply that the algorithm is poor. For example, the 

method of matrix inversion by Gaussian elimination with partial pivoting 

is generally accepted to compute a satisfactory approximate inverse 
-1 

x~A 

despite the fact that there is, in general, no relatively small-normed E 

such that X = (A+ E)-l (Wilkinson, 1961, 1971). However, if it can be 
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shown that (1.2.1) is satisfied for an E for which, potentially, llEll»u llAll,, 

then there is certainly cause for concern. An algorithm which is not stable 

should provide some indication of when it is performing unstably if it is to 

be of practical use; if the algorithm always signals the presence of 

instability then it is said to be reliable. 

The technique in which one tries to show that a numerical algorithm 

computes the true solution to a perturbed problem is called backward error 

analysis. J.H. Wilkinson was the first to exploit the technique systematically 

and has used it widely; see Wilkinson (1961, 1963, 1965). The survey paper 

Wilkinson (1971) contains a fascinating historical perspective on backward 

error analysis. 

In the analysis of some iterative algorithms in Chapter 4 we will 

investigate a somewhat different form of stability than that given in 

Definition 1.2.1, a form that we refer to as "numerical stability". Essentially, 

an iterative algorithm is numerically stable if perturbations introduced 

during the course of the algorithm are not subsequently magnified as the 

algorithm proceeds (in practice, the perturbations are due to rounding errors). 

This rather loose definition will be sufficient for our needs in Chapter 4. 

A numerically unstable algorithm usually cannot be guaranteed even to 

terminate in finite precision arithmetic, and so has little merit for practical 

computation. In contrast, a numerically stable algorithm will usually 

converge, but it may still be unstable in the sense of Definition 1.2.1. 

1.3 Description of Contents 

Having introduced the nearness problems that provide a linking theme 

for the topics in this thesis, and having defined the important concepts of 

stability and conditioning, we now summarise the contents of the thesis. 
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In Chapter 2 we survey and compare a wide variety of techniques for 

estimating the condition number K of a triangular matrix and we make 

recommendations concerning the use of the estimates in applications. The 

restriction to triangular matrices enta1.ls no real loss of generality, as 

explained in section 2.1. Each of the methods is shown to bound the 

condition number; the bounds can broadly be categorised as upper bounds from 

matrix theory and lower bounds from heuristic or probabilistic algorithms. For 

each bound we examine by how much, at worst, it can overestimate or under-

estimate the condition number. Finally, we explain why in practice it is 

desirable to compute both an upper bound and a lower bound for the condition 

number, and we describe the application of this principle to the problem 

of estimating the rank of a matrix from its QR decomposition. 

Chapter 3 is concerned with numerical methods for computing the nearest 

unitary matrix to A E ~nxn and the nearest Hermitian positive semi-definite 

matrix to A=~ ~nxn 
E "' • The solution to these two problems is expressed 

in terms of the polar decomposition of A, which is an extension to matrices 

of the polar representation 
i8 

z = re for complex numbers. A quadratically 

convergent Newton method for computing the polar decomposition of a full-

rank matrix is presented and analysed. Acceleration parameters are introduced 

so as to enhance the initial rate of convergence and it is shown how reliable 

estimates of the optimal parameters may be computed in practice. For real 

matrices, the nearness to orthogonality and nearness to symmetric positive 

semi-definiteness problems arise in several application areas; such applications 

in factor analysis, optimisation and aerospace computations are described 

in section 3.6. 
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In Chapter 3 we show also how the Newton method for the polar decomposition 

can be used to compute the synnnetric positive definite square root of a 

symmetric positive definite A EJR.nxn. For this type of matrix the method 

provides an alternative to several well-known Newton methods for computing 

the matrix square root. In order to compare these competing iterations we 

analyse in Chapter 4 their convergence behaviour and their numerical stability 

properties. Two of the square root iterations can be obtained directly by 

applying Newton's method to the quadratic matrix equation 

x2 - A 0 (1.3.1) 

and re-writing the resulting equations. These iterations are shown to have 

excellent mathematical convergence properties. However, by means of a 

perturbation analysis and supportive numerical examples it is shown that 

these simplified iterations are numerically unstable. The Newton method 

of Chapter 3, and a further variant of Newton's method for (1.3.1) are shown 

not to suffer from this numerical instability. 

Finally, in Chapter 5, we turn our attention to the computation of square 

roots of unsynnnetric matrices. Bjorck and Hammarling (1983) describe a fast, 

~table Schur method for computing a square root X of a general unsynnnetric 

A E ¢nxn. We present an extension of their method which enables real arithmetic 

to be used throughout when computing a real square root of a real matrix. 

For a nonsingular real matrix A conditions are derived for the existence of 

a real square root, and for the existence of a real square root which is a 

polynomial in A· 
' the number of square roots of the latter type is determined. 

The conditioning of matrix square roots is investigated and an algorithm is 

given for the computation of a well-conditioned square root. 
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We conclude this introduction by defining two further matrix decompositions 

and some notation. 

where 

A " "'mxn "' "' , m ~ n, 

"'mxm p € .., and 

has a singular value decomposition 

A 

"'nxn Q € lj, 

p [~] q*' 

are unitary and 

is a diagonal matrix, with 

~ a ~ O; 
n 

(1.3.2) 

the nonnegative numbers {cr.} are called the singular values of A. When 
l. 

A is real, P and Q may be taken to be real and orthogonal. References 

for the singular value decomposition include Stewart (1973, p.317), Wilkinson 

(1978), Dongarra et al. (1979, Ch.11) and Golub and Van Loan (1983, p.16). 

We note for later use, that, from (1.1.4) and (1.3.2), if 

A c: d:nxn then 

and if A is nonsingular, 

K2(A) 

(1.3.3) 

(1. 3. 4) 

(1.3.5) 

If A c: ¢nxn is Hermitian then its Schur decomposition (1.1.10) takes 

the form 

z*Az A diag (A..) , A.. £ JR, 
i i 

z*z I, (1.3.6) 
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which is called a spectral decomposition of A. If A is real then Z may 

be taken to be real and orthogonal. 

As a crude means of measuring the computational cost of a numerical algorithm 

we will use the term flop. This is the amount of work involved in evaluating 

an expression of the form s = s + aik * ~j (Golub and Van Loan, 1983, p.32). 

A flop involves a floating-point add, a floating-point multiply and some 

subscripting. This notation acknowledges that the relative costs of addition, 

multiplication and subscripting depend on the particular computer system and 

programming language in use. 



- 19 -

CHAPTER 2 

A SURVEY OF CONDITION NUMBER ESTIMATION FOR TRIANGULAR MATRICES 

2.1 Introduction 

. "'nxn Recall from Example 1.1.2 that for a nonsingular matrix A E ~ and 

a matrix norm 11·11 on ([;nxn the condition number of A with respect to 

inversion is defined by 

The definition of K(A) extends readily to ([! 
mxn 

(Stewart, 1973 ; Golub 

and Van Loan, 1983). We will use the matrix norms (1.1.2), (1.1.3), (1.1.4) 

and ( 1. 1. 5) . 

The condition number K is important because in many matrix problems 

it provides information about the sensitivity of the solution to perturbations 

in the data. The most well-known example is the linear equation problem 

Ax = b, for which various perturbation bounds involving K(A) are available 

(Stewart, 1973, p.194 ff; Dongarra, Bunch, Moler and Stewart, 1979, p.5.18; 

Golub and Van Loan, 1983, p.25 ff.). To quote one example, if Ax= b and 

(A+ E)(x + h) = b + d, where A E «:nxn is nonsingular, then 

llhll 

llxll 1 -

K (A) [II E II II d II ] 
(A) llEll W + ™' 

K fil 

provided that K(A) llEll /llAll < 1. 

(2.1.1) 

In practical computation perturbation results of this type are important 

for two reasons. First, they enable the effect of errors in the data to be 

assessed, and second, when combined with a backward error analysis they can be 

used to provide rigorous bounds for the error in a computed solution. To 

illustrate the second point, it can be shown that when a linear system Ax b 
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matrix decompositions, both of which are used in solving least squares (and 

other) problems. Let P denote a permutation matrix. The two decompositions 

are 

(i) QR decomposition (with column pivoting) of 
mxn 

A E: ([; , m ~ n: 

[~] ' (2.1.3) 

where Q ~ ~mxm . . d 
c.. 11- is unitary an is upper triangular 

(Dongarra et al., 1979, Ch.9; Golub and Van Loan, 1983, p.163); 

(ii) Choleski decomposition (with pivoting) of a Hermitian positive definite 

(2.1.4) 

where L is lower triangular with real, positive diagonal elements (Dongarra 

et al., 1979, Ch.8). (Decomposition (2.1.3) for A is essentially equivalent 

to decomposition (2.1.4) for * A A (Dongarra et al., 1979, p.9.2).) 

Using basic properties of the 2-norm and the Frobenius norm (Stewart, 

1973, pp.180, 213) one can show that for A in (2.1.3) 

and for A in (2.1.4) 

so that in these decompositions the condition number of A is obtainable, 

trivially, from that of the triangular factor. 

Consider, then, a triangular matrix T of order n. For all the norms 

under consideration llTll can easily either be computed, or in the case of 

the 2-norm, estimated, using (1.1.2), (1.1.3), (1.1.4), (1.1.5) and the results 
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that for 
nxn 

A E ~ (Golub and Van Loan, 1983, p.15) 

(2.1.5) 

(2.1.6) 

Thus, computationally, the greatest expense in the evaluation of K(T) comes 

from the term llT-
1 11, which ostensibly requires the computation of 

-1 
T • 

general, computation of 
-1 

T requires flops. This volume 

In 

of computation may be unacceptable since it is of the same order of magnitude 

as the work required to compute the decompositions (2.1.3) (assuming m is 

not much greater than n) and (2.1.4). Consequently, methods which estimate 

llT- 1 11, in O(n2 ) flops or less, are desirable. 

In this chapter we attempt to give a comprehensive, comparative survey 

of techniques for estimating the condition number of a triangular matrix. 

Our restriction to triangular matrices is justified by the applications listed 

above and by the fact that the derivation and the behaviour of the only widely 

used condition estimator for full matrices, that given in LINPACK (Dongarra 

et al., 1979), is adequately illustrated by considering the triangular case. 

All the methods to be described bound the condition number - some from 

above and some from below. The bounds can be divided into two classes; those 

that are obtained from matrix inequalities and which depend only on the moduli 

of the elements of the triangular matrix, and those that are the result of 

heuristic or probabilistic algorithms motivated by the definition of the 

subordinate matrix norm. Both types of algorithm in the second class are 

shown to be related to the well-known power method for computing matrix 

eigenvalues (Wilkinson, 1965, p.570 ff.). The bounds and algorithms are 

described in sections 2.2, 2.3 and 2.4. 



- 23 -

An important aspect of the bounds, which we examine in section 2.5, is 

their worst-case behaviour, that is, the largest amount by which a given 

bound can over- or underestimate the condition number. 

In section 2.6 we show how the estimates of section 2.2 can be applied 

to the problem of estimating the rank of a matrix from its QR decomposition 

(2.1.3). 

Section 2.7 contains the results of numerical tests carried out by the 

author for the upper bounds of section 2.2, and summarises the numerical 

results of other authors for the estimates of section 2.3. 

Finally, in section 2.8, we review and comment on the methods discussed 

and we explain why in practice it is desirable to compute both an upper bound 

and a lower bound for the condition number. 

In addition to collecting and unifying earlier material this chapter 

presents some new results (which were reported previously in Higham (1983a)), 

namely the upper bounds of Algorithms 2.2.1 and 2.2.2 and the results in 

section 2.5 describing the behaviour of these upper bounds. 

It is clear that it suffices to consider estimation of llT-
1

11 rather 

than K(T). For definiteness we will take T to be upper triangular throughout; 

modifications for the lower triangular case are straightforward. 

2.2 Bounds from Matrix Theory 

nxn 
T = (t .. ) E ~ be upper triangular. 

1] 
Let The bounds to be discussed 

in this section are defined in terms of the moduli of the elements of T· 
' 

that is, each bound is a function of the form 
nxn 

<P: ~ +JR, 

<P(T) <P ( IT I) ' 
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where 

I I I I 
nxn 

T = ( t .. ) E JR • 
1J 

The implications of this property are explored in section 2.5. 

The following well-known lower bound for llT- 1
11 follows from the 

inequality llAll 1 2 F ~ I a.· I ' ,oo, 1J 
and the fact that the reciprocals of the 

diagonal elements of T 

( min 
l~i~n 

are themselves elements of T-1: 

(2.2.1) 

Upper bounds for llT- 1
11 can be obtained by making use of the comparison 

matrices M(T) = (m .. ), where 
1J 

m .. 
1] 

and W(T) (w .. ) 
1J 

w •. 
1J 

and 

It .. I, 
11 

-It .. l, 
1J 

where 

a. 
1 

It .. I, 
11 

-a. 
1 

0 

max 
i +l~k~n 

i j 

(2.2.2) 
1 + J ' 

i = j' 

i < j' 

1 > j 

Comparison matrices arise in the theory of M-matrices (Berman and Plennnons, 
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1979, Ch.6). 

Lennna 2.2.1 (Higham, 1983a). 

Note. 

Let T be a nonsingular upper triangular matrix. Then 

llT-1
11 

p 
~ llM(T) -l 11 

p 
~ llW(T) -l 11 , 

p 
p 1,2,oo,F, 

This result is a special case of several results which have appeared in 

the literature on M-matrices. For more general results couched in terms 

of matrix minorants and diagonal dominance respectively, see Dahlquist (1983) 

and Varga (1976); see also Householder (1964, p.58, Exercise 15). 

Proof. 

We give a direct, elementary proof of the lennna, taken from Higham (1983a). 

The matrices T, M(T) and W(T) can be written 

where D 

T = D - u, M(T) = lnl - Jul, W(T) = lnl - V, 

diag(t .. ), U and V are strictly upper triangular, and 
11 

V ~ Jul (inequalities between matrices are defined to hold element-wise). 

Using the fact that the nth power of a strictly upper triangular matrix of 

order n 1s zero we have 
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That is, 

(2.2.3) 

This gives the inequalities between the norms, since for each of the norms 

/A/ ~ ,B implies llAll ~ llBll. o 

At first sight the upper bounds provided by the lemma appear to be no 

easier to evaluate than llT-1 11 itself. However, from (2.2.3) we see that 

M(T) and W(T) both have inverseswhose elements are all non-negative. 

An observation which has appeared many times in the literature is that if 

-1 
then llA- 1ell llA-1 11 T 

utilising A ~ 0 00' where e = (1,1, ..• ,1) . By 
00 

this observation we can compute llu- 1 11 
00' 

for U = M(T) or W(T), without 

forming the inverse explicitly: llu- 1 11 may be computed as the 00-norm 
00 

of the solution of the triangular system Uz = e. 

We thus have the following algorithms (Higham, 1983a). 

Algorithm 2.2.1 (Higham, 1983a). 

Given a nonsingular upper triangular matrix T of order n this 

algorithm computes YM 

z : l//t I n nn 

For i n - 1 to 1 step -1 

s 1 

s s + It .. /*z. (j i + 1, ... ' n) 
iJ J 

z.: sl It.. I i ii 

yM: = llzll 
00 

Cost: n 2 /2 flops. 
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For a different derivation of the equations constituting Algorithm 

2.2.1 see Jennings (1982). 

Algorithm 2.2.2 (Higham, 1983a). 

Given a nonsingular upper triangular matrix T of order n this 

algorithm computes Yw 

z 111 t I n nn 

s 0 

For i n - 1 to 1 step -1 

s s + zi+l 

a.. : max ltikl l. 
i+l~k~n 

z.: c1+a..*s)!I t .. I 
l. l. l. l. 

yW: II zll . 
00 

Cost: 3n flops, and n2 /2 comparisons for evaluation of the {a..}. 
l. 

Remark. 

There are two particular classes of triangular matrix for which the 

upper bound of Algorithm 2.2.1 is equal to The first class 

consists of those triangular matrices T for which T M(T); this is 

in fact the class of triangular M-matrices (Berman and Plennnons, 1979, Ch.6). 

The second class consists of the bidiagonal matrices (Higham, 1984a), those 

with zeros everywhere except (possibly) on the diagonal and the sub- or 

superdiagonal; they arise as the LU factors of tridiagonal matrices 

(Golub and Van Loan, 1983, p.97) and are important in the Golub-Reinsch 

algorithm for computing the singular value decomposition (Golub and Van Loan, 
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1983, p.169 ff.). For both classes of matrix Algorithm 2.2.1 (which simplifies 

in the bidiagonal case) enables llT-
1

11 to be evaluated with an order of 
00 

magnitude less work than is required to compute -1 
T . 

Algorithm 2.2.2 evaluates the 00-norm of W(T)- 1
, and the 1-norm can 

be evaluated by applying a "lower triangular" version of the algorithm to 

TT (since llAll 1 = llATll
00
). Karasalo (1974) shows how to compute the Frobenius 

norm of W(T)- 1 in O(n) flops, via a recurrence relation: 

Lemma 2.2.2 (Karasalo, 1974). 

It T E ~nxn is a nonsingular upper triangular matrix then 

llW(T)- 1 11~ = 
n 

I 
i=l 

µ./It. .1 2 , 
1 11 

where the {µ.} are given by the recurrence 
1 

where 

Proof. 

µ 1 1, 

µ. 
1 

c . = [ max I t . k I J I I t . . I ' 
1 . 1 k 1 11 1+ ::;: :;:n 

See (Karasalo, 1974, Lemma 3.1). D 

2 ~ i ::; n, 

1 ::;: 1 ~ n-1. 

Evaluation of llW(T)- 1 llF from the lemma requires 6n flops and, as in 

Algorithm 2.2.2, n 2 /2 comparisons. 

Anderson and Karasalo (1975) suggest the use of the power method on the 

matrix B = W(T) -TW(T) -l in order to estimate llW(T) - 1 11 2 and thereby to 

bound the 2-norm of -1 
T . Since B ~ 0 it has a real eigenvalue equal to 
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the spectral radius of B and an associated nonnegative eigenvector 

(Lancaster, 1969, p.288); thus with a suitably chosen nonnegative starting 

vector the power method applied to B can be expected to converge rapidly. 

In Anderson and Karasalo (1975) one iteration of the power method is used, 

with a starting vector whose ith component is the 2-norm of the ith column of 

W(T)- 1 (these column norms are by-products of the recurrence in Lennna 2.2.2, 

see Karasalo (1974)) and the Perron-Frobenius theory is applied to derive a 

strict upper bound for llW(T)- 1
11

2 
in terms of the power method vectors. We 

note that the same technique could be used to estimate llM(T)- 1
11

2
• 

An alternative way to bound the 2-norm of is to use Algorithm 

2.2.1 or Algorithm 2.2.2 to evaluate the appropriate right-hand member of 

(see (2.1.5), Lennna 2.2.1) 

(2.2.4) 

(2.2.5) 

Lemeire (1975) derives the following upper bounds (where T is of order n). 

(2.2.6) 

1 /ca+l) 2n + 2n(a+2) - 1, (2.2.7) 
(a+2) 8 

where 

a = max 
i<j 

It .. 1 
iJ 

It .. I ii 
' 8 min It .. I· 

• ii 
i 

(2.2.8) 

These bounds are, in fact, equal to norms of Z(T)- 1
, where Z(T) (z .. ) 

iJ 
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z .. = s 
l.l. 

and z .. = - aS 
l.J 

for l. < j . Using 

the technique used in the proof of Lennna 2.2.1 it is easy to show that 

llW(T) -l 11 
p 

p 1,2, 00 ,F. (2.2.9) 

Thus (2.2.6) and (2.2.7) provide the least sharp of the upper bounds given 

1n this section. 

To sunnnarise, upper bounds for llT- 1
11 are given by the norms of the 

inverses of three comparison matrices, M(T), W(T) and Z(T). The 

computational cost of evaluating these bounds is, respectively, O(n2) flops, 

O(n) flops and n 2 /2 comparisons, 0(1) flops and n2 /2 comparisons, 

and the bounds are ordered according to (from Lennna 2.2.1 and (2.2.9)) 

~ llM(T) -l 11 
p 

2.3 The LINPACK Algorithm 

p 1, 2 ,oo, F. (2.2.10) 

LINPACK (Dongarra et al., 1979) is a collection of Fortran subroutines 

which perform many of the tasks associated with linear systems, such as 

matrix factorisation and solution of a linear system. Most of the LINPACK 

routines for matrix factorisation incorporate a condition estimator: an 

algorithm which, given the matrix factors, yields at relatively little cost 

an estimate of the condition number of the matrix. We will describe the 

LINPACK condition estimation algorithm as it is implemented in STRCO, the 

LINPACK routine which estimates the condition number of a real triangular 

matrix T. 

In outline, the algorithm is as follows. 

Algorithm 2.3.1 (Cline, Moler, Stewart and Wilkinson, 1979; Dongarra et al., 

1979). 

(1) Choose a vector d such that llyll is "large" relative to lldll, where 

TTy = d; 
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(2) Solve Tx = y; 

(3) Estimate llT- 1 11 ~ llxll /llyll ~ llT- 1 11. 

Here 11·11 denotes both a vector norm and the corresponding subordinate 

matrix norm. In STRCO the norm is the 1-norm, but the algorithm can be used 

also for the 2-norm or the 00-norm. Note that the LINPACK algorithm produces 

a lower bound for II T-
111. 

We now look more closely at step (1) and assume for clarity that T 

is lower triangular of order n· 
' let u 

First, note that the equation Uy d can be solved by the following 

colunm-orientated version of back-substitution. 

p. 
1 

0 (i 1, ... , n) 

For J n to 1 step -1 

y. 
J 

(d. - p.)/u .. 
J J JJ 

(*) p. 
1 

p. + u .. *y. 
1 1J J 

(i J - 1, ... ' 1) . 

The idea suggested in Cline, Moler et al. (1979) is to choose the elements 

of the right-hand side vector d adaptively as the solution proceeds, with 

d. ± 1. At the jth stage of the algorithm d n' ... ' d. 1 have been chosen 
J J+ 

and Yn• ... ' Yj+l are known. The next element d. E {+l, -1} 1S chosen 

so as to maximise a weighted sum of d. - p. 
J J 

J 

and the partial sums p. l' ... ,Pl 
J-

which would be computed during the next execution of statement (*) above. 

The algorithm is clearly heuristic, being based on the assumption that by 

maximising, at each stage, a weighted sum of contributions to the remaining 

solution components, a near maximally-normed final solution vector will be 

obtained. 
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The algorithm of Cline, Moler et al. (1979) can be written as follows. 

Algorithm 2.3.2 (Cline, Moler et al., 1979). 

Given a nonsingular upper triangular matrix U E: lR.nxn and a set of 

nonnegative weights {w.}' 
1 

this algorithm computes a vector y such that 

Uy = d, where the elements d. = ±1 are chosen to make 
J 

p. 
1 

For J 

+ y. 
J 

y. 
J 

+ p. 
1 

p. : 1 

If 

0 (i 1, ... 'n) 

n to 1 step -1 

(1 - p.)/u .. 
J JJ 

(-1 - p.)u .. 
J JJ 

* + }(i -j-1, 

= p. + u .. y. 
1 1J J 

... ' 1) 
= pi + u .. *y-. 

1J J 

w.11-p. I 
J J 

then 

y. 
J 

p. 
1 

else 

y. 
J 

p. 
1 

j-1 
+ l w. lp;I 

i=l 1 1 

+ 
y. 

J 

+ 
p. 

1 

y. 
J 

p. 
1 

(i 

(i 

~ w. ll + P· I + 
J J 

1, .•• , j-1) 

1, ••• , j-1). 

Cost: 2n2 flops. 

llyll large. 

j-1 
I w. lp~I 

i=l 1 1 

STRCO uses weights w. = 1. A natural alternative is to take 
J 

w. 1/ I u .. 1, 
JJ 

as this corresponds to how p. 
J 

is weighted in the expression 
J 
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y. = (d. - p.)/u ... The former choice saves n2 multiplications in 
J J J JJ 

Algorithm 2.3.2. See Cline, Conn and Van Loan (1982), Cline and Rew (1983) 

for more details about the choice of weights. 

The motivation for step (2) of Algorithm 2.3.1 is given in Moler (1978), 

Cline, Moler et al. (1979) and is based on a singular value decomposition 

analysis; essentially, if llyll/lldll (~llT-Tll) is large then llxll/llyll (~llT- 1 11) 

will almost certainly be at least as large, and it could well be a sharper 

estimate. Notice that in Algorithm 2.3.1, 
T 

T Tx = d, so the algorithm 

is related to the power method on the matrix (TTT)-1 with the specially 

chosen starting vector d. 

O'Leary (1980) suggests a modification to the LINPACK condition 

estimator which, as her experimental results show, can produce improved 

estimates. In the case of Algorithm 2.3.1 the modification is to estimate 

and thus to make use of information available from the first step. One can 

go further and omit the second step of Algorithm 2.3.1 altogether, obtaining 

a 2n2 flops estimator which consists of applying Algorithm 2.3.2 and 

estimating llu- 1
11

00 
"' llyll

00
/lldll

00 
= llyll

00
• That the 00-norm is the natural norm 

to use can be seen by noting that 

llyll 
00 

max 
l~i~n 

n 

I I 
j=l 

a .. d. I 
1J J 

max 
l~i~n 

n 

l 
j=l 

± a .. I, 
1J 

where 
-1 

U = (a .. ), 
1J 

which suggests that Algorithm 2.3.2 will attempt to 

choose d as the vector which gives equality in the expression 

n 
I I a .. 1 • 

. 1 1J J= 
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Cline, Conn and Van Loan (1982) describe a generalisation of Algorithm 

2.3.2 which incorporates a "look-behind" technique. Whereas Algorithm 2.3.2 

holds each d. fixed once it has been assigned a value, the look-behind 
J 

algorithm allows for the possibility of modifying previously chosen d.s. 
J 

At the jth stage the look-behind algorithm maximises a function which 

includes a contribution from each equation, not only equations j down to 

1 as is the case with Algorithm 2.3.2. See Cline, Conn and Van Loan (1982) 

for further details of the look-behind algorithm. 

2.4 Probabilistic Condition Estimates 

An idea mentioned in Cline, Moler et al. (1979) is to choose the vector 

d in Algorithm 2.3.1 randomly, for an analysis based on the singular value 

decomposition suggests that for a random d there is a high probability 

that a good estimate of llT- 1 11 will be obtained. This notion is made more 

precise by Dixon (1983), who proves the following result. 

Theorem 2.4.1 (Dixon, 1983). 

Let A slR.nxn be nonsingular and let 8 > 1 be a constant. If x s lR.n 

is a random vector from the uniform distribution on the unit sphere 

s 
n 

n T {y s lR. : y y = 1} then 
1 
2k 

(xT(AAT)-kx) 

the inequality 

holds with probability at least 1 - 0.8e-k/2n! (k ~ 1). 

Note. 

(2.4.1) 

The left-hand inequality in(2.4.l) always holds, as is easily shown. 

Only the right-hand inequality is in question. 

Proof. 

See Dixon (1983). o 
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We are interested in the case where A T is triangular. For k 

(2.4.1) can then be written 

which suggests the simple flops estimate 

x is chosen randomly from the uniform distribution on 

can be generated from the formula 

x. = z./llzll 2 , 
}_ }_ 

s . 
n 

(2.4.2) 

where 

Vectors x 

(2.4.3) 

where z
1

, ••• , zn are independent random variables from the normal 

distribution with mean zero and variance one (Dixon, 1983). To illustrate 

1 

the theorem~ if n = 100 and e = 6400 then inequality (2.4.2) holds with 

probability at least .9. 

In order to be able to take a smaller constant e, for fixed n and 

a desired probability, one can use higher values of k. In contrast to 

Dixon (1983) we consider only the case where k is even and we simplify 

T 2 
(2.4.1), using y y = llyll • 

2 
1 

ll(MT)-jxll
2

2j ~ 

and the minimum probability 

If k = 2j, (2.4.1) becomes 

1 

llA- 1 112 ~ ell(MT)-jxll/j 

stated by the theorem is 1 -

A = T we obtain the estimate 

1 

II (TTT) -jxll 2 
y 

llT- 1
11
2

, y. = J RS 

J 

which can be computed in jn2 flops. Taking J = 3, for 

(2.4.4) 

• I 

0. 88 -Jn 2 • For 

(2.4.5) 

the same n = 100 

as before, we find that the bound (2.4.4) holds with probability at least 

.9 for the considerably smaller e = 4.31. Tables 2.4.1 and 2.4.2 show the 

smallest values of e that can be taken for two particular n and a range 
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1 

of J and probabilities p; here e is calculated from e 
I "7"" 

(.8n2 /(l-p))J, 

which is fairly insensitive to n, especially for large J• 

Table 2.4.1. Minimum 8 for n = 100. 

~ 1 3 5 

.9 80 4.31 2.41 

.99 800 9.29 3.81 

.999 8000 20.00 6.04 

Table 2.4.2. Minimum 8 for n 1000. 

I~ 1 3 5 

.9 2.53 x 102 6.33 3.03 

.99 2.53 x 103 13.63 4.80 

.999 2.53 x 104 29.36 7.60 

For j = 1 this technique resembles closely Algorithm 2.3.1, the main 

difference being that the right-hand side is chosen randomly, rather than 

by a deterministic algorithm that takes account of the matrix elements. 

We carried out a small number of numerical tests, evaluating y. in 
J 

(2.4.5) for j = 1, 2, ... ' 25 with several T and x, and n ~ 25. Three 

features were noticeable in the results. First, the { y.} increased 
J 

monotonically in every case (y. < y. is possible, theoretically). Second 
J J-1 

y
1 

was in most cases within a factor three of -1 llT 11
2

, which is distinctly 
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better than the e values for p = .99 might lead one to expect. Third, 

1n the remaining cases there was often a significant improvement of y2 over 

y 1 (y 2 > 2y 1 , say), with steady but diminishing improvements in the 

succeeding y.s (recall that each 
J 

y. 
J 

is a strict lower bound for 

so the larger is y.' 
J 

the better). 

These observations indicate that it may be profitable to compute a 

sequence of estimates 
s 

{y.}. l' 
J J= 

for a fixed, random x, using the information 

which accumulates as successive "iterates" are computed to choose s 

adaptively. We suggest the following algorithm for implementing this idea. 

Given parameters r, s, t, a the algorithm computes the condition estimates 

for j = 1, 2, ... , r, and for j = r + 1, ... , s only if the current 

estimate y. is a significant improvement on the previous ones, which we 
J 

define by "y • > ay II 
J j-t . 

Algorithm 2. 4 .1. 

Given a nonsingular triangular matrix T £ lR.nxn and parameters 

r, s, t, a this algorithm computes an estimate y :;:: llT- 1 11 2 such that the 

-1 
inequality llT 11 2 ~ 6(n,r)y holds with probability at least .99, where 

l l/r 
6(n,r) = (80n 2 ) • 

(1) Generate a random vector x0 according to (2.4.3). 

(2) For J 

x. 
J 

y. 
J 

If J ~ 

If 

1 to s 

T -1 
(TT ) x. 

1 
(solve two triangular systems) 

1 J-

llx.112j 
J 2 

r then 

y. ~ ay. t then 
J J-

y : = max y. 
ldd 

1 

quit 
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Cost: Between rn2 and sn2 flops. 

Notice that the output of the algorithm can be regarded as either a 

single estimate y, which is "correct" with a given probability, or, 

alternatively, as a pair of bounds: a strict lower bound y and an upper 

bound 6(n,r)y which holds with a given probability. 

In practice it is vital to scale the vectors 

in order to avoid overflow, since 

Our limited experiments suggest that r = 3, s = 5, t = 2, a = 2 is 

a reasonable choice of parameters; note that 6(n,3) < 10 for n ~ 150. 

It would be interesting to determine experimentally the values of the 

parameters which give the best compromise between "reliability" and 

computational cost, and to investigate the question of by how much the bound 

llT- 1 11
2 

[: 6(n,r)y is violated, in the cases (which occur with probability 

q ~ .01) where the bound does not hold. 

A possible enhancement to Algorithm 2.4.1 is to compute, additionally, 

the lower bounds 

p. 
J 

(llx.11
2

/llx. 
1

11 )! ~ llT- 1 11
2

, 
J J- 2 

j 1, 2, 

(2.4.6) 

In brief tests the estimates p. provided much sharper estimates of llT-
1

11 2 J 

than did the {y.}, P3 typically having at least two correct digits. In 
J 

view of this observed behaviour it would be useful to extend the probabilistic 

bound of Theorem 2.4.1 to the {p.}. 
J 

We conclude this section by noting, as we did for the LINPACK condition 
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estimator in the last section, the close relation of Algorithm 2.4.1 to 

the power method with matrix (TTT)- 1 and, in this case, a random starting 

vector. 

2.5 Reliability of the Bounds 

The estimates discussed in sections 2.2 and 2.3 are all rigorous upper 

or lower bounds for the condition number. Both types of bound can give 

useful information about a matrix, for a small upper bound verifies well-

conditioning while a large lower bound signals ill-conditioning. However, 

in the absence of knowledge about how pessimistic, at worst, the bound can 

be, no information can be gained from a large value for the upper bound or 

a small value for the lower bound. 

In this section the author describes his own investigations into the 

worst-case behaviour of the upper and lower bounds of section 2.2 and section 

2.3. The bounds of section 2.2 are considered in §§2.5.1, 2.5.2 and the 

bounds of section 2.3 in §2.5.3. 

2.5.1 General Triangular Matrices. 

Consider the following matrix (Higham, 1983a) whose elements are 

functions of a positive parameter A: 

r:-1 
1 

1-·J T (A) 
-1 

A A . 

-2 
0 A 

We have 

A -A2 0 A A2 2A 

-1 _A2 -1 A2 T(A) 0 A , M(T(A)) 0 A 

0 0 A2 0 0 A2 
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Clearly then, for the norms 1, 2, 00 and F, 

llM(T(\))- 1
11 

~--'---'-~~- ~ ;\ as ;\ + 00 • 

llT(\)- 1
11 

Since llM(T)-
1

11 is the smallest of the upper bounds in section 2. 2 (see 

(2.2.10)) it follows that for general triangular matrices T E ~nxn, where 

n ~ 3 is fixed, the upper bounds of section 2.2 can overestimate llT- 1
11 

by an arbitrarily large factor. 

It is well-known that the lower bound (2.2.1) can underestimate 

llT- 1
11 by an arbitrarily large factor (Kahan, 1966; Cline and Rew, 1983). 

This is illustrated by the matrix M(T(\)), for which the lower bound is 

\ 2 (\ ~ 1) while llM(T(\))- 1
11 RJ \3, 

As noted in section 2.2, the bounds of that section depend only on the 

moduli of the elements of T. Consequently each bound applies not only 

to T but to all members of Q(T), the set of equimodular matrices U 

satisfying lul ITI; the "unreliability" of the bounds corresponds to 

the possibility of an unbounded variation in conditioning among the members 

of Q(T). 

2.5.2 A Restricted Class of Triangular Matrices. 

Consider now the upper triangular matrices 
nxn 

T E ~ which arise 

in decompositions (2.1.3) and (2.1.4). Because of the pivoting strategies 

these matrices satisfy (Dongarra et al., 1979, p.9.4) 

It .. 12
• 

1.J 
k + 1 ~ j ~ n, 1 ~ k ~ n; 

(2.5.1) 

and so in particular, 
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. . . ~ It I nn 
(2.5.2) 

and 

j > k. (2.5.3) 

In order to describe the worst-case behaviour of the estimators of 

section 2.2 for the class of triangular matrices satisfying (2.5.1) we need 

the following result, which applies to the larger class of matrices satisfying 

(2.5.3) only. 

Theorem 2. 5. L 

Let the nonsingular upper triangular matrix T € ~nxn satisfy 

inequalities (2.5.3). Then if I trr I = min I t .. I , 
• l. l. 
l. 

I trrl 

llT-1 11 F 
/·n + 6n - 1 ,:: 4 

2, 
.. 

3lt I rr 

3lt I 
(J (T) ~ - rr 
min I n 

4 + 6n - 1 

where a . (T) denotes the smallest singular value of T. 
min 

Proof. 

(2.5.4) 

(2.5.5) 

(2.5.6) 

The first two bounds are obtained from (2.2.6) and (2.2.7), since by 

(2.2.8) and (2.5.3), a~ 1. The bound for the smallest singular value 

follows from (2.5.5) since (see (1.3.4)) 

(2.5. 7) 
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Remarks. 

(1) For T satisfying inequalities (2.5.1), (2.5.6) becomes 

cr • (T) 
min 

3lt I nn 
~ --------

/4n + 6n - 1 

This inequality has been quoted in several papers; see, for example, 

Ruhe (1970), Karasalo (1974), Lemeire (1975) and Lawson and Hanson (1974) 

(where a proof is given). The earliest references appear to be Faddeev, 

Kublanovskaja and Faddeeva (1968a) (which contains a proof) and Faddeev, 

Kublanovskaja and Faddeeva (1968b). 

(2) The unit lower triangular matrices L = ( Q, • • ) that arise in Gaussian 
i] 

elimination with partial pivoting satisfy I i .. I ~ 1 for i > j. Theorem 
i] 

2.5.1 applied to LT shows that 
-1 llL 11 1 ,

00 

n-1 
~ 2 ' equality being obtained 

for the matrix all of whose subdiagonal elements are equal to -1. This, 

and other more general bounds on the condition number of L are given in 

Broyden (1973). 

Theorem 2.5.2 (Higham, 1983a). 

. . . . ~nxn Let the nonsingular upper triangular matrix T E ~ satisfy 

inequalities (2.5.1). Then for the 1, 2 and 00 matrix norms, 

_l_ ~ llT- 1 11~ 

jtnnl 

Proof. 

2n-l 

jtnnl 
(2. 5. 8) 

The first three inequalities are from (2.2.1) and Lemma 2.2.1. The 

last inequality is obtained for the 1- and 00-norms from (2.5.4) applied to 

the matrix W(T), which clearly satisfies conditions (2.5.3). For the 

2-norm the last inequality is obtained from (2.1.5) using the bounds in 

(2.5.8) for llW(T)- 1 11 which were just established. o 
1'00 
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Theorem 2.5.2 shows that for n x n triangular matrices satisfying 

inequalities (2.5.1), the upper and lower bounds of section 2.2 can differ 

from by at most a factor n-1 
2 . To complete our description of 

the behaviour of these bounds we show that these extreme over- and 

underestimation factors can be attained. 

Consider the parametrised matrix (Kahan, 1966; see also Lawson and 

Hanson, 1974, p.31, Golub and Van Loan, 1983, p.167) 

T (8) 
n 

n-1 diag(l,s, ... ,s ) 

1 -c -c -c 

1 -c -c 

1 

c = cos(8), s sin(8), 0 < 8 < TI/2. 

It is easily verified that T (8) 
n 

(t .. ) 
l.J 

satisfies the inequalities 

(2.5.1) - as equalities in fact. A short computation shows that the upper 

triangular matrix 

a. ... = 
l.J 

Thus as 8 + o, 

(a .. ) 
l.J 

is given by 

l. j ' 

{ 

s l-j 

s 1-jc(c+l)j-i-l, l. < j. 

Sn-lT (8)-1 ( ) + o, 0, ... , o, x' 
n 

where 

X 
= (2n-2, 2n-l, )T ... , 1, 1 ' and hence for small enough 8 
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This is a worst-case example for the lower bound in (2.5.8). 

For the upper bounds consider u (8) 
n 

(u .. ) 
1] 

defined by 

The inverse 

u .. 
1] 

u (8) 
n 

8 .. 
1] 

thus as 8 + o, 

r· J ~ 1 + 1, 
1] 

j-i-1 
(-1) t .. , j > i + 1. 

1] 

-1 
(B •• ) = is given by 

1] 

{ 

s 1-j 

1-j j-i-1 s c(c-1) , i < j; 

i j' 

n-1 -1 
s U (8) + (0, O, ••• , O, y) 

n 

y = (0, 0, ••. ' o, 
T 

1, 1) . Hence for small enough 

so the upper bounds are too big by a factor of order 

worst-case example for the upper bounds in (2.5.8). 

2.5.3 The LINPACK Algorithm. 

where 

8 

n-1 
2 . This is a 

The question of the reliability of the LINPACK condition estimator 

has been answered by Cline and Rew (1983) who give several examples of 

parametrised matrices for which the LINPACK condition estimate can under-

estimate the true condition number by an arbitrarily large factor. The 

counter-examplesgiven in Cline and Rew (1983) were designed for the LINPACK 

"PA = LU" routine SGECO, but some of them are also applicable to STRCO 

(see section 2.3). 
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The following example 1s adapted from Cline and Rew (1983, Example C). 

1 

U(A.) 

1 

U(A.)-1 

-A. 
-1 

-1 
A. 

1 

-2 

1-21..-2 

1 

1 

A. ~ 3. 

For this matrix Algorithm 2.3.2,with weights w. = 1, 
1 

yields 

-2 -1 
y = (3+21.. , 21.. , 1) and hence gives the estimate 

llU(A.) -l 11 
00 

Furthermore -T x = U(A.) y = 

Algorithm 2.3.1 applied to 

-2 
~ llyll

00 
= 3 + 2/.. • 

-2 -2 -2 -4 
(3 + 21.. ' 5 + 21.. ' 2 + 121.. + 41.. ) so 

U(A.)T, using Algorithm 2.3.2 with w. = 1 
1 

on the first step, estimates 

this is the estimate returned by STRCO (ignoring rounding errors). 

Both estimates, then, are too small by a factor of order A., where 

A. can be arbitrarily large. Note that the simple lower bound (2.2.1) is 

of the correct order of magnitude here! 

For the choice of weights w. = lllt .. I 1 11 
Algorithms 2.3.1 and 2.3.2 

yield estimates for llU(A.)- 1
11 which are of the correct order of magnitude. 

We do not know of a counter-example to these algorithms for this choice of 
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weights (the counter-example for w. = l/Jt .. 1 
l. l. l. 

in Cline and Rew (1983, 

Example D) is not applicable in our setting of triangular matrices). 

Consider now Algorithm 2.3.2 applied to triangular matrices T satisfying 

inequalities (2.5.1). Observe that Algorithm 2.3.2 returns a vector y 

with 
-1 

Y - t 
n nn ' so that 11y11 ~ It 1- 1

• 
00 nn It follows from Theorem 2.5.2 

that Algorithm 2.3.2 cannot underestimate -1 
llT II by more than a factor 

00 

n-1 
2 . Whether or not this worst case can be attained is, to our knowledge, 

an open question. (Algorithm 2.3.2 performs well on the matrices T (8) 
n 

and U (8) of the previous section.) It is natural to ask whether the 
n 

lower bound of Algorithm 2.3.1 also is bounded below by It 1
-1 

when T nn 

satisfies inequalities (2.5.1); this, too, is an open question (it is the 

second stage of the algorithm which complicates matters). 

2.6 Application to Rank Estimation 

In this section we show how the upper and lower bounds of section 2.2 

can be applied to the problem of determining a "numerical rank" or "pseudorank", 

k, for the matrix A in decomposition (2.1.3) (Karasalo, 1974; Lawson and 

Hanson, 1974, Ch. 14; Dongarra et al., 1979, Chs. 9, 11; Gill, Murray and 

Wright, 1981, p. 135; Golub and Van Loan, 1983, p.166 ff.; Stewart, 1984). 

Denote the singular values of A by 0 1 (A) ~ 0
2

(A) ~ ... ~ 0n(A) ~ 0. One 

way to choose k that is frequently advocated is as an integer for which 

where o is some tolerance depending on the matrix A and the machine 

precision (at least); see Golub and Van Loan (1983, p.176) for a detailed 

discussion. Since in (2.1.3) 0.(R) = 0.(A), useful information to aid 
l. l. 
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the choice of rank would be estimates for the singular values of R. 

Denote by R(i) the leading principal submatrix of R of order i 

-1 

and let yi be one of the upper bounds (2.2.4), (2.2.5) for llR(i) 11
2 

Then, using Theorem 2.5.2, (2.5.7) and the well-known interlacing properties 

of singular values of submatrices (Golub and Van Loan, 1983, p.286) it can 

be shown that 

Ir .. 1 
ii 

2i-l 

I 

~ (n-i+l) 2 lr .. I. 
ii 

Except for the term y. 
i 

these inequalities are given in Faddeev, Kublanovskaja 

and Faddeeva (1968b), Lawson and Hanson (1974, p.35). Thus we can compute 

upper and lower bounds y. 
i 

and 
I 

(n-i+l) 2 jr .. I 
ii 

for er. (A) 
i 

at a cost of 

flops, for i = n, n-1, ... ' and these bounds will differ by at most a factor 

i-1 
2 • Clearly, if 

-1 I r .. I ~ ( n-i + 1) 2 o 
ii 

then there is no need to compute y .• 
i 

To add to the excellent discussions in Golub and Van Loan (1983, p.176) 

and Stewart (1984) we note that the emergence of a relatively large 

y. (y. > o) enables one to place a lower bound on the numerical rank k. 
i i 

Indeed if 

for 

lrnnl' •.. , lrk+l,k+ll are sufficiently small and the lower bound 

crk(A) is sufficiently large, then there is strong justification for 

choosing the numerical rank to be k. 

2.7 Numerical Tests 

In this section we report on some numerical testing of the condition 

estimators described in sections 2.2 and 2.3. 

A large amount of testing has been performed on the LINPACK condition 

estimation algorithm, using random matrices of various orders and conditioning, 

in Cline, Moler et al. (1979), Dongarra et al. (1979), O'Leary (1980), 

Stewart (1980), Cline, Conn and Van Loan (1982), Cline and Rew (1983); in 



- 48 -

these tests the condition estimates have rarely been more than ten times 

smaller than the true condition number. It is generally accepted that the 

LINPACK condition estimator performs very reliably in practice, even though 

there exist matrices for which the estimates are poor (see §2.5.3). 

The present author has carried out some numerical testing of Algorithm 

2.2.1. In the first four of the five tests triangular matrices T E Rnxn 

were generated by computing the QR decomposition (2.1.3) of various matrices 

A E1Rnxn. In the first three tests column pivoting was used in the QR 

decomposition, so that the triangular matrices satisfied inequalities (2.5.1). 

Test 1 (see Table 2.7.1). 

The elements a. . of A E 1Rnxn were chosen as random numbers from the 
l.J 

uniform distribution on [-1,1] (this type of matrix was used for test 

purposes in Cline, Moler et al. (1979), O'Leary (1980), Cline, Conn and Van 

Loan (1982). 100 matrices A were generated for each n and for each 

triangular matrix T the overestimation measure 
-1 

llT 11
00

/yM ~ 1 was computed, 

where 
-1 

'YM = llM(T) II()() is the upper bound of Algorithm 2.2.1. 

The matrices T generated in this test were all very well-conditioned. 

The average value of llT- 1
11 , for the whole test, was 25.1. 

()() 

Test 2 (see Tables 2.7.2a, 2.7.2b). 

In this test we used random matrices A E 1Rnxn with pre-assigned 

singular value distribution {cr.}. Random orthogonal matrices U and V 
l. 

were generated, using the algorithm of Stewart (1980),and A was formed as 

the product A= U E VT, where E = diag(a.). 
l. 

For each value of n and 

each E 25 matrices (6 for n = 50) were obtained by varying U and V. 

Algorithm 2.2.1 was used to compute the bound (see (2.2.4)) 
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Following Stewart (1980) we chose singular values having the exponential 

distribution 

(J. 
1 

i 
a. ' 1 ~ 1 ~ n, 

a. being used to determine llA- 1 11 2 
-1 

llT 11 2 , and the "sharp-break" 

distribution 

1 

Test 3 (see Table 2.7.3). 

-1 -1 
crn-1 >an= llA II 2" 

The matrices used for this test are Vandermonde matrices 
mxn 

A = (a .. ) E JR , 
1] 

where j-1 a .. = x. , x. = -1 + 2(i-l)/(m-l). These matrices arise in least 
1] 1 1 

squares polynomial approximation on [-1,1] with a monomial basis. In this 

varied between .3 and 3 x 107 • 
00 

Test 4 (see Table 2.7.4). 

This test is similar to Test 1, the difference being that the QR 

decomposition was computed without using pivoting, so that the triangular 

matrices T did not satisfy inequalities (2.5.1). 

Test 5 (see Table 2.7.5). 

Here we used the lower triangular matrices R 
n 

defined by 

i+l rj-lJ r .. = (-1) . 
1 

, 
1] 1-

1 ~ J. 

nxn 
(r .. ) E JR 

1] 

R is the Choleski factor of a matrix formed from Pascal's triangle 
n 

(Gregory and Karney, 1969) and satisfies R 
n 

-1 
R . 

n 
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Table 2.7.1. Random A, column pivoting. 

llT- 1 11 oo/yM n 

Avge • Min. 

5 • 88 .51 

10 .53 .27 

20 .18 .10 

30 .07 .03 

40 .03 .02 

50 .01 7E-3 

Table 2.7.2a. Exponential distribution of singular values, column pivoting. 

llT- 1 11 2 
llT- 1 11 2 /cpM n 

Avge. Min. 

10 10 . 30 .19 

10 10 3 .20 .11 

10 106 .16 .06 

10 109 .18 .09 

25 10 .06 .04 

25 10 3 .01 6E-3 

25 106 4E-3 lE-3 

25 109 3E-3 9E-4 

50 10 lE-2 9E-3 

50 10 3 3E-4 2E-4 

50 106 3E-5 2E-5 

50 109 9E-6 5E-6 
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Table 2.7.2b. "Sharp-break distribution of singular values, column pivoting. 

llT- 1
112/cl> 

M 

n llT- 1 11
2 

Avge. Min. 

25 10 .70 .66 

25 103 .75 .68 

25 106 . 75 .67 

25 109 .75 .68 

Table 2.7.3. Vandermonde matrices, column pivoting. 

llT- 1 11 oo/yM 

m n 
Avge. Min. 

20 2, 3, ... ' 20 .44 .OS 

40 2, 3, ... ' 20 .40 .04 
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Table 2.7.4. Random A, no pivoting. 

llT- 1
11 oo/yM 

n 

Avge . Min. 

5 . 80 .43 

10 .42 .20 

20 .11 .05 

30 .03 7E-3 

40 .01 4E-3 

50 4E-3 lE-3 

Table 2. 7. 5. Choleski. factor of Pascal's matrix. 

n llT-1
11 YM 00 

5 10 93 

10 252 7.6 x 106 

15 6435 1.1 x lol 3 

25 5. 2 x 106 3.0 x 1027 
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We now comment on the test results. First consider Tests 1 to 3. 

The two most noticeable features are first, that the overestimation measures 

are in every case at least an order of magnitude larger than the worst case 

i-n 
2 (see Theorem 2.5.2), and second, that the sharpness of the upper bounds 

depends strongly on the distribution of the singular values, as illustrated 

by Test 2. Test 3 shows that the upper bound yM is quite sharp for one 

class of matrix of practical interest and Test 1 shows that can be 

a useful means of verifying well-conditioning. 

Test 5 shows how pessimistic can be when T does not satisfy 

the inequalities (2.5.1), but Test 4 shows that, nevertheless, the bound 

can be quite useful for at least one class of matrices, if n is not too 

large. Note from Tables 2.7.1 and 2.7.4 that for the matrices used in Tests 

1 and 4, colunm pivoting had relatively little effect on the quality of the 

estimates. 

We remark that the bounds provided by Algorithm 2.2.2 and Karasalo's 

algorithm (Lerrnna 2.2.2) are generally at least an order of magnitude worse 

than those provided by Algorithm 2.2.1. 

Finally we mention that for the triangular matrices T satisfying 

inequalities (2.5.1) there is empirical evidence to suggest that it is 

very rare for the simple lower bound (2.2.1) to be more than ten times 

smaller than 
-1 

nT n (Dongarra et al., 1979, p.9.25; Stewart, 1980; Higham, 

1983a). 

2.8 Conclusions 

Finally, we review and connnent on the bounds discussed in the previous 

sections and we make reconnnendations about how they might be used in the 
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applications mentioned in the introduction. 

First, consider the upper bounds of section 2.2. The bounds (2.2.6) 

and (2.2.7) are very crude, and are mainly of theoretical interest. Algorithm 

2.2.1 requires n2 /2 flops and provides a smaller upper bound than Algorithm 

2.2.2 or Karasalo's algorithm (Lennna 2.2.2). Although these last two 

algorithms require only O(n) flops, they perform n2 /2 comparisons; it 

is reported in Higham (1983a) that this makes their actual computational 

cost similar to that of Algorithm 2.2.1 on one particular 'serial' computer, 

for n ~ 100 It seems that Algorithm 2.2.1 is in general the most cost-

effective of the upper bound algorithms. 

The probabilistic estimates described in section 2.4 are of a different 

flavour to the other condition estimates. Intuitively, the choice of a 

random right-hand side vector that is independent of the coefficient matrix 

is perhaps a little displeasing; however Algorithm 2.4.1 does yield a 

relatively large amount of information, namely, a sequence of strict lower 

bounds for the condition number, whose behaviour can be analysed, and a 

value which is an upper bound with a given probability. With a carefully 

chosen set of parameters, and refinements such as the extra estimates (2.4.6), 

Algorithm 2.4.1 could be a strong competitor to the LINPACK condition estimator 

(Algorithms2.3.l and 2.3.2). Further work is required to refine and to test 

comprehensively the probabilistic algorithm. 

We suggest the following as a relatively reliable and efficient way 

to estimate the 00-norm condition number of a general trirngular matrix 

T E 1R.nxn. 

(1) Compute the maximum y
1 

of the lower bound (2.2.1) and the lower 
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bound produced by Algorithm 2.3.1, using Algorithm 2.3.2 (with 

w. = 1 or w. = l/lt .. I) on the first step. 
i i ii 

(2) Compute the upper bound yM of Algorithm 2.2.1. 

The total cost of computing these upper and lower bounds is 3n2 flops. 

In view of the cormnents about the LINPACK estimator in section 2.7 one 

can confidently expect the lower bound yL to be within a factor ten 

of llT-
1

11. (We make use of (2.2.1) because of the counter-example in §2.6.3 

for the case w. = 1.) 
i 

The upper bound yM can be appreciably less sharp than the lower 

bound (see the test results in section 2.7). The upper bound is 

included for two reasons. First, being an upper bound for the condition 

number it can be used to provide a rigorous bound for the norm of the error 

in a computed solution, not only in the linear equation problem (see section 

2.1) but also in several other problems for which perturbation bounds 

involving llT- 1 11 are available (Golub, Nash and Van Loan, 1979; Harmnarling, 

1982; Van Loan, 1982; Chapter 5). 

Second, a pair of upper and lower bounds carries with it an intrinsic 

reliability test: if the ratio of the two bounds is of order one then 

necessarily either bound provides a good estimate of the condition number. 

Even if the ratio of the bounds is not of order 1, a small upper bound 

verifies well-conditioning of the matrix, and a large lower bound detects 

ill-conditioning of the matrix. For the particular pair of bounds YL and 

yM, if the ratio yM/yL is significantly greater than 1 then our 

numerical experience suggests it is probable that yM only is weak, but it 

may nevertheless be felt desirable to go to the expense of computing 
-1 

T 
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and taking the norm, so as to obtain a completely reliable condition estimate. 

The case for computing the upper bound yM is particularly appealing 

when 
nxn 

T s CC is a factor in one of the decompositions (2.1.3), (2.1.4), 

for then T satisfies the inequalities (2.5.1) and so, from Theorem 2.5.2, 

The numerical evidence in section 2.7 suggests that YM will usually be 

several orders of magnitude smaller than 

We conclude this chapter by giving, in Table 2.8.1, an informal sunnnary 

of the main condition estimates described here. In the sunnnary the term 

"reliable" is used to mean, loosely, that the condition estimate is usually 

within a factor 100 of the true condition number. 

Table 2.8.1. Sunnnary. 

Estimate 

Equation (2.2.1) 

(min It .. I) -i 
• 1.1. 
1. 

Algorithm 2.2.1 

Algorithm 2.3.1 

LINPACK 

Type of bound 

lower 

upper 

lower 

Algorithm (2.4.1) strict lower bound 
and upper bound with 

Probabilistic given probability 

Cost 

n2 
T flops 

2n2 flops 

rn2 to 
sn2 flops 

General T 

unreliable 

T satisfying 
inequalities 
(2.5.1) 

reliable 

unreliable* fairly 
reliable** 

very 
reliable 

very 
reliable 

* But as a strict upper bound it can be useful for obtaining error bounds 
and for verifying well-conditioning. 

** The quality is to some extent dependent on the singular value distribution 
of the matrix. 
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CHAPTER 3 

COMPUTING THE NEAREST ORTHOGONAL MATRIX - WITH APPLICATIONS 

3.1 Introduction 

This chapter is concerned with numerical methods for computing the 

nearest unitary matrix to 
nxn 

A £ C , or, if A is real (as is the case 

1n most applications), the nearest orthogonal matrix to A. The solution 

to the nearness to unitary problem is most naturally expressed in terms of 

the polar decomposition of A. 

The polar decomposition is a generalisation to matrices of the familiar 

complex number representation 
i8 

z = re , r 3 0. The decomposition is well-

known and can be found in many textbooks, for example, Perlis (1952), 

Jacobson (1953), Gantmacher (1959), Marcus and Mine (1965), Gastinel (1970), 

Golub and Van Loan (1983). An early reference is Autonne (1902). 

The polar decomposition is readily derived from the singular value 

decomposition. 

where 
,,.mxm 

p £ "' 

Partitioning 

we have 

Let 

and 

p 

mxn 
A £ ¢ , m 3 n, have the singular value decomposition 

A 

n m-n 

are unitary and 

I ' n 

~ . . . ~ 

(3.1.1) 

cr 3 O. 
n 

which yields the polar decomposition 
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where 

A = UH, 

u = p q* 
1 

has orthonormal colunms (u*u 

H QEQ* 

I ) and 
n 

(3.1.2) 

(3.1.3) 

(3.1.4) 

is Hermitian positive semi-definite. If A is real, then the singular 

value decomposition may be taken to be real, and hence the polar 

decomposition may be taken to be real. 

Fro (3 1 2) A*A = H2 ,· m • • ' since A*A is Hermitian positive semi-

definite it follows that H is the (unique) Hermitian positive semi-definite 

square root of A*A (see section 1.1), that is, 

I 

H (A*A) 2 • (3.1.5) 

Rank (A) =rank (H), so if rank (A) = n then H is positive definite and 

U = AH- 1 is uniquely determined. Surrnnarising, 

Theorem 3.1.1. Polar Decomposition. 

Let A E ~mxn. m ~ n. Then there exists a matrix u E cmxn and a 

unique Hermitian positive semi-definite matrix H E ~nxn such that 

A = UH, u*u = I . 
n 

If A is real then U and H may be taken to be real. 

If rank (A) = n then H is positive definite and U is uniquely 

determined. o 
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It is well-known, and we will show in §3.2.2, that the unitary polar 

factor is a nearest unitary matrix to A. Less attention has been paid in 

the literature to the Hermitian polar factor H. We derive some interesting 

properties of H which show that when A is nonsingular and Hermitian, 

H is a good Hermitian positive definite approximation to A and !CA+ H) 

is a best Hermitian positive semi-definite approximation to A. 

Thus to compute the nearest unitary matrix to a general A, or the 

nearest Hermitian positive semi-definite matrix to a Hermitian A, we need, 

essentially, to compute the polar decomposition. While U and H can be 

obtained via the singular value decomposition (as shown above), this approach 

is not always the most efficient (if A~ U, as explained in §3.6.2) or 

the most convenient (a library routine for computing the singular value 

decomposition might not be available, on a microcomputer for example). 

In section 3.3 we present and analyse a Newton method for computing 

the polar decomposition which involves only matrix additions and matrix 

inversions. The method is shown to be quadratically convergent. Acceleration 

parameters are introduced so as to enhance the initial rate of convergence 

and it is shown how reliable estimates of the optimal parameters may be 

computed in practice. The stability of the method is considered in section 

3.4. In section 3.5 the relationship of the method to an iteration for 

computing the matrix sign function is described. 

In section 3.6 we describe applications of the polar decomposition to 

factor analysis, aerospace computations and optimisation. We show how our 

algorithm may be employed in these applications and compare it with other 

methodsin use currently. For further applications, to atomic physics and 

theoretical chemistry respectively, see Carlson and Keller (1957) and 
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Fletcher (1984). 

In §3.6.4 we use the iteration of section 3.3 to derive a new method 

for computing the square root of a synnnetric positive definite matrix. 

3.2 Properties of the Polar Decomposition 

3.2.1 Elementary Properties. 

We begin by sunnnarising some elementary properties of the polar 

d · · 0 · f 11 For A c- ,,,nxn ' (A) ecomposition. ur notation is as o ows. ~ ~ A and 

cr(A) denote, respectively, the set of eigenvalues and the set of singular 

values (cr
1 

>, cr
2 

>, ••• >, crn) of A. Recall that the 2-norm condition number 

Kz(A) = cr
1

/crn (see (1.3.5)). 

Lennna 3 • 2 . 1. 

Let A E ¢nxn have the polar decomposition A = UH. Then 

(i) If H has the spectral decomposition H = QEQ*, Q*Q I, 

then A = PEQ* is a singular value decomposition of A, where 

p = UQ. 

(ii) \(H) = cr(H) = cr(A). 

(iii) Kz(H) = Kz(A). 

(iv) A is normal if and only if UH HU. 

Proof. 

P UQ and Q are unitary, and E is diagonal with nonnegative 

diagonal elements since H is positive semi-definite; so A = UH = PEQ* 

constitutes a singular value decomposition of A. This gives the first part, 

from which the second and third parts follow. 

For the last part, if UH = HU then 

A*A = HU*UH = HUU*H = UH HU* = AA* , 

while A*A ~AA* implies H2 = UH2u*; that is, H2U = UH2, which implies 
l l 

that H connnutes with U, since H = (A*A) 2 = (H2 ) 2 (see (3·.1.5)) is a 

_polynomial in H2 (see section 5.3). 
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3.2.2 The Unitary Polar Factor. 

A best approximation property of the unitary polar factor is displayed 

in the following theorem, which solves a generalisation of the nearness to 

unitary problem. Proofs of the theorem for A £ 1Rnxn can be found in 

Green (1952), Schonemann (1966), Brock (1968), Golub (1968), Keller (1975), 

Golub and Van Loan (1983). An application of the theorem to a problem in 

factor analysis is decribed in §3.6.1. 

Theorem 3.2.2. 

£ ¢mxn 
Let A, B and let B*A £ ¢nxn have the polar decomposition 

B*A UH. 

mnxn Then for any unitary Z £ ~ , 

(cr.(A) 2 ± 2cr.(B*A) + cr.(B) 2). 
1 1 1 

Proof. (Cf. Golub and Van Loan (1983, p.425).) 

¢
nxn 

For any unitary Z £ , 

2 
llA - BZllF trace ((A - BZ)* (A - BZ)) 

(3.2.1) 

(3.2.2) 

trace (A*A) + trace (B*B) - trace(A*BZ + Z*B*A) 

cr.(B) 2 - trace (A*BZ + Z*B*A). 
1 

Since the first two terms are independent of Z it suffices to consider the 

last term. 
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From Lemma 3.2.1 (i) B*A has the singular value decomposition 

where 

Thus, using (3.2.3) 

H 

* PTQ , 

QEQ*, Q*Q 

p = UQ. 

I, 

trace (A*BZ + Z*B*A) trace (QEP*Z + z*PEQ*) 

where 

w 

trace (EP*ZQ + Q*Z*PE) 

trace (EW + W*E) 

n 

2 
i=l 

a.(w .. + w .. ), 
1 11 11 

P*ZQ 

(3.2.3) 

(3.2.4) 

(3.2.5) 

is unitary. Since the columns of W have unit 2-norm, I w •• 1 ~ 1, so 
11 

Hence 

-2 ~ w .• + w .. ~ 2 
11 11 

for all 1. 

n n 
-2 l a. ~ trace (A*BZ + z*B*A) ~ 2 )_ 

i=l 1 i=l 
a. ' 

1 

with equality on the left when W =-I, that is, from (3.2.5) and (3.2.4), 

Z = -U, and equality on the right when W = I, that is Z = U. o 

Taking m = n and B = I in Theorem 3.2.2, we obtain the solution to 

the nearness to unitary problem for the Frobenius norm. 
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Corollary 3.2.3. 

Let A E ccnxn have the polar decomposition 

A UH. 

Th f . z ~ ccnxn, en or any unitary ~ 

n I (I (a.(A) - 1) 2 )~:11A - UllF ~ llA - ZllF ~ 
i=l 1 

Thus, in the Frobenius norm, the nearest unitary matrix to A E <Cnxn is 

A's unitary polar factor, and as a special case, the nearest orthogonal 

matrix to A E1Rnxn is A's orthogonal polar factor. This result was 

D 

established by Fan and Hoffman (1955) for any unitarily invariant norm (thus 

it is valid for the 2-norm). It is not hard to show that Corollary 3.2.3 

remains true when A E <Cmxn with m > n (this does not follow immediately 

from Theorem 3.2.2). 

3.2.3 The Hermitian Polar Factor. 

As well as yielding a closest unitary matrix, the polar decomposition 

provides information about nearby Hermitian positive definite matrices. 

Let A E ~nxn be Hermitian with at least one negative eigenvalue and 

consider the problem of finding a small-normed perturbation E = E* such 

that A + E is positive definite. Since A + E can approach arbitrarily 

close to a singular positive semi-definite matrix we must allow A + E to 

be singular in order for there to exist an E of minimal norm. Hence define, 

for any Hermitian B, 

o(B) min{llE11
2

: B + E is Hermitian positive semi-definite}. 

(3.2.6) 
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From the Courant-Fischer minimax theory (Golub and Van Loan, 1983, p.269), 

any admissible E in the definition of o(A) must satisfy 

\ (A). 
n 

(3.2.7) 

We now find a perturbation E for which this lower bound is attained. Let 

A have the spectral decomposition 

For 

(or E = ->. I) 
n 

n 
A = Z /\ z* l 

i=l 
* \.z.z., 

1 1 1 
z*z 

E l A,Z,Z~ 
p i:\.<01 1 1 

1 

it is easily seen that A + E 
p 

I. (3.2.8) 

1s singular and Hermitian 

positive semi-definite, with A 
n 

It follows from (3.2.6) and 

(3.2. 7) that 

o (A) - A (A) (\ (A) < 0). 
n n 

(3.2.9) 

Now observe, from (3.2.8), that A has the polar decomposition A= UH, 

where 

u 

It follows that 

z diag(sign(>..))z*, H 
1 

E 
p 

HH - A). 

z diag (I>.. I) z*. 
1 

(3.2.10) 

(3.2.11) 
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Thus ~(A+ H) =A+ E is a nearest Hermitian positive semi-definite 
p 

matrix to A in the 2-norm. 

We summarise our findings in the following lemma. 

Lemma 3.2.4. 

Let 

Then 

it-nxn 
A£ "" be Hermitian, with the polar decomposition A 

(i) o(A) = max{O, - ;\(A)}= ~llA - Hll 2 • 

UH. 

(ii) !CA+ H) is a best Hermitian positive semi-definite approximation 

to A in the 2-norm. 

(iii) For any Hermitian positive (semi-1 definite X £ ¢nxn, 

(iv) H and A have a common set of eigenvectors. 

Proof. 

The formulas for o(A) are equivalent to (3.2.9) and (3.2.11) (on 

taking norms) when A. (A) < O; 
n 

otherwise they give the correct value zero. 

The second part was obtained above. The third part follows from part (i) 

and the definition of o(A), and the last part is clear from (3.2.8) and 

(3.2.10). D 

The lemma shows that from the polar decomposition of a Hermitian matrix 

A we can obtain not only a best Hermitian positive semi-definite approximation 

to A, !CA+ H), but also, if A is nonsingular, a good Hermitian positive 

definite approximation to A, H itself. In §3.6.3 we give an example of 

how the positive definite approximation may be utilised. 

Part (i) of the lemma is, of course, a special case of Halmos' result 
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(1.1.11). However, the particular nearest Hermitian positive semi-definite 

matrix !CA+ H) is in general different from that in (1.1.12) which, for 

Hermitian A, takes. the form X = A + o (A) I. As this observation suggests, 

there are in general many nearest Hermitian positive semi-definite matrices 

in the 2-norm; for a detailed examination of the uniqueness of these "positive 

approximants" see Bouldin (1973a,b) and Ando, Sekiguchi and Suzuki (1973). 

In this section we have considered the case A Hermitian because this 

is the case of most practical interest in the nearness to Hermitian positive 

semi-definiteness problem. However, Halmos (1972, Theorem 2) shows that, 

more generally, if A is normal then the "positive part B+ of B is a 

positive approximant", that is, the Hermitian polar factor of B 

is a nearest Hermitian positive semi-definite matrix to A in the 2-norm. 

This result has the interesting interpretation that the nearest Hermitian 

positive semi-definite matrix to a normal A is obtained by first taking 

the nearest Hermitian matrix X =!(A+ A*) (see Example 1.1.1), and then 

taking the nearest Hermitian positive semi-definite matrix to X. 

Computationally, then, the normal case reduces to the Hermitian case. 

3.2.4 Perturbation Bounds for the Polar Factors. 

It is of interest both for theoretical and for practical purposes 

(see section 3.4) to determine bounds for the changes induced in the polar 

factors of a matrix by perturbations in the matrix. The following theorem 

provides such bounds. 

Theorem 3.2.5. 

Let A E ¢nxn be nonsingular, with the polar decomposition A = UH. 

If E = lltiAllF/llAllF satisfies KF(A) E < 1 then A + tiA has the polar 
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where 

Proof. 

A+ t:,A 

llt:,UllF 

llUllF 
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(U + t:,U) (H + t:,H), 

Let E ( .!. )t:,A. Then A + tE is nonsingular for 0 ~ t ~ E, 
E 

Thus A + tE has the polar decomposition 

A+ tE U(t)H(t), 0 ~ t ~ E, (3.2.12) 

where H(t) is positive definite. We prove the theorem under the assumption 

that U(t) and H(t) are twice continuously differentiable functions of 

t; a rather similar but longer proof which does not require this assumption 

is given in the appendix. 

From (3.2.12), 

H(t) 2 (A+ tE)* (A+ tE), 

which gives, on differentiating (Golub and Van Loan, 1983, p.4) and setting 

t = 0, 

HH(O) + H(O)H = A*E + E*A. 



- 68 -

Since A UH, this can be written as 

HH(O) + H(O)H HF + F*H, (3.2.13) 

where 

F = U*E. 

Let H have the spectral decomposition 

H z A z* z*z 
' I. 

Performing a similarity transformation on (3.2.13) using Z gives 

where 

-
AH +HA AF + F*A 

' 

-
H z*tt(O)Z -

(h .. ) , F 
1J 

This equation has the solution 

- -* A..f.. + f..A.. 

Z*FZ 
-

(f. . ) . 
1J 

h .. 
1J 

1 1J J 1 J 1 ~ i, j ~ n. 
A.. + A.. 

1 J 

Using the Cauchy-Schwarz inequality, 

2 2 
A. + A. 

I ii .. 12 ~ _1 _ __,J==----
1J (A.. + A.) 2 

1 J 

<Ii .. 12 + IL.1 2
) 

1J J1 

~ Ii .. 12 + Ii .. 12 , 
1J J1 

from which it follows that 
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Thus 

A Taylor expansion gives 

H + ~H = H(E) = H(O) + EH(O) + 0(E 2) 

so that 

The required bound is obtained by dividing throughout by llHllF 

using llEllF llAllF. 

(3.2.14) 

llAll and 
F 

Now write (3.2.12) in the form U(t) 
-1 

(A + tE) H(t) and differentiate, 

to obtain 

U(t) = EH(t)-1 
- (A+ tE) H(t)-1 H(t)H(t)-1

• 

Setting t = 0 gives 

= (E - uH(O))H-l, 

and so, using (3.2.14), 

From the Taylor series for U(t), 
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which gives the required bound, since ill:IUllF/llUllF 0 

The theorem implies that the condition numbers of H and U with 

respect to perturbations in A are of order one and KF(A) respectively. 

The excellent conditioning of H is perhaps surprising, for the following 

reason. The condition number of 
! w2 

' 
with respect to general perturbations 

in the Hermitian positive definite matrix W, will be shown to be of order 
! I 

KF(W) 2 in §5.5.2. Since H = (A*A) 2 this suggests that the condition 
I 

number of H is KF(A*A) 2 = KF(A). The anomaly is resolved by noting that 

perturbations E in A result in a special class of (Hermitian) perturbations 

A*E + E*A + O(llEll 2 ) in A*A. 

3.3 Computing the Polar Decomposition 

3.3.1 Using the Singular Value Decomposition. 

Our constructive derivation of the polar decomposition in section 3.1 

suggests the following computational procedure: 

(1) compute the singular value decomposition (3.1.1), forming only the first 

n columns of P· 
' 

(2) form U and H according to (3.1.3) and (3.1.4). 

This method requires (when A is real) approximately 7mn2 + ll/3n3 flops 

to compute P1 , ~ and Q, if we use the Golub-Reinsch SVD algorithm (Golub 

and Van Loan, 1983, p.175), plus mn2 flops to form U and n 3 /2 flops to 

form H. Since the SVD algorithm is numerically stable and is readily available 
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in library routines such as LINPACK (Dongarra et al., 1979) this SVD approach 

has much to recommend it. 

We now develop an alternative method for computing the polar decomposition 

which does not require the use of sophisticated library routines and which, 

in certain circumstances (see §3.6.2), is computationally much less expensive 

than the SVD technique. The method applies to nonsingular square matrices. 

If 
,.,mxn 

A E 11.o with m > n and rank(A) = n then we can first compute a QR 

factorisation A QR (where Q E ~mxn has orthonormal columns and R is 

upper triangular and nonsingular, see (2.1.3)) and then apply the method to R. 

The polar decomposition of A is given in terms of that of R by 

A QR 

3.3.2 A Newton Method. 

Consider the iteration (the real matrix version of which is discussed 

in Bar-Itzhack and Fegley (1969), Bar-Itzhack and Meyer (1976), Bar-Itzhack, 

Meyer and Fuhrmann (1976), Bar-Itzhack (1977), Meyer and Bar-Itzhack (1977)) 

IT'nxn x0 = A i:: "' , nonsingular, (3.3.la) 

~+l = ~(~ + ~~), k = 0,1,2, ... , (3.3.lb) 

-* 
where ~ (X.-1)*. denotes k We claim that the sequence {~} converges 

quadratically to the unitary polar factor in~A's polar decomposition. To prove 

this we make use of the singular value decomposition 

A PL:Q*, 

:: UH, 

where 

(P*P Q*Q I ) 
n 



- 72 -

u PQ*, H QEQ* . (3.3.2) 

Define 

Dk = P*~Q. (3.3.3) 

Then from (3.3.1) we obtain 

Do E' (3.3.4a) 

Dk+l l(D + 
2 k 

-* 
Dk ) (3.3.4b) 

Since D~ E 1Rnxn is diagonal with positive diagonal elements it follows 

by induction that the sequence {Dk} is defined and that 

d (.k) > o. 
l. 

(3.3.5) 

Accordingly, (3.3.4) represents n uncoupled scalar iterations 

a. 
l. 

~ ( d ~k) + --.,-1_,__ ) 
l. d ~k) 

l. 

1 ::; I. ::; n, 

which we recognise as Newton iterations for the square root of 1 with 

starting values the singular values of A. 

Simple manipulations yield the relations (cf. Henrici (1964, p.84)) 

d~k+l) - 1 = 
l. 

d~k+l) - 1 
l. 

d~k+l) + 1 
l. 

1 (d~k) - 1)2, 
2d~k) l. 

l. 

f dik) - 11
2 

1J = d~k) + 
l. 

1 ::; i ::; n, (3.3.6) 

[ 

0 

i 
- lrk+l 2k+l 

- n. 
+ 1 l. a. 

l. 

1 ::; i ::; n. (3.3.7) 
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Since A is nonsingular In.I< 1 for each i. It follows that d~k)-+ 1 
i i 

as k -+ 00 for each i, that is, Dk+ I, or equivalently, from (3.3.3) and 

(3.3.2) 

lim ~ U. 
k-+-oo 

To analyse the rate of convergence we write (3.3.6) in the form 

and pre-and post-multiply by P and Q* respectively to obtain, from (3.3.2) 

and (3. 3. 3) 

- 1 
~+l - U = !(~ - U)~ (~ - U). 

Furthermore, using (3.3.2), (3.3.3) and (3.3.7), 

II (Dk+l + I)-1(Dk+l - I) 11
2 

[dik) -T 2k+l 
max 

d~k) + 1 
max Tl • 

l~i~n l~i~n 
i 

i 

Note from (3.3.3) and (3.3.5) that ' ... ' are the singular values 

of ~· We have proved 

Theorem 3. 3.1. 

Let A ~ ~nxn ) ~ ~ be nonsingular and consider iteration (3.3.1 • 

iterate ~ is nonsingular, 

lim ~ = U 
k-joOO 

Each 

where U is the unitary factor in the polar decomposition of A, and 
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-1 2 
~II~ 11 2 II~ - ull 2 , (3.3.8) 

cri (~) - 1 2 

ll~+l - ull 2 
::; ll~+l + Ull 2 ( max ) 

' (3.3.9) 
l~i~n a i (~) + 1 

a. (A) - 1 
)2k+l. ll~+l + ull 2 

( max l. 0 

l~i~n a. (A) + 1 
l. 

(3.3.10) 

3.3.3 Accelerating Convergence. 

Theorem 3.3.1 shows that the iterates {~} in iteration (3.3.1) converge 

quadratically to the unitary polar factor of A whenever A is non-singular. 

We now examine the practical significance of this result. 

Suppose we carry out iteration (3.3.1) with the (impractical) convergence 

criterion II~ - ull
2 

::; E:, where E: > 0 is some machine-dependent tolerance. 

Define 

p min{k (3.3.11) 

s = min{k: II~ - Ull
2 

~ E:}. (3.3.12) 

The integer p marks the onset of the ultimate phase of rapid convergence 

where the number of correct significant figures is approximately doubled on 

each step; from (3.3.8) we have 

-16 
10 ' .•• }. 

Thus for a tolerance <"" ~ 10-15 
c.. ~ we can expect s ::; p + 4. 

Unfortunately, p can be arbitrarily large. If A is a large scalar 

multiple of an orthogonal matrix, for example, so that llAll 
2 

a >>l, 
1 

then 
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(o 1 - 1)/(01 + 1) R1 1 and (3.3.10) portends a slow initial rate of convergence, 

with correspondingly large values of p and s. The situation is neatly 

explained by Hannning (1973): "Normally it is not the final rate of convergence 

that controls the number of iterations; it is the initial rate of convergence". 

These observations lead to the idea of scaling the matrix A, or more 

generally, scaling the current iterate at the start of each step, with the 

aim of minimising p, and hence minimising s. 

Consider the scaling ~ + yk~' yk > 0. From (3.3.lb) we have 

(thus yk can be regarded as an acceleration parameter), and from (3.3.9) 

where 

8k(yk) 

A natural choice for yk 

A straightforward argument 

(k) 
Yopt 

6 ( (k)) 
k yopt 

ykoi(~) 
max 

ykoi(~) l::;i::;n 

is the value (k) 
yopt 

shows that 

! 
K2(~)2 - 1 

K2(~)2 + 1 

(3.3.13) 

- 1 

+ 1 

which minimises 8k (y). 

(3.3.14) 

(3.3.15) 

The matrix is characterised by the property that the product of 

its largest singular value and its smallest singular value is 1. 

One can show that for 
(k) 

~+l = ~+l (yopt), 
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from which it follows that 

If this acceleration technique is used at each stage of iteration (3.3.1) 

then from (3.3.13), (3.3.15) and (3.3.16) we have, by induction (cf. (3.3.10)) 

11"\:+l - Ullz ~ 11"\:+l + Ull2 

1 

K2(A)2k'+f - 1 
1 

2 k+l 
K2 (A) + 1 

2 

(3.3.17) 

We can use this result to bound the integer s in (3.3.12) for the 

accelerated version of iteration (3.3.1). If K 2 (A) ~ 10 17 then (3.3.17) 

yields 

thus p ~ 6 and s ~ 10 (E ~ lo- 16
). 

The effectiveness of the acceleration procedure is illustrated by the 

example A = d~ag(l 24 34 254)· 
.L ' ' ' ••• , ' 

with -9 
E = 10 the accelerated 

iteration has p = 4, s = 7, while for the unaccelerated iteration p = 20, 

s = 22. 

3.3.4 The Practical Algorithm. 

It is not feasible to compute 
(k) 

yopt exactly at each stage, since this 

would require computation of the extremal singular values of "\:' but a 
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good approximation to y(k) can be computed at negligible cost. 
opt 

Taking A=~' ~1 
in the inequalities (see (1.3.3), (1.3.4), (2.1.5)) 

er 1 (A) 

we have for 

so that from (3.3.14) 

where 

1 (k) 
~ Yopt 
n 

Ill Xk:111
1 

II Xk:111
00 

< n! (k) 
... Y opt ' (3.3.18) 

An alternative estimate for 
(k) 

yopt 
-1 ! 

is (II~ llF.fll~llF) 2 ; this estimate 

satisfies the bounds (3.3.18). We favour 
(k) 

Yest since it possesses the 

property of being exact for diagonal matrices. 

Making suitable modifications to the derivation of (3.3.17) one can 

show that if the acceleration parameter estimates y(k) are used in the 
est 

first k stages of iteration (3.3.1) then (cf. (3.3.17)) 

also 
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(i) 
yest 

ri=max{(i), 
yopt 

1 
k+l 

1T K (A) 2 - 1 k 2 

(i) 
Y opt 1 

(i) }~ n4 

Yest 

2 

(3.3.19) 

(3.3.20) 

and thus 
! 

~ n 2. The bound (3.3.19) suggests that in the initial stages 

of iteration (3.3.1) the estimates y~:~ will be almost as effective as 

the exact values 
(k) 

Y opt · 

We have found empirically that once the error IJ~ - ull
2 

is 

-2 
sufficiently small - less than 10 , say - it is advantageous to revert 

to the original, unaccelerated form of iteration (3.3.1) so as to secure 

the desirable quadratic convergence. 

Incorporating the acceleration parameter estimates 

(3. 3.1) we have 

Algorithm Polar. 

(k) 
Yest into iteration 

Given a nonsingular matrix A E Cnxn this algorithm computes the 

polar decomposition A = UH. 

( 1 ) Xo : = A; k : = - 1 • 

(2) Repeat 

k := k + 1 

-1 
yk := ~ 

If "close to convergence" then 
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yk:= 1 

else 

ak:= 111~111 11~1100, sk := lllykll 1 llYkll 00 

yk:= lsk/ak 

Until converged. 

(3) u := ~+l 

(to ensure that the computed H is Hermitian, 

is replaced by the nearest Hermitian matrix). 

Cost : (for real A) (s+l)n3 flops, where s iterations are required for 

convergence. 

In step (3) of the algorithm we could implicitly force H to be Hermitian 

by computing only the upper triangular part of u*A· 
' 

the given technique 

is preferred for reasons discussed in section 3.4. 

A suitable convergence test to apply in step (2) of Algorithm Polar is 

(3. 3. 21) 

where o , depending on n, is a small multiple of the machine unit roundoff 
n 

u. The required form of 0 can be derived as follows. n 
A A 

Let ~ denote the kth computed iterate. Assume ~R1 U and suppose that 

A-1 
computed via ~ is Gaussian elimination with partial pivoting. The 

computed LU factors of ~ can be expected to satisfy (Dongarra et al., 1979' 
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p.1.21) 

where ~(n) is a linear function of n, and so the computed approximation 

"' '""-1 
Wk to ~ can at best be expected to satisfy 

where 

A 

2 
+ Fk + O(u ) 

~ <t>(n)u, 

since ~ is close to a unitary matrix. Hence, at best, 

A 

~ C\ + ~*) + ~+l Gk, 

where 11Gkll
2 ~ </>(n)u. The tolerance 0 should therefore satisfy 

n 

0 ~ <P (n)u, n 

since otherwise the convergence criterion (3.3.21) may never be satisfied. 

3.4 Backward Error Analysis 

Consider the SVD approach to computing the polar decomposition, 

described in §3.3.1. Using the backward error analysis for the Golub-Reinsch 

SVD algorithm (Golub and Van Loan, 1983, p. 174) one can show that the 



- 81 -

A 

computed polar factors of A, u and H, satisfy 

u v + l'IU, llt-ull ~ 2 E: ' (3.4.la) 

H K + l'IH, H* = li ' llt-Hll 2 ~ E II Kil 
2' (3.4.lb) 

VK A + l'IA, 11t-All2 ~ E llAll 2, (3.4.lc) 

where V is unitary, K is Hermitian positive semi-definite (certainly 

positive definite if K 2 (A) < l/E) and E is a small multiple of the 

machine precision u. Thus U and H are relatively close to the true 
A 

polar factors of a matrix "near" to A. The computed polar factors U and 

A 

H do not satisfy precisely the conditions required for stability in 

Definition 1.2.1, since U is unitary and H is positive semi-definite 

only to within working precision. However, the backward error analysis 

result (3.4.1) is the best that can be expected for any algorithm working 

in finite precision arithmetic and so we can regard the SVD approach as 

being a stable way to compute the polar decomposition. 

We have been unable to prove a corresponding stability result for 

Algorithm Polar. Instead we derive an a posteriori test for stability of 

the computed polar factors U and H. 

Under mild assumptions one can show that with the convergence test 
A 

(3.3.21) U satisfies 

A 

u V + l'IU, 

Algorithm Polar computes 

A 

H 

v*v I, 

1 <li + li*) 2 1 1 ' 

c 
n 

2 
+ o(c ). 

n 
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where, for simplicity, we ignore the rounding errors incurred in the 

computation of H1 and H (these lead to extra terms of order dA11 2 , 

which do not affect the conclusion below). Defining 

we have 

where 

V(V* + L'iU*)A - VG 

A+ l'iA, 

2 
llAll2 + llGll2 + O(o ) • 

n 

This result is comparable with the result for the SVD method if (changing 

to the one-norm) 

0 Rl £. 
n 

(3.4.2a) 

II Gii 1 Rl o II All 1, 
n 

(3. 4. 2b) 

A 

H is positive definite. (3.4.2c) 

Thus, in particular, llcll 1 must be sufficiently small, that is, must 

be sufficiently close to being Hermitian. These conditions are easily 

tested; one can test (3.4.2c) by attempting to compute a Choleski 
A 

decomposition of H. Note that evaluation of (3.4.2b) is computationally 

much less expensive than the alternative of comparing llA - 00111 with 

o llAll 1. 
n 

Once the above tests have been performed, the accuracy of the computed 
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polar factors (that is, the forward error) can be estimated with the aid of 

Theorem 3.2.5. The condition numbers K1(A), K (A) can be formed at no 
00 

extra cost during the first step of Algorithm Polar. 

3.5 Relation to Matrix Sign Iteration 

In this section we show how iteration (3.3.1) is related to an iteration 

for computing the matrix sign function. 

For a diagonalisable matrix A = ZDZ-l 
' 

D = diag(d.), Red. f 0, 
1 1 

sign function is given by (Denman and Beavers, 1976; Roberts, 1980) 

sign(A) 
-1 

Z diag(sign (Re d.))Z • 
1 

An iterative method for computing sign(A) is (Denman and Beavers, 1976; 

Roberts, 1980) 

A. (3.5.1) 

This iteration is essentially Newton's method for a square root of I, 

the 

with starting matrix A (see Chapter 4). We observe that iteration (3.3.1) 

implicitly performs this "sign iteration" on the matrix E of singular 

values: see (3.3.4) and (3.3.5). In fact, iteration (3.3.1) may be derived 

by applying the sign iteration to the Hermitian matrix 

A* 

w 

0 

whose eigenvalues are plus and minus the singular values of A. 

Our analysis of the convergence of iteration (3.3.1), and of the 
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acceleration parameters {Yk}' applies with suitable modifications to the 

sign iteration (3.5.1); cf. Hoskins, Meek and Walton (1977a, 1977b), 

Hoskins and Walton (1979), Roberts (1980). 

In section 4.5 we will show how iteration (3.3.1) is related to Newton's 

method for the matrix square root. 

3.6 Applications 

3.6.1 Factor Analysis Green (1952), Schonemann (1966). 

In psychometrics the "Orthogonal Procrustes" problem consists of finding 

an orthogonal matrix Q E lR.nxn which most nearly transforms a given matrix 

B lR.mxn . . . A ,.. lR.mxn, E into a given matrix ~ according to the criterion that 

the sum of squares of the residual matrix A ~ BQ is minimised (Green, 

1952; Schonemann, 1966; see also Wahba, 1965; Brock, 1968). Theorem 3.2.2 

shows that a solution to this problem is Q = U where BTA = UH is a polar 

decomposition. If A and B have full rank then BTA is nonsingular and 

U may be computed by Algorithm Polar; if either A or B is rank-deficient 

T 
then U may be computed via a singular value decomposition of B A, as 

described in §3.3.1 (see also Golub and Van Loan (1983, p. 426)). 

3.6.2 Aerospace Computations Wahba (1965), Brock (1968), Bar-Itzhack and 

Fegley (1969), Bjorck and Bowie (1971), Bar-Itzhack (1975 , 1977), Bar-

Itzhack and Meyer (1976), Bar-Itzhack, Meyer and Fuhrmann (1976), Meyer 

and Bar-Itzhack (1977). 

In aerospace systems an important role is played by the direction 

cosine matrix (DCM) - an orthogonal matrix 
3x3 

D E JR which transforms 

vectors from one coordinate system to another. The DCM can be defined as 

the solution D = D(t) of the matrix differential equation 



- 85 -

D(t) = s D(t), s Sr, D(O) orthogonal (3.6.1) 

(Bar-Itzhack and Fegley, 1969; Meyer and Bar-Itzhack, 1977). Thus 

D(t) = exp(St) D(O), which is indeed orthogonal, for all t, since the 

exponential of skew-symmetric matrix is orthogonal (Moler and Van Loan, 

1978). The DCM is often computed by numerical solution of the differential 

equation (3.6.1), using Euler's method with a small time step h (Bar-Itzhack 

and Fegley, 1969; Meyer and Bar-Itzhack, 1977); that is, approximations 

Dk R:1 D(kh) are generated by 

(I + hS)Dk, k o, 1, ... ' 

Do D(O). 

Because of truncation errors incurred in approximating exp(Sh) by I + hS, 

the approximation Dk is not equal to D(kh) in general; moreover, 

Dk is not orthogonal. An intuitively appealing way in which to restore 

orthogonality, and, possibly, to improve the approximation Dk, is to 

replace Dk by the nearest orthogonal matrix, that is, by its orthogonal 

polar factor Uk. Bar-Itzhack and Fegley (1969) suggest that this re­

orthogonalisation be carried out regularly during the integration, 

sufficiently often to ensure that the Dk do not deviate too far from 

orthogonality. 

A key feature of this application is that D is relatively close 

to being orthogonal: typically llDk - UkllF < .1 (Bar-Itzhack and Fegley, 

1969; Bar-Itzhack, 1975, 1977). Thus p = 0 in (3.3.11) and from §3.3.3 

we can expect iteration (3.3.1) to converge within four iterations. Of 

course if Uk is not required to full machine accuracy then there is no 
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need to iterate to convergence - just one or two iterations may yield a 

sufficiently accurate approximation to Uk. 

For matrices that are as close to orthogonality as Dk above, 

computation of U from Algorithm Polar will require at most 4n3 flops, 

making this method particularly attractive, since the singular value 

decomposition approach described in §3.3.1 still requires approximately 

12n3 flops. 

We now compare Algorithm Polar with two other iterative techniques 

which have been proposed for computing the orthogonal polar factor of a 

nearly-orthogonal matrix. 

Bjorck and Bowie (1971) derive a family of iterative methods with 

orders of convergence 2, 3, •.• by employing a binomial expansion for the 

matrix square root in the expression U = AH- 1 = A(A*A)-! (see (3.1.5)); 

see also Kovarik (1970). Their quadratically convergent method is 

Xo A (3. 6. 2a) 

Qk I - {~ } (3. 6. 2b) 

k 0, 1, 2, ... 

~+l ~(I + !Qk) (3. 6. 2c) 

One step of this iteration costs 3n 3 /2 flops (for A ElR.nxn); in 

comparison iteration (3.3.1) requires only n 3 flops per step. Also, 

while iteration (3.3.1) converges for any nonsingular A, a practical 

condition for the convergence of iteration (3.6.2) is (Bjorck and Bowie, 

1971) 

0 < cr.(A) < 13, 1 ~ 1 ~ n. 
1 
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The following iteration is proposed in Bar-Itzhack (1975); see also 

Bar-Itzhack and Meyer (1976), Bar-Itzhack (1977), Meyer and Bar-Itzhack (1977). 

Xo A JR.
nxn 

E ' (3. 6. 3a) 

~+l O, 1, 2, ... (3.6.3b) 

Convergence of this iteration can be analysed using the singular value 

decomposition A = PIQT. Writing 
T 

Dk = p ~Q, 

Do = I, 

By induction, D = diag(d~k)) where 
k 1 

d (k+l) =-ld(k)2 
• 2 • (J. 
1 1 1 

(k) 
- g.(d. ). 

1 1 

. 

+ !cr. 
1 

From g.(l) = 1, g.(l) 
1 1 

1 - cr. it is clear that iteration (3.6.3) is 
1 

linearly convergent to the orthogonal polar factor U = PQT of A provided 

that llA - Ull is sufficiently small. 

Evaluation of iteration (3.6.3) requires 2n 3 flops per step. Because 

of its linear convergence and its computational cost, this iteration is 

decidedly unattractive in comparison with iteration (3.3.1). 

3.6.3 Optimisation. 

Newton's method for the minimisation of F(x), F : JR.n -+JR requires 

at each stage computation of a search direction pk from 

- ~' 
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where gk is the gradient vector (1.1.7) and Gk is the Hessian matrix 

(1.1.6), the subscripts k denoting evaluation at xk. 

Difficulties occur when Gk is not positive definite since pk, if 

defined, need not be a descent direction (Gill, Murray and Wright, 1981, 

p.107). We suggest that in this situation one replaces Gk by its polar 

factor H. H is positive definite (assuming Gk is nonsingular) and it 

has the properties listed in Lennnas 3.2.1 and 3.2.4. H may be computed 

using Algorithm Polar at a cost of (s/2+l)n3 flops, if advantage is taken 

of the synnnetry of the iterates (for example the LINPACK routine SSIDI 

(Dongarra et al., 1979) may be used to compute the matrix inverses). The 

equation Hpk =-~ may be solved in n 3 /6 flops by use of the Choleski 

decomposition. 

Observe that Gk is normal, so by Lennna 3.2.1 its polar factors connnute, 

that is, G =UH=HU· 
k ' 

-1 
llH ~112 

thus 

-1 
llUGk ~11 2 

which shows that the modified search direction 

as the unmodified search direction. 

-1 
-H ~ has the same norm 

In Gill, Murray and Wright (1981) several techniques are described 

for modifying Gk to give a related positive definite matrix. One of these 

consists of computing a spectral decomposition Gk = Z A z* and replacing 

Gk by (\ = ZIA I z*; from (3. 2. 10) we recognise <\ as the polar factor 
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H of Gk. This approach yields the same matrix as our suggestion, at a 

cost of about 6n3 flops (Golub and Van Loan, 1983, p.282). 

Note that, from §3.3.2, 

X~ A 
1. 

(PD.Q*)*(PIQ*) = QD.IQ* 
1. 1. 

is Hermitian positive definite. It follows that step (2) of Algorithm 

Polar can be terminated before convergence is obtained (after a fixed number 

of iterations for example) and the algorithm will still produce a symmetric 

positive definite approximation, Y. ::: X~ A, 
1. 1. 

Y. has the same 
1. 

eigenvectors as Gk and can be shown to satisfy the bound 

1 
2i-l 

K2(Yi) ~ K2(Xi)K2(A) ~ Tii-1 K2(A) K2(A), 

! 
where TI. ~n2 isdefinedi.n(3.3.20). i.-1 

3.6.4 Matrix Square Root. 

There are several application areas that utilise the symmetric positive 
! x 

definite square root A2 of a symmetric positive definite matrix A E lRn n. 

The square root is used theoretically in Parlett (1980, p.321) to reduce 

the generalised eigenvalue problem to standard form, and it arises in the 

theory of preconditioned iterative methods for solving linear systems (Gill, 

Murray and Wright, 1981, p.151; Hageman and Young, 1981, pp.21, 145); 

the square root may, perhaps, prove to be of practical use in these problems 

(cf. Nour-Omid and Parlett (1984)). 

Practical applications for the square root are found in quantum 

mechanics (Wigner and Yanase, 1963), in molecular vibration problems in 

chemistry (Pulay, 1966), and in a finite element algorithm for solving heat 

conduction problems (Hughes, Levit and Winget, 1983). An interesting 
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suggestion for use of the square root in cryptography is given in Potts 

(1976). 
I 

A new method for computing A2 can be derived from iteration (3.3.1), 

using the observation that if 

are choleski and polar decompositions respectively, then (see (3.1.S)) 

Algorithm 3.6.4. 

Given a synnnetric positive definite matrix A s lR.nxn this algorithm 
! 

computes A2
• 

(1) Compute the Choleski decomposition A 

1983, p.89). 

(2) Compute the Hermitian polar factor H 

Polar. 

T 
LL (Golub and Van Loan, 

A~ of LT using Algorithm 

Cost: (s - l/6)n 3 flops, where s iterations of Algorithm Polar are 

required for convergence (taking into account the triangularity of L). 

Note that since we are applying Algorithm Polar to the quantity 

in the bound (3.3.17) is replaced by 

The relationship of Algorithm 3.6.4 to some other, well-known 

iterations for the matrix square root, and its numerical stability, are 

considered in the next chapter (see sections 4.5, 4.7). 

3.7 Numerical Examples 

In this section we present some test results which illustrate the 

performance of Algorithm Polar. The computations were performed using 
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MATLAB (Moler, 1982) in double precision on a VAX 11/780 computer; the unit 

roundoff u = 2-56 ~ 1.39 x lo-17
• 

We used the convergence test (3.3.21) with o = 4u 
n 

for n ~ 25 and 

050 Su. Once the criterion II~ - ~-1 11 1 ~ .01 was satisfied ~+l' 

~+2' were computed using the unaccelerated iteration (y. = 1, j > k). 
J 

In the first test real matrices A of order n = 5, 10, 25, 50 were 

generated according to A m:vT' where E = diag(cr.) 
l 

is a matrix of 

singular values or and U,V are random orthogonal 

matrices (different for each A), obtained from the QR decomposition 

of a matrix with elements from the uniform distribution on [O,l]. The 

results are sunnnarised in Table 3.7.1. The quantity 

BERR 
n 

II H1 - H111 1 

2 o llAll 1 
n 

is the backward error measure derived in section 3.4 (see (3.4.2b)) and 

must be of order one for the algorithm to have performed in a stable manner. 

A 

For every matrix in this test the computed Hermitian polar factor H was 

positive definite. 

Table 3.7.1. Number of iterations. 

n=5 10 25 50 

a. l 6 7 8 8 
l 

a. i2 7 7 10 9 
l 

a. i4 8 8 10 10 
l 

a. 21 7 8 9 10 
l 

max BERR .38 .55 2.1 2.8 
n 
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The second test compares Algorithm Polar with iterations (3.6.1) 

and (3.6.2) (using the same convergence test, (3.3.21), for each iteration). 

The parametrised matrix 

a 0 -1 

A(a) 0 1 0 

-1 0 0 

1S orthogonal for a = 0. The results are displayed in Table 3.7.2. 

Table 3.7.2 Number of iterations. 

a Algorithm Polar Iteration (3.6.1) Iteration (3.6.2) 

.001 4 4 5 

.01 4 4 8 

.1 5 5 13 

1 6 10 76 

2 7 diverged diverged 

3.8 Conclusions 

From the test results of section 3.7 and the theory of section 3.3 

we draw several conclusions about Algorithm Polar. 

The acceleration parameter estimates are very effective. Convergence 

to a tolerance 
-17 o ~ 10 (see (3.3.21)) is usually obtained within ten 

n 

iterations, the computational cost of one iteration being approximately 

n 3 flops. 

In applications where A is nearly orthogonal (see §3.6.2) Algorithm 

Polar is an attractive alternative to iterations (3.6.2) and (3.6.3) - it 

is guaranteed to converge (within four or five iterations, typically) and it 
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will usually be computationally the least expensive of the three methods. 

We have not proved that Algorithm Polar is stable, that is, that the 

computed polar factors are relatively close to the true polar factors of a 

matrix near to A. The tests (3.4.1) provide an inexpensive means of 

monitoring the stability of Algorithm Polar. Algorithm Polar has performed 

stably in all our numerical tests, producing, in every case, computed polar 

factors which are just as acceptable as those furnished by the SVD approach. 
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CHAPTER 4 

NEWTON'S METHOD FOR THE MATRIX SQUARE ROOT 

4.1 Introduction 

A square root of a matrix A E Cnxn ¢ nxn 
is a solution X E of the 

quadratic matrix equation 

F(X) = X2 - A = 0, (4.1.1) 

therefore a natural approach to computing a square root of A is to 

nxn ..,nxn 
apply Newton's method to (4.1.1). For a general function G: ~ + ~ 

Newton's method for the solution of G(X) = 0 is specified by an initial 

approximation Xo and the recurrence (see Ortega (1972, p.140) for example) 

k o, 1, 2, ... ' (4.1.2) 

where G' denotes the Frechet derivative of G. Identifying 

F(X + H) X2 - A + (XH + HX) + H2 

with the Taylor series for F we see that F'(X) is a linear operator, 

F'(X): ¢nxn + ¢nxn, defined by 

F' (X)H XH + HX. 

Thus Newton's method for the matrix square root can be written 

Xo given, 

A - ~ (4.1.3) 

(N): k 0, 1, 2, ... 

~+l (4.1.4) 
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Applying the standard local convergence theorem for Newton's method 

(Ortega, 1972, p.148) we deduce that the Newton iteration (N) converges 

quadratically to a square root X of A if llx - Xo II is sufficiently small 

and if the linear transformation F'(X) is nonsingular. However, the 

most stable and efficient methods for solving equation (4.1.3) (Bartels 

and Stewart, 1972; Golub, Nash and Van Loan, 1979) require the computation 

of a Schur decomposition of Xk, assuming ~ is full. Since a square 

root of A can be obtained directly and at little extra cost once a single 

Schur decomposition, that of A, is known, (Bjorck and Hammarling, 1983; 

Chapter 5), we see that in general Newton's method for the matrix square 

root, in the form (N), is computationally expensive. 

It is therefore natural to attempt to "simplify" iteration (N). Since 

X commutes with A = x2 a reasonable assumption (which we will justify 

in Theorem 4.2.1) is that the commutativity relation 

holds, 1n which case (4.1.3) may be written 

and we obtain from (N) two new iterations 

(I): (4.1.5) 

(II): (4.1.6) 

These iterations are well-known; see for example Laasonen (1958), Hoskins 

and Walton (1978, 1979), Bjorck and Hammarling (1983), Golub and Van Loan 

(1983, p. 395). 
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Consider the following numerical example. Using iteration (I) on a 

machine with approximately nine decimal digit accuracy we attempted to 

compute a square root of the synnnetric positive definite Wilson matrix 

(Froberg, 1969, pp.93, 123) 

10 7 8 7 

7 5 6 5 
w 

8 6 10 9 

7 5 9 10 

for which the 2-norm condition number K 2 (W) = llWll211W- 1 112 R1 2984. Two 

implementations of iteration (I) were employed (for the details see 

section 4.6). The first is designed to deal with general matrices, while 

the second is for the case where A is positive definite and takes full 

advantage of the fact that all iterates are (theoretically) positive 

definite (see Corollary 4.2.3). In both cases we took Yo =I; as we 

will prove in Theorem 4.2.2, for this starting value iteration (I) should 

converge quadratically to 
! w2 

' 
the unique synnnetric positive definite 

square root of W, whose upper triangle is given to four significant 

figures by 

! w2 

r 2. 389 1.517 

1.182 

1.078 .9110 

.9914 .5651 

2. 357 1.517 

2.559 

Denoting the computed iterates by Yk the results obtained were as 

follows. 
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Table 4 .1.1. 

Implementation 1 Implementation 2 

! 

ik111 
! 

ykll l k llw2 - 11w 2 
-

0 4.9 4.9 

1 1.1 x 101 1.1 x 101 

2 3.6 3.6 

3 6.7 x 10-1 6.7 x 10-l 

4 3.3 x 10-2 3.3 x 10-2 

5 4.3 x 10-4 4.3 x 10-4 

6 3.4 x 10-5 6.7 x 10-7 

7 9.3 x 10-4 1.4 x 10-6 

8 2.5 x 10-2 1.6 x lo-5 

9 6.7 x 10-1 2.0 x 10-4 

10 1.8 x 101 2.4 x 10- 3 

11 4.8 x 102 2.8 x 10-2 

12 1.3 x 104 3.2 x 10-1 

13 3.4 x 105 Error: yk not positive definite 

20 1.2 x 106 

Both implementations failed to converge; in the first Y20 was 

unsynnnetric and indefinite. In contrast, a further variant of the Newton 
! 

iteration, to be defined in section 4.4, converged to W2 in nine iterations. 

Clearly, iteration (I) is in some sense "numerically unstable". This 

instability was noted by Laasonen (1958) who, in a paper apparently unknown 

to recent workers in this area, stated without proof that for a matrix 

with real, positive eigenvalues iteration (I) "if carried out indefinitely, 

is not stable whenever the ratio of the largest to the smallest eigenvalue 

of A exceeds the value 9". We wish to draw attention to this important 

and surprising fact. In section 4.3 we provide a rigorous proof of 

Laasonen's claim. We show that the original Newton method (N) does not 

suffer from this numerical instability and we identify in section 4.4 an 

iteration, proposed in Denman and Beavers (1976), which has the computational 

simplicity of iteration (I) and yet does not suffer from the instability 
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which impairs the practical performance of (I). 

In section 4.5 we use the analysis developed in section 4.3 to show 

that iteration (3.3.1) (and hence also Algorithm 3.6.4 for the matrix 

square root) is numerically stable, and we show that iteration (3.3.1) is 

closely related to iteration (I). 

Finally, in section 4.6, we support our analysis with some numerical 

examples. 

We begin by analysing the mathematical convergence properties of the 

Newton iteration. 

4.2 Convergence of Newton's Method 

In this section we derive conditions which ensure the convergence of 

Newton's method for the matrix square root and we establish to which 

square root the method converges for a particular set of starting values. 

(For a classification of the set {X: x2 =A} see Theorem 5.3.3.). 

First, we investigate the relationship between the Newton iteration 

(N) and its offshoots (I) and (II). To begin, note that the Newton 

iterates ~ are well-defined if and only if, for each k, equation 

(4.1.3) has a unique solution, that is, the linear transformation F'(~) 

is nonsingular. This is so if and only if ~ and -~ have no eigenvalue 

in connnon (Golub and Van Loan, 1983, p.194), which requires in particular 

that ~ be nonsingular. 

Theorem 4.2.1. 

Consider the iterations (N), (I) and (II). Suppose Xo =Yo = Zo 

connnutes with A and that all the Newton iterates ~ are well-defined. 

Then 

(i) ~ connnutes with A for all k, 

(ii) ~ = Yk = zk for all k. 
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Proof. 

(i): The proof is by induction. The result is true for k 0. Suppose 

~=~A. (4.2.1) 

From the remarks preceding the theorem we see that ~ is nonsingular 

and so we can define the following matrix which commutes with A: 

1 -1 
Gk= 2 (~ A - ~). (4.2.2) 

Using (4.2.1) and (4.1.3) we have 

1 2 -1 2 
2 (A - ~ + ~ ~ -~) 

A - ~ 

The linear transformation F'(~) is nonsingular, since ~+l is well­

defined, so 

(4.2.3) 

Thus 1\: commutes with A, and by (4.1.4) ~+l commutes with A, as 

required. 

(ii): Again, the proof is by induction. The case k = 0 is given. 

Assuming the result is true for k we have for Gk in (4.2.2), 

~ = !(Y~ 1A - Yk), hence, using (4.2.3), 

~+l' 
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Since ~ corrnnutes with A, 

so that 

as required. D 

-1 
!<~ - ~) 

Z + H 
k k ~+l' 

Thus, provided the initial approximation Xo = Yo = Zo corrnnutes 

with A and the correction equation (4.1.3) is nonsingular at each stage, 

the Newton iteration (N) and its variants (I) and (II) yield the same 

sequence of iterates. We now examine the convergence of this sequence, 

concentrating for simplicity on iteration (I) with starting value a 

multiple of the identity matrix. Note that the starting values Yo I 

and Y0 =A lead to the same sequence Y1 =!(I+ A), Y2 , •.•. 

For our analysis we assume that A is diagonalisable, that is, there 

exists a nonsingular matrix Z such that 

where ••• ' A n 

A = diag 01. i, ••• , A. ) , 
n 

are the eigenvalues of A. 

(4.2.4) 

The convenience of this 

assumption is that it enables us to diagonalise the iteration. For, defining 

(4.2.5) 

we have from (4.1.5), 

(4.2.6) 
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so that if Do is diagonal, then by induction all the successive transformed 

iterates Dk are diagonal too. 

Theorem 4.2.2. 

Let A E cnxn be nonsingular and diagonalisable, and suppose that 

none of A's eigenvalues is real and negative. Let 

Yo = ml, m > o. 

Then, provided the iterates {Yk} in (4.1.5) are defined, 

lim Yk x 
k-+oo 

and 

llYk+l - XII 
-1 

- Xll 2 (4.2. 7) ~ !llYk 11 llYk ' 

where X is the unique square root of A for which every eigenvalue 

has positive real part. 

Proof. 

We will use the notation (4.2.4). In view of (4.2.5) and (4.2.6) 

it suffices to analyse the convergence of the sequence {Dk}. Do =ml is 

diagonal, so Dk is diagonal for each k. Writing 

we see from (4.2.6) that 

1 ~ 1 ~ n, (4.2.8) 

that is, (4.2.6) is essentially n uncoupled scalar Newton iterations 

for the square roots .ff::' 1 
1 ~ i ~ n. 
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Consider therefore the scalar iteration 

zk+l Hzk + ~). 
zk 

From the relations 

(z ± la) 2 

± ra k (4.2.9) zk+l 2zk 

one obtains 

zk+l - ra 
'K - r.r. 

zk+l + ra ~ + ra 

and it follows by induction that (cf. Henrici (1964, p.84)) 

zk+l - ra 
Z + ;;;a 
k+l [:: 

,....! k+l - va 2 

J 
- y 

+ ra 
2k+l (4.2.10) 

If a does not lie on the nonpositive real axis then we can choose ra 
to have 

zo > 0, 

we have 

positive real part, in which case it l.S easy to 

Ir! < 1. Consequently, for a and ZQ of the 

from (4.2.10), provided that the sequence {zk} 

lim zk = /a, Re/a > O. 
k-¥x> 

Since the eigenvalues \. and the starting values d~O) 
l. l. 

of the form of a and z
0 

respectively, then 

! 
A2 

and thus 

! 
diag(\;), 

l. 

! 
Re\: > 0 

l. 

see that for real 

specified form 

is defined, 

m > 0 are 

(4.2.11) 
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x 

(provided the iterates {Yk} are defined), which is clearly a square 

root of A whose eigenvalues have positive real part. The uniqueness of 

X follows from Theorem 5.3.3. 

Finally, we can use (4.2.9), with the minus sign, to deduce that 

performing a similarity transformation by Z gives 

from which (4.2.7) follows on taking norms. D 

Theorem 4.2.2 shows, then, that under the stated hypotheses on A 

iterations (N), (I) and (II) with starting value a multiple of the 

identity matrix, when defined, will indeed converge: quadratically, to a 

particular square root of A the form of whose spectrum is known a priori. 

Several connnents are worth making. First, we can use Theorem 5.3.3 

to deduce that the square root X in Theorem 4.2.2 is indeed a function 

of A, in the sense to be defined in Chapter 5. (Essentially, B is a 

function of A if B can be expressed as a polynomial in A.) Next, 

note that the proof of Theorem 4.2.2 relies on the fact that the matrix 

which diagonalises A also diagonalises each iterate Yk. This property 

is maintained for Yo an arbitrary function of A, and under suitable 

conditions convergence can still be proved, but the spectrum {± /\ 1, •.. , 

± I>: } of the limit matrix, if it exists, will depend on Yo. Finally, 
n 

we remark that Theorem 4.2.2 can be proved without the assumption that 
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A is diagonalisable, using, for example, the technique in Laasonen (1958). 

We conclude this section with a corollary which applies to the 

important case where A is Hermitian positive definite. 

Corollary 4.2.3. 

Let 
nxn 

A E: 0: be Hermitian positive definite. If Yo = ml, m > o, 

then the iterates {Yk} in (4.1.5) are all Hermitian positive definite, 

lim Yk = X, where X is the unique Hermitian positive definite square 
k~ 

root of A, and (4.2.7) holds. 

Proof. 

By Theorem 4.2.2 we only have to show that the iterates yk are 

Hermitian positive definite. In (4.2.8) A.. > 0 and d~O) m > o, 
l. l. 

1 ~ i ~ n, so clearly d~k) > 0 for all l. and k. Thus Dk l.S 
l. 

Hermitian positive definite and the same is true of Yk because we can 

take Z in (4.2.5) to be unitary. D 

4.3 Stability Analysis 

We now consider the behaviour of Newton's method for the matrix 

square root, and its variants (I) and (II), when the iterates are subject 

to perturbations. We will regard these perturbations as arising from 

rounding errors sustained during the evaluation of an iteration formula, 

though our analysis is quite general. 

Consider first iteration (I) with Yo = ml, m > O, and make the same 
A 

assumptionsas in Theorem 4.2.2. Let Yk denote the computed kth iterate, 

Yk ~ yk' and define 
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Our aim is to analyse how the error matrix ~k propagates at the (k+l)st 

stage (note the distinction between ~k and the "true" error matrix Yk - X). 

To simplify the analysis we assume that no rounding errors are committed 

when computing Yk+l' so that 

l(y + y-lA) = l(y + ~k + (Yk + ~k)-lA). 2 k k 2 k (4.3.1) 

Using the perturbation result (Stewart, 1973, p.188 ff.) 

(4.3.2) 

we obtain 

Subtracting (4.1.5) yields 

(4.3.3) 

Using the notation (4.2.4) and (4.2.5) let 

-1 
z ~kz' (4.3.4) 

and transform (4.3.3) to obtain 

(4.3.5) 

From the proof of Theorem 4.2.2 

(4.3.6) 

so with 

(4.3.7) 

equation (4.3.5) can be written element-wise as 



where 

! 
Since D -+ 

k 
A2 

where 
(k) 

E. -+ 0 
l. 

where 

(k) 1f •• 
l.J 
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1 :.s i, j :.s n, 

'-· 
H1 - (k) J Ck» • 

d. d. 
l. J 

as k -+ 00 (see (4.2.11)) we can write 

d~k) ! (k) 1.: + E:. 
l. l. l. 

as k -+ ""· Then 

(k) 1f •• 
l.J 

E 
(k) 

!(l - [:~] ! ) 

I (k) 
max i::. 1-

• l. 
l. 

+ O(i:: (k» 

(4.3.8) 

(4.3.9) 

(4.3.10) 

To ensure the numerical stability of the iteration we require that the error 

amplification factors 
(k) 1f •• 
l.J 

be bounded in modulus by l· 
' 

hence we require 

in particular that 

1 ~ i, j :_s n. (4.3.11) 

This is a severe restriction on the matrix A. For example, if A is 

Hermitian positive definite the condition is equivalent to (cf. Laasonen 

(1958)) 

Kz(A) :.S 9. (4.3.12) 

Two points are worth noting. First, we can expect from (4.3.9) that if 

11f~~)l:.s 1, which suggests, for example, that when A 
J l. 
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is symmetric the error matrices l'lk and l'lk' and hence the computed 

iterates Yk' may lose symmetry. Second, equation (4.3.9) implies that 

(k) 
large enough ~ .. ~ O, which is in accord with the fact that the 

11 
for k 

scalar Newton iteration (n = i = 1) does not exhibit numerical instability. 

To clarify the above analysis it is helpful to consider a particular 

example. Suppose A is Hermitian positive definite, so that in (4.2.4) 

we can take z = Q where ... ' q ) 
n 

is unitary. 

Q*AQ A I 

and (cf. (4 .2. 5)) 

Consider the special (unsymmetric) rank-one perturbation 

Eq. q ~, i :/: j ; 11l'lk11 2 = E > 0. 
1 J 

Thus 

(4.3.13) 

(4.3.14) 

For this l'lk the Sherman-Morrison formula (Golub and Van Loan, 1983, p.3) 

gives 

Using this identity in (4.3.1) we obtain, on subtracting (4.1.5), 

that is, (4.3.3) with the order term zero. Using (4.3.13) and (4.3.14) 

in (4.3.15), we have 
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A. 
H1 - J 

(k) (k» fik 
d. d. 

I 

y = A2 
k 

! 
D = A2 
k 1i ' 

i J 

(the Hermitian positive definite square root of 

and choose i,j so that Then 

A A A 

A)' so 

Assuming that Yk+2, Yk+3 , ••• , like Yk+l' are computed exactly from the 

preceding iterates, it follows that 

In this example, 
A 

Yk is an arbitrary distance 
! 

E > 0 away from A2 in 

the 2-norm, yet if Kz(A) > 9 the subsequent iterates diverge, growing 

unboundedly. 

We now perform a similar analysis for the Newton iteration (N). 

First we rewrite (4.1.3) and (4.1.4) in the equivalent form 

2 

~~+l + ~+l~ =A+~· 

Let {~} be the sequence of computed iterates and define 

A A 

(4.3.16) 

Supposing that ~+l is computed from ~ exactly, then from (4.3.16) 
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that 1S 

(~ + ~k)(~+l + ~k+l) + (~+l + ~k+l)(~ + ~k) =A+(~+ ~k) 2 • 

(4.3.17) 

Expanding, and subtracting (4.3.16), gives 

which can be rearranged in the form 

~~k+l + ~k+l~ = (~ - ~+l)~k + ~k(~ - ~+l) + O(ll~kll 2 ), 

(4.3.18) 

where we have assumed that ll~k+lll = O(ll~kll). Let x0 = ml, m > 0, so 

that by Theorem 4.2.1 ~ = Yk. Using the notation (4.2.4), (4.2.5) and 

(4.3.4) we can diagonalise (4.3.16) and (4.3.18) by Z to obtain 

and 

Written out element-wise, using (4.3.6) and (4.3.7) these equations are 

Substituting d~k) - d~k+l) 
1 1 

(4.3.20) we get 

1 

d
(k) 

+ . 
J 

+ d~k) 
J 

(4.3.19) 

d~k+l))~~~) + o(ll~k112), 
J 1] 

1 ~ i, J ~ n. (4.3.20) 

A./d~k)), from (4.3.19), into 
1 1 

1 ~ 1, J ~ n, 
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which may be written, using (4.3.8) and (4.3.10), 

1 ~ i, J ~ n. 

Thus, unlike iteration (I) the Newton iteration (N) has the property that 

once convergence is approached, a suitable norm of the error matrix 

A 

~k = ~ - ~ is not magnified, but rather decreased, in going from one 

step to the next.t 

To summarise, for iterations (N) and (I) with initial approximation 

ml (m > 0), our analysis shows how a small perturbation ~k in the kth 

iterate is propagated at the (k+l)st stage. For iteration (I), depending 

on the eigenvalues of A, a small perturbation ~k in Yk may induce 

perturbations of increasing norm in succeeding iterates, and the sequence 

{Yk} may "diverge" from the sequence of true iterates {yk}. The same 

conclusion applies to iteration (II) for which a similar analysis holds. 

In contrast, for large k the Newton iteration (N) damps a small perturbation 

~ in ~· 

Our conclusion, then, is that in simplifying Newton's method to produce 

the ostensibly attractive formulae (4.1.5) and (4.1.6), one sacrifices 

numerical stability of the method. 

4.4 A Further Newton Variant 

The following matrix square root iteration is derived in Denman and 

Beavers (1976) using the matrix sign function: 

t This follows also from the local convergence theory for Newton's 
method. 
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Po A, QO I, 

pk+l l(p + 
2 k 

Q-1) 
k l (4.4.1) 

(III) : 

) 
k 0,1,2, ••. 

Qk+l !(Qk + p-1) 
k (4.4.2) 

It is easy to prove by induction (using Theorem 4.2.1) that if {yk} 

is the sequence computed from (4.1.5) with Yo =I, then 

(4.4.3) 

1, 2' ... 

(4.4.4) 

Thus if A satisfies the conditions of Theorem 4.2.2 and the sequence 

{Pk, Qk} is defined, then 

lim Pk = X, 
k-+<x> 

-1 
lim Q = X 
k-+oo k 

where X is the square root of A defined in Theorem 4.2.2. 

At first sight, iteration (III) appears to have no advantage over 

iteration (I). It is in general no less computationally expensive; it 

computes simultaneously approximations to x and 
-1 

x ' when probably only 

X is required; and intuitively the fact that A is present only in the 

initial conditions, and not in the iteration formulae, is displeasing. 

However, as we will now show, this "coupled" iteration does not suffer 

from the numerical instability which vitiates iteration (I). 

To parallel the analysis in section 4.3 suppose the assumptions of 
A A 

Theorem 4.2.2 hold, let Pk and Qk denote the computed iterates from 

iteration (III), define 
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" " and assume that at the (k+l)st stage P and Q are computed k+l k+l 
" " exactly from Pk and Qk. Then from (4.4.1) and (4.4.2), using (4.3.2), 

we have 

Subtracting (4.4.1) and (4.4.2) respectively gives 

(4.4.5) 

(4.4.6) 

where 

From (4.2.4), (4.2.5), (4.4.3), (4.4.4) and (4.3.6), 

Z-lQ Z A-1 
k Dk, 

diag(d~k)); 
1 

thus, defining 

we can transform (4.4.5) and (4.4.6) into 
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Written element-wise, using the notation 

-(k) -
(e .. ), Fk 

l.J 

these equations become 

-(k+l) !<~~~) e .. 
l.J l.J 

f~~+l) ! (f ~~) 
l.J l.J 

where 

(k) 

- a~~) f ~~)) 
l.J l.J 

B~~)e~~)) 
l.J l.J 

A. • A. • 
l. J a .. 

1.J d~k)d~k) 
l. J 

and 

2 
+ O(~)' (4.4.7) 

2 
+ O(~), (4.4.8) 

using (4.3.8) and (4.3.10). It is convenient to write equations (4.4.7) and 

(4.4.8) in vector form: 

(4.4.9) 

where 
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-(k) 
e .. 

1J 

-(k) 
f.. 

1J 

1 

-s~~) 
1J 

1 

1 

(A..A..)2 
1 J 

(k 
-a .. 

1J 

1 

l 
-0. .. A..)2 ...,, 

1 J 

1 

It is easy to verify that the eigenvalues of M., 
1J 

are zero and one; 

denote a corresponding pair of eigenvectors by xo and x1 and let 

If we make a further assumption that no new errors are introduced at the 

(k+2)nd stage of the iteration onwards (so that the anlysis is tracing how 

an isolated pair of perturbations at the kth stage is propagated) then for 

k large enough and ~ small, we have, by induction, 
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h~~+r) ~ M:.h~~) 
1] 1] 1] 

r (k) (k) M .. (a0 x 0 + ai x1) 1] 

(k) 
al Xl' r > o. (4.4.10) 

While llh~~+l) 111 exceed llh~~) 111 by the factor 
(k) 1 may llM .. 11 1 ~ llM .. 11 1 ~ 1] 1] 1] 1] 

(taking norms in (4.4.9)), from (4.4.10) it 1s clear that the vectors 

(k+l) (k+2) 
h.. , h.. , •.. remain approximately constant, that is, the perturbations 
1] 1] 

introduced at the kth stage have only a bounded effect on succeeding iterates. 

Our analysis shows that iteration (III) does not suffer from the unstable 

error propagation which affects iteration (I) and suggests that iteration 

(III) is, for practical purposes, numerically stable. 

In section 4.6 we supplement the theory of this and the previous sections 

with some numerical test results. 

4.5 The Polar Decomposition Iteration 

In this section we apply the analysis that was developed in section 

4.3 to iteration (3.3.1), in order to investigate the numerical stability 

of this polar decomposition iteration. 

We first summarise some details from §3.3.2 that will be required for 

the analysis. The iteration to be examined is 

Xo A ... ll'nxn, . 1 c. "' nons1ngu ar, (4.5.la) 

(4.5.lb) 

If A has the singular value decomposition 

A P r Q*' (4.5.2) 
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then 

(4.5.3) 

where 

d (.k) 0 > • (4.5.4) 
l. 

Finally, the matrices Dk satisfy 

D0 ~. (4.5.5a) 

(4.5.5b) 

Following the analysis of section 4.3 let 

" denote the computed kth iterate and assume that X. is obtained exactly -1<+1 

" 
from ~· Then 

using (4.3.2). Subtracting (4.5.lb) yields 

(4.5.6) 

Writing 

[). = p ~ Q* 
k k 

and using (4.5.3), (4.5.6) becomes 
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that is, 

-
L'lk+l 

Writing 

we have, using (4.5.4), 

Since 

where 

where 

;sCk+l) 
ij 

D -+ I 
k as 

(k) 
E: • -+ 0 as 1 

8 ~~+l) 
1] 

k 

:(k) 
0 .• 
]1 ) 

- d~k)d~k) 
1 J 

-+ 00 (see §3.3.2) 

d~k) = 1 

k -+ 00. 

E: 
(k) 

1 + (k) 
E: • ' 1 

Then 

max 
1 

Equation (4.5.7) implies that 

we can write 

(4.5.7) 

which shows that once convergence 1s approached for the true sequence {~} 

(that is, 
(k) 

s is sufficiently small), a small perturbation L'lk in 

~ induces a perturbation L'lk+l in ~+l that is essentially no larger. 

A similar result can be derived by taking 2-norms in (4.5.6) and using the 

fact that 11~*11 2 F::J 1 when ~ is close to convergence (since 

to a unitary matrix): 

X converges 
k 



- 118 -

We conclude that iteration (3.3.1) does not suffer from the numerical 

instability that affects iteration (I). This conclusion is supported 

numerically by the tests of section 3.7, because in these tests Algorithm 

Polar never failed to converge. Clearly, the same conclusion applies to 

the matrix square root iteration of §3.6.4. 

To conclude this section we examine the relationship between iteration 

(3.3.1) and iteration (I). Consider iteration (I) applied to A*A: 

Yo A*A, (4.5.8a) 

Y I (Y + yk-1A*A). k+l = 2 k (4.5.8b) 

Consider also iteration (4.5.1), using the notation (4.5.2) and (4.5.3). 

Let A have the polar decomposition A= UH. From Corollary 4.2.3, 
! 

lim Yk = (A*A) 2 = H, 
k-+xi 

and from Theorem 3.3.1, lim ~ = U. 
k-+xi 

lim Yk = [lim ~)* A. 
k-+xi - k-+x> 

Thus 

We claim that this relation holds not only in the limit, but for any k. 

To show this, we write 

yk Q * Ek Q ' 

so that, from (4.5.8b), since A*A QL:2q* (see (4.5.2))' 

Ek+l l(E + 
2 k 

E-ll:2 
k 

) . (4.5.9) 
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Eo = Q*YoQ = Q*A*AQ = I 2 , so it is clear by induction on (4.5.9) that Ek 

is diagonal for all k. Defining 

we have 

Fo I, 

-1 
I 

-1 
l(F + Fk ). 2 k 

By comparison with (4.5.5) we see that Fk - Dk' so 

as claimed. 

To summarise, we 

(4.5.8) is related to 

QE Q* 
k 

have shown that the 

the sequence {X } 
k 

sequence {Yk} generated 

from (3.3.1) according to 

by 

yk =~ 

or, equivalently, ~ 
= A-*y 

k (since yk = y* 
k ) . Thus iterations (3.3.1) 

and (4.5.8) are mathematically "equivalent". Computationally, however, there 

are two important differences between the iterations. First, iteration 

(3.3.1) has greatly superior numerical stability properties to iteration 

A, 

(4.5.8) (that is, iteration (I) for A*A), as we have shown. Second, iteration 

(3.3.1) never forms this is important because it is known that when 

computing the singular value decomposition in finite precision arithmetic, 
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forming A*A can result in a loss of information (Golub and Van Loan, 1983, 

p.289). To illustrate, consider the matrix (Golub, 1965) 

where 0 < E < /UT2, and u < ! is the unit roundoff. The computed (1,1) 

element of A*A is 

fl(l + x) 

where 

x 

(using the standard model of floating point arithmetic; see Golub and 

Van Loan (1983, p.33)). Thus, since u < !, 

which implies that fl(l + x) 1. Consequently, the computed starting 

matrix for iteration (4.5.8), 

Yo = fl(A*A) 

is singular. For this A, iteration (4.5.8) will almost certainly fail on 

the first step, in the computation of -1 * Yo A A. (Whether or not an attempted 

"matrix inversion" X = B-
1c succeeds depends both on the particular matrix 

B and on the method used, because of the influence of rounding errors.) 

However, iteration (3.3.1) will almost certainly run to completion since A 

is nonsingular (it is easy to see, for example, that the LU factors of A 
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computed by Gaussian elimination will be nonsingular). 

This simple example serves to illustrate that for a fixed machine 

precision, iteration (3.3.1) can solve a wider class of polar decomposition 

problems than can iteration (4.5.8). 

4.6 Numerical Examples 

In this section we give some examples of the performance in finite 

precision arithmetic of iteration (I) (with Yo =I) and iteration (III). 

When implementing the iterations we distinguished the case where A 

is symmetric positive definite; since the iterates also possess this 

attractive property (see Corollary 4.2.3) it is possible to use the Choleski 

decomposition and to work only with the "lower triangles" of the iterates. 

The details of the implementations are as follows. To compute the 

inverse X of a symmetric positive definite matrix M we used the algorithm 

(i) M LLT (Choleski decomposition), 

(ii) 
-1 

L := L ' 

(iii) x := LTL. 

Iteration (I): kth step. 

General A: 

(i) PkYk = LkUk (Gaussian elimination with partial pivoting), 

(ii) LkUkVk = PkA(substitutions), 

(iii) yk+l: 

Symmetric positive definite A: 

(i) sk 
-1 

(using the algorithm above), := yk 

(ii) vk := SkA (synnnetric), 

(iii) yk+l := !(Yk + Vk). 
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Iteration (III): kth step. 

General A: 

(i) -1 -1 
Uk :=Pk , Vk := Qk (Gaussian elimination with partial pivoting 

followed by substitutions with right-hand sides the colunms of 

the identity matrix), 

Synunetric positive definite A: 

(i) 
-1 -1 

Uk := Pk , Vk: = Qk (using the algorithm above) 

(ii) pk+l :=!(Pk+ Vk), Qk+l := !(Qk +Uk). 

The operation counts for one stage of each iteration in our implementations, 

measured in flops, are as follows. 

Table 4. 6 .1. 

Flops 
nxn 

er stage: AaR 

Iteration (I) 

Iteration (III) 

General A S etric positive definite A 

4n 3 /3 

2n 3 

The computations were performed on a Corrnnodore 64 microcomputer with 

unit roundoff u = 2-32 ~ 2.33 x lo- 10
• The convergence test (3.3.21) was 

used in all the tests, with o = 2u. 
n 

In the following A.(A) denotes the 

spectrum of A, and the matrix square roots are quoted to four significant 

figures. 

Example 1. 

Consider the Wilson matrix example given in section 4.1. W is synunetric 
! 

positive definite and (K 2 (W) 2-l)/2 ~ 27 so the theory of section 4.3 

predicts that for this matrix iteration (I) may exhibit numerical instability 
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and that for large enough k 

Note from Table 4.1.l that for Implementation 1 there is approximate equality 

throughout in (4.6.1) for k ~ 6; this example supports the theory well. 

Strictly, the analysis of section 4.3 does not apply to Implementation 2, 

but the overall conclusion is valid (essentially, the error matrices ~k are 

forced to be synnnetric, but they can still grow as k increases). 

Example 2 (Gregory and Karney, 1969). 

5 4 1 
11 

A 
4 5 1 

~ 
' \(A) {1,2,5,10}, K2(A) 10. 

1 1 4 

1 1 2 

Iterations (I) and (III) both converged in seven iterations to 

1.989 .9885 .1852 .1852 

! 1. 989 .1852 .1852 
Az 

1.918 .5035 

L 1.918 

Note that condition (4.3.12) is not satisfied by this matrix; thus the 

failure of this condition to hold does not necessarily imply divergence of 

the computed iterates from iteration (I). 

Example 3. 

101 0 99 100 1 0 0 0 

0 .01 0 0 -1 .01 0 0 
A ;= ' B 

99 0 101 100 -1 -1 100 100 

0 0 -100 100 -1 -1 -100 100 
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A(A) = A(B) = {.01, 1, 100 ± lOOi}. 

Note that the lower quasi-triangular form of B is preserved by iterations 

(I) and (III). For both matrices iteration (I) diverged while iteration (III) 

converged within ten iterations. Briefly, for iteration (I), 

k 11.Yk - yk-1 11 1 (for A) llyk - yk-1111 (for B) 

1 1.5 x 102 9.9 x 101 

6 6.8 x 10-1 2.3 x 10-1 

7 4.2 x 10-3 2.1 x 10-3 

8 2.6 x lo-6 4.0 x 10-2 

9 1.1 x lo-5 2.1 

12 1.1 x 10- 3 4.8 x 105 . 

Example 4 (Denman, 1981). 

0 .07 .27 -.33 

1. 31 -.36 1.21 .41 
A = ' 

A(A) {.03, 3.03, -1.97 ± 

1.06 2.86 1.49 -1. 34 

-2.64 -1. 84 -.24 -2.01 

Iteration (I) diverged, but iteration (III) converged in eight iterations 

to the real square root 

.2453 -8. 971 x 10 -2 .1994 -8.463 x 10 

1.321 1.181 .2573 .8507 
x 

5 .114 x 10-3 .1561 1.369 -1. 249 

-. 6 771 -1. 972 .3412 -.1904 

(Cf. Denman (1981) where a non-real square root was computed.) 

i}. 
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Example 5 (Gregory and Karney, 1969). 

4 1 1 

A= 2 4 1 , A(A) = (3,3,6); A is defective. 

0 1 4 

Both iterations converged in six steps to 

x 
[ 

1. 971 

.5113 

-3.302 
-2 

x 10 

.2391 • 2391 ., 

1.955 .2226 

.2557 1.988 

We note that in Examples 3 and 4 condition (4.3.11) is not satisfied; 

the divergence of iteration (I) in these examples is "predicted" by the 

theory of section 4.3. 

4.7 Conclusions 

When A is a full matrix Newton's method for the matrix square root, 

defined in equations (4.1.3) and (4.1.4), is unattractive because of its 

computational cost (see section 4.1). Iterations (I) and (II), defined by 

(4.1.5) and (4.1.6), are closely related to the Newton iteration, since if 

the initial approximation Xo = Yo = Zg cormnutes with A then the sequences 

of iterates {~ , {Yk} and {Zk} are identical (see Theorem 4.2.1). In 

view of the relative ease with which equations (4.1.5) and (4.1.6) can be 

evaluated, these two Newton variants appear to have superior computational 

merit. However, as our analysis predicts, and as the numerical examples in 

section 4.6 illustrate, iterations (I) and (II) can suffer from numerical 

instability - sufficient to cause the sequence of computed iterates to 
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diverge, even though the corresponding exact sequence of iterates is 

mathematically convergent. Since this happens even for well-conditioned 

matrices iterations (I) and (II) must be classed as numerically unstable; 

they are of little practical use. 

Iteration (III), defined by equations (4.4.1) and (4.4.2), is also 

closely related to the Newton iteration and was shown in section 4.4 to be 

numerically stable under suitable assumptions. In our practical experience 

(see section 4.6) iteration (III) has always performed in a numerically 

stable manner. 

For the case where A is symmetric positive definite, Algorithm 

3.6.4 provides an alternative to iteration (III). The two methods can be 

compared as follows. Both methods require n 3 flops per step. Algorithm 

3.6.4 requires 5n3/2 elements of storage, compared to the 3n3 /2 required 

by a careful implementation of iteration (III). The numerical stability 

analysis for Algorithm 3.6.4 is the more favourable (cf. sections 4.4, 4.5). 

Finally, Algorithm 3.6.4 incorporates acceleration parameters, for which 

there is strong theoretical justification, and which, in practice, limit 

the required number of iterations to ten (see section 3.7); acceleration 

parameters in the same spirit as those for iteration (3.3.1) can be derived 

for iteration (III) (cf. Hoskins and Walton (1978, 1979)). 
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CHAPTER 5 

COMPUTING REAL SQUARE ROOTS OF A REAL MATRIX 

5.1 Introduction 

The methods for computing matrix square roots that we considered in the 

previous chapter are all iterative in nature and require, computationally, only 

the calculation of matrix inverses. While these methods are easy to implement, 

they do have some disadvantages. 

When the matrix is syrrnnetric positive definite the choice of square root 

is unambiguous: it is usually the syrrnnetric positive definite square root 

that is required (cf. §3.6.4). However, when the matrix is unsyrrnnetric it is 

not clear which of the (possibly many) square roots is required; and the task 

of choosing a suitable starting value to force convergence to a particular 

square root is non-trivial. If more than one square root of the matrix is to 

be computed, then no computational savings accrue, since the iterations 

corresponding to different starting values are independent. Finally, the 

iterations of the previous chapter ostensibly yield no information about the 

stability of the computation (in the sense of Definition 1.2.1). 

These disadvantages are overcome by a direct method for computing matrix 

square roots that is proposed by Bjorck and Hannnarling (1983). The method is 

based on the Schur decomposition (1.1.10); in general it requires complex 

arithmetic. 

Our main aims in this chapter are to investigate the theory of matrix 

square roots (from the viewpoint of general matrix functions f(A)), to 

establish necessary and sufficient conditions for the existence of real square 

roots of a nonsingular real matrix, and to show how the method of Bjorck and 

Hammarling (1983) can be extended so as to compute a real square root of a 

real matrix in real arithmetic. 
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The theory behind the existence of matrix square roots is non-trivial, as 

can be seen by noting that while the n x n identity matrix has infinitely many 

square roots for n ~ 2 (any involutary matrix such as a Householder 

transformation is a square root), a nonsingular Jordan block has precisely two 

square roots (this is proved in Corollary 5.3.4). 

In section 5.2 we define the square root function of a matrix. The feature 

which complicates the existence theory for matrix square roots is that in general 

not all the square roots of a matrix A are functions of A. 

In section 5.3 we classify the square roots of a nonsingular matrix A in 

a manner which makes clear the distinction between the two classes of square 

roots: those which are functions of A and those which are not. 

With the aid of this background theory we find all the real square roots 

of a nonsingular real matrix which are functions of the matrix, and show how 

these square roots may be computed in real arithmetic by the "real Schur method". 

The stability of this method is analysed in section 5.5. 

Some extra insight into the behaviour of matrix square roots is gained by 

defining a matrix square root condition number. Finally, we give an algorithm 

which attempts to choose the square root computed by the Schur method so that 

it is, in a sense to be defined in §5.5.1, "well-conditioned". 

5.2 The Square Root Function of a Matrix 

Let 

where 

A "'nxn 
E "' 

-1 

have the Jordan canonical form 

Z AZ = J (5.2.1) 
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1 0 

1 (5.2.2) 

1 

0 \ 

If A has s ~ p distinct eigenvalues, which can be assumed without loss 

of generality to be ••• ' A ' s 
then the minimum polynomial of A 

the unique mon1c polynomial p of lowest degree such that p(A) = O - is 

given by 

s 
ijJ( :\) = II 

i=l 

n. 
(:\ - :\.) 

1 

1 
(5.2.3) 

where n. 1s the dimension of the largest Jordan block in which A. appears 
1 1 

(Lancaster, 1969, p.168). The values 

n. - 1, 
1 

(5.2.4) 

are "the values of the function f on the spectrum of A", and if they 

exist f is S:lid to be "defined on the spectrum of A". 

We will use a definition of matrix function given by Gantrnacher (1959), 

which defines f(A) to be a polynomial in A. To motivate the definition 

we consider some properties of polynomials with a matrix argument. 

It is easy to show that if p and q are polynomials then p(A) = q (A) 

if and only if the difference d = p - q 1S divisible by ijJ' or equivalently, 

from (5. 2. 3) , d takes only the value zero on the spectrum of A. Thus 

p(A) = q(A) if and only if p and q take the same values on the spectrum 

of A, implying that for any polynomial p the matrix p(A) is uniquely 
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determined by the values which p takes on the spectrum of A. A natural way 

to define f(A) for an arbitrary function f, is to extend the property 

possessed by polynomials by requiring that f(A) be uniquely determined by 

the values of f on the spectrum of A. This is accomplished by the following 

definition, which is one of several, equivalent ways to define f (A) (Rinehart, 

1955). 

Definition 5.2.1 (Gantmacher, 1959, p.97). 

Let f be a function defined on the spectrum of A E ~nxn. Then 

f(A) = r(A) 

where r is the unique Hermite interpolating polynomial of degree less than 

s 

I 
i=l 

n. 
1 

deg ljJ 

which satisfies the interpolation conditions 

0 ~ J ~ 

Note. 

n. -1, 
1 

s . D 

One must be careful not to interpret the definition as saying that for each 

function f there is a fixed polynomial that takes the same value as f 

for all matrix arguments; rather, the coefficients of the polynomial in the 

definition depend on A, through the values of the function f on the 

spectrum of A. 

Of particular interest here is the function g(z) = 
! 

z2 
' 

which is 

certainly defined on the spectrum of A if A is nonsingular. However 

g(A) is not uniquely defined until one specifies which branch of the square 

root function is to be taken in the neighbourhood of each eigenvalue :\ .. 
1 

Indeed Definition 5.2.1 yields a total of 2s matrices g(A) when all 
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combinations of branches for the square roots g(A.), 1 ~ i ~ s, 
1 

are taken. 

It is natural to ask whether these matrices are in fact square roots of A. 

That they are can be seen by taking with 

the appropriate choices of branch in the neighbourhoods of A
1

, A2 , ... , As' 

and f 2 (A) = A in the next result. 

Theorem 5.2.1. 

Let Q(ul, u2' ... ' ~) be a polynomial in ul' u2' ••. ' ~ and 

let fl' f2, ... ' fk be functions defined on the spectrum of A E <Cnxn 

which Q(fl, f2' ... ' fk) is zero on the spectrum of A. Then 

Q ( f 1 (A) , f 2 (A) , ••• , fk (A) ) 0 • 

Proof. 

See Lancaster (1969 , p.184). o 

The square roots obtained above, which are by definition polynomials 

in A, do not necessarily constitute all the square roots of A. For 

example, 

l+a2 

] 

2 __ 
- I, a s a;, (5.2.5) 

-a 

yet X(a) is evidently not a polynomial in -I. In the next section we 

classify all the square roots of a nonsingular matrix A s <Cnxn. To do 

so we need the following result concerning the square roots of a Jordan 

block. 

Lennna 5.2.2. 

For Ak f 0 the Jordan block Jk(Ak) of(5.2.2)has precisely two 

upper triangular square roots 

for 
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(~ - 1) 
f C\) 

f(Ak) f' C\) 
(~ - 1) ! 

L(j) L (j) (/.. ) 
f(/..k) 

1, 2' k k k J 

f'(A.k) 

0 f(/..k) 

(5.2.6) 

! 
where f(/..) /..

2 and the superscript j denotes the branch of the square 

root in the neighbourhood of /..k. Both square roots are functions of Jk. 

Proof. 

For a function f defined on the spectrum of A the formula (5.2.6) for 

f(Jk) follows readily from the definition of f(A) (Gantmacher, 1959, p.98). 

Hence and are (distinct)square roots of we need to show 

that they are the only upper triangular square roots of Jk. To this end 

suppose that 

(i' i) and 

and 

X = (x .. ) 
l.J 

(i' i + 1) 

x:. 
l. l. 

is an upper triangular square root of Jk. 

elements in x2 = J 
k 

gives 

(x .. + x. 1 '+l) x. '+l = 1, 1 ~ l. ~Ill - 1. 
l.l. l.+ ,l. l.,l. k 

Equating 

The second equation implies that x .. + x. l . l f O, 
l.l. l.+ ,1+ 

so from the first, 

= x 
~·~ 

I 
+'2 _/\k. 

Since x .. + x .. f O for all i and J, X is uniquely determined by its 
l.l. JJ 

diagonal elements (see §5.4.2); 

so X = L(l) 
k 

or 

these are the same as those of 

0 

5.3 Square Roots of a Nonsingular Matrix 

A prerequisite to the investigation of the real square roots of a 

or 
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real matrix is an understanding of the structure of a general complex square 

root. In this section we extend a result of Gantmacher's (1959 , p.232) to 

obtain a useful characterisation of the square roots of a nonsingular matrix 

A which are functions of A. We also note some interesting corollaries. 

Our starting point is the following result. Recall that 

and are the two upper triangular square roots of defined in 

Lemma 5.2.2. 

Theorem 5.3.1. 

Let 
,,nxn 

A E (J.; be nonsingular and have the Jordan canonical form (5.2.1). 

Then all square roots X of A are given by 

x 
( i1 ) J'2 

L2 ' • • • ' 

(j ) 
p -1 -1 

L )U Z 
p 

(5.3.1) 

where jk is 1 or 2 and U is an arbitrary nonsingular matrix which 

commutes with J. 

Proof. 

See Gantmacher (1959, pp.231,232). o 

The next result describes the structure of the matrix U in Theorem 

5.3.1. 

Theorem 5.3.2. 

L A C" ,,,nxn 
et ~ ~ have the Jordan canonical form (5.2.1). 

of AX = XA are given by 

where W (W .. ) is a block matrix with 
l.J 

{o, A. + A.' 
w .. = l. J 

l.J 
T .. ' 

l.J A. A.' l. J 

m. xm. 
E ~ l. J 

All solutions 
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where T .. 
1J 

is an arbitrary upper trapezoidal Toeplitz matrix ( (T .. ) = 8 ) , 
1J rs s-r 

which for m. < m. has the form T •• = [O, U .. ] where u .. 
1 J 1J 1J 1J 

1s square. 

Proof. 

See Gantmacher (1959 , pp.220,221). D 

We are now in a position to extend Theorem 5.3.1. 

Theorem 5.3.3. 

Let the nonsingular matrix A £ ~nxn have the Jordan canonical form 

(5.2.1) and let s ~ p be the number of distinct eigenvalues of A. 

Then A has precisely 2s square roots which are functions of A, given 

by 

x. 
J 

(j ) 1 
L p )Z-

p ' 
s 

l~J~2, (5.3.2) 

corresponding to all possible choices of J
1

, ••• , Jp' Jk = 1 or 2, 

subject to the constraint that Ji = jk whenever Ai = Ak. 

If s < p, A has square roots which are not functions of A; they 

form parametrised families 

X. (U) 
J 

(j 1) 
ZU diag(L 

1 ' ... ' 
(5.3.3) 

where is 1 or 2, U 1s an arbitrary nonsingular matrix which commutes 

with J, and where for each j there exist 1 and k, depending on J, 

such that Ai = Ak while Ji f jk. 

Proof. 

We noted in section 5.2 that there are precisely 2s square roots of 

A which are functions of A. That these are given by equation (5.3.2) follows 

from the formulae (Gantmacher, 1959, p.98 ff.) 
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f(A) = f(ZJZ-1) = z f(J) z-1 = z diag(f(Jk)) z-1
, 

and Lemma 5.2.2. The constraint on the branches {j. } follows from 
1 

Definition 5.2.1. 

By Theorem 5.3.1, the remaining square roots of A (if any), which, 

by the first part, cannot be functions of 

or have the form ZUL.U-lZ-1
, where L. = 

J J 

A, are either given by (5.3.3) 
(j 1) (j ) 

diag(L1 , ••• , L P ) and 
p 

-1 
X. = ZL.Z is any one of the square roots in (5.3.2), and where U is 

J J 

an arbitrary nonsingular matrix which commutes with J. Thus we have to 

show that for every such U and L., 
J 

that is, UL.U-1 

J 
= L.' 

J 
or equivalently, UL. = L.U. 

J J 
Writing U in block 

form u = (U .. ) 
1J 

to conform with the block form of J, we see from Theorem 

5.3.2 that since U commutes with J, 

UL. 
J 

L.U 
J 

iff 
(j . ) 

1 L. U.k whenever 
1 1 

A.. 
1 

Therefore consider the case A.i = A.k and suppose first mi ~ ~· We can write 

where 

implies 

Thus 

Yik is a square upper triangular 
(j·) 

ji = jk, so Li 1 has the form 

(j.) 
L. i 

1 

Toeplitz matrix. Now A.. 
1 
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(j.) 
l. 

L. U.k , 
l. l. 

where we have used the fact that square upper triangular Toeplitz matrices 

commute. A similar argument applies for mi < ~ and thus the required 

condition holds. D 

Theorem 5.3.3 shows that the square roots of A which are functions of 

A are "isolated" square roots, characterized by the fact that the sum of any 

two of their eigenvalues is nonzero. On the other hand, the square roots which 

are not functions of A form a finite number of parametrised families of 

matrices; each family contains infinitely many square roots which share the 

same spectrum. 

Several interesting corollaries follow directly from Theorem 5.3.3. 

Corollary 5.3.4. 

If Ak t 0 the two square roots of Jk(Ak) given in Lemma 5.2.2 are 

the only square roots of Jk(Ak). 

Corollary 5. 3. 5. 

D 

If A E ¢nxn is nonsingular and its p elementary divisors are co-prime, 

that is, in (5.2.1) each eigenvalue appears in only one Jordan block, then A 

has precisely 2P square roots, each of which is a function of A. D 

The final corollary is well-known. 

Corollary 5. 3. 6. 

Every Hermitian positive definite matrix has a unique Hermitian positive 

definite square root . D 
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5.4 An Algorithm for Computing Real Square Roots 

5.4.1 The Schur Method. 

Bjorck and Hannnarling (1983) present an excellent method for computing 

a square root of a matrix A. Their method first computes a Schur decomposition 

Q*AQ T, 

where Q is unitary and T is upper triangular,and then determines an upper 

triangular square root U of T with the aid of a fast recursion. A square 

root of A is given by 

X = QUQ*. 

A disadvantage of this Schur method is that if A is real and has non­

real eigenvalues the method necessitates complex arithmetic even if the square 

root which is computed should be real. When computing a real square root it 

is obviously desirable to work with real arithmetic; depending on the relative 

costs of real and complex arithmetic on a given computer system, substantial 

computational savings may accrue and, moreover, a computed real square root 

is guaranteed. 

In §5.4.3 we describe a generalisation of the Schur method which enables 

the computation of a real square root of A E 1R.nxn in real arithmetic. 

First, however, we address the important question "When does A E 1R.nxn have 

a real square root?". 

5. 4. 2 Existence of Real Square Roots. 

The following result concerns the existence of general real square roots -

those which are not necessarily functions of A. 

Theorem 5.4.1. 

Let A E 1R.nxn be nonsingular. A has a real square root if and only 

if each elementary divisor of A corresponding to a real negative eigenvalue 

occurs an even number of times. 
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Proof. 

The proof is a straightforward modification of the proof of Theorem 1 in 

Culver (1966), and is omitted. o 

Theorem 5.4.1 is mainly of theoretical interest, since the proof is non-

constructive and the condition for the existence of a real square root is not 

easily checked computationally. We now focus attention on the real square roots 

of A E lR.nxn which are functions of A. The key to analysing the existence 

of square roots of this type is the real Schur decomposition. 

Theorem 5.4.2. Real Schur Decomposition. 

If A ElR.nxn then there exists a real orthogonal matrix Q such that 

R 

0 

R 
Im 

R 
mm 

nxn 
E :JR ' (5.4.1) 

where each block R .. is either 1 x 1, or 2 x 2 with complex conjugate 
ii 

eigenvalues A.. and A.. , 
i i 

A.. f A. •• 
i i 

Proof. 

See Golub and Van Loan (1983, p.219). D 

Suppose A E lR.nxn and that f is defined on the spectrum of A. Since 

A and R in (5.4.1) are similar we have 

f(A) = Qf (R)QT 

so that f (A) is real if and only if 

T = f (R) 

is real. It is easy to show that T inherits R's upper quasi-triangular 
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structure and that 

T .. = f(R .. ), 
11 11 

1 ~ i ~ m. 

If A is nonsingular and f is the square root function then the whole 

of T is uniquely determined by its diagonal blocks. To see this equate 

(i, j) blocks in the equation T2 = R to obtain 

R •• ' 
1] 

These equations can be recast in the form 

T~. = R .. , 
11 11 

T .. T .. + T .. T .. 
11 1] 1J JJ 

R .• 
1J 

1 ~ 1 ~ m, (5.4.2) 

J > i. (5.4.3) 

Thus if the diagonal blocks T •. 
11 

are known, (5.4°3) provides an algorithm 

for computing the remaining blocks T •. 
1J 

of T along one superdiagonal at 

a time in the order specified by j - 1 = 1, 2, . . . ' m-1 • The condition for 

(5.4.3) to have a unique solution T •. 
1J 

is that T •• 
11 

and -T .. have no 
JJ 

eigenvalue in common (Golub and Van Loan, 1983, p.194). This is guaranteed 

because the eigenvalues of T are µk= f (\k), and for the square root 

function f(\.) = -f(\.) 
1 J 

implies that \ = \. 
i J 

and hence that 

that is \. = 0, contradicting the nonsingularity of A. 
1 

f (\.) 
1 

O, 

From this algorithm for constructing T from its diagonal blocks we 

conclude that T is real, and hence f(A) is real, if and only if each of 

the blocks T .. = f(R .. ) is real. We now examine the square roots f(T) of 
11 11 

a 2 x 2 matrix with complex conjugate eigenvalues. 

Lemma 5.4.3. 

Let A 8 1R.2x2 have complex conjugate eigenvalues \, \ = 9 ± iµ, where 

µ f O. Then A has four square roots, each of which is a function of A. 
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Two of the square roots are real, with complex conjugate eigenvalues, and two 

are pure imaginary, having eigenvalues which are not complex conjugates. 

Proof. 

Since A has distinct eigenvalues Corollary 5.3.5 shows that A has 

four square roots which are all functions of A. To find them, let 

diag(\, -~) 

er + iµK, 

where 

Then 

A er + µW, (5.4.4) 

where W = iZKZ-l, and since e, µ E: JR it follows that W E: 1R
2

x
2

• 

If (a + iS) 2 = e + iµ then the four square roots of A are given 

by X = ZDZ-1
, where 

D ±[a 

0

+ iS O J 
±(a-iS) 

that is, 

D ±(al + iSK) 

or 

D ±(aK + iSI) ±i(SI - iaK). 

Thus 

X =±(al+ SW), (5.4.5) 

that is two real square roots with eigenvalues ±(a+iS, a-iS); or 

X ±i(SI - aW), 
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that is two pure imaginary square roots with eigenvalues 

±(a+iS, -a+iS). o 

With the aid of the lemma we can now prove 

Theorem 5.4.4. 

Let A JR.
nxn 

E: be nonsingular. If A has a real negative eigenvalue 

then A has no real square roots which are functions of A. 

If A has no real negative eigenvalues then there are precisely 

2r+c real square roots of A which are functions of A, where r is the 

number of distinct real eigenvalues of A and c is the number of distinct 

complex conjugate eigenvalue pairs. 

Proof. 

Let A have the real Schur decomposition (5.4.1) and let f be the 

square root function. By the remarks preceding Lemma 5.4.3 f(A) is real 

if and only if f(R .. ) 
ii 

is real for each i. If R •• = (r.) 
ii i 

with r. < 0 
i 

then f(R .. ) is necessarily non-real; this gives the first part of the 
ii 

theorem. 

If A has no real negative eigenvalues, consider the 2s square 

roots f(A) described in Theorem 5.3.3. We have s = r + 2c. From Lemma 

5.4.3 we see that f(R .. ) is real for each 2 x 2 block R .. if and only 
ii ii 

if f(A.) = f(A.) whenever A. = A., where {A.} are the eigenvalues of A. 
i J i J i 

Thus, of the 2s = 2r+2c ways in which the branches of f can be chosen 

2
r+c 

for the distinct eigenvalues ' ••• ' A s 
of A, precisely 

of these choices yield real square roots. o 

An example of a class of matrix for which Theorems 5.4.1 and 5.4.4 

guarantee the existence of real square roots is the class of nonsingular 

M-rnatrices, since the nonzero eigenvaluesof an M-rnatrix have positive real 

parts (cf. Alefeld and Schneider (1982)). 
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It is clear from Theorem 5.4.1 that A may have real negative eigenvalues 

and yet still have a real square root; however, as Theorem 5.4.4 shows, and 

equation (5.2.5) illustrates, the square root will not be a function of A. 

We remark, in passing, that the statement about the existence of real 

square roots in Froberg (1969, p.67) is incorrect. 

5.4.3 The Real Schur Method. 

The ideas of the last section lead to a natural extension of Bjorck 

and Hammarling's Schur method for computing in real arithmetic a real square 

root of a nonsingular A sJR.nxn. This real Schur method begins by computing 

a real Schur decomposition (5.4.1), then computes a square root T of R 

from equations (5.4.2) and (5.4.3), and finally obtains a square root of A 

via the transformation 
T 

'X: = QTQ • 

We now discuss the solution of equations (5.4.2) and (5.4.3). The 2 x 2 

blocks T .. in (5.4.2) can be computed efficiently in a way suggested by the 
ii 

proof of Lemma 5.4.3. The first step is to compute e and µ where 

A = e + iµ is an eigenvalue of the matrix 

We have, 

e 

R •• 
ii 

l(r + r ) µ = -21 1-(r - r )2 - 4r r 2 11 22 ' 11 22 21 12 

Next, a and S such that (a. + iS) 2 e + iµ are required. A stable way 

to compute a. is from the formula 
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+ v'e2 + µ2 
2 

µ 

/2(-e + v'e2 + µ2 ) 

e > o 

8 ~ O; 

S 1s given in terms of a and µ by B = µ/2a. Finally, the real square 

roots of R .. are obtained from (cf. (5.4.4) and (5.4.5)) 
11 

T •• 
11 

1 
±(al + -

2 
(R .. 

a 11 

± 
1 
-r 
2a 21 

81)) 

1 
-- r 
2a 12 

(5.4.6) 

Notice that, depending on a, T .. may have elements which are much 
11 

larger than those of R ••• 
11 

We discuss this point further in section 5.6. 

(I 
q 

If T .. is of order p and T .. is of order q, (5.4.3) can be written 
11 JJ 

T 
® T .. + T .. ®I )Str(T .. ) 

11 JJ p 1J 
Str(R .. -

1J 
(5.4.7) 

where the Kronecker product A® B is the block matrix (a .. B), 
1J 

for 

T T T T 
is the vector (b 1 , b2 , ••• , bn) , and 

I 1S the r x r identity matrix. The linear system (5.4. 7) 1S of order 
r 

pq 1, 2 or 4 and may be solved by standard methods. 

Any of the real square roots f(A) of A can be computed in the above 

fashion by the real Schur method. Note that to conform with the definition 



- 144 -

of f(A) we have to choose the signs in (5.4.6) so that T .. 
ii 

and T .• 
JJ 

the same eigenvalues whenever R •• 
ii 

and R •• 
JJ 

do; this choice ensures 

simultaneously the nonsingularity of the linear systems (5.4.7). 

The cost of the real Schur method, measured in flops, may be broken 

down as follows. The real Schur factorisation (5.4.1) costs about 15n3 

have 

flops (Golub and Van Loan, 1983, p.235). Computation of T as described 

above requires n 3/6 flops, and the formation of X = QTQT requires 3n 3 /2 

flops. Interestingly, only a small fraction of the overall time is spent 

in computing the square root T. 

In the next two sections we analyse the stability of the real Schur 

method and the conditioning of matrix square roots. 

5.5 Stability and Conditioning 

5.5.1 Stability of the Real Schur Method. 

Let X be an approximation to a square root of A and define the 

residual 

E = X2 - A. 

Then }{2 = A + E, revealing the interesting property that stability of an 

algorithm for computing a square root X of A corresponds to the residual 

of the computed X being small relative to A. 

Consider the real Schur method. Let T denote the computed approximation 

to a square root T of the matrix R in (5.4.1) and let 

F 'f2 - R. 

Making the usual assumptions on floating point arithmetic (Golub and Van 

Loan, 1983, p.33) an error analysis analogous to that given by Bjorck and 

Hammarling (1983) renders the bound 
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llFllF 
11-1r- :S ( 1 +en 
11R11F 

where c is a constant of order 1. 

ll"fll; 
llRJC) u' 

F 

(5.5.1) 

Following Bjorck and Hannnarling (1983) we define for a square root 

X of A and a norm II.II the number 

a (X) 
llxll 2 

fil ~ 1. 

Assuming that 

QT, 

llTll "'llTll we obtain from (5.5.1), on transforming by Q and 
F F 

(5.5.2) 

We conclude that the real Schur method is stable provided that aF(X) is 

sufficiently small. 

In Bjorck and Harrnnarling (1983) it is shown that the residual of 

f£(X), the matrix obtained by rounding X to working precision, satisfies 

a bound which is essentially the same as (5.5.2). Therefore even if a(X) 

is large, the approximation to X furnished by the real Schur method is as 

good an approximation as the rounded version of X if the criterion for 

acceptability of a square root approximation is that it be the square root 

of a matrix "near" to A. 

Some insight into the behaviour of a(X) can be gleaned from the 

inequalities (cf. Bjorck and Hannnarling (1983)) 

K(X) 
K(A) :s a (X) :s K (X) • 

This if a(X) is large, X is necessarily ill-conditioned with respect to 

inversion, and if A is well-conditioned then a(X) "'K(X). 
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Loosely, we will regard a as a condition number for the matrix square 

root, although ostensibly it does not correspond to the conventional notion 

of conditioning applied to a square root, namely, the sensitivity of the 

square root to perturbations in the original matrix. The latter concept is 

examined in the next section. 

5.5.2 Conditioning of a Square Root. 

Define the function d:
nxn nxn 

F: -+ C by F(X) = X2 - A. From section 

4.1 we know that the (Frechet) derivative of F at X is a linear operator 

F'(X) : Cnxn + Cnxn, specified by 

F'(X)Z = XZ + ZX. 

As the next result shows F'(X)-l plays a key role in measuring the 

sensitivity of a square root X of A. 

Theorem 5.5.1. 

Let x2 =A, (X + ~X) 2 =A+ E and suppose that F'(X) is nonsingular. 

Then for sufficiently small llEll 

(5.5.3) 

Proof. 

One finds easily that ~X F'(X)-1 (E - ~X2 ). On taking norms this 

leads to 

a quadratic inequality which for sufficiently small llEll has the solution 

The result follows by dividing throughout by II XII. o 
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Theorem 5.5.1 motivates the definition of the matrix square root 

condition number 

y(X) llF' (X)-111 llAll llF' (X)-111 llXll fil = a(X). (5.5.4) 

The linear transformation F'(X) is nonsingular, and y(X) is finite, if 

and only if X and -X have no eigenvalue in connnon (Golub and Van Loan, 

1983, p.194); if A is nonsingular, Theorem 5.3.3 shows that this is the 

case precisely when X is a function of A. Hence the square roots of A 

which are not functions of A are characterised by having "infinite condition" 

as- measured by y. This is in accord with (5.3.3), which indicates that 

such a square root is not well-determined; indeed one can regard even zero 

perturbations in A as giving rise to unbounded perturbations in X. 

By combining (5.5.2), (5.5.3) and (5.5.4) we are able to bound the error 

in a square root approximation X ~ X computed by the real Schur method 

as follows: 

llx - xii 
F 

= c 'nllF' (X)- 1
11 llxll u + O(u 2), 
F F 

where c' is a constant of order 1. 

(5.5.5) 

We conclude this section by examining the conditioning of the square 

roots of two special classes of matrix. The following identity will be 

useful (see Golub, Nash and Van Loan (1979)). 

llF' (X) -l llF (5.5.6) 
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Lennna 5.5.2. 

If the nonsingular matrix A E 
ccnxn 

1S 

root of A which is a function of A, then 

(i) x is normal 

(ii) a.2 (X) = 1, and 

(iii) 
llxllF 1 

yF(X) 
min jµ. + µ .1 aF (X) 

l~i,j~n 
1 J 

where {µ.} are the eigenvalues of X. 
1 

Proof. 

normal and x is a square 

(5.5. 7) 

Since A is normal we can take Z to be unitary and ~ = 1, 

1 ~ k ~ p = n, in (5.2.1) (see (1.1.9)). The unitary invariance of the 

2-norm implies and Theorem 5.3.3 shows that 

x * 2 Zdiag(µ 1 , µ2 , ..• ,µ )Z ,µ. = >..., 1 ~ i ~ n. 
n 1 1 

It follows that X is normal and that 

2 
llxll

2 

that is, a (X) = 1. 
2 

llAll , 
2 

(5.5.8) 

The matrix (I® X + XT ® I)-l is normal since X is normal, and 

-1 
its eigenvalues are (µ. + µ.) , 1 ~ i,j ~ n. The third part follows 

1 J 

from (5.5.4) and (5.5.6). D 

Note that if A is normal and X is not a function of A then, 

as illustrated by (5.2.5), X will not in general be normal and ct2(X) 

can be arbitrarily large. 

The next lermna identifies the best y-conditioned square root of a 
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Hermitian positive definite matrix. 

Lemma 5.5.3. 

If A c ~nxn . . . . . . . 
~ ~ is Hermitian positive definite then for any square root 

X of A which is a function of A, 

(5.5.9) 

where P is the Hermitian positive definite square root of A. 

Proof. 

A is normal and nonsingular, hence Leillllla 5.5.2 applies and we can 

use (5.5.7) and (5.5.8). Let 

m(X) min 
l~i,j~n 

Iµ. (X) + µ . (X) I 
i J 

where µk (X) denotes an eigenvalue of X, and suppose A = min >- •• k i 
i 

r.- -1 -1 
Since µi(P) > 0 for all i we have m(P) = 2µk(P)= 2r\ =211P 11

2
• 

Together with (5.5.7) this gives the expression for yF(P). 

From (5.5.8) 

which is the same for each X, so llxllF = llPllF and aF(X) = aF(P). 

Since also m(X) ~ 2Jµk(X) I = 2J±I\:" I= m(P), the inequality follows. D 

The terms in (5.5.7) and (5.5.9) can be bounded as follows. 

Using the norm inequalities (2.1.6) we have for the choices of X in 

Leilllllas 5.5.2 and 5.5.3 



- 150 -

It is instructive to compare yF(P) with the matrix inversion 

condition number KF(P) = llPllFllP- 111F. From Lerrnna 5.5.3,using inequalities 

(2.1.6) we obtain 

Thus the square root conditioning of P is at worst the same as its 

conditioning with respect to inversion. Both condition numbers are 
! 

approximately equal to KF(A) 2
, 

5.6 Computing a Well-Conditioned Square Root 

Consider the matrix 

1 -1 -1 -1 

R 
1.1 -1 -1 

1.5 -1 

0 2 

By Corollary 5.3.5, R has sixteen square roots T, which are all functions 

of R and hence upper triangular. These square roots yield eight different 

a. values: 

a. 1 (T) = 1.64, 22.43, ... , 1670.89, 1990.35, 

(each repeated) where the smallest and largest values are obtained when 

diag(sign(t .. )) = ± diag(l, 1, 1, 1) and ± diag(l, -1, 1, -1) respectively. 
1.1. 

Because of the potentially wide variation in the a-conditioning of the 

square roots of a matrix illustrated by this example it is worth trying to 

ensure that a square root computed by the (real) Schur method is relatively 

"well-conditioned"; then (5.5.2) guarantees that the computed square root is 
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the square root of a matrix near to A. Unfortunately, there does not seem 

to be any convenient theoretical characterisation of the square root for 

which a is smallest (cf. Bjorck and Hammarling (1983). Therefore we suggest 

the following heuristic approach. 

Consider, for simplicity, the Schur method. We would like to choose 

the diagonal elements of T, a square root of the triangular matrix R, so 

as to minimise a(T) = llTll 2 /llRll, or equivalently, to minimise T . An 

algorithm which goes some way towards achieving this objective is derived 

from the observation that T can be computed column by column: (5.4.2) 

and (5'. 4. 3) can be rearranged for the Schur method as 

t .. =±~ 
JJ JJ 

t.. (r .. 
1-J 1-J 

j-1 
l t.ktk.)/(t .. + t .. ), 

k =i + 1 }_ J }_}_ J J 
}_ j-l,j-2, ..• ' 1

} j = 1, 2, •.• , n. 

(5.6.1) 

Denoting the values t .. 
1-J 

resulting from the two possible choices of 

+ by t.. and t .. , we have 
1-J 1-J 

Algorithm 5. 6 .1. 

For j = 1, 2, ... , n 

Compute from (5.6.1) 

+ J 
c. I J i=l 

+ 
If c. ~ c. 

J 

t .. 
1-J 

else 

t.. 
1-J 

a: = ( max 
l~j~n 

J 

It; .1. 
1-J 

then 

+ 
t .. ' 1 

1-J 

t .. ' 1 
1-J 

~ 

:s 

+ t .. and t .. , i 
1-J 1-J 

j,j-1, ... , 1. 

J 
c. I It~ .1. 

J i=l 1-J 

j ; + 
}_ ~ c. c. 

J J 

i :s j ; c. c .. 
J J 

t .. 
JJ 
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t
11

, ••• , t. 
1 

. 
1 

have been chosen already and the 
J- ,J-

algorithm chooses that value of t.. which gives the smaller 1-norm to the 
JJ 

jth colunm of T. This strategy is analogous to that used in the LINPACK 

condition estimation algorithm 2.3.2. 

The algorithm automatically rejects those upper triangular square roots 

of R which are not themselves functions of R, since each of these must 

have t .. + t .. = 0 for some i and J with i < j, corresponding to an 
1.1. JJ 

+ infinite value for c. or c .. We note, however, that as shown in Bjorck 
J J 

and Hannnarling (1983) it may be that the case that a(X) is near its minimum 

only when X is a square root which is not a function of A. The computation 

of such a square root can be expected to pose numerical difficulties, 

associated with the singular nature of the problem, as discussed in §5.5.2. 

The optimisation approach suggested in Bjorck and Hammarling (1983) may be 

useful here. In the case that A has distinct eigenvalues every one of A's 

square roots is a function of A and is hence a candidate for computation 

via Algorithm 5.6.1. 

The cost of Algorithm 5.6.1 is double that incurred by an a priori 

choice of ... ' t ; nn 
this is quite acceptable in view of the overall 

operation count given in §5.4.3. 

To investigate both the performance of the algorithm and the a-

conditioning of various matrix square roots we carried out tests on four 

different types of random matrix. In each of the first three tests we 

generated fifty upper triangular matrices R of order five from the formulae 

Test 1: r .. RND + iRND', 
l.J 

Test 2: r .. RND, 
1.J 

IRNDI' Test 3: r .. { j l. ' 
RND, > . 1.J J l. ' 
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where RND and RND' denote (successive) calls to a routine to generate 

random numbers from the uniform distribution on [-1, l]. Each matrix 

turned out to have distinct eigenvalues and therefore thirty-two square 

roots, yielding sixteen (repeated) values a(T). Tables 5.6.1, 5.6.2 and 

5.6.3 sununarise respectively the results of Tests 1, 2 and 3 in terms of 

the quantities 

where T is the square root computed by Algorithm 5.6.1, 

a . 
min min a1(T), 

T2=R 

In the fourth and final test we formed twenty-five random real upper 

quasi-triangular matrices R = (R •. ) 
iJ 

of order ten. Each block R .. was 
JJ 

chosen to have order two and constructed randomly, subject to the requirements 

that llR .. II 1 = 0(1) 
JJ 

and that the eigenvalues be complex conjugates A.. 
J 

A.., 
J 

with A.. 
J 

computed from A. • = RND + iRND' . 
J 

r .. = RND. 
iJ 

diagonal blocks were obtained from 

The elements of the off-

Each matrix in this test 

had a total 1024 square roots, thirty-two of them real; Algorithm 5.6.1 

and 

was forced to compute a real square root and the maximum and minimum values 

of a were taken over the real square roots. The results are reported in 

Table 5.6.4. 

The main conclusion to be drawn from the tests is that for the classes 

of matrix used Algorithm 5.6.1 performs extremely well. In the majority of 

cases it computed a "best a-conditioned" square root, and in every case 

a was within a factor three of the minimum. 

It is noticeable that in these tests a . was usually acceptably small min 
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(less than one hundred, say); the variation of a, as_ measured by 

a /a . was at times very large however, indicating the value of using max min 

Algorithm 5.6.1. 

There is no reason to expect the a . values in the four tables min 

to be of similar size, but the ones in Table 5.6.4 are noticeably larger 

than those in the other tables. A partial explanation for this is afforded 

by expression (5.4.6) from which it may be concluded that if (for the block 
l 

R .. with eigenvalue A in the real Schur decomposition of A) a= ReA 2 

ii 

is small relative to llR .. II, then there is the possibility that the real ii 

square roots ± T.. will have large elements and hence that a(T) will be ii 

large. Consider, for example, e ~ n in the matrix 

R(a) = [\cos a 
1 + 3 sin

2 
e] 

1 ' 
2 cos e 

l 
this matrix has eigenvalues cos e ± i sine, a = ReA 2 

and the real square roots are, from (5.4.6), 

Table 5.6.1. Complex upper triangular. 

x Maximum x ~ 100 100 < 

a 
min 

5.3 100% 

a 4.5 x 104 60% max 

a la min 
8.5 x 10 3 82% max 

a/a 
A 

min 
2.6 a = a 

min : 

e + n; 

cos(6/2), 

x ~ 1000 

-

32% 

14% 

64% 
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Table 5.6.2. Real upper triangular. 

x Maximum x ~ 100 100 < x ~ 1000 

a 2.4 x 101 100% -
min 

a 1.0 x 106 30% 44% 
max 

a /a 
min 

5.0 x 105 60% 18% 
max 

~/a 1.2 
A 

92% a = a : 
min min 

·-

Table 5.6.3. Real upper triangular, positive eigenvalues. All square roots real. 

I 

x Maximum x ~ 100 100 < x ~ 1000 I 
a 9.1 100% -
min 

a 1.1 x 10 lO 2% 18% max 

a /a 4.3 x 109 6% 26% 
max min 

~/a 
A 

min 
1 a = a. : 100% 

min 

Table 5.6.4. Real upper quasi-triangular. Only real square roots computed. 

x Maximum x ~ 100 100 < x ~ 1000 

a min 9.3 x 107 48% 28% 

a 1.2 x 108 0% 24% max 

a /a . max ml.n 1.2 x 105 80% 12% 

a/a . " 2.16 a = a min : 44% min 
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cos (e /2). + cose 1 + 3 sin2 e 

4cos(8/2) 2 cos(8/2) 

T(8) ± 

1 
cos (e /2) - cose 

8 cos (e /2) 4 cos (8 /2) 

A small a can arise if A. is close to the negative real axis, as in the 

above example, or if A. is small in modulus, either of which is possible 

for the random eigenvalues A. used in Test 4. 

To illustrate that a small value of a in (5.4.6) need notlead to 

a large value of a(T), and to gain further insight into the conditioning 

of real square roots, we briefly consider the case where A is normal. 

We need the following result, a proof of which may be found in Perlis (1952, 

p.199). 

Lennna 5 • 6 • 1. 

Let A E: IRnxn be normal. Then A's real Schur decomposition (5.4.1) 

takes the form 

where each block R .. is either 1 x 1, or of the form 
I.I. 

R •• 
l. l. [ 

a b J , b f 0. 
-b a 

D 
(5.6.2) 

R •• in (5.6.2) has eigenvalues a± ib, so from (5.4.6) its real square 
l. l. 

roots are given by 

T..=±[c d],c 
I.I. -d c 

+ /az + bz 
2 

from which it is easy to show that 

+ /i.2 + b2 
2 

(5.6.3) 
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II T •• II 
2

2 = I a 2 + b 2 = 11 R 11 • 
ii ii 2 

(5.6.4) 

Thus the possibility that large growth will occur in forming the elements 

of T .. is ruled out when A is normal. Indeed it follows from (5.6.4) 
ii 

that when A is normal any real square root which is a function of A is 

perfectly conditioned in the sense that a 2 = 1 (see also Lemma 5.5.2). 

It is worth pointing out that if we put a = -1, b = 0 in (5.6.2) 

then while 

R = [-1 0] 
0 -1 

(5.6.5) 

has two real negative eigenvalues, formula (5.6.3) still gives a real 

square root of R, namely 

T [ _: 1 (5.6.6) 

(necessarily not a function of R). This square root is also obtained 

when a in (5.2.5) is chosen to minimise a2(X(a)). 

in (5.6.2) is a scalar multiple of a Givens rotation 

[

case 
J (e) = 

-sine 

sine ] ; 

case 

We note that R .. ii 

with this interpretation T J(TI/2) in (5.6.6) is a natural choice of 

square root for R = J(TI) in (5.6.5). 

5.7. Conclusions 

The real Schur method presented here provides an efficient way to 

compute a real square root X of a real full matrix A. In practice it 

is desirable to compute together with the square root X, both a(X) and 

an estimate of the square root condition number y(X) (this could be 
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obtained using one of the condition estimators of Chapter 2, as described 

in Golub, Nash and Van Loan (1979) and Byers (1984)); the relevance of 

these quantities is displayed by the bounds (5.5.2) and (5.5.5). The overall 

method is reliable, for instability is signalled by the occurrence of a 

large a.(X). 

Algorithm 5.6.1 is an inexpensive and effective means of determining a 

relatively well-conditioned square root using Schur methods. 

When A is normal any square root (and in particular any real square 

root) which is a function of A is perfectly conditioned in the sense that 

a.2 = 1. Further work is required to investigate the existence of well­

conditioned real and complex square roots for general A. 

We have tacitly assumed that one would want to compute a square root 

which is indeed a function of the original matrix, but as illustrated by 

(5.6.5) and (5.6.6) the "natural" square root may not be of this form. 

This phenomenon, too, merits further investigation. 
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Appendix 

Here we give an alternative proof to Theorem 3.2.5. 

Proof of Theorem 3.2.5. 

Since KF(A)E < 1, A + ~A is nonsingular and thus it has the polar 

decomposition 

A + ~A = (U + ~U) (H + ~H), 

where H + ~H is positive definite. From (Al) 

(H + ~H) 2 = (A+ ~A)*(A +~A), 

that is, since H2 = A*A, 

H~H + ~H H A*~A + ~A*A + G 

where 

Substituting A UH and writing 

we have 

H~H + ~H H = HE + E*H + G • 

Let H have the spectral decomposition 

H z11.z* z*z = r. 
' 

Performing a similarity transformation on (A2) using Z gives 

MH + ~HA = AE + :E* A + G, 

where 

~H = z*~Hz = (oh .. ), E = z*Ez 
1] 

This equation has the solution 

(~ •• ), G 
1] 

z*GZ = (g .. ). 
1] 

(Al) 

(A2) 
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- -* >...e .. + >...e g .. 
oh .. i i] J ji i] + 

i] >... + >... >... + A. i J i J 

Squaring, and then using the Cauchy-Schwarz inequality, we obtain 

Ioli .. J 2 ~ 
iJ 

Je .. 1 2 + Je .. J2 + 2<Je .. I + 
iJ Ji iJ 

where 

>.. min >... llH-lll-l llA-111-1 
n 

l~i~n 
i 2 2 

n n 
Sunnning over all i and j' and using the inequality l L Ja .. J~nllAll 

i=l j =l iJ F 
we obtain 

- 2 2llEll~ 2 -1 11c;11 llEllF llA- 1 11~ 11-11 2 
II Miii ~ + 2n llA 11 2 

+ ! F F G F 

Using the unitary invariance of the Frobenius norm, and the inequality 

llGllF ~ llt.All~+.lltiHll~, we have 

(A3) 

This is a quadratic inequality in Writing 

h 
-1 

c = llA 11 2 , 

and expanding and re-arranging (A3) we have 

4h2 c2 
+ ~ (2a2 

2 
0 ~ h4 (1 - 2n2ca - - a2) + 2n2ca 3 + ~ a4) 

c2 2 c2 4 

- h4 - 2ah2 + 8. 

Thus (h2 - a.)2 ~ a.2 - 8, which implies that 



or 

where 

Now, 

/a.2 - B 
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h 2 - a ~ la. 2 - B 

h 2 - a ~ - la2 -B . 

all - Bfa. 2 a(l 

=a - ~ + O(a4), 
2a 

B - -- + 
za.2 

a= 2-c1 + o(a)), 8 2a2 + O(a3). 

c 2 2a 

Therefore, solutions (A4) and (AS) can be written 

h2 ~ !!__ + O(a), 
c2 

(A4) 

(AS) 

For sufficiently small a the first solution is invalid, since h ~ 0 as 

a~ 0, thus the second solution holds. This can be re-written h ~ 12a + O(a2); 

that is, for sufficiently small lltiAllF, 

which is essentially the first part of the theorem. 

From (Al), 

U + fiU (A+ fiA) (H + t:,.H)-l 

(A + t;A) (H-l - H- 1t;HH-l + O(llt:,.Hll;)) 

U - Ut:,.HH - l + fiAH - l + 0 (II tiAll; II) , 

(A6) 
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so that, using (A6), 

giving the last part of the theorem. D 
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