
Max-Balanced Hungarian Scalings

Hook, James and Pestana, Jennifer and Tisseur,
Francoise and Hogg, Jonathan

2015

MIMS EPrint: 2015.36

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

MAX-BALANCED HUNGARIAN SCALINGS∗

JAMES HOOK† , JENNIFER PESTANA‡ , FRANÇOISE TISSEUR§ , AND

JONATHAN HOGG¶

Abstract. A Hungarian scaling is a diagonal scaling of a matrix that is typically applied along
with a permutation to a sparse linear system before calling a direct or iterative solver. A matrix that
has been Hungarian scaled and reordered has all entries of modulus less than or equal to 1 and entries
of modulus 1 on the diagonal. An important fact that has been overlooked by the previous research
into Hungarian scaling of linear systems is that a given matrix typically has a range of possible
Hungarian scalings and direct or iterative solvers may behave quite differently under each of these
scalings. Since standard algorithms for computing Hungarian scalings return only one scaling, it is
natural to ask whether a superior performing scaling can be obtained by searching within the set of
all possible Hungarian scalings. To this end we propose a method for computing a Hungarian scaling
that is optimal from the point of view of diagonal dominance. Our method uses max-balancing,
which minimizes the largest off-diagonal entries in the matrix. Numerical experiments illustrate the
increased diagonal dominance produced by max-balanced Hungarian scaling as well as the reduced
need for row interchanges in Gaussian elimination with partial pivoting and the improved stability
of LU factorizations without pivoting. We additionally find that applying the max-balancing scaling
before computing incomplete LU preconditioners improves the convergence rate of certain iterative
methods.

Key words. max-plus algebra, diagonal scaling, Hungarian scaling, max-balancing, diagonal
dominance, linear systems of equations, sparse matrices, incomplete LU preconditioner.

AMS subject classifications. 65F35, 15A12, 15A60, 15A80.

1. Introduction. A Hungarian scaling is a two-sided diagonal scaling of a ma-
trix that is applied along with a permutation P to a linear system Ax = b, with
A ∈ Cn×n and b ∈ Cn, yielding

H = PD1AD2, Hy = PD1b, x = D2y, (1.1)

where D1, D2 ∈ Rn×n are diagonal and nonsingular. The scaled and reordered matrix
H = (hij) is such that |hij | ≤ 1 and |hii| = 1 for i, j = 1, . . . , n.

Olschowka and Neumaier [17] propose applying a Hungarian scaling together with
a permutation to matrices prior to performing Gaussian elimination. They prove that
this preprocessing step eliminates the need for row interchanges for some special class
of matrices. Some intuitive explanation for this widely observed fact is provided in
Hook and Tisseur [14, Thm. 3.9] for general matrices. Duff and Koster [7, 8] describe
an efficient algorithm for computing a Hungarian scaling, on which the HSL code
MC64 is based [15]. They show that applying the scaling and permutation significantly
reduces the number of delayed pivots during factorization of sparse nonsymmetric
matrices by a multifrontal direct solver [8]. The authors explain this phenomenon

∗Version of April 28, 2017. The research of the first three authors was supported by Engineering
and Physical Sciences Research Council grant EP/I005293. The work of the third author was also
supported by a Royal Society-Wolfson Research Merit Award.
†Bath Institute for Mathematical Innovation, University of Bath, Bath, BA2 7AY, UK

(j.l.hook@bath.ac.uk).
‡Department of Mathematics and Statistics, University of Strathclyde, 26 Richmond Street, Glas-

gow, G1 1XH, UK (jennifer.pestana@strath.ac.uk).
§School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK (fran-

coise.tisseur@manchester.ac.uk).
¶Scientific Computing Department, STFC Rutherford Appleton Laboratory, Harwell Oxford, Did-

cot, UK.

1

by pointing out that the Hungarian scaled matrix H tends to be more diagonally
dominant than the original matrix A.

Benzi, Haws, and Tůma [1] show that Hungarian scaling is an effective prepro-
cessing step before applying BiCGSTAB, GMRES, or TFQMR to sparse indefinite
nonsymmetric matrices. The scaled matrices require significantly fewer iterations for
convergence. Again, the authors explain this phenomenon by pointing out that the
Hungarian scaled matrix H in (1.1) tends to be more diagonally dominant than the
original matrix A. The authors also experiment with using Hungarian scaling as a
preprocessing step before applying preconditioned BiCGSTAB with an ILU precondi-
tioner. Without scaling they show that there are many problems for which attempts
to compute a very sparse ILU preconditioner break down. In these cases, to reliably
compute effective ILU preconditioners they are forced to compute denser ILU factors
at a considerably increased cost. However they show that after Hungarian scaling has
been applied it is possible to reliably compute very sparse ILU preconditioners.

In the symmetric case, rather than permuting matched entries (unsymmetrically)
to the main diagonal, these entries can instead be permuted (symmetrically) to the
sub-diagonal and used in 2 × 2 block pivots. However, in the sparse case, doing so
conflicts with the minimization of fill-in. Various compromises have been proposed.
In [11] and [12] Hogg and Scott show that for most matrices merely using the sym-
metrized Hungarian scaling is sufficient to eliminate the need for significant amounts
of pivoting in LDLT factorizations with threshold partial pivoting. For the class of
problems where this is not the case, reordering roughly half the matched entries onto
the sub-diagonal and then applying a constrained fill-reducing ordering is sufficient
to reduce pivoting to a manageable level.

An important point that has been overlooked by the previous research into Hun-
garian scaling of linear systems is that the Hungarian scaling and reordering associated
with a matrix A ∈ Cn×n is not necessarily unique. In general there is a range of dif-
ferent diagonal matrix pairs D1, D2 ∈ Rn×n and permutation matrices P ∈ Rn×n,
which result in different Hungarian scaled and reordered matrices, for which direct
or iterative solvers may behave quite differently. Since the increased diagonal domi-
nance of the Hungarian scaled matrices has been repeatedly cited as responsible for
their improved numerical characteristics, we focus in this paper on trying to obtain
Hungarian scaled matrices that are as diagonally dominant as possible.

The permutation matrices that are used in the Hungarian scaling and reordering
are called optimal assignments. Whilst the choice of optimal assignment permutation
may impact on the number of row interchanges required during Gaussian elimination,
it is difficult to predict which permutations will work best in advance. We argue in
Section 2.1 that from the point of view of diagonal dominance the choice of optimal
assignment makes no difference to the scaled and reordered matrix. Instead we choose
to focus on the choice of diagonal matrices defining the Hungarian scaling. We will
focus on the two questions: what does the set of all Hungarian scalings of a matrix
look like and how do we choose the best possible Hungarian scaling for a particular
problem.

To answer these questions we will use results from max-plus algebra, to which we
give a brief introduction in Section 2. It turns out that the different Hungarian scalings
of a matrix A are all related by diagonal similarities, so that ifH = PD1AD2 andH ′ =
PD′1AD

′
2 are both Hungarian scaled then there exists a diagonal matrix S such that

H ′ = S−1HS. Therefore starting from one Hungarian scaling, we can generate new
Hungarian scalings by applying ‘special’ diagonal similarities. The diagonal matrix

2

S must be such that H ′ retains the properties of a Hungarian scaled matrix, i.e.,
|h′ij | ≤ 1 and |h′ii| = 1 for all i, j. These conditions on S are very naturally expressed
in terms of max-plus algebra and that is why it proves so useful here; see Theorem
2.5.

In order to compute a Hungarian scaling that is as diagonally dominant as possible
we use a technique called max-balancing. Max-balanced graphs were introduced by
Schneider and Schneider in connection with certain network flow problems [21]. A
directed weighted graph is max-balanced if for any subset of vertices the maximum
weight of an edge into that subset is equal to the maximum weight of an edge out
of that subset. We can use the max-balancing algorithm of Schneider and Schneider
to compute a diagonal matrix S ∈ Rn×n such that the scaled matrix M = S−1AS
is max-balanced. Intuitively, max-balancing is the similarity scaling obtained by first
minimizing the largest off-diagonal entry in the matrix, then minimizing the next
largest entry subject to minimizing the first, and so on.

We show in Section 3 that max-balancing (a) preserves the property of a matrix
being Hungarian scaled and (b) minimizes the entrywise p-norm over all diagonal
similarity scalings of A in the limit as p tends to infinity; see Theorem 3.2. As a
result, the max-balancing of a Hungarian scaled matrix tends to be more diagonally
dominant than the initial Hungarian scaling H. Theorem 3.7, which is the main
theoretical result of this paper, states that the max-balanced Hungarian scaling of
A is the unique optimal scaling and reordering of A with respect to a particular p-
norm diagonal dominance measure in the limit as p tends to infinity. If we were to
attempt to minimize some other measure of diagonal dominance via similarity scaling
then there would be no guarantee that we would be able to preserve the properties of
being Hungarian scaled, i.e., that no off-diagonal entries have modulus greater than 1.
The elegance of the max-balanced Hungarian scaling is that both diagonal dominance
and Hungarian scaling are achieved simultaneously.

To demonstrate the effectiveness of max-balancing we include numerical experi-
ments in Section 4. We focus on solving Ax = b via LU factorization, where A ∈ Cn×n
is sparse and nonsymmetric. Our experiments confirm that max-balancing improves
diagonal dominance. Additionally, the condition number and number of row inter-
changes in Gaussian elimination with partial pivoting, reduced by Hungarian scaling,
are further reduced by max-balancing Hungarian scaling. Finally, we apply the max-
balancing scaling before computing incomplete LU preconditioners for GMRES and
BiCGStab, and find that doing so reduces the number of iterations for both methods.

2. Introduction to max-plus algebra and Hungarian scaling. We intro-
duce in this section the basic max-plus algebra concepts that are needed to understand
the theoretical results in our paper. Max-plus algebra concerns the max-plus semiring
Rmax = R ∪ {−∞}, which is equipped with the binary operations max and plus

a ⊕ b = max{a, b}, a ⊗ b = a + b, for all a, b ∈ Rmax,

with −∞ and 0 playing the role of additive and multiplicative identities. Throughout
this paper we use calligraphic letters for elements of Rmax. A max-plus matrix A ∈
Rn×mmax is simply an array of elements from Rmax.

Max-plus matrix multiplication is defined analogously to classical matrix multi-
plication so that if A ∈ Rn×mmax and B ∈ Rm×`max then A⊗ B ∈ Rn×`max with

(
A⊗ B

)
ij

=

m⊕
k=1

aik ⊗ bkj = max
1≤k≤m

aik + bkj .

3

A max-plus diagonal matrix has all off-diagonal entries equal to minus infinity. Let
diag∞(d) denote the max-plus diagonal matrix with diagonal entries given by some
vector d ∈ Rnmax; we use the subscript ∞ to distinguish them from classical n × n
complex diagonal matrices, which we denote by diag(b) for some b ∈ Cn. For A ∈
Rn×nmax and for u, v ∈ Rn, we have(

diag∞(−u)⊗A⊗ diag∞(−v)
)
ij

= aij − ui − vj .

The max-plus permanent of A ∈ Rn×nmax is given by

perm(A) = max
π∈Π(n)

n∑
j=1

aπ(j)j , (2.1)

where the maximum is taken over the set Π(n) of all permutations of {1, . . . , n}. We
denote by π = id the identity permutation, i.e., id = {1, . . . , n}. A permutation π
which attains the maximum in (2.1) is called an optimal assignment of A. When
perm(A) 6= −∞, the max-plus permanent of A can be rewritten as a minimization
problem (see for example [13]),

perm(A) = min

{ n∑
i=1

(ui + vi) : u, v ∈ Rn, aij − ui − vj ≤ 0

}
. (2.2)

A Hungarian pair of A is an optimal solution (u, v) to (2.2). It is named after the
Hungarian algorithm, which is a widely used primal-dual algorithm for solving the
optimal assignment problem.

For π ∈ Π(n) denote by Pπ the n× n classical permutation and by Pπ the n× n
max-plus permutation matrix, both defined by

(Pπ)ij =

{
1 for j = π(i),
0 otherwise,

(Pπ)ij =

{
0 for j = π(i),
−∞ otherwise.

(2.3)

The following theorem or more precisely, its corollary for complex matrices, ap-
pears in [17, Thm. 2.8].

Theorem 2.1 (Hungarian scaling). For A ∈ Rn×nmax , with perm(A) 6= −∞, let π
and (u, v) be an optimal assignment and Hungarian pair of A, respectively. Then the
max-plus Hungarian scaled and reordered matrix

H = Pπ ⊗ diag∞(−u)⊗A⊗ diag∞(−v),

is such that hij ≤ 0 and hii = 0 for all i, j = 1, . . . , n.
To link the classical algebra of complex matrices with standard addition and

multiplication to the max-plus algebra, we use the following transformation, which is
known as a non-Archimedean valuation

V : C 7→ Rmax, V(x) = log |x|, (2.4)

with the convention that log 0 = −∞. For matrices, we apply the valuation com-
ponentwise, that is, for A ∈ Cn×n, V(A) = A =

(
log |aij |

)
∈ Rn×nmax . Note that

perm(A) 6= −∞ with A = V(A) means that A is not structurally rank deficient.
The next result which holds for complex or real matrices is a direct consequence of
Theorem 2.1.

4

Corollary 2.2. Let A ∈ Cn×n be of full structural rank. Let π and (u, v) be an
optimal assignment and a Hungarian pair of V(A), respectively. Then the Hungarian
scaled and reordered matrix

H = Pπ diag
(

exp(−u)
)
A diag

(
exp(−v)

)
, (2.5)

is such that |hij | ≤ 1 and |hii| = 1 for all i, j = 1, . . . , n.
We note that the max-plus matrix H in Theorem 2.1 is the componentwise log-

of-absolute-value of the matrix H in Corollary 2.2, that is, H = V(H).
The max-plus matrix A = V(A) may have more than one optimal assignment and

the optimal solution (u, v) to (2.2) is in general not unique. Let us look at a simple
example to illustrate the latter point.

Example 2.3. Let A ∈ R3×3 and A := V(A) ∈ R3×3
max be given by

A =

 exp(6) exp(6) exp(9)
exp(−4) exp(−3) exp(−2)

0 exp(−7) 1

 , A =

 6 6 9
−4 −3 −2
−∞ −7 0

 .
It is easy to check that the max-plus matrix A has a unique optimal assignment π =
(1, 2, 3) and that (u, v) with u = [0,−9,−9]T and v = [6, 6, 9]T is a Hungarian pair
for A yielding the Hungarian scaled matrix

H = diag
(

exp(−u)
)
Adiag

(
exp(−v)

)
=

 1 1 1
exp(−1) 1 exp(−2)

0 exp(−4) 1

 . (2.6)

Hungarian scaling tends to significantly reduce the matrix 2-norm condition number
κ2(A) = ‖A‖2‖A−1‖2. For this example we have κ2(A) = 4.1 × 105 � κ2(H) = 6.2.
Note also that H is more diagonally dominant than A.

We will show in the next section that if (us, vs) is another Hungarian pair for
A then there exists s ∈ R3 such that (us, vs) = (u + s, v − s). This means that the
Hungarian scaled matrices

Hs = diag
(

exp(−us)
)
A diag

(
exp(−vs)

)
= diag

(
exp(−s)

)
H diag

(
exp(s)

)
and H are similar. But not all diagonal similarity scalings of H are Hungarian
scalings of A: the vector s must must such that Hs is a Hungarian matrix. Indeed,
Hs is Hungarian if and only if |(Hs)ij | ≤ 1 for all i, j = 1, 2, 3. This yields the
following constraints on the entries of s:

−1 + s1 − s2 ≤ 0, s2 − s1 ≤ 0, −4 + s2 − s3 ≤ 0, s3 − s1 ≤ 0. (2.7)

Now for all α ∈ R, s ∈ R3 satisfies (2.7) if and only if s̃ := s + α[1, 1, 1]T satisfies
(2.7). Therefore the set S(H) := {s ∈ R3 : Hs is Hungarian} is a prism extruded in
the [1, 1, 1]T direction. It is not difficult to see that for any α ∈ R, s and s̃ give rise
to the same scaling of H, so there is no loss in generality in choosing α such that
s1 = 0. Then the intersection of S(H) with the plane s1 = 0 is the set of solutions to

s2 ≥ −1, s2 ≤ 0, s2 − s3 ≤ 4, s3 ≤ 0,

which is given by the quadrilateral shown in Figure 2.1(a). The vertices a, b, c, d of
the quadrilateral are are given by

a = [0,−1, 0]T , b = [0,−1,−5]T , c = [0, 0,−4]T , d = [0, 0, 0]T .

5

a

b

c

d

p
q

sB

(a)

1

2 3

0
0

0

-1

0

-2

-4

0

(b)

Fig. 2.1: (a) shows S(H) ∩ {s1 = 0} for the matrix H ∈ R3×3 of Example 2.3 and
different scaling vectors; (b) shows the precedence graph Γ(H) for H = V(H).

Table 2.1: Frobenius norm and 2-norm condition number for the matrices of Exam-
ples 2.3 and 3.10 (for HsB

).

Matrix X A H (= Hd) Ha Hb Hc Hp Hq Hs
B

‖X‖F 8.12e3 2.27 2.30 2.27 2.27 2.07 1.97 1.94

κ2(X) 4.14e5 6.19 6.56 6.98 6.40 4.96 4.27 4.08

They correspond to extremal Hungarian scalings of A given by

Ha =

 1 exp(−1) 1
1 1 exp(−1)
0 exp(−5) 1

 , Hb =

 1 exp(−1) exp(−5)
1 1 exp(−6)
0 1 1

 ,
Hc =

 1 1 exp(−4)
exp(−1) 1 exp(−6)

0 1 1

 , Hd =

 1 1 1
exp(−1) 1 exp(−2)

0 exp(−4) 1

 .
Each of these Hungarian scaled matrices contain precisely five entries equal to one. If
we scale using any parameter from the relative interior of an edge of the quadrilateral
then we obtain a scaled matrix with exactly four entries equal to one. At the end of
Section 2.2 we will see that if we take any scaling parameter from the interior of this
quadrilateral then we obtain a scaled matrix with exactly three entries equal to one.
For example, p = [0,−1,−1]T and q = [0,−0.5,−1]T yield

Hp =

 1 exp(−1) exp(−1)
1 1 exp(−2)
0 exp(−4) 1

 , Hq =

 1 exp(− 1
2) exp(−1)

exp(− 1
2) 1 exp(− 5

2)
0 − exp(7

2) 1

 .
The 2-norm and 2-norm condition number of these matrices are provided in Table 2.1.

The scalings a, b, c, d which are taken from extreme points of the quadrilateral all
result in scaled matrices with very similar condition numbers and norms. The scaling
p taken from an edge of the quadrilateral results in a scaled matrix with a slightly
smaller condition number and norm compared to the previous Hungarian scalings.

6

The scaling q taken from the interior of quadrilateral results in a scaled matrix has a
further reduced condition number and norm.

We show in Theorem 2.5 that the set of all Hungarian pairs of a matrix, in
this example the extruded quadrilateral S(H), is actually given by the column space
of a related max-plus matrix. We also show how max-balancing provides a way to
automatically select a vector from the middle of the interior of this set. Just as
max-plus algebra provides a neat characterization of the set of Hungarian all pairs,
it also provides the perfect framework to describe the max-balancing algorithm and
prove results about the properties of max-balanced scaled matrices, as we shall see.
In Table 2.1 the max-balancing scaling vector sB, which we show how to calculate
in Example 3.10, performs the best at reducing the norm and condition number. We
explain this performance from the improved diagonal dominance brought about by max-
balancing. Theorem 3.7 states that the max-balanced Hungarian scaling of a matrix
is optimal with respect to a particular measure of diagonal dominance.

2.1. Set of all optimal assignments. In this section we argue that, although
a matrix may have more than one optimal assignment, from the point of view of
diagonal dominance, it does not matter which one we choose.

The set of all optimal assignments

oas(A) = {π ∈ Π(n) :

n∑
j=1

aπ(j)j = perm(A)}

for A ∈ Rn×nmax may contain several different permutations. Let w(A, π) =
∑n
j=1 aπ(j)j

denote the weight of the permutation π ∈ Π(n). It is easy to show that for any
u, v ∈ Rn we have

w
(
diag∞(−u)⊗A⊗ diag∞(−v), π

)
= w(A, π)−

n∑
i=1

ui + vi,

so that oas
(
diag∞(−u) ⊗ A ⊗ diag∞(−v)

)
= oas(A) (see [2, Lem. 1.6.32]). Also for

any permutation $ ∈ Π(n) and corresponding max-plus permutation matrix P$ we
have

w(P$ ⊗A, π) = w(A, $ ◦ π).

Thus if we choose a particular optimal assignment π̃ and Hungarian pair (u, v) of
A then the set of all optimal assignments of the scaled and reordered matrix H =
Pπ̃ ⊗ diag∞(−u)⊗A⊗ diag∞(−v) is given by

oas(H) = {π̃−1 ◦ π : π ∈ oas(A)}, (2.8)

and for all ω ∈ oas(H) we have hω(j)j = 0 for j = 1, . . . , n.
We are interested in quantifying the diagonal dominance of Hungarian scaled

matrices, which could potentially be affected by the choice of optimal assignment.
For this, we consider the following very general measure for the row-wise diagonal
dominance of A ∈ Cn×n,

∆(A) = g

 p

√∑
j 6=i |aij |p

|aii|

i=1,...,n

 , (2.9)

7

for some p ∈ [1,∞) and where g : Rn+ 7→ R+ is some function that amalgamates the
individual row p-norm scores into a single score for the whole matrix. If we assume
that g is invariant to permutations in its n arguments then it is easy to prove that
∆(H) with H as in (2.5) does not depend on the choice of π ∈ oas(V(A)). Likewise
for any equivalent column-wise diagonal dominance measure. However as we will
demonstrate in Section 4, the choice of Hungarian pair (u, v) can cause large changes
to different diagonal dominance measures.

2.2. Set of all Hungarian pairs. In this section we give a max-plus algebraic
characterization of the set of all Hungarian pairs of a matrix. Before we can state our
results we need to introduce a few more important definitions.

The precedence graph Γ(A) of A ∈ Rn×nmax is the weighted directed graph with
vertices {1, . . . , n} and an edge from i to j with weight aij whenever aij 6= −∞.
Equivalently Γ(A) is the graph such that A is the weighted adjacency matrix of Γ(A),
with minus infinity entries whenever there is an edge missing. See Figure 2.1(b) for
an example. The maximum cycle mean of A ∈ Rn×nmax is defined by

λmax(A) := max
C

w(C)/l(C), (2.10)

where the maximum is taken over all elementary cycles C through Γ(A). Here w(C)
is the weight of the cycle C, that is, the sum of the weights of its constituent edges,
and l(C) is the length of the cycle C, that is, the number of edges C contains.

For clarity we denote powers of A ∈ Rn×nmax by the ⊗ symbol so that for example
A⊗3 = A ⊗ A ⊗ A. In terms of the precedence graph we have that (A⊗k)ij is equal
to the weight of the maximally weighted path of length k through Γ(A) from i to j.

The Kleene star of A ∈ Rn×nmax , denoted by A?, is given by

A? = I ⊕ A⊕A⊗2 ⊕ · · · .

It is known that the Kleene star A? exists if and only if λmax(A) ≤ 0 (see [2,
Prop. 1.6.10] for example). In terms of the precedence graph we have that (A?)ij
is equal to the weight of the maximally weighted path through Γ(A) from i to j.
Thus if λmax(A) > 0, then Γ(A) contains a positively weighted cycle and the maxi-
mally weighted path through Γ(A) from i to j will not exist as it will be possible to
find paths with arbitrarily high weight. Otherwise if λmax(A) ≤ 0 then

A? = I ⊕ A⊕A⊗2 ⊕ · · · ⊕ A⊗(n−1).

Since the diagonal entries of H correspond to length one cycles of weight zero in Γ(H)
and no cycle can have strictly positive weight, it follows that λmax(H) = 0, and so
the Kleene star of a Hungarian matrix H always exists.

For A,B ∈ Rn×nmax with B having finite entries, define A/B ∈ Rn×nmax by

(A/B)ij = aij − bij .

To characterize the set of Hungarian pairs, we need a result by Butkovič and
Schneider in [3], which they state for nonnegative matrices in the max-times algebra
rather than max-plus matrices in the max-plus algebra, but the transformation from
one to the other is very straightforward. The solution to [3, Problem 3.1] we state
below is for the max-plus algebra.

Theorem 2.4 (One-sided inequality). For A,B ∈ Rn×nmax , B with finite entries,{
s ∈ Rn : diag∞(−s)⊗A⊗diag∞(s) ≤ B

}
=

{
col
(
(A/B)?

)
∩ Rn if λmax(A/B) ≤ 0,

∅ otherwise,

8

where col(A) := {A ⊗ x : x ∈ Rnmax} denotes the column space of A.
Theorem 2.4 allows a neat characterization for the set of all Hungarian pairs.
Theorem 2.5 (Set of all Hungarian pairs). Let A ∈ Rn×nmax with perm(A) 6= −∞

and let π and (u, v) be an optimal assignment and a Hungarian pair of A, respectively.
Then the set of all Hungarian pairs Hung(A) of A is given by

Hung(A) = {(u+ sπ−1 , v − s) : s ∈ col(H?) ∩ Rn},

where H = Pπ ⊗ diag∞(−u)⊗A⊗ diag∞(−v) and (s−1
π)i = sπ−1(i).

Proof. Since H/On = H and λmax(H) = 0 we have λmax(H/On) ≤ 0. Therefore
from Theorem 2.4 we have

s ∈ col(H?) ∩ Rn ⇐⇒ diag∞(−s)⊗H⊗ diag∞(s) ≤ On
⇐⇒ −si − uπ(i) + aπ(i)j − vj + sj ≤ 0, i, j = 1, . . . , n

⇐⇒ aij − (ui + sπ−1(i))− (vj − sj) ≤ 0, i, j = 1, . . . , n, (2.11)

which is equivalent to saying that (u + sπ−1 , v − s) is a feasible solution to the dual
problem (2.2). Finally since

n∑
i=1

(ui + sπ−1(i) + vi − si) =

n∑
i=1

ui + vi = perm(A),

the pair (u + sπ−1 , v − s) must also be an optimal solution to (2.2) and therefore a
Hungarian pair of A.

Conversely suppose that (u′, v′) is a Hungarian pair of A and let H′ = Pπ ⊗
diag∞(−u′)⊗A⊗diag∞(−v′). From Theorem 2.1 we have hij , h ′ij ≤ 0 and hii = h ′ii = 0
for all i, j = 1, . . . , n. Therefore

hii = h ′ii ⇐⇒ aπ(i),i − uπ(i) − vi = aπ(i),i − u′π(i) − v
′
i ⇐⇒ u′π(i) − uπ(i) = vi − v′i

so that (u′, v′) = (u+ sπ−1 , v − s) for some s ∈ Rn. Also,

h ′ij ≤ 0⇐⇒ aπ(i),i − u′π(i) − v
′
i ≤ 0⇐⇒ aij − (ui + sπ−1(i))− (vj − sj) ≤ 0

for i, j = 1, . . . , n, which by (2.11) is equivalent to s ∈ col(H?) ∩ Rn.

The following theorem is equivalent to results presented in [22], only stated for
the special case of Hungarian matrices.

Theorem 2.6. Let A and H be as in Theorem 2.5. For any s in the relative
interior of col(H?), the Hungarian matrix diag∞(−s) ⊗ H ⊗ diag∞(s) has exactly k
entries equal to zero with all other entries strictly less than zero, where

k = |{(i, j) : ∃ π ∈ oas(A) with π(i) = j}|.

Moreover this is the least possible number of zero entries for a Hungarian scaling and
reordering of A.

Remark 2.7 (Reducible case). If the matrix A is irreducible, i.e., if Γ(A) is
strongly connected then the Kleene star H? will have finite entries. As a result col(H?)
will only contain vectors with finite entries apart from the vector with all entries equal
to −∞. This is not the case when A is reducible. Indeed, for A = H = H? =[

0
−∞

0
0

]
, we have that sp =

[
0
p

]
∈ col(H?) for p ∈ [−∞, 0]. By scaling with the

vector sp, diag∞(−sp) ⊗ A ⊗ diag∞(sp) =
[

0
−∞

−p
0

]
, we can make the (1, 2) entry

arbitrarily small. However this sort of scaling is not useful in numerical linear algebra
problems, as it is always more efficient to treat the separate irreducible components
independently.

9

2.3. Hungarian algorithm. In order to Hungarian scale a matrix A ∈ Rn×nmax

we must compute an optimal assignment and Hungarian pair for A. The best known
algorithms for this have worst case cost O

(
nτ + n2 log n

)
, where τ is the number

of finite entries in A [10] (recall that finite entries are the max-plus equivalent of
nonzero entries). However, in practical numerical examples it is found that optimal
assignment algorithms such as Khun’s Hungarian algorithm [9], the successive shortest
paths algorithm [18] and the auction algorithm [12] have run times roughly linear in
the number of finite entries in the matrix. It is only for some very special examples
that the worst case complexity bound is attained.

Typically the space col(H?) contains more than one possible scaling, so that
different optimal assignment algorithms may return different Hungarian pairs, which
result in different scalings that may have different properties. Theorem 2.5 tells us
that these different scalings are all related by similarity scalings. Moreover if we
suppose that A has been Hungarian scaled and reordered into a Hungarian matrix H
then Theorem 2.5 tells us that for s ∈ col(H?), Hs = diag∞(−s) ⊗ H ⊗ diag∞(s) is
also a Hungarian matrix (i.e., Hs is obtained from H by diagonal similarity scaling).
In the remainder of this paper we consider one possible strategy for choosing the
diagonal scaling parameter s, namely max-balancing.

3. Max-balancing. A matrix A ∈ Cn×n is p-balanced for some p ∈ [1,∞) if

n∑
j=1

|aij |p =

n∑
j=1

|aji|p, i = 1, . . . , n,

and∞-balanced if max1≤j≤n |aij | = max1≤j≤n |aji|, i = 1, . . . , n. A matrix A ∈ Cn×n
is max-balanced if for any nontrivial subset J ⊂ {1, . . . , n} we have

max
i∈J ,j 6∈J

|aij | = max
i 6∈J ,j∈J

|aij |. (3.1)

For a matrix to be max-balanced is a stronger condition than to be balanced in the
∞-norm sense. Indeed, the matrix

A =

0 10 0 0
10 0 1 0
0 0.1 0 10
0 0 10 0

 ,
taken from [21], is ∞-balanced but not max-balanced since (3.1) is not satisfied for
J = {1, 2}. Note that Hermitian or symmetric matrices are automatically max-
balanced.

3.1. Properties of max-balanced matrices. It is shown in [19] that for any
irreducible A ∈ Cn×n and p ∈ [1,∞) there exists a unique p-balanced matrix Bp
diagonally similar to A,

Bp = diag(dp)
−1A diag(dp), (3.2)

where the scaling parameter dp ∈ Rn+ is unique up to scalar multiplication. Schneider
and Schneider [21, Cor. 9] show that a similar result holds for an irreducible non-
negative matrix and max-balancing. It is trivial to rephrase their result for complex
matrices.

10

Theorem 3.1 (Uniqueness of max-balancing scaling). For any irreducible A ∈
Cn×n there exists a unique max-balanced matrix M diagonally similar to A,

M = diag(s)−1A diag(s),

where the scaling parameter s ∈ Rn+ is unique up to scalar multiple.
We define the Frobenius p-norm of A ∈ Cn×n by

‖A‖Fp = ‖vec(A)‖p =
(n∑
i,j=1

|aij |p
) 1

p

.

For any irreducible A ∈ Cn×n and p ∈ [1,∞), Osborne shows that [19, Lem. 2 (iii)]

min
d∈Rn

+

‖diag(d)−1A diag(d)‖Fp = ‖Bp‖Fp , (3.3)

where Bp is the unique p-balanced matrix diagonally similar to A.
An irreducible matrix A ∈ Cn×n may be diagonally similar to a range of different

∞-balanced matrices but it is diagonally similar to a unique p-balanced scaling Bp
with p ∈ [1,∞) and a unique max-balanced scaling M . The next result shows that
we can think of the max-balanced scaling of A as the limit of its p-balanced scaling
in the limit p→∞.

Theorem 3.2. Let A be irreducible and let M and Bp with p ∈ [1,∞) be the
max-balanced and p-balanced matrices, respectively, diagonally similar to A. Then
limp→∞Bp = M.

Proof. The function f : Cn×n 7→ R+ defined by

f(B) = max
I⊂{1,...,n}

∣∣∣ max
i∈I,j 6∈I

|bij | − max
i∈I,j 6∈I

|bji|
∣∣∣,

is continuous and f(A) = 0 if and only if A is max-balanced. It follows from Theo-
rem 3.1 that if B is a similarity scaling of A and f(B) = 0 then B = M .

Since Bp is p-balanced, for any nontrivial subset I ⊂ {1, . . . , n}, we have

∑
i∈I

n∑
j=1

|(Bp)ij |p =
∑
i∈I

n∑
j=1

|(Bp)ji|p,

and removing any entries that appear on both sides yields∑
i∈I,j 6∈I

|(Bp)ij |p =
∑

i∈I,j 6∈I

|(Bp)ji|p.

The left hand side of this expression satisfies(
max

i∈I,j 6∈I
|(Bp)ij |

)p ≤ ∑
i∈I,j 6∈I

|(Bp)ij |p ≤ n2
(

max
i∈I,j 6∈I

|(Bp)ij |
)p
,

and similarly for the right hand side so that

n−2
(

max
i∈I,j 6∈I

|(Bp)ji|
)p ≤ (max

i∈I,j 6∈I
|(Bp)ij |

)p ≤ n2
(

max
i∈I,j 6∈I

|(Bp)ji|
)p
.

Taking logs and dividing by p yields∣∣∣ max
i∈I,j 6∈I

log |(Bp)ij | − max
i∈I,j 6∈I

log |(Bp)ji|
∣∣∣ ≤ 2 log n

p
. (3.4)

11

For all p ∈ [1,∞), we have from (3.3) that

max
1≤i,j≤n

|(Bp)ij | ≤ ‖Bp‖Fp
≤ ‖A‖Fp

≤ n2 max
1≤i,j≤n

|aij |.

Also using the fact that for a, b ∈ R+, |a−b| ≤ | log a−log b|max{a, b}, inequality (3.4)
becomes

∣∣∣ max
i∈I,j 6∈I

|(Bp)ij | − max
i∈I,j 6∈I

|(Bp)ji|
∣∣∣ ≤ 2n2 log n max

1≤i,j≤n
|aij |

p
.

Therefore limp→∞ f
(
Bp
)

= 0 so that limp→∞Bp = M .

For A ∈ Cn×n define sort
(
vec(|A|)

)
to be the vector containing the absolute

values of the entries in A sorted in decreasing order. Now define the lexicographic
partial order ≺L on Cn×n by A ≺L B if and only if sort

(
vec(|A|)

)
6= sort

(
vec(|B|)

)
and the first position i where these two vectors disagree satisfies

(
sort(vec(|A|))

)
i
<(

sort
(
vec(|B|))

)
i
.

The next result by Rothblum, Schneider and Schneider in [20, Thm. 8] is given
in terms of weighted graphs and reweighing potentials. It is trivial to rephrase the
result, as we have done, in terms of similarity scaling of complex matrices.

Theorem 3.3 ([20]). Let A ∈ Cn×n be irreducible and let M be the unique
max-balanced similarity scaling of A then

M ≺L diag(d)−1A diag(d)

for all d ∈ Rn+ such that diag(d)−1A diag(d) 6= M .
The following corollary follows immediately from Theorem 3.3. Note the resem-

blance to (3.3).
Corollary 3.4. Let A ∈ Cn×n be irreducible and let M be the unique max-

balanced similarity scaling of A. Then for all d ∈ Rn+ such that diag(d)−1A diag(d) 6=
M , there exists p′ ∈ R+ such that for all p > p′

‖M‖Fp < ‖diag(d)−1A diag(d)‖Fp .

In Example 3.10, we compute the max-balanced Hungarian scaling for the ma-
trix A of Example 2.3. Table 2.1 displays the Frobenius norm of the max-balanced
Hungarian scaling of A as well as the Frobenius norms of all of the other Hungarian
scalings of A that we considered Example 2.3. Note that the max-balanced Hungarian
scaling has the smallest Frobenius norm out of all of these Hungarian scalings. In this
example we see that max-balancing not only minimizes the Frobenius p-norm in the
limit as p tends to ∞, but it also does a good job at reducing the standard Frobe-
nius 2-norm. This behavior agrees with the findings of our numerical experiments on
diagonal dominance presented in Section 4.1.

3.2. Properties of max-balanced Hungarian scaled and reordered ma-
trices. A max-balanced similarity scaling preserves the Hungarian property as we
now show.

Theorem 3.5. Let H ∈ Cn×n be an irreducible Hungarian matrix and let M =
diag(t)−1H diag(t) be the max-balanced scaling of H. Then M is also a Hungarian
matrix.

12

Proof. Recall that H ∈ Cn×n is a Hungarian matrix if and only if |hij | ≤ 1 and
|hii| = 1 for all i, j = 1, . . . , n. Similarity scaling has no effect on diagonal entries
so we only need to verify that |mij | ≤ 1 for all i, j = 1, . . . , n. Suppose instead that
|mij | > 1 for some i, j. Then H ≺L M and this contradicts Theorem 3.3.

Therefore, for a given matrix A ∈ Cn×n of full structural rank, after computing a
Hungarian scaling and reordering, H = Pπdiag(dL)A diag(dR), we can apply a further
similarity scaling to obtain the max-balanced Hungarian-scaled matrix

M = diag(t)−1Pπdiag(dL)A diag(dR)diag(t),

which satisfies the conditions |mij | ≤ 1 and |mii| = 1 for all i, j = 1, . . . , n and

max
i∈I,j 6∈I

|mij | = max
i∈I,j 6∈I

|mji|,

for any non-trivial subset I ⊂ {1, . . . , n}. The next theorem says that the max-
balanced reordered Hungarian scaling of A is unique up to multiplication on the left
by permutation matrices which switch between different choices of optimal assignment.

Theorem 3.6. Let A ∈ Cn×n be irreducible, and let πk and (uk, vk), k = 1, 2, be
optimal assignments and Hungarian pairs of V(A), respectively, so that

Hk = Pπk
diag(exp(−uk))A diag(exp(−vk)), k = 1, 2

are two possibly distinct reordered Hungarian scalings of A. Then the max-balanced
similarity scalings Mk = diag(tk)−1Hk diag(tk) of Hk, k = 1, 2, are related by M2 =
PπM1, where π = π−1

1 ◦ π2.
Proof. First note that PπM1 is a diagonal scaling of M2 since

PπM1 =
(
Pπdiag(t2)diag(t1)−1PTπ

)
×(

Pπ2diag(exp(−u1 + u2))PTπ2

)
M2diag(exp(−v1 + v2))diag(t1)diag(t2)−1.

From Theorem 3.5 we know that the Mk are both Hungarian scaled matrices with
|(Mk)ij | ≤ 1 and |(Mk)ii| = 1 for all i, j = 1, . . . , n. It follows from (2.8) that

{id, π} ⊂ oas(M1), {π−1, id} ⊂ oas(PπM1).

Thus PπM1 is a Hungarian scaling of M2 and by Theorem 2.5 PπM1 must be a
similarity scaling of M2.

We now show that PπM1 is max-balanced. For I ⊂ {1, . . . , n} suppose that
π(I) = I, then since M1 is max-balanced we have

max
i∈I,j 6∈I

|(PπM1)ij | = max
i∈I,j 6∈I

|(M1)ij | = max
i∈I,j 6∈I

|(M1)ji| = max
i∈I,j 6∈I

|(PπM1)ji|.

Now suppose that π(I) 6= I, then there exists k ∈ I such that π(k) 6∈ I and ` 6∈ I
such that π(`) ∈ I. Since {id, π} ⊂ oas(M1) we have |(M1)ii| = 1 for i = 1, . . . , n and
since |(M1)ij | ≤ 1 for all i, j = 1, . . . , n we have

max
i∈I,j 6∈I

|(PπM1)ij | = |(PπM1)kπ(k)| = |(M1)π(k)π(k)| = 1,

max
i∈I,j 6∈I

|(PπM1)ji| = |(PπM1)`π(`)| = |(M1)π(`)π(`)| = 1.

13

Thus maxi∈I,j 6∈I |(PπM1)ij | = maxi∈I,j 6∈I |(PπM1)ji|, for any non-trivial subset I so
that PπM1 is max-balanced.

Finally by Theorem 3.1, since PπM1 is a similarity scaling of M2 and they are
both max-balanced we must have M2 = PπM1.

For A ∈ Cn×n, define the following measure of diagonal dominance

∆p(A) = p

√√√√ n∑
i=1

∑
j 6=i |aij |p

|aii|p
. (3.5)

This measure is a special case of (2.9), which compares the p-norm of the off-diagonal
elements to the diagonal element for each row, then amalgamates their scores into a
single score for the whole matrix by taking the p-norm of the individual row scores.

For A,B ∈ Cn×n we also define the ordering ≺p by ∆p(A) ≺p ∆p(B) if and only
if there exists p′ such that for all p ≥ p′ we have ∆p(A) < ∆p(B). The ordering
∆p(A) ≺p ∆p(B) implies that A is more diagonally dominant than B, when viewed
through the p-norm for sufficiently large p. Note that if A and B have identical
constant diagonal entries, i.e., if there exists α ∈ C such that aii = bii = α for all
i = 1, then A ≺p B if and only if A ≺L B, where ≺L is the lexicographic partial order
introduced before Theorem 3.3. However if A and B do not have identical constant
diagonal entries then the orderings ≺p and ≺L are not equivalent.

The next theorem shows that max-balanced Hungarian scaled and reordered ma-
trices are optimal with respect to the ordering ≺p. In other words, they are the most
diagonally dominant diagonal scaling and reordering of A, with respect to the measure
∆p. Here we use a row-wise diagonal dominance measure, but it is trivial to adapt
our result to the equivalent column-wise measure.

Theorem 3.7. Let A ∈ Cn×n be irreducible and let

M = Pπdiag
(

exp(−u)
)
A diag

(
exp(−v)

)
,

be a max-balanced Hungarian scaling and reordering of A. Then for any permutation
$ ∈ Π(n) and any invertible diagonal matrices D1, D2 ∈ Rn×n, we have

∆p(M) ≺p ∆p(B), B = P$D1AD2,

unless $ ∈ oas(A) and B = αPπ−1◦$M for some α ∈ R, in which case B is a scalar
multiple of a max-balanced Hungarian scaling of A.

Proof. Since M is a Hungarian scaled and reordered matrix we have |mij | ≤ |mii|
for all i, j = 1, . . . , n and therefore ∆p(M) ≤ (n2 − n)1/p, where the upper bound
converges to 1 as p tends to ∞. Suppose that there exist i, j such that |bij | > |bii|,
then ∆p(B) ≥ |bij |/|bii| > 1 and therefore we have ∆p(M) ≺p ∆p(B).

Now suppose that |bij | ≤ |bii| for all i, j = 1, . . . , n and let b ∈ Rn be the diagonal
of B. Then H = diag(b)−1B satisfies |hij | ≤ 1 and |hii| = 1 for all i, j = 1, . . . , n,
i.e., H is a Hungarian scaling and reordering of A. Therefore $ must be an optimal
assignment of A, where A = V(A).

Since $ is an optimal assignment of A, it follows from arguments made in the
proof of Theorem 3.6 that the matrix M ′ = Pπ−1◦$M is also a max-balanced Hun-
garian scaling and reordering of A. It is easy to show that M ′ is a diagonal scaling of
B, i.e., B = diag(s)M ′diag(f) for some f, s ∈ Rn.

14

Using the fact that |mii| = 1 for all i = 1, . . . , n we have

(
∆p(B)

)p
=

n∑
i=1

∑
j 6=i |m′ijsifj |p

|m′iisifi|p

=

n∑
i=1

∑
j 6=i

|m′ijfj/fi|p

= ‖diag(f)−1M ′ diag(f)‖pFp
− n.

For d ∈ Rn+, Corollary 3.4 states that ‖M ′‖pFp
< ‖diag(d)−1M ′ diag(d)‖pFp

unless

diag(d)−1M ′diag(d) = M ′. (3.6)

In this later case suppose that di 6= dj for some i, j ∈ {1, . . . , n}. By irreducibility
there exists a sequence σ(1), σ(2), . . . , σ(`) with σ(1) = i and σ(`) = j, such that
mσ(k),σ(k+1) 6= 0 for k = 1, . . . , ` − 1. Since dσ(1) 6= dσ(`), there must be at least one
k ∈ {1, . . . , `− 1} such that dσ(k) 6= dσ(k+1) and we have(

diag(d)−1M ′diag(d)
)
σ(k),σ(k+1)

= m′σ(k),σ(k+1) + dσ(k+1) − dσ(k) 6= m′σ(k),σ(k+1),

which violates condition (3.6). Thus di is independent of i.
Finally, using the fact that ∆p(M

′) = ∆p(M) for all p, we have

∆p(M) = ∆p(M
′) ≺p ∆p

(
diag(s)M ′diag(f)

)
,

unless fi and si do not depend on i, in which case B = diag(s)M ′diag(f) = αM ′ =
αPπ−1◦$M for some α ∈ R, that is, B is a scalar multiple of a max-balanced Hun-
garian scaling of A and the two matrices have the same diagonal dominance measure
for all p.

3.3. Max-balancing algorithm. Schneider and Schneider’s description of the
max-balancing algorithm in [21] is purely in terms of the precedence graph of the
matrix. Our description of the algorithm is in terms of max-plus matrices.

A max-plus matrix A ∈ Rn×nmax is max-balanced if for any nontrivial subset J ⊂
{1, . . . , n} we have

max
i∈J ,j 6∈J

aij = max
i 6∈J ,j∈J

aij .

Hence A ∈ Cn×n is max-balanced if and only if A = V(A) ∈ Rn×nmax is max-balanced.
To describe the max-balancing algorithm, we need the notion of subeigenvectors

for max-plus matrices. For A ∈ Rn×nmax and β ∈ Rmax, a vector x ∈ Rnmax with at least
one finite entry satisfying A ⊗ x ≤ β ⊗ x is called a subeigenvector of A associated
with β. Subeigenvectors will be used to define the max-balancing similarity scaling so
they should have finite entries. The existence of subeigenvectors with finite entries is
addressed in the next lemma (see [2, Thm. 1.6.18 (a)]). Here λmax(A) is the maximum
cycle mean of A defined in (2.10).

Lemma 3.8. Let A ∈ Rn×nmax and β ∈ Rmax. Then A ⊗ x ≤ β ⊗ x has a finite
solution x ∈ Rn if and only if β ≥ λmax(A) and β > −∞.

We say that an elementary cycle C is critical in the precedence graph of A if
w(C)/l(C) = λmax(A). We are now ready to describe the max-balancing algorithm.

Algorithm 3.9 (Max-balancing). Given an irreducible matrix A ∈ Rn×nmax this
algorithm returns sB ∈ Rn such that diag∞(−sB)⊗A⊗ diag∞(sB) is max-balanced.

15

1 Set A = V(A), t = 1, m0 = n, f1 = id.
2 Let A1 ∈ Rn×nmax be such that (A1)ij = aij if i 6= j and (A1)ii = −∞.
3 Compute β1: = λmax(A1) with critical cycle C1.
4 Compute a subeigenvector s1 ∈ Rn of A1 associated with β1.
5 Let m1: = m0 + 1− number of vertices in C1.
6 while mt > 1
7 t = t+ 1
8 St = diag∞(−st−1)⊗At−1 ⊗ diag∞(st−1)
9 Let ft: {1, . . . ,mt−2} 7→ {1, . . . ,mt−1} be such that ft(i) = ft(j) if

and only if i and j are both vertices of Ct−1. Let At ∈ Rmt−1×mt−1
max be

such that (At)`p =

{
−∞ if ` = p,
max{(St)ij : ft(i) = `, ft(j) = p} otherwise.

10 Compute βt: = λmax(At) with critical cycle Ct.
11 Compute a subeigenvector st ∈ Rmt of At associated with βt.
12 mt = mt−1 + 1− number of nodes in Ct
13 end
14 sB = s1(f1) + s2(f2 ◦ f1) + · · ·+ st(ft ◦ · · · ◦ f1).

Note that since diagonal similarities do not affect diagonal entries of the matrix
they are applied to, there is no harm in setting the diagonal entries of A to −∞ in
line 2 of Algorithm 3.9. We say that the matrix At on line 9 is a contraction of St
with respect to the projection ft, which we denote by At = contr(St, ft). Since the
diagonal entries of the matrices At are equal to −∞, the number of nodes in the
critical cycles Ct is always strictly larger than 1 so the size of the matrix At decreases
at each step. It is then easy to see that the algorithm terminates after at most n
steps.

That the cycle means βt are all finite follows from the fact that any contraction
of an irreducible matrix is also an irreducible matrix so that while mt > 1 the graph
Γ(At) contains at least one cycle of finite weight and therefore βt > −∞. Hence, by
Lemma 3.8, the subeigenvectors st exist and have finite entries.

On line 14, s`(g`) with g` = f`◦· · ·◦f1 is a vector of length n such that
(
s`(g`)

)
i

=
(s`)g`(i), ` = 1, . . . , t, t being the number of steps required for the max-balancing
algorithm to terminate. Schneider and Schneider [21, Thm. 6] show that the vector sB
returned by Algorithm 3.9 defines the diagonal similarity scaling which max-balances
A. The max-balancing scaling of A ∈ Cn×n is then given by

AsB = diag
(

exp(−sB)
)
A diag

(
exp(sB)

)
.

Young, Tarjan and Orlin [23] show that the max-balancing algorithm can be
implemented with O

(
nτ+n2 log n

)
operations, τ being the number of finite entries in

A.
Example 3.10. Let us use Algorithm 3.9 to max-balance A = Hd = V(Hd),

where Hd is one of the max-plus Hungarian-scaled matrices of Example 2.3.
t = 1. We start by setting the diagonal entries of A to −∞ to give

A1 =

−∞ 0 0
−1 −∞ −2
−∞ −4 −∞

 . (3.7)

The precedence graph Γ(A1) is shown in Figure 3.1(a). The maximum cycle
mean β1, a critical cycle C1 and a subeigenvector s1 for A1 associated with

16

1

2 3

0
0-1

-2

-4

(a)

1 2
0

-4.5

(b)

Fig. 3.1: (a) is the precedence graph of A1 in (3.7) and (b) is that of A2 in (3.8).

β1 are given by β1 = −0.5, C1 = {(1, 2), (2, 1)}, s1 = [0,−0.5, 0]T so that
m1 = 2.

t = 2. We compute

S2 = diag∞(−s1)⊗A1 ⊗ diag∞(s1) =

 −∞ −0.5 0
−0.5 −∞ −1.5
−∞ −4.5 −∞

 .
Next we set f2(1) = f2(2) = 1, f2(3) = 2 so that

A2 =

[
−∞ max{0,−1.5}

max{−∞,−4.5} −∞

]
=

[
−∞ 0
−4.5 −∞

]
. (3.8)

The precedence graph Γ(A2) is shown in Figure 3.1(b). The maximum cycle
mean, critical cycle and subeigenvector for H2 are given by β2 = −2.25,
C2 = {(1, 2), (2, 1)}, s2 = [0,−2.25]T so that m2 = 2 − 2 + 1 = 1 and the
algorithm terminates. The max-balancing scaling parameter sB is then given
by sB = s1 + s2(f2) = [0,−0.5, 0]T + [0, 0,−2.25]T = [0,−0.5,−2.25]T , which
results in the max-balanced Hungarian scaled max-plus matrix

HsB = diag∞(−sB)⊗A⊗ diag∞(sB) =

 0 −0.5 −2.25
−0.5 0 −3.75
−∞ −2.25 0

 .
For the matrices A,H ∈ Cn×n of Example 2.3, max-balancing leads to the max-
balanced Hungarian scaled matrix

HsB
= diag

(
exp(−sB)

)
H diag

(
exp(sB)

)
=

 1 exp(− 1
2) exp(− 9

4)

exp(− 1
2) 1 exp(− 15

4)
0 exp(− 9

4) 1

 .
Table 2.1 shows that HsB

has the smallest norm and condition number amongst all of
the Hungarian scaled matrices obtained so far from A. Note that HsB

is diagonally
dominant by row and by column.

4. Numerical results for linear system scalings. In this section we report
on the performance of a variety of scaling and reordering methods applied as a pre-
processing treatment before calling direct and iterative solvers. Computations were
performed using MATLAB and UMFPACK [4]. Our 103 test matrices are from the

17

Table 4.1: Abbreviations for different scaling and permutation options.

Scaling Ordering
O Unscaled Original
O (OA) Unscaled Optimal assignment
KRU Knight, Ruiz and Uçar [16] Original
KRU (OA) Knight, Ruiz and Uçar [16] Optimal assignment
H MC64 Hungarian Optimal assignment
MB Max-balanced Hungarian Optimal assignment

University of Florida Sparse Matrix Collection [5]. We select all real irreducible ma-
trices of dimension 100 or greater having numerical symmetry less than or equal to
0.9. We then remove matrices whose estimated 1-norm condition number, computed
by the MATLAB function condest, is larger than 1015. The largest matrix in our set
has dimension 62424.

We use a MEX interface to the HSL code MC64 [15] to construct a Hungarian
pair and optimal assignment permutation. The resulting Hungarian scaled and re-
ordered matrix is H = D1AD2P . Given H, we can then apply the max-balancing
scaling via the similarity transform D−1

s HDs, where Ds = diag(s) is nonsingular.
To compute the max-balancing vector s, we use a MEX interface to our own C++
implementation of Algorithm 3.9. We compare these two Hungarian scalings to the
iterative equilibration algorithm proposed by Knight, Ruiz and Uçar [16] using the
recommended settings, namely one step of ∞-norm scaling followed by three steps of
1-norm scaling1.

Additionally, since zeros on the diagonal cause problems for the original and KRU
scaled matrices, we examine the effect of applying the optimal assignment permutation
to these matrices. The abbreviations for the different scalings and permutation options
are listed in Table 4.1.

We make use of performance profiles [6], that allow us to easily display, for all
matrices in the test set, how the scalings affect a performance measure like the condi-
tion number. To obtain the performance profile we first define the performance ratio
for scaling k on a given matrix to be the ratio of the performance for scaling k to that
of the best performing scaling, out of all of the scaling methods being compared, for
that matrix. Throughout, we assume that the performance measure of interest is one
for which a smaller number is better. The monotonically increasing function fk(α),
α ∈ [1,∞) then measures the proportion of matrices for which the performance ratio
for scaling k is at most α. Plotting the curves fk(α) against α for the different scal-
ings gives a performance profile, that shows which scaling performs best or joint-best
(α = 1) and which scalings are near-best (small α). Additionally, limα→∞ indicates
when a scaling fails (say, to produce L and U factors without pivoting) on a matrix
for which at least one other scaling does not fail.

4.1. Matrix properties. To assess the row diagonal dominance of a matrix
A ∈ Rn×n we measure

ρr =

(
n∑
i=1

∑
j 6=i |aij |p

|aii|p

) 1
p

. (4.1)

1The ScalingSuit MATLAB implementation of the KRU scaling is available at http://perso.

ens-lyon.fr/bora.ucar/codes.html.

18

This measure is the p-norm of the vector of the individual row p-norm diagonal dom-
inance scores as appeared previously in (3.5). The smaller the score the more diago-
nally dominant the matrix. Since all of the matrices in our test set are irreducible it
is not possible for any of them to have a score of zero when the optimal assignment
ordering has been applied. If a matrix has a zero on its diagonal then it will have
ρr =∞, which we record as a fail.

For each matrix in the test set we record ρr for each of the scaling methods and
for p = 1, 2, 16. See Figure 4.1(a)–(c). Methods O and KRU, which do not use
the optimal assignment permutation, suffer from many fails and as a result they are
the weakest methods. The O (OA) method has no fails but it still results in many
matrices that are very far from being diagonal dominant. The KRU (OA) and H
methods have no fails and are both close to the best method for the vast majority of
matrices. Although their performance is nearly identical for p = 1 and p = 2, the H
method outperforms the KRU (OA) method for p = 16. Theorem 3.7 states that for
any matrix A ∈ Rn×n, there exists p′ > 0, such that for all p ≥ p′, the MB method
will be optimal. Thus, for larger values of p, the MB method will outperform all of
the other methods. The figure shows that MB outperforms all of the other methods
even for the smaller values of p, although the number of problems for which it is best
is larger for p = 16. Note that we also measured column diagonal dominance (the
row diagonal dominance measure applied to AT); the results were similar and so have
been omitted.

Figure 4.1 subfigure (d) shows the estimated condition number of the scaled ma-
trices, using the MATLAB function condest. Since the condition number of a ma-
trix is invariant to multiplication by a permutation matrix, methods O and O (OA)
have identical performance, likewise KRU and KRU (OA). All of the scaling methods
significantly outperform method O. The KRU and MB methods have very similar
performance. The H method is also close to these two methods but is slightly weaker
at achieving close to best condition numbers and for some problems it is far from the
best scaling.

4.2. Gaussian elimination. In this subsection we examine the effect of the
scalings on the performance of Gaussian elimination. We use UMFPACK with the
MATLAB interface to compute the LU factors with the symmetric pivoting strategy
(to prevent column reordering) and the cholmod fill-reducing ordering option. Oth-
erwise default settings are applied. Three different pivoting options are tested: no
pivoting , threshold pivoting with default tolerances, and partial pivoting. We denote
by a fail any matrix for which the estimated condition number (using the MATLAB
function condest) is larger than 1015.

Figure 4.2 shows the condition number of the upper triangular factor U computed
during Gaussian elimination. Without pivoting, methods O and KRU, which do not
use the optimal assignment permutation, suffer from many fails and are the weakest
methods. The O (OA) method has far fewer fails than O but still results in very poorly
conditioned U factors for several of the problems. The KRU (OA) method also has
far fewer fails than KRU and is never very much worse than the best method. The
H and MB methods have nearly identical performance; they have few fails, and are
otherwise optimal or near optimal. With threshold pivoting the pattern is the same
except that there are no longer any fails and as a result the O and O (OA) methods
now have nearly identical performance, likewise KRU and KRU (OA). With partial
pivoting the results are much the same as with threshold pivoting.

We count the number of off-diagonal pivots (as tabulated by UMFPACK) used

19

1 3 5 7 9

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,
of
b
es
t

O (19 fails)
O (OA)
KRU (19 fails)
KRU (OA)
H
MB

(a) p = 1

1 3 5 7 9

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,
of
b
es
t

O (19 fails)
O (OA)
KRU (19 fails)
KRU (OA)
H
MB

(b) p = 2

1 3 5 7 9

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,
of
b
es
t

O (19 fails)
O (OA)
KRU (19 fails)
KRU (OA)
H
MB

(c) p = 16

100 102

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O
O (OA)
KRU
KRU (OA)
H
MB

(d)

Fig. 4.1: (a)–(c) Performance profile of the row diagonal dominance factor ρr in (4.1)
for p = 1, 2, 16. (d) Performance profile of the estimated condition numbers.

in Gaussian elimination. Performance profiles are not appropriate for displaying this
data as there are certain problems and scalings for which no off-diagonal pivots are
required, so we make use of tables instead. Tables 4.2 and 4.3 show the number of
problems for which one solver requires at least 50 fewer off-diagonal pivots than the
other solvers. From this we see that when threshold pivoting is applied method O is
the weakest, only winning over another method 6 times. Methods O (OA) and KRU
have similar performance with 31 and 32 wins respectively. The strongest methods are
KRU (OA), H and MB with 48, 51 and 53 wins respectively. When partial pivoting is
used the ordering of the methods is the same but the differences between the methods
become more pronounced. This is because partial pivoting can be more sensitive to
small changes to the matrix. The strongest methods are KRU (OA), H and MB with
88, 101 and 131 wins respectively. The MB method wins over the H method 22 times
and loses to it only 10 times.

Tables 4.4, 4.5 and 4.7 show the factorization times for the nine matrices for which
factorization took longer than 0.25 seconds for all scalings and pivoting strategies. For

20

100 102

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O (21 fails)
O (OA) (8 fails)
KRU (21 fails)
KRU (OA) (8 fails)
H (9 fails)
MB (9 fails)

1 21 41 61 81

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O (21 fails)
O (OA) (8 fails)
KRU (21 fails)
KRU (OA) (8 fails)
H (9 fails)
MB (9 fails)

(a) no pivoting

100 102

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O
O (OA)
KRU
KRU (OA)
H
MB

1 21 41 61 81

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O
O (OA)
KRU
KRU (OA)
H
MB

(b) threshold pivoting

100 102

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O
O (OA)
KRU
KRU (OA)
H
MB

1 21 41 61 81

,

0

0.2

0.4

0.6

0.8

1

w
it
h
in
,

of
b
es

t

O
O (OA)
KRU
KRU (OA)
H
MB

(c) partial pivoting

Fig. 4.2: Left plots: Performance profile of the estimated condition number of U .
Right plots: Performance profile of backwards error ‖D−1

R PTRLUP
T
CD

−1
C −A‖F .

21

Table 4.2: Number of problems for which solver B requires at least 50 more off-
diagonal pivots than solver A for threshold pivoting.

Solver B
Solver A O O (OA) KRU KRU (OA) H MB

O — 3 0 1 1 1
O (OA) 17 — 12 0 1 1

KRU 14 9 — 3 3 3
KRU (OA) 22 11 13 — 1 1

H 23 12 14 2 — 0
MB 23 12 14 2 2 —

Table 4.3: Number of problems for which solver B requires at least 50 more off-
diagonal pivots than solver A for partial pivoting.

Solver B
Solver A O O (OA) KRU KRU (OA) H MB

O — 10 5 6 4 7
O (OA) 11 — 10 6 1 9

KRU 24 25 — 8 14 11
KRU (OA) 29 29 15 — 9 6

H 29 30 18 14 — 10
MB 33 35 22 19 22 —

each matrix we record the average time over 10 runs, and the minimum time out of
these 10. We mark with a dash factorizations which ended in breakdown. Tables 4.6
and 4.8 show the number of row interchanges needed for these factorizations. Without
pivoting the time taken to compute the factorization depends only on the pattern of
the matrix. Thus we expect the O and KRU methods to form one group with very
similar times, and for the O (OA), KRU (OA), H and MB methods to form a second
group with very similar times. This is because the methods in each group will return
matrices with the same pattern. Without pivoting there are four problems for which
all methods have identical times. In these examples we have verified that the optimal
assignment is given by the identity, which means that the two different groups of
methods return matrices with the same patterns and hence the same factorization
times. For the problem cage11 the optimal assignment is not equal to the identity,
so that the two different groups of methods result in matrices with different patterns
and hence the small difference in factorization times.

The effects that determine the time taken to compute a factorization with pivoting
are more complex. Performing lots of row interchanges will add to the computation
time but may also affect the density of the LU factors. In some cases performing
more row interchanges will result in sparser LU factors and thereby result in a faster
factorization. For example see the problem ns3DA with threshold pivoting. Methods
O and KRU require many more row interchanges than the other methods for this
problem but they are also the fastest methods. With threshold pivoting we find that
methods O (OA) and H are the fastest, being within 5% of the fastest time for eight
out of nine problems, closely followed by method MB. With partial pivoting method
MB wins, being within 5% of the fastest time for seven out of nine problems.

4.3. Iterative solvers. In this subsection we examine the effect of scaling on
the performance of iterative solvers with incomplete LU (ILU) preconditioners. For

22

Table 4.4: Average factorization time with minimum factorization time in parentheses.
Factors are computed without pivoting. Numbers in bold represent average times that
are within 5% of the lowest time for that problem.

Name O O (OA) KRU KRU (OA) H MB
Ill Stokes — 0.29 (0.29) — 0.29 (0.29)0.29 (0.29)0.29 (0.29)
bbmat 1.13 (1.10) — 1.11 (1.11) — — —
cage11 3.02 (3.01)3.02 (3.01)3.08 (3.07)3.08 (3.07)3.08 (3.01)3.09 (3.07)
ns3Da — 0.65 (0.65) — 0.66 (0.65)0.66 (0.65)0.65 (0.64)
psmigr 2 — 0.61 (0.61) — 0.61 (0.61)0.61 (0.61)0.61 (0.61)
psmigr 3 — 0.55 (0.55) — 0.55 (0.55)0.55 (0.55)0.56 (0.55)
raefsky3 0.26 (0.25)0.26 (0.26)0.26 (0.26)0.26 (0.26)0.26 (0.26)0.26 (0.25)
venkat01 0.37 (0.37)0.37 (0.36)0.37 (0.37)0.37 (0.37)0.37 (0.37)0.37 (0.36)
wang4 0.28 (0.28)0.28 (0.28)0.28 (0.28)0.28 (0.28)0.28 (0.28)0.28 (0.28)

Table 4.5: Average factorization time with minimum factorization time in parentheses.
Factors are computed with threshold pivoting. Numbers in bold represent average
times that are within 5% of the lowest time for that problem.

Name O O (OA) KRU KRU (OA) H MB
Ill Stokes 2.23 (2.23) 0.29 (0.29) 0.90 (0.90) 0.29 (0.29) 0.30 (0.29) 0.29 (0.29)
bbmat 1.79 (1.78) 1.22 (1.19) 1.34 (1.33) 1.28 (1.28) 1.20 (1.19) 1.28 (1.27)
cage11 3.02 (3.01) 3.07 (3.01) 3.09 (3.08) 3.43 (3.02) 3.06 (3.01) 3.05 (3.01)
ns3Da 0.60 (0.60) 0.65 (0.65) 0.60 (0.60) 0.66 (0.65) 0.66 (0.65) 0.65 (0.64)
psmigr 2 1.58 (1.57) 0.61 (0.61) 1.43 (1.43) 0.61 (0.61) 0.61 (0.61) 0.61 (0.61)
psmigr 3 0.57 (0.57) 0.55 (0.54) 0.57 (0.57) 0.55 (0.55) 0.55 (0.55) 0.55 (0.55)
raefsky3 0.26 (0.26) 0.26 (0.25) 0.26 (0.26) 0.26 (0.26) 0.26 (0.26) 0.25 (0.25)
venkat01 0.37 (0.37) 0.37 (0.36) 0.37 (0.36) 0.37 (0.37) 0.37 (0.36) 0.37 (0.36)
wang4 0.28 (0.28) 0.28 (0.28) 0.28 (0.28) 0.28 (0.28) 0.28 (0.28) 0.28 (0.28)

Table 4.6: Number of off-diagonal pivots used by UMFPACK when threshold pivoting
is used.

Name O O (OA) KRU KRU (OA) H MB
Ill Stokes 4948 0 1871 0 0 0
bbmat 599 149 337 112 132 128
cage11 0 0 0 0 0 0
ns3Da 49 2 49 2 2 2
psmigr 2 539 16 523 13 5 6
psmigr 3 3 0 3 0 0 0
raefsky3 0 0 0 0 0 0
venkat01 0 0 0 0 0 0
wang4 0 0 0 0 0 0

each test matrix A we take the scaled and reordered matrix S = PRDRADCPC then
compute ILU factors LU for S using the MATLAB function ilu with options

setup.type=’ilutp’; setup.droptol=0.01;

which performs threshold ILU with partial pivoting and a drop tolerance of 0.01.
Combining the ILU factors with the scaling and permutation matrices results in the
preconditioner

M = (D−1
R P−1

R L)(UP−1
C D−1

C).

Next we solve the linear system Ax = b using right-preconditioned GMRES and left-
preconditioned BiCGSTAB, where b is chosen so that the exact solution is a vector of

23

Table 4.7: Average factorization time with minimum factorization time in parentheses.
Factors are computed with partial pivoting. Numbers in bold represent average times
that are within 5% of the lowest time for that problem.

Name O O (OA) KRU KRU (OA) H MB
Ill Stokes 6.47 (6.37) 7.09 (7.07) 5.15 (5.13) 5.31 (5.30) 5.57 (5.55) 2.43 (2.41)
bbmat 11.81 (11.52) 11.69 (11.61) 6.64 (6.61) 5.99 (5.92) 10.07 (10.04) 3.91 (3.89)
cage11 3.02 (3.01) 3.09 (3.08) 3.08 (3.08) 3.03 (3.01) 3.01 (3.00) 3.01 (3.01)
ns3Da 1.55 (1.55) 1.44 (1.42) 1.34 (1.32) 1.25 (1.25) 2.10 (2.10) 1.82 (1.82)
psmigr 2 2.53 (2.52) 1.67 (1.67) 2.57 (2.56) 1.70 (1.69) 1.96 (1.96) 1.15 (1.15)
psmigr 3 0.57 (0.57) 0.55 (0.54) 0.57 (0.57) 0.55 (0.55) 0.55 (0.55) 0.56 (0.55)
raefsky3 1.30 (1.29) 1.30 (1.30) 0.33 (0.33) 0.33 (0.33) 0.53 (0.53) 0.65 (0.65)
venkat01 0.38 (0.37) 0.38 (0.37) 0.37 (0.36) 0.37 (0.37) 0.37 (0.37) 0.37 (0.36)
wang4 0.28 (0.28) 0.28 (0.28) 0.30 (0.30) 0.30 (0.30) 0.28 (0.28) 0.28 (0.28)

Table 4.8: Number of row interchanges used by UMFPACK when partial pivoting
pivoting is used.

Name O O (OA) KRU KRU (OA) H MB
Ill Stokes 6330 7215 3450 4162 3789 3003
bbmat 8679 8881 7036 5314 6729 2988
cage11 0 0 0 0 0 0
ns3Da 1015 1661 719 1468 1352 1165
psmigr 2 1453 913 1458 903 905 714
psmigr 3 4 2 4 2 0 0
raefsky3 1551 1551 608 608 601 1166
venkat01 16425 16425 179 179 13135 186
wang4 0 0 7 7 0 2

ones. We use the MATLAB functions gmres (without restarts) and bicgstab, with a
tolerance of 10−6, and a maximum of min{n, 1000} iterations. If either method fails
to converge below the tolerance within the maximum number of iterations then we
record a fail. Since we are using partial pivoting to compute the ILU factors there
will be no difference between the O and O (OA) methods or the KRU and KRU (OA)
methods, so we omit those methods which use the optimal assignment permutation.
Many of the problems in the test set are solved very easily, so we omit any matrix for
which the O method converges in fewer than ten iterations.

Figure 4.3 shows the number of iterations needed for the different scaling strate-
gies. All of the scaling methods significantly outperform method O when GMRES is
used. Method MB outperforms method H by a small margin. Method KRU is slightly
better than method MB at producing very low number of iterations but is less reli-
able, resulting in two more fails. The pattern is the same for BiCGSTAB except that
the advantage of the KRU method for low numbers of iterations is smaller and the
advantage of the MB method for reliability is greater, with four fewer fails than KRU.

5. Conclusion. We have introduced max-balanced Hungarian scaling, which is
applied to a matrix A ∈ Cn×n in two stages. Firstly we apply a Hungarian scaling
and optimal assignment reordering H = PD1AD2, such that |hij | ≤ 1 and |hii| = 1
for i = 1, . . . , n. The permutation matrix P and diagonal matrices D1, D2 can be
obtained using standard algorithms such as the HSL code MC64 [15]. The second
stage is to apply a max-balancing similarity scaling M = S−1HS, such that for all

24

,

1 2 3 4 5

w
it
h
in
,
o
f
b
es
t

0

0.2

0.4

0.6

0.8

1

Original (8 fails)
KRU (5 fails)
H (4 fails)
MB (3 fails)

(a) GMRES
,

1 2 3 4 5

w
it
h
in
,
o
f
b
es
t

0

0.2

0.4

0.6

0.8

1

Original (20 fails)
KRU (7 fails)
H (6 fails)
MB (3 fails)

(b) BiCGSTAB

Fig. 4.3: Performance profiles of number of iterations needed for convergence.

I ⊂ {1, . . . , n} we have

max
i∈I,j 6∈I

|mij | = max
i∈I,j 6∈I

|mji|. (5.1)

The diagonal matrix S can be obtained using Algorithm 3.9, which was first introduced
by Schneider and Schneider [21], with a more efficient implementation given by Young,
Tarjan and Orlin [23].

In Theorem 3.5 we proved that max-balancing preserves the properties of a Hun-
garian scaling, so that M satisfies |mij | ≤ 1 and |mii| = 1 for i = 1, . . . , n as well
as (5.1). In Theorem 3.7 we proved that M is the most diagonally dominant matrix
out of all possible scalings and reorderings of A, when viewed through the p norm for
sufficiently large p, up to multiplication by permutation matrices that switch between
optimal assignments and multiplication by a scalar.

The experiments in Section 4 demonstrate the improved diagonal dominance
brought about by max-balanced Hungarian scaling. The most notable difference be-
tween max-balanced Hungarian scaling and plain Hungarian scaling is the number
of row interchanges used during Gaussian elimination with partial pivoting; max-
balancing significantly reduces the number of row interchanges needed for many of
the test problems. Max-balancing also tends to reduce the number of iterations re-
quired for convergence of GMRES or BiCGSTAB with an ILU preconditioner.

Comparing the whole suite of scaling and reordering methods considered we see
that Hungarian scaling, max-balanced Hungarian scaling, and KRU scaling all sig-
nificantly reduce the matrix condition number. Applying any one of these scalings
together with the optimal assignment permutation significantly reduces the need for
row interchanges with threshold or partial pivoting. The three methods have roughly
the same performance under threshold pivoting, but max-balanced Hungarian scal-
ing has a clear lead with partial pivoting. The condition number of the U factor
of the matrix is significantly reduced by Hungarian scaling and max-balanced Hun-
garian scaling, although there does not appear to be any extra advantage to using
max-balanced Hungarian scaling here. The effect of scaling on factorization time is
more complicated, with surprising behavior such as extra pivoting sometimes reducing
the factorization time. However there is some evidence that max-balanced Hungar-
ian scaling tends to give the fastest factorization when using partial pivoting. All of

25

the scaling methods significantly reduce the number of iterations required for conver-
gence of GMRES or BiCGSTAB with an ILU preconditioner. The KRU method was
strongest at producing close to optimal iteration numbers but the MB method was
more reliable, resulting in the fewest fails.

As discussed in the introduction, Hungarian scaling has been shown to be a ben-
eficial preprocessing treatment for solving linear systems and this has been attributed
to the fact that the Hungarian scaled and reordered matrix tends to be more diag-
onally dominant. We have shown that max-balanced Hungarian scaling results in a
matrix which is optimally diagonally dominant. So according to the rule that diagonal
dominance is beneficial to solving linear systems, the max-balanced Hungarian scaling
ought to be the optimal preprocessing treatment. In our numerical experiments we
have seen that the Hungarian scaling returned by the HSL code MC64 [15] has very
similar performance to max-balanced Hungarian scaling. So we must conclude that,
although the algorithm used by MC64 is oblivious to the fact that there is typically a
range of possible Hungarian scalings for a given matrix A, it tends to return one that
is close in performance to the optimal scaling. The only test where MC64 was signifi-
cantly outperformed was in the number of row interchanges required during Gaussian
elimination with partial pivoting, so we should encourage the use of max-balanced
Hungarian scaling when minimizing this quantity is the objective.

Acknowledgment. Thanks are given to the reviewers for their valuable com-
ments and suggestions that considerably improved the original manuscript.

REFERENCES

[1] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Sci. Comput., 22(4):1333–1353, 2000.

[2] P. Butkovič. Max-Linear Systems: Theory and Algorithms. Springer-Verlag, London, 2010.
xvii+272 pp.

[3] P. Butkovič and H. Schneider. Applications of max algebra to diagonal scaling of matrices.
Electron. J. Linear Algebra, 13:262–273, 2005.

[4] T. A. Davis. Algorithm 832: UMFPACK V4.3—An unsymmetric-pattern multifrontal method.
ACM Trans. Math. Software, 30(2):196–199, June 2004.

[5] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math.
Software, 38(1):1:1–1:25, 2011.

[6] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Programming, 91:201–213, 2002.

[7] I. S. Duff and J. Koster. The design and use of algorithms for permuting large entries to the
diagonal of sparse matrices. SIAM J. Matrix Anal. Appl., 20:889–901, 1999.

[8] I. S. Duff and J. Koster. On algorithms for permuting large entries to the diagonal of a sparse
matrix. SIAM J. Matrix Anal. Appl., 22:973–996, 2001.

[9] A. Frank. On Kuhn’s Hungarian method–a tribute from Hungary. Technical Report TR-2004-
14, Egerváry Research Group, Budapest, 2004. www.cs.elte.hu/egres.

[10] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network opti-
mization algorithms. J. Assoc. Comput. Mach., 34(3):596–615, 1987.

[11] J. D. Hogg and J. A. Scott. The effects of scalings on the performance of a sparse symmetric in-
definite solver. Report RAL-TR-2008-007, Atlas Centre, Rutherford Appleton Laboratory,
Didcot, Oxon, UK, 2008.

[12] J. D. Hogg and J. A. Scott. On the use of suboptimal matchings for scaling and ordering sparse
symmetric matrices. Numer. Linear Algebra Appl., 22:648–663, 2015.

[13] J. Hook and F. Tisseur. Max-plus eigenvalues and singular values: a useful tool in numerical
linear algebra, 2015. In preparation.

[14] J. Hook and F. Tisseur. Incomplete LU preconditioner based on max-plus approximation of
LU factorization. MIMS EPrint 2016.47, Manchester Institute for Mathematical Sciences,
The University of Manchester, UK, Sept. 2016.

26

[15] HSL. A collection of Fortran codes for large scale scientific computation.
http://www.hsl.rl.ac.uk/.

[16] P. A. Knight, D. Ruiz, and B. Uçar. A symmetry preserving algorithm for matrix scaling.
SIAM J. Matrix Anal. Appl., 35:931–955, 2014.

[17] M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear
Algebra Appl., 240:131–151, 1996.

[18] J. B. Orlin and Y. Lee. Quickmatch–a very fast algorithm for the assignment problem. Working
papers 3547-93, Massachusetts Institute of Technology (MIT), Sloan School of Manage-
ment, 1993.

[19] E. E. Osborne. On pre-conditioning of matrices. J. Assoc. Comput. Mach., 7:338–345, 1960.
[20] U. Rothblum, H. Schneider, and M. Schneider. Characterizations of max-balanced flows. Dis-

crete Applied Mathematics, 39(1):241–261, 1992.
[21] H. Schneider and M. H. Schneider. Max-balancing weighted directed graphs and matrix scaling.

Math. Oper. Res., 16(1):208–222, Feb. 1991.
[22] S. Sergeev, H. Schneider, and P. Butkovič. On visualization scaling, subeigenvectors and Kleene

stars in max algebra. Linear Algebra Appl., 431:2395–2406, 2009.
[23] N. E. Young, R. E. Tarjan, and J. B. Orlin. Faster parametric shortest path and minimum

balance algorithms. Networks, 1(2):205–221, 1991.

27

