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REDUCTION OF MATRIX POLYNOMIALS TO SIMPLER FORMS

YUJI NAKATSUKASA∗, LEO TASLAMAN† , FRANÇOISE TISSEUR‡ , AND ION ZABALLA§

Abstract. A square matrix can be reduced to simpler form via similarity transformations. Here
“simpler form” may refer to diagonal (when possible), triangular (Schur), or Hessenberg form. Sim-
ilar reductions exist for matrix pencils if we consider general equivalence transformations instead of
similarity transformations. For both matrices and matrix pencils, well-established algorithms are
available for each reduction, which are useful in various applications. For matrix polynomials, uni-
modular transformations can be used to achieve the reduced forms but we do not have a practical way
to compute them. In this work we introduce a practical means to reduce a matrix polynomial with
nonsingular leading coefficient to a simpler (diagonal, triangular, Hessenberg) form while preserving
the degree and the eigenstructure. The key to our approach is to work with structure preserving
similarity transformations applied to a linearization of the matrix polynomial instead of unimodular
transformations applied directly to the matrix polynomial. As an applications, we illustrate how to
use these reduced forms to solve parameterized linear systems.

Key words. triangularization, matrix polynomial, quasi-triangular, diagonalization, Hessen-
berg form, companion linearization, controller form linearization, equivalence, quadratic eigenvalue
problem, Schur form, parameterized linear systems.
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1. Introduction. Almost all matrices in Cn×n can be reduced to diagonal form
via a similarity transformation. (The exceptions constitute the measure-zero set of
defective matrices.) Furthermore, all matrices in Cn×n can be reduced to triangular
and upper Hessenberg form via unitary similarity transformations. For matrices in
Rn×n, we have similar results with the difference that we now have quasi-diagonal
and quasi-triangular forms instead of diagonal and triangular forms. Here the prefix
“quasi” means that all diagonal blocks are either of size 1× 1 or 2× 2. Now, consider
matrix polynomials with a nonsingular leading coefficient

(1) P (λ) = λ`P` + · · ·+ λP1 + P0 with det(P`) 6= 0,

over F = C or R. Is it possible to reduce such matrix polynomials to the simpler
forms mentioned above while preserving the degree and the eigenstructure, that is, the
eigenvalues and their partial multiplicities? If we use only similarity transformations,
the answer is, in general, no. Even if we use the broader class of strict equivalence
transformations, that is, multiplication by nonsingular matrices from left and right,
it is in general not possible. Indeed, if there were to exist nonsingular matrices E and
F such that EP (λ)F = T (λ) is triangular, say, of degree ` > 1 and with detP` 6= 0
then the family of matrices (P−1

` P`−1, . . . , P
−1
` P1, P

−1
` P0) would be simultaneously

triangularizable by similarity. This would imply (see for example [6, Thm. 2.4.8.6 and
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Thm. 2.4.8.7]) that for all i 6= j, i, j = 0, 1, . . . , `−1, the eigenvalues of P−1
` PiP

−1
` Pj−

P−1
` PjP

−1
` Pi are all equal to zero. This is a very restrictive condition.

A type of transformations that gives us a sufficient amount of freedom while pre-
serving the eigenstructure is multiplication by unimodular matrix polynomials. A
matrix polynomial U(λ) ∈ F[λ]n×n is said to be unimodular if detU(λ) ∈ F \ {0},
and two matrix polynomials that differ only by multiplication by unimodular matrix
polynomials (from the left and the right) are said to be equivalent. It was shown
in [14] and [15] that unimodular transformations are enough to reduce any square
matrix polynomial to triangular form over C and quasi-triangular form over R, while
preserving the degree. Of course, this includes the case of Hessenberg form since
(quasi)-triangular matrices are also Hessenberg. Further, it is a straightforward exer-
cise to show that any complex/real matrix polynomial with semisimple eigenstructure
is equivalent to a diagonal/quasi-diagonal matrix polynomial of the same degree.

The reduction to diagonal form has applications in structural engineering, where
it has been used to decouple systems of second-order differential equations (see for
example [2] and [10]). In applications where parametrized linear systems of the form
P (ω)x = b(ω) with P as in (1) need to be solved for many values of ω over a large
range, it may be useful to first reduce P to simpler form before solving the linear
systems (see Section 5).

How can we compute these simpler forms in practice? The discussions in [3,
Thm. 1.7], [14] are based on applying unimodular transformations to the Smith form,
and its numerical implementation is nontrivial. To avoid working with unimodular
transformations, which in general affect the degree, we use linearizations. Recall that
a pencil λI−A is a monic linearization of the matrix polynomial P (λ) ∈ F[λ]n×n in (1)
if A ∈ F`n×`n and λI−A has the same elementary divisors as P (λ). Suppose P (λ) has

the same eigenstructure as the monic matrix polynomial R(λ) = λ`I+
∑`−1
j=0 λ

jRj and
take any monic linearization λI −A of P (λ). Note that λI −A is also a linearization
of R(λ). The Gohberg, Lancaster, Rodman theory [3, Sec. 1.10] tells us that there
is an `n × n matrix X such that (A,X) is a left standard pair for R(λ), that is, the
`n× `n matrix

(2) S = [X AX . . . A`−1X]

is nonsingular and

(3) A`X +A`−1XR`−1 + · · ·+AXR1 +XR0 = 0.

Taken together, (2) and (3) can be rewritten as

(4) S−1AS =


−R0

I −R1

. . .
...

I −R`−1

 =: CL(R)

showing that A is similar to the left companion matrix associated with R(λ). Actually,
for any given monic linearization λI−A of P (λ) and any nonsingular matrix S of the
form (2), S−1AS will always be the left companion matrix of some matrix polynomial,
as in (4). This matrix polynomial, R(λ) = λ`I +λ`−1R`−1 + · · ·+λR1 +R0 will have
the same degree and eigenstructure as P (λ). The above discussion suggests that in
order to reduce P (λ) in (1) to a simpler form, it is enough to find an n` × n matrix
X such that S in (2) is nonsingular and S−1AS has the desired zero pattern in the
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n = 5; deg = 3; % size and degree

P0 = randn(n); P1 = randn(n); P2 = randn(n); % coefficient matrices

C_P = [ zeros(n) zeros(n) -P0 % left companion form

eye(n) zeros(n) -P1

zeros(n) eye(n) -P2 ]

[U,~] = schur(C_P,’complex’);

X = U*kron(eye(n), ones(deg,1));

S = [X C_P*X C_P^(deg-1)*X];

C_R = (S\C_P)*S;

spy(abs(C_R)>1e-12)

Fig. 1. Basic MATLAB M-file that generates a random monic cubic matrix polynomial, then
computes the left companion form of an equivalent triangular matrix polynomial, and plots its (nu-
merical)nonzero pattern.

coefficient matrices (in the last block column), where A can be any matrix such that
λI − A is a linearization of P (λ). One of the main contributions in this paper is to
give a characterization of such a matrix X in terms of block Krylov subspaces (see
Section 2).

In the generic case, when all the eigenvalues are distinct, it turns out to be sur-
prisingly easy to find X such that S−1AS is the left companion matrix of a matrix
polynomial in triangular, diagonal or Hessenberg form. We illustrate this with a snip-
pet of MATLAB code in Figure 1. If we replace schur(C P,’complex’) by eig(C P),
then C R becomes the companion matrix of an equivalent diagonal matrix polyno-
mial, and if we replace schur(C P,’complex’) by hess(C P) and ones(deg,1) by
eye(deg,1), then C R becomes the companion matrix of an equivalent matrix poly-
nomial in Hessenberg form. The code can be generalized to any degree and works
as long as the block Krylov matrix S on line 8 is nonsingular, which it is for almost
all coefficient matrices, as we will see in Section 3.2. A colored spy plot from one
execution of the MATLAB code in Figure 1 is shown on the left of Figure 2. The
other plots correspond to the diagonal reduction (middle plot) and the Hessenberg
reduction (right plot). We remark that the reduction to Hessenberg form requires
no iterative process (such as computing the eigenvalues) and uses a fixed number of
arithmetic operations. Our reduction gives a Hessenberg matrix polynomial with all
but the second leading coefficient being triangular.

In this paper we discuss why and when the code in Figure 1 works. In the rare
cases when it fails, we describe whenever possible what has to be achieved for the
reductions to go through. To be precise, one of the main goals of this work is to
give a practical procedure to reduce P (λ) in (1) to triangular or quasi-triangular
form according as F = C or R, while preserving its degree and eigenstructure. This
procedure consists of the following steps:

1. Choose a monic linearization λI −A of P (λ).
2. Compute a real or complex Schur form, T0, of A according as F = R or C.
3. Reorder the diagonal entries of T0 and, in the real case, the 2×2 blocks along

its diagonal to produce a new Schur form T of A that can be split into blocks
that are suited to construct the matrix X of the next step.

4. Use the diagonal blocks of T to produce a matrix X ∈ F`n×` of full column
rank such that S in (2) is nonsingular and S−1AS is the left companion
matrix of a monic upper triangular matrix polynomial.
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Fig. 2. Colored spy plots of the left companion linearization of the reduced matrix polynomials
(size n = 5, degree ` = 3) obtained by the MATLAB code in Figure 1 (or its modification as explained
in the text): triangular (left), diagonal (middle), and Hessenberg (right). The red dots are 1s, the
blue dots are nonzero entries of the coefficient matrices.

5. Compute S−1A`X, i.e., the last block column of CL(R) in (4), and extract the
blocks Rj , j = 0, . . . , `− 1 defining R(λ) = λ`I +λ`−1R`−1 + · · ·+λR1 +R0.

The matrix polynomial R(λ) will be upper (quasi-) triangular and have the same
eigenstructure as P (λ). We remark that the structure of A and S can be exploited
to compute S−1A`X at a reduced cost in step 5, but this is outside the scope of this
work.

We will show in Section 3 how to implement step 3 in a numerically stable manner
when all the eigenvalues of P (λ) have algebraic multiplicity not greater than n (the size
of P (λ)). Matrices X that are used to implement step 4 are characterized in Section
2; a method to construct them explicitly is provided in Section 3. The quadratic case
(` = 2) is fully examined in Section 4, where a stable way of implementing step 3
is given that works independently of the algebraic multiplicity of the eigenvalues of
P (λ).

To be slightly more general, we will also study how to construct matrices X to
reduce P (λ) to one of the following forms:

• block-diagonal form:

(5) D(λ) = D1(λ)⊕D2(λ)⊕ · · · ⊕Dk(λ) ∈ F[λ]n×n

monic of degree ` with Di(λ) ∈ F[λ]si×si , 1 ≤ i ≤ k and s1 + · · ·+ sk = n,
• block-triangular form:

(6) T (λ) =


T11(λ) T12(λ) . . . T1k(λ)

T22(λ)
...

. . .
...

Tkk(λ)

 ∈ F[λ]n×n,

monic of degree ` with Tjj(λ) ∈ F[λ]sj×sj , 1 ≤ j ≤ k and s1 + · · · + sk = n,
and

• Hessenberg form:

(7) H(λ) = λ`I + λ`−1H`−1 + · · ·+ λH1 +H0 ∈ F[λ]n×n,

with coefficient matrices Hi, i = 0, . . . , `− 1 in Hessenberg form.
We will discuss in Section 5 how to use the simpler forms to solve parameterized linear
systems P (ω)x = b(ω), where x is to be computed for many values of the parameter ω.
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2. Conditions for reduction to simpler forms. For matrices A ∈ Fm×m and
V ∈ Fm×j we define the block Krylov matrix

K`(A, V ) = [V AV · · · A`−1V ] ∈ Fm×`j

and the block Krylov subspace

K`(A, V ) = rangeK`(A, V ).

For a subspace X of Fm and a matrix A operating on that subspace we define AX =
{Ax : x ∈ X}.

Assume that P (λ) is given by (1) and let λI − A be any monic linearization of
P (λ), for example, the left companion linearization of P−1

` P (λ). Recall that we are
looking for a matrix X ∈ F`n×n such that

(i) S := K`(A,X) = [X AX · · · A`−1X] is nonsingular, and
(ii) λI − S−1AS is the left companion linearization of one of the reduced forms

in (5)–(7).
If (i) holds, then S−1AS is the left companion matrix of a monic matrix polynomial,
say R(λ) = λ`I + · · ·+ λR1 +R0, and

(8) S−1A`X = S−1AS(en ⊗ I`) = −


R0

R1
...

R`−1

 ,
where ej denotes the jth column of the identity matrix and ⊗ denotes the Kro-
necker product. Then we see that the (i, j) entry of R(λ) with i 6= j is zero if and
only if the vector S−1A`Xej has zeros in the entries i, i + n, . . . , i + (` − 1)n. This
means that S−1A`Xej is in the span of the columns of the submatrix of In` obtained
by deleting the columns i, i + n, . . . , i + (` − 1)n. Thus, taking into account that
S−1[X AX · · · A`−1X] = I and (8), it follows that

(9) [R(λ)]ij ≡ 0, i 6= j ⇐⇒ A`xj ∈ K`(A, [x1, . . . , xi−1, xi+1, . . . , xn]),

where xj denotes the jth column of X.
We are now ready to state our main theorem, but before we do so we introduce

some new notation. For the block reductions (5) and (6), it is convenient to partition
X as

X = [X1 X2 · · · Xk],

where Xj ∈ F`n×sj and s1 + · · · + sk = n. Also, we let x1:i and X1:i denote the
matrices [x1 x2 · · · xi] ∈ F`n×i and [X1 X2 · · · Xi] ∈ F`n×σi , respectively, where
σi := s1 + · · ·+ si. Finally, we define σ0 := 0.

Theorem 1. Let P (λ) ∈ F[λ]n×n be of degree ` with nonsingular leading matrix
coefficient and let λI−A be any monic linearization of P (λ). Then P (λ) is equivalent
to a monic matrix polynomial R(λ) of degree ` having one of the reduced forms (5)–(7)
if and only if there exists a full rank matrix X ∈ F`n×n such that

(i) the matrix [X AX . . . A`−1X] ∈ F`n×`n is nonsingular, and
(ii) (a) K`(A,Xi) for 1 ≤ i ≤ k is A-invariant for block-diagonal form as in (5),

(b) K`(A,X1:i) for 1 ≤ i ≤ k is A-invariant for block-triangular form as
in (6),
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(c) A`xi ∈ K`(A, x1:i+1), 1 ≤ i ≤ n− 1, for Hessenberg form as in (7).

Proof. (⇒) Suppose that P (λ) is equivalent to R(λ). Then λI−A is also a monic
linearization of R(λ) and as explained in the introduction (recall equation (2)-(4)),
there is a matrix X such that (A,X) is a left standard pair for R(λ), which implies
(i) and AS = SCL(R), where S = [X AX . . . A`−1X] = K`(A,X).

(ii)(a): Suppose that R(λ) has the block-diagonal form of D(λ) in (5). Define a
permutation matrix

Πi = [eσi−1+1 · · · eσi en+σi−1+1 · · · en+σi · · · e(`−1)n+σi−1+1 · · · e(`−1)n+σi
],

where ei is the ith column of I`n. Then SΠi = K`(A,X)Πi = K`(A,Xi) and
CL(D)Πi = ΠiCL(Di). It follows from AS = SCL(D) that

AK`(A,Xi) = ASΠi = SCL(D)Πi = SΠiCL(Di) = K`(A,Xi)CL(Di),

which proves (ii)(a).
(ii)(b): Suppose that R(λ) has the block triangular form of T (λ) in (6). Let

Π1:i = [ e1 · · · eσi
en+1 · · · en+σi

· · · e(`−1)n+1 · · · e(`−1)n+σi
] .

Then K`(A,X1:i) = K`(A,X)Π1:i = SΠ1:i and CL(T )Π1:i = Π1:iCL(Ti), where Ti(λ)
is the leading σi × σi principal submatrix of T (λ). Then from AS = SCL(T ) we
obtain

AK`(A,X1:i) = ASΠ1:i = SCL(T )Π1:i = SΠ1:iCLTi = K`(A,X1:i)CL(Ti).

(ii)(c): Suppose that R(λ) has the Hessenberg form of H(λ) in (6). From AS =
SCL(H) and (9), we see that A`xi lies in the span of K`(A, x1:i+1).

(⇐) Suppose that there existsX such that S = [X AX · · · A`−1X] is nonsingular.
Then the matrix S−1AS is the left companion form of a monic matrix polynomial of
degree `, say R(λ), equivalent to P (λ).

Now, AS = SCL(R), (ii)(a) and (9) imply that the n× n blocks R0, . . . , R`−1 in
the last block column of CL(R) (see (8)) are block-diagonal with k diagonal blocks,
the ith diagonal block being si×si, where si is the number of columns of Xi, i = 1: k.
The proofs for (ii)(b) and (ii)(c) are similar.

3. Construction of the matrix X. We discuss in this section a process to
construct the matrix X in Theorem 1 such that properties (i) and (ii) hold.

3.1. Auxiliary results. We start by proving some technical results that will be
needed for the triangularization. Let λI−CL be the left companion matrix of a monic
matrix polynomial P (λ) of size n×n and degree `, and let Π denote the permutation
matrix

Π = [π1 π2 · · · πn ] , πi = [ ei en+i · · · e(`−1)n+i ] for i = 1, . . . , n.

Then the permuted linearization λI−ΠTCLΠ is called the left companion linearization
of P (λ) in controller form. If we view this linearization as an ` × ` block pencil,
then the zero-block structure of the pencil is the same as the zero structure of P (λ).
Furthermore, the diagonal `×` blocks are the companion matrices of the corresponding
scalar polynomials on the diagonal of P (λ). To illustrate the controller form, Figure 3
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Fig. 3. Spy plots for the controller form of the left companion matrices for cubic 5 × 5 matrix
polynomials with (from left to right) dense, diagonal, triangular and Hessenberg matrix coefficients,
respectively. The red dots are 1’s, the blue dots are nonzero entries.

shows the spy plots of the left companion matrix for P (λ) in dense (no structure),
diagonal, triangular and Hessenberg forms.

The controller form is useful in the proofs of the following theorems. In these
theorems we will work with matrices having eigenvalues of geometric multiplicity at
most n. The rationale behind this is that if λI − A is a linearization of an n × n
matrix polynomial P (λ) as in (1), then, by [3, Thm. 1.7], the geometric multiplicity
of the eigenvalues of A cannot be greater than n.

3.1.1. Existence of Schur form for triangular reduction. Recall that a
matrix is called nonderogatory if every eigenvalue has geometric multiplicity one.

Theorem 2 (Schur form with nonderogatory blocks, complex version). Let A ∈
C`n×`n be a matrix whose eigenvalues have geometric multiplicity at most n. Then A
has a Schur decomposition

A = Q


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Tnn

QH ,
where the diagonal blocks Tii ∈ C`×`, i = 1, . . . , n, are nonderogatory.

Proof. Since A has no eigenvalue with geometric multiplicity greater than n,
it follows from [3, Proof of Thm. 1.7] that λI − A is a linearization of an n × n
upper triangular monic matrix polynomial R(λ) of degree `. This matrix polynomial
has a left companion linearization in controller form, which itself must be monic.
Denote this linearization by λI − B. Then A = SBS−1 for some nonsingular S.
Furthermore, B is block upper triangular, with blocks of size ` × `, and all diagonal
blocks must be nonderogatory (since they are companion matrices). Let UiTiU

H
i be a

Schur decomposition of the ith diagonal block and set U = U1 ⊕U2 ⊕ · · · ⊕Un. Then

B = UTUH , with T =


T1 ∗ ∗ ∗

T2 ∗ ∗
. . . ∗

Tn

 ,
is a Schur decomposition. Finally, let SU = QR be a QR factorization of SU and
note that since R is upper triangular and nonsingular, A = Q(RTR−1)QH is a Schur
decomposition of A. The theorem follows from the fact that the ith diagonal ` × `
block of RTR−1 is similar to Ti.
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We now prove the real analog of Theorem 2.

Theorem 3 (Schur form with nonderogatory blocks, real version). Let A ∈
R`n×`n be a matrix whose eigenvalues have geometric multiplicity at most n . Then
A has a real Schur decomposition

(10) A = Q


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Trr

QT ,
where each Tii is either of size ` × ` and nonderogatory or of size 2` × 2` and such
that all eigenvalues have geometric multiplicity one or two.

Proof. Since all eigenvalues of A have geometric multiplicity at most n, it follows
that λI − A has a real Smith form D(λ) ⊕ I(`−1)n with deg detD(λ) = n`. By [14,
Theorem 4.1] D(λ) is equivalent to some real quasi-triangular matrix polynomial T (λ)
of degree `, which may be assumed to be monic. It follows that

λI −A ∼
[
D(λ)

I(`−1)n

]
∼
[
T (λ)

I(`−1)n

]
,

where ∼ denotes the equivalence relation for matrix polynomials. In other words, A
is a linearization of some monic quasi-triangular matrix polynomial of degree `. If B
denotes the constant matrix of the left companion linearization of T (λ) in controller
form, then the rest of the proof is essentially the same as the last part of the proof
of Theorem 2, with the only difference that we consider the real Schur decomposition
instead of the complex one.

3.1.2. Numerically stable construction of a Schur form for triangular
reduction. The above theorems are key stones in the process of constructing the ma-
trix X of Theorem 1 for the (block-) triangular reduction. To be numerically useful
we need to overcome the drawback that B is obtained from A via unimodular trans-
formations. In what follows we propose a numerically stable procedure to construct
the desired Schur form of A in Theorem 2 or Theorem 3 out of any of its Schur forms.
This procedure works as long as all eigenvalues of A have algebraic multiplicity at
most n. This will be our assumption.

First compute any (real or complex) Schur decomposition of A. Then reorder the
diagonal entries/blocks using the procedure in Bai-Demmel [1] according to the rules
described below. We discuss the real and complex case separately.

(I) Complex case. Suppose there are k distinct eigenvalues of algebraic mul-
tiplicity n and s distinct eigenvalues of algebraic multiplicity less than n. Note that
k ≤ ` and s = 0 or s > ` − k according as k = ` or k < `, respectively. Reorder
the Schur form such that the leading k × k principal submatrix has one instance of
each eigenvalue of algebraic multiplicity n. If there are k < ` such eigenvalues, pick
any ` − k(< s) distinct eigenvalues of algebraic multiplicity less than n and reorder
the diagonal such that these appear after the first k eigenvalues that were deflated.
The leading ` × ` submatrix obtained in this way has simple eigenvalues and is thus
nonderogatory. By continuing inductively on the lower left (n− 1)`× (n− 1)` part of
the matrix, we arrive at the desired Schur form.

(II) Real case. The procedure over R is more involved because we need to move
nonreal eigenvalues in complex conjugate pairs in order to keep the decomposition
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real. In addition, 2` × 2` diagonal blocks may appear with eigenvalues of geometric
multiplicity two. An example that illustrates the main features of the procedure that
follows is given in Example 5.

At this point it is important for us to recall that when applying the Bai-Demmel
algorithm [1] to block triangular matrices of size 3×3 (one element and one 2×2 block
in the diagonal) and 4× 4 (two blocks of size 2× 2 in the diagonal), the blocks of size
2×2 before and after applying the algorithm are similar but not necessarily identical.
In what follows we will very often use sentences like “reordering” or “moving the
diagonal blocks” to mean that consecutive diagonal elements and blocks are swapped
to place them in desired diagonal positions.

Let us assume that matrix A has:
• kr distinct real eigenvalues of algebraic multiplicity n.
• kc distinct pairs of nonreal complex conjugate eigenvalues of algebraic multi-

plicity n.
• s distinct real eigenvalues of algebraic multiplicity less than n.
• qi distinct pairs of nonreal complex conjugate eigenvalues of algebraic multi-

plicity i < n.
Thus, kr + 2kc =: k ≤ ` and

(11) n(`− k) ≤ (n− 1)s+ 2q1 + 4q2 + · · ·+ 2(n− 1)qn−1.

In particular, if n = 2, then 2(`− k) = s+ 2q1. We claim that if n ≥ 3, `− k > 0 and
q := q1 + q2 + · · ·+ qn−1 then

(12) s+ 2q − q1 > `− k.

In fact, ` − k > 0 implies s > 0 or qi > 0 for some i such that 1 ≤ i ≤ n − 1. So
(s+ 2q− q1)n = (s+ q1 + 2q2 + · · ·+ 2qn−1)n > (n− 1)s+ 2q1 + 4q2 + · · · 2(n− 1)qn−1

because for n ≥ 3,

s+ (n− 2)q1 + (2n− 4)q2 + (2n− 6)q3 + · · ·+ (2n− 2n+ 2)qn−1 > 0.

Hence (12) follows from (11).
Start by reordering the Schur form such that one instance of each of the kr real

eigenvalues and one instance of the 2×2 blocks corresponding to the kc pairs of nonreal
complex conjugate eigenvalues of algebraic multiplicity n appear in the leading k× k
principal submatrix. If `− k = 0, then the `× ` leading submatrix is nonderogatory
and we can continue the deflating process inductively on the (n− 1)`× (n− 1)` lower
right part of the matrix. If `− k > 0, then we proceed as follows:

(i) If `−k is even then let k1 = min{q, `−k2 }. Choose k1 2×2 blocks corresponding
to distinct nonreal complex conjugate eigenvalues of algebraic multiplicity less
than n and move them so that they appear directly after the deflated k × k
submatrix on the diagonal.
(i1) If k1 = `−k

2 (that is, ` = k + 2k1) then the ` × ` leading submatrix is
nonderogatory.

(i2) If k1 = q < `−k
2 then s > ` − k − 2q = ` − k − 2k1. This follows from

(12) if n ≥ 3 and from 2(` − k) = s + 2q if n = 2. Move (if necessary)
`− k− 2k1 distinct real eigenvalues of algebraic multiplicity less than n
so that they appear after the k1 2× 2 blocks we just deflated. The `× `
leading submatrix is nonderogatory.

Continue the deflating process with the (n − 1)` × (n − 1)` lower right part
of the matrix as above.
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(ii) If ` − k is odd and s > 0 then let k1 = min{q, `−k−1
2 }. As in the case when

`−k is even, choose k1 2×2 blocks corresponding to distinct nonreal complex
conjugate eigenvalues of algebraic multiplicity less than n and move them so
that they appear directly after the deflated k× k submatrix on the diagonal.
(ii1) If k1 = q then as in case (i), s > ` − k − 2k1. Move (if necessary)

`− k− 2k1 distinct real eigenvalues of algebraic multiplicity less than n
so that they appear after the k1 2 × 2 blocks we just deflated and the
resulting `× ` principal submatrix is nonderogatory.

(ii2) If k1 = `−k−1
2 < q then ` = k+ 2k1 + 1. Since s > 0, one real eigenvalue

of algebraic multiplicity less than n can be placed after the k1 2×2 blocks
we just deflated so that the `× ` principal submatrix is nonderogatory.

Continue the deflating process as above.
(iii) If ` − k is odd and s = 0 we aim to form a 2` × 2` block with eigenvalues

of geometric multiplicity at most two. Recall that we already have one in-
stance of each of the kr real eigenvalues and one instance of the 2× 2 blocks
corresponding to the kc pairs of nonreal complex conjugate eigenvalues of
algebraic multiplicity n ≥ 2 in the leading k × k principal submatrix. Next,
move another instance of each of the kr real eigenvalues and another instance
of the 2 × 2 blocks corresponding to the kc pairs of nonreal complex conju-
gate eigenvalues of algebraic multiplicity n, so that they appear just after the
k× k principal submatrix that we just deflated. These eigenvalues may have
geometric multiplicity two in the resulting 2k × 2k submatrix.

(iii1) If n = 2, recall that 2(`− k) = 2q1 + s = 2q1. This means that there are
q1 2× 2 diagonal blocks corresponding to pairs of nonreal complex con-
jugate eigenvalues of algebraic multiplicity one. Reorder (if necessary)
the diagonal blocks so that they appear just after the 2k × 2k principal
submatrix that we just deflated. The 2`× 2` resulting submatrix has all
its eigenvalues of geometric multiplicity 2 at the most.

(iii2) If n ≥ 3 then by (12), (` − k) < 2q − q1 + s = 2q − q1. This inequality
allows us to proceed as follows: Let k1 = min{q, `−k} and select k1 2×2
blocks corresponding to distinct nonreal complex conjugate eigenvalues
of algebraic multiplicity less than n and move them so that they appear
directly after the deflated 2k× 2k submatrix. If k1 = `− k, then all the
eigenvalues of the 2`×2` obtained submatrix have geometric multiplicity
one or two. Now, if k1 = q < ` − k then all nonreal complex conjugate
eigenvalues of algebraic multiplicity one have been used. We have to use
another instance of nonreal complex conjugate eigenvalues of algebraic
multiplicity bigger than one and smaller than n. Since (`− k) < 2q− q1
we have that (` − k − q) < q − q1. So we have enough 2 × 2 diagonal
blocks associated to distinct nonreal complex conjugate eigenvalues of
algebraic multiplicities between 2 and n−1 to move to the leading 2`×2`
principal submatrix in such a way that its eigenvalues have geometric
multiplicity at most two.

Continue inductively the deflating process on the (n − 2)` × (n − 2)` lower
right part of the matrix.

We note that when ` − k is odd and s = 0 (case (iii)), the eigenvalues of the
constructed 2`× 2` block may have all geometric multiplicity one. If this is the case,
it may or may not be possible to further move the eigenvalues along the diagonal of
the 2`× 2` block to produce two `× ` nonderogatory blocks. The following example
illustrates the two possibilities.
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A = [ 1 0 0 1; 0 0 -1 0; 0 1 0 1; 0 0 0 1];

E = ordeig(A);

[Q, T] = ordschur(eye(4),A,imag(E)==0);

Fig. 4. MATLAB M-file that implements Bai-Demmel algorithm to swap diagonal block
[ 0
1
−1
0

]
and diagonal element 1 in position (4, 4) of the real Schur matrix A of Example 4.

Example 4. (a) Let n = 2, ` = 2 and

A =

 1 0 0 1
0 0 −1 0
0 1 0 1
0 0 0 1

 .
This matrix is in real Schur form. The MATLAB code in Figure 4 implements Bai-

Demmel algorithm [1] to swap the diagonal block
[
0
1
−1
0

]
and the last diagonal element

of A. The returned matrices Q and T are

Q =

 1.0000 0 0 0
0 −0.4082 0.7071 0.5774
0 0.4082 0.7071 −0.5774
0 0.8165 −0.000 0.5774

 , T =

 1.0000 0.8165 −0.0000 0.5774
0 1.0000 0.5774 0.7071

0 0 −0.0000 1.2247
0 0 −0.8165 0.0000

 .
The 2×2 submatrix in the lower right corner of T is (approximately) similar to

[
0
1
−1
0

]
and T is another (approximate) real Schur form of A with two nonderogatory diagonal
blocks. Notice that if we replace a14 = 1 by a14 = 0 in A then the eigenvalue 1 of the
new matrix would have geometric multiplicity two and there would not be a Schur
form of A with two nonderogatory blocks of size 2× 2 in the diagonal.

(b) Let n = 2, ` = 3 and

A = diag

([
0 −1
1 0

]
,

[
0 −2
2 0

]
,

[
0 −3
3 0

])
.

Despite the eigenvalues of A being simple, there is no real Schur form of A with two
nonderogatory diagonal blocks of size 3 × 3. If we apply to A the procedure of item
(II) then kr = kc = k = 0, q1 = q = 3 and s = 0. Since ` − k = 3 is odd and s = 0,
we use item (iii1). In fact, 2(` − k) = 2` = 6 = 2q1 and we must put together three
diagonal blocks of size 2× 2. This means that A is itself the desired matrix.

The following example clarifies the main features of the procedure for the real
case (item (II)) to bring a matrix in real Schur form to another one satisfying the
requirements in Theorem 3.

Example 5. Let n = 4, ` = 2 and let A ∈ R8×8 be a matrix in real Schur form
with the following diagonal blocks:

B = diag

(
1,

[
0 −1
1 0

]
,

[
0 −1
1 0

]
, 1, 2, 1

)
.

We can write A = B + T where T is a strict block-upper triangular matrix (block-
upper triangular with zero blocks in the diagonal). We are going to apply to A the
procedure of item (II) to find an orthogonal matrix Q such that QTAQ is a real Schur
form satisfying the requirements in Theorem 3.
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Step 1: For A we have: kr = kc = 0, s = 2 and q1 = 1. Then k = kr + kc = 0

and ` − k = 2. Thus ` − k is even and k1 = min
{
q, `−k2

}
= `−k

2 = 1. We use (i1):

use Bai-Demmel algorithm to move the first
[
0
1
−1
0

]
block to place it in the upper-left

corner: there is an orthogonal matrix Q1 such that A1 = QT1 AQ = B1 + T1 with
T1 strict block-upper triangular and B1 = diag

(
B11, 1,

[
0
1
−1
0

]
, 1, 2, 1

)
, where B11 is

similar to
[
0
1
−1
0

]
.

We deflate the 2× 2 first rows and columns of A1 and work with the lower right
6× 6 matrix Â1 = B̂1 + T̂1 where B̂1 = diag

(
1,
[
0
1
−1
0

]
, 1, 2, 1

)
. Now n = 3 and ` = 2.

Step 2: For Â1 we have: kr = 1, kc = 0, s = 1 and q1 = 1. Since kr = 1 for
eigenvalue 1, first of all, we must move it to position (1, 1). In this case no action is
needed because it is already there. Now, k = kr + kc = 1, `− k = 1 is odd, s > 0 and
k1 = min

{
q, `−k−1

2

}
= min{1, 0} = 0. Hence we use (ii2): move a real eigenvalue

of multiplicity less than n = 3 to position (2, 2). There is only one choice: use
Bai-Demmel algorithm to exchange the block

[
0
1
−1
0

]
and the entry in position (5, 5)

(actually, we must swap first diagonal entries 1 and 2 and then swap 2 and block[
0
1
−1
0

]
). So, there is an orthogonal matrix Q̂2 such that Â2 = Q̂T2 Â1Q̂2 = B̂2 + T̂2

with T̂2 strict block- upper triangular and B̂2 = diag (1, 2, B21, 1, 1), where B21 is
similar to

[
0
1
−1
0

]
.

We deflate again the 2 × 2 first rows and columns of Â2 and pay attention to
Ã2 = B̃2 + T̃2 with B̃2 = diag (B21, 1, 1). Now n = 2 and ` = 2.

Step 3: For Ã2 we have: kr = 1, kc = 0, s = 0 and q1 = 1. Again kr = 1 and
we must place the eigenvalue of algebraic multiplicity 2 in position (1, 1). We use
Bai-Demmel algorithm to swap the diagonal block B21 and the diagonal entry (3, 3).

Let B̂21 the resulting 2× 2 block.
Now k = kr + kc = 1, ` − k = 1 is odd and s = 0 and so, case (iii) applies:

move another copy of the eigenvalues of algebraic multiplicity n = 2 to position
(2, 2). We use Bai-Demmel algorithm to exchange the diagonal block B̂21 and the
entry in position (4, 4). Let B21 be the obtained block. We observe that n = 2
and 2(` − k) = 2 = 2q1. So we proceed as indicated in item (iii1): move the block
B21 to place it right after the two repeated eigenvalues to get a diagonal block of
size 4. In this case, no action is needed. Thus there is an orthogonal Q̃3 such that
Ã3 = Q̃T3 Ã2Q̃3 = B̃3 + T̃3 with T̃3 strict block-upper triangular, B̃3 = diag (1, 1, B21)
and B21 similar to

[
0
1
−1
0

]
.

If we define Q = Q1diag(I2, Q̂2)diag(I4, Q̃3) then Q is an orthogonal matrix and

QTAQ =


B11 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗
2 ∗ ∗ ∗

1 ∗ ∗
1 ∗

B21


is a matrix in real Schur form. Blocks B11 and B21 are both similar to

[
0
1
−1
0

]
. The

4 × 4 block in the lower-right corner will be nonderogatory if its (1, 2) entry is not
zero; otherwise, the geometric multiplicity of 1 in that block would be 2.

Matrix A in Example 5 has repeated eigenvalues but even in the generic case of
real matrices with simple eigenvalues, the diagonal blocks of a computed real Schur
form might need to be rearranged in order to satisfy the requirements of Theorem 3.
In addition, as part (b) of Example 4 shows, the diagonal blocks in the Schur form of
Theorem 3 for matrices with simple eigenvalues may need to be of size 2`× 2`.
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If one eigenvalue has algebraic multiplicity greater than n, the problem of comput-
ing the desired Schur forms in a stable manner, using unitary/orthogonal transforma-
tions, becomes significantly more complicated. We devote Section 4 to this problem
for quadratic matrix polynomials (` = 2). The higher-degree case ` > 2 is left as an
open problem. There is a process to obtain a desired form by manipulating Jordan
forms, but we omit the details as it is an unstable process.

3.1.3. Sufficient conditions for nonsingular K`(A,X). Theorem 2 and The-
orem 3 will be used in combination with the following lemmas. They show a nice
connection with the following known result in the theory of linear control systems:
the minimum number of inputs needed to control a linear time-invariant system is the
geometric multiplicity of the eigenvalues with highest geometric multiplicity (see for
example [17]). Explicit expressions for the needed input controls are provided in the
proofs that follow.

Lemma 6. If B ∈ F`×` is nonderogatory, then there exists x ∈ F` such that the
Krylov matrix K`(B, x) is nonsingular.

Proof. Since B is nonderogatory it is similar to the left companion matrix CL
of its characteristic polynomial [6, Thm. 3.3.15], that is, B = SCLS

−1 for some
nonsingular matrix S. It is now easy to see that K`(CL, e1) = I. Hence letting
x = Se1 yields the desired result.

The next lemma is the real counterpart of Lemma 6.

Lemma 7. Let B ∈ R2`×2` have eigenvalues with geometric multiplicity at most
two. Then there exist two real vectors x and y such that K`(B, [x y]) is nonsingular.

Proof. We can rearrange the real Jordan decomposition [16, Sec. 2.4] of B so
that

S−1BS =

[m1 m2

m1 J1
m2 J2

]
∈ R2`×2`, m1 ≥ m2 ≥ 0

with J1 and J2 nonderogatory. Note that matrix B is allowed to be nonderogatory:
in this case S−1BS = J1, m2 = 0 and J2 is empty. Since J1 and J2 are nonderogatory
matrices, they are similar (via real arithmetic) to the left companion matrices C1 ∈
Rm1×m1 and C2 ∈ Rm2×m2 of their characteristic polynomials, respectively. Hence
there exists a nonsingular W ∈ R2`×2` such that

W−1BW = C1 ⊕ C2 =: C.

If m2 = 0 then C := C1. It suffices to prove that there exist u, v ∈ R2` such that
M = [K`(C, u) K`(C, v)] is nonsingular because we then get the desired result by
taking x = Wu and y = Wv.

If m1 = m2 or m2 = 0 then u = e1 and v = e`+1 yield M = I2` and we are done.
If m1 > m2 > 0, we let u = e1 and v = e`−m2+1 + em1+1. Then direct calculations
show that

M =


`−m2 m2 m2 `−m2

`−m2 I
m2 I I

`−m2 I
m2 I ∗

,
where ∗ is some irrelevant m2 × (` −m2) matrix. It is now easy to see that M has
full column rank, and thus is nonsingular.
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Finally we provide a lemma that can be seen as a block generalization of Lemma
6 and Lemma 7.

Lemma 8. If all eigenvalues of A ∈ Fk`×k` have geometric multiplicity at most k,
then there exists X ∈ Fk`×k such that K`(A,X) is nonsingular.

Proof. We will handle the real and complex case simultaneously. Let A = ZTZ−1

be the decomposition from Theorem 2 or Theorem 3 and denote the diagonal blocks
by Tii, i = 1: r. For each Tii we define Wi in the following way. If Tii is of size `× `
take Wi to be the `× 1 vector in Lemma 6 such that K`(Tii,Wi) is nonsingular, and
if Tii is of size 2` × 2` take Wi to be the 2` × 2 matrix whose columns are the two
real vectors in Lemma 7. Letting W = W1 ⊕W2 ⊕ · · · ⊕Wr and X = ZW yields
K`(A,X) = ZK`(T,W ), which is of full rank.

3.2. Reduced forms. For a given matrix polynomial with nonsingular leading
matrix coefficient and monic linearization λI −A, we now discuss how to construct a
matrix X such that properties (i) and (ii) in Theorem 1 hold.

3.2.1. Block-triangular form. For the reduction to (block) triangular form we
have the following result.

Proposition 9. Let s1,. . . , sk be positive integers such that s1 + · · · + sk = n
and let

T =


T11 ∗ ∗ ∗

T22 ∗ ∗
. . . ∗

Tkk

 ∈ F`n×`n,

where Tii ∈ F`si×`si has no eigenvalues of geometric multiplicity more than si for
i = 1, . . . , k. If A ∈ F`n×`n is similar to T then there exists X = [X1 X2 · · · Xk] with
Xi ∈ Fn`×si such that S = K`(A,X) is nonsingular and K`(A,X1:i) is A-invariant
for i = 1, . . . , k.

Proof. By Lemma 8, we can for each Tii pick a Vi ∈ F`si×si such that K`(Tii, Vi)
is nonsingular. Thus, if V = V1 ⊕ V2 ⊕ · · · ⊕ Vk, then K`(T, V ) is nonsingular.
Let Z be a nonsingular matrix such that Z−1AZ = T and put X = ZV . Then
S = K`(A,X) = ZK`(T, V ) is nonsingular. In addition, if σi = s1 + · · ·+ si and

Wi =

[
V1 ⊕ · · · ⊕ Vi

0

]
∈ F`n×σi , i = 1, . . . , k,

then K`(A,X1:i) is A-invariant if and only if K`(T,Wi) is T -invariant. Since the
columns of T jWi are also columns of K`(T,Wi) for j < `, we only have to show that
there is a matrix R such that T `Wi = K`(T,Wi)R. If Ti is the submatrix of T formed

by its `σi first rows and columns and V̂i = V1 ⊕ · · · ⊕ Vi then

K`(T,Wi) =

[
K`(Ti, V̂i)

0

]
.

Since K`(Ti, V̂i) is nonsingular, there is a matrix R ∈ F`n×σi such that

T `Wi =

[
T `i V̂i

0

]
=

[
K`(Ti, V̂i)R

0

]
= K`(T,Wi)R,

as desired.
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Remark 10. The proof of Proposition 9 provides a practical means to construct
X. From the proof we see that the columns of K`(A,X1:i) must be a basis for the
invariant subspace of A corresponding to the eigenvalues of T11, T22, . . . , Tii.

We now explain why the MATLAB M-file in Figure 1 successfully reduced P (λ)
into triangular form (see the left plot of Figure 2). Since the coefficients are generated
randomly, the eigenvalues are all distinct with probability one. Therefore MATLAB’s
schur function computes a Schur decomposition CP = ZTZH , where ZH = Z−1 and
the `×` diagonal blocks are all nonderogatory. Thus each K`(Tii, Vi) ∈ R`×` becomes
nonsingular by taking each Vi ∈ F`×1 to be a vector of ones (almost any random
vector would do). Hence, X := Z(V1 ⊕ V2 ⊕ · · · ⊕ Vk) is as in Proposition 9, and so
the conditions (i) and (ii)(b) in Theorem 1 are fulfilled.

3.2.2. Block-diagonal form. For the reduction to block-diagonal form we have
the following result.

Proposition 11. Let A ∈ F`n×`n and assume that for some nonsingular Z

(13) Z−1AZ =


D11

D22

. . .

Dkk

 ∈ F`n×`n,

where Dii ∈ Fsi`×si` has eigenvalues of geometric multiplicity at most si ∈ N, i =
1, . . . , k with s1+· · ·+sk = n. Then there exists X = [X1 X2 . . . Xk] with Xi ∈ Fn`×si
such that S = K`(A,X) is nonsingular and K`(A,Xi) is A-invariant for i = 1, . . . , k.

The proof is similar to that of Proposition 9 and is omitted. We have the following
analog to Remark 10.

Remark 12. With the notation of Proposition 11, the columns of K`(A,Xi) are
a basis for the invariant subspace of A corresponding to the eigenvalues of Dii.

We explain now how the diagonalization corresponding to the middle plot of Fig-
ure 2 was achieved. The eigenvalues are again all distinct (with probability one), and
the eig function computes Λ, Z such that CP = ZΛZ−1 is an eigenvalue decompo-
sition with Λ diagonal. Thus by taking Vi ∈ F`×1 to be vectors of ones and letting
X := Z(V1 ⊕ V2 ⊕ · · · ⊕ Vk), the conditions (i), (ii)(a) in Theorem 1 are satisfied.

Clearly the number of blocks in the decomposition (13) of Proposition 11 is not
arbitrary. Indeed, the linear matrix polynomial λI − Jα, where

Jα =


α 1

α 1

α
. . .
. . . 1

α


is of size 2`× 2`, cannot be reduced to a block diagonal structure with smaller block
sizes. Further, since λI − Jα is a linearization of

P (λ) =

[
(λ− α)` 1

(λ− α)`

]
,

it may also be the case that for matrix polynomials of degree ` > 1, the block sizes of
a block-diagonal form cannot be reduced.
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Let λI − A be a linearization of P (λ) ∈ F[λ]n×n in (1). From Theorem 1 and
Proposition 11, we see that a reduction to diagonal form is possible if we can partition
the Jordan blocks associated with A into n sets such that

(a) each set has at most one Jordan block of each eigenvalue, and
(b) the sizes of all Jordan blocks in each set sum up to `.

The result also holds in the opposite direction, that is, it is possible to reduce P (λ)
to diagonal form, only if we can partition the Jordan blocks of A such that (a) and
(b) hold. To see this, we simply note that any diagonal monic matrix polynomial
D(λ) = d1(λ)⊕d2(λ)⊕· · ·⊕dn(λ) has left companion linearization in controller form:

λI − (CL(d1)⊕ CL(d2)⊕ · · · ⊕ CL(dn)).

The following question arises: When is it possible to partition the Jordan blocks such
that (a) and (b) are satisfied? This problem was solved by Lancaster and Zaballa [8]
for the special case of quadratic matrix polynomials with nonsingular leading matrix
coefficient, and by Zúñiga Anaya [18] for general regular quadratics. For matrix
polynomials of higher degree the problem is still open.

3.2.3. Hessenberg form. For the reduction to Hessenberg form we have the
following result.

Proposition 13. Let A ∈ F`n×`n and let Z be a nonsingular matrix such that

(14) Z−1AZ = H,

where H is upper Hessenberg and partitioned in `×` blocks. Assume that the `×` diag-
onal blocks are unreduced, that is, Hi+1,i 6= 0 for all i. If we let V = [e1 e`+1 · · · e(n−1)`+1]

and X = ZV ∈ F`n×n then K`(A,X) is nonsingular and A`xi ∈ K`(A, x1:i+1) for
i = 1, . . . , n− 1.

Proof. We have K`(A,X) = ZK`(H,V ), which is obviously nonsingular. Fur-
thermore, if vi and xi are the ith columns of V and X, respectively, then

A`xi = ZH`vi = ZH`e(i−1)`+1 ∈ ZK`(H, v1: i+1) = K`(A, x1: i+1),

completing the proof.

In practice we are interested in Hessenberg decompositions A = UHUH , where
U is unitary or real orthogonal, depending on whether we work over C or R. By
the implicit Q-theorem [4, Thm. 7.4.2], the Hessenberg matrix H is uniquely defined,
up to products by real or complex numbers of absolute value 1, by the first column
of U . Hence a random Hessenberg matrix similar to A via unitary/real orthogonal
transformations, can be constructed using, e.g., the Arnoldi algorithm with a random
starting vector (or equivalently, the standard Hessenberg reduction step [4, Sec. 7.4.2]
applied to QAQH , where Q is a random orthogonal matrix). If a matrix has distinct
eigenvalues, the resulting Hessenberg matrix will be unreduced with probability one.
Since this is the generic case for matrix polynomials, Proposition 11 may be used to
reduce almost all matrix polynomials to Hessenberg form, without further care. This
is how the right plot of Figure 2 was obtained.

If a matrix, on the other hand, has an eigenvalue of geometric multiplicity greater
than one, then any similar Hessenberg matrix is necessarily reduced. Now, according
to Proposition 13 the reduction of P (λ) to Hessenberg form is still valid if H is
reduced, as long as the diagonal `× ` blocks are unreduced. This means that all zeros
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on the subdiagonal are in some of the positions (`+ 1, `), (2`+ 1, 2`), . . . , ((n− 1)`+
1, (n− 1)`). If H has a zero in any other position on the subdiagonal (that is, if some
Hessenberg diagonal block is reduced), K`(A,X) becomes singular and the reduction
will fail with the matrix X selected in the statement of Proposition 13. This raises the
following question: Is it possible to move zeros on the subdiagonal, from unwanted to
wanted positions, using a finite number of Givens rotations or Householder reflectors?
Intuitively, this should not be possible since if moving a zero is possible then we can
change the number of “deflated” eigenvalues; a rigorous argument can be found in
[13, pp. 104–105].

Proposition 14. Matrices X of Propositions 9 and 13 can be taken to have
orthonormal columns.

Proof. Let X be the matrix constructed in the proof of either Proposition 9 or
that of Proposition 13. Let X = QR be a QR factorization of X. Since X has full
column rank, R is nonsingular and Q = XR−1. Thus

K`(A,X) = K`(A,Q)(R⊕R⊕ · · · ⊕R),

and so K`(A,Q) is nonsingular,
Now, write Q = [Q1 Q2 · · · Qk ] with Qi ∈ F`n×si and s1 + · · · + sk = n.

Define Q1:i = [Q1 · · · Qi ] ∈ F`n×σi with σi = s1 + · · ·+ si and let Ri denote the
i× i upper left principal submatrix of R. Then Ri is nonsingular, X1:i = Q1:iRσi and

K`(A,X1:i) = K`(A,Q1:i)(Rσi
⊕Rσi

⊕ · · · ⊕Rσi
).

Therefore, K`(A,X1:i) = K`(A,Q1:i), i = 1, . . . , k, and so if X is the matrix of
Proposition 9 then K`(A,Q1:i) is A-invariant.

Similarly, the ith column of X and Q are respectively xi = q1:iri and qi = x1:iui,
where ri and ui are the last columns of Ri and R−1

i , respectively. A simple induction
argument shows that A`xi ∈ K`(A, x1:i+1) if and only if A`qi ∈ K`(A, q1:i+1).

In practice, using a matrixX with orthonormal columns to construct S = K`(A,X)
may result in a more reliable way of computing S−1AS to obtain the left companion
matrix of a block-triangular or Hessenberg matrix polynomial equivalent to P (λ). We
note that while we have discussed (when possible) how to compute X in a stable man-
ner, finding the reduced matrix polynomial R(λ) appears to require futher computing
S−1AS. We leave the stable computation of R(λ) as an open problem.

4. Stable computation of a special Schur form for quadratic matrix
polynomials. In this section we show that the Schur decompositions in Theorem 2
and Theorem 3 can always be computed in a numerically stable manner when ` = 2.
We collect key tools in lemmas, which all have algorithmic proofs. Examples are
provided at the end of the section. We discuss the complex and real cases in different
subsections. Recall that the eigenvalues of any linearization of P (λ) in (1) have
geometric multiplicity at most n [3, Thm. 1.7].

4.1. The complex case. We start by proving two lemmas. Here and below
MATLAB notation is used, in which X(i1 : i2, j1 : j2) denotes the submatrix of X
formed with the i1 through i2 rows and the j1 through j2 columns.

Lemma 15. Assume that A ∈ C2n×2n has at least two distinct eigenvalues α and
β with α of geometric multiplicity at most n. Then there exists a Schur form of A,
A = UTUH , such that
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(i) T (1 : 2, 1: 2) =

[
β ∗
0 α

]
.

(ii) α is an eigenvalue of T (3 : 2n, 3: 2n) with geometric multiplicity at most n−1.

Proof. Let T̂ be a Schur form of A. By using, if necessary, the Bai-Demmel algo-
rithm [1] we can assume that the blocks in the diagonal of T̂ are so that T̂ (1 : 2, 1: 2)
is as in (i). Then the condition (ii) necessarily holds if the geometric multiplicity of
α as eigenvalue of A is less than n. Hence below we suppose that it is equal to n.

Let m1 ≥ m2 ≥ · · · ≥ mn be the partial multiplicities of α as eigenvalue of A
(that is, the sizes of the Jordan blocks) and s = m1 + · · ·+mn. Since A has at least
two distinct eigenvalue, n ≤ s < 2n and so mn = 1. We aim to detect one eigenvalue
α in the diagonal of T̂ associated with a Jordan block of size 1.

We use again the Bai-Demmel algorithm [1] to reorder the diagonal of T̂ (2 : 2n, 2: 2n)
so that in the new matrix T0 the s eigenvalues α appear in the submatrix T1 =
T0(2 : s+ 1, 2: s+ 1). Observe that T0 is still a Schur form of A.

Thus α is the only eigenvalue of T1 and its geometric multiplicity is n. Let
Q1 ∈ Cs×n be a matrix whose columns are an orthonormal basis of Ker(T1 − αIs)
and complete Q1 up to a unitary matrix Q̂ = [Q1 Q̂1] ∈ Cs×s. Then we have

(15) Q̂HT1Q̂ =

[
αIn C1

0 B

]
for some B,C1. If QH2 BQ2 = TB is a Schur decomposition of B and

Q =

 1
Q̂

I2n−s−1

 In+1

Q2

I2n−s−1


then

T2 = QHT0Q =


β ∗ ∗ ∗

αIn C ∗
TB ∗

TD


is a Schur decomposition of A and α is not an eigenvalue of TD. Now, the size of C
is n × (s − n) and s < 2n. It follows that C is row rank deficient and so there is a
row of C, say row k, that linearly depends on the other rows of C. In practice, such
a row can be detected by using a QR factorization of CT : the position of a 0 in the
diagonal of R is one of such rows.

If k = 1 then null(T2(3 : s+1, 3: s+1)−αIs−1) = n−1 and T2 is the required Schur
form of A satisfying conditions (i) and (ii). If this not the case, there exists a similarity
transformation via a Givens rotation1 in the planes (2, k + 1) such that if T3 is the
resulting matrix, it is still triangular and rank(T3(3 : s+1, 3: s+1)−αIs−1)) = s−n.
So, null(T3(3 : s+ 1, 3: s+ 1)−αIs−1) = n− 1 and T3 satisfies conditions (i) and (ii).

We note that the structure in (15) is the first step of a proof of the Jordan
canonical form (e.g. [16, Sec. 2.4]), and a further reduction of B establishes the Weyr
characteristics [11], leading to the Weyr canonical form.

The next lemma is needed for dealing with a matrix with only one real eigenvalue.

1In fact a permutation suffices here.
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Lemma 16. Let A ∈ C2n×2n be upper triangular with zero diagonal entries and
assume that the geometric multiplicity of the zero eigenvalue is at most n. Then there
exists a unitary U such that UHAU is upper triangular with nonderogatory 2 × 2
diagonal blocks.

Proof. Notice that the hypothesis about the geometric multiplicity of zero as an
eigenvalue of A is equivalent to rank (A) ≥ n.

We use induction on n. For n = 1, rank (A) ≥ n implies that A =
[
0
0
a12
0

]
with a12 6= 0, that is, A is nonderogatory. Suppose the result holds for n − 1. Let
A ∈ C2n×2n be upper triangular with zero diagonal and rank (A) ≥ n. If a12 = 0
then we can unitarily transform A so that its (1, 2) entry becomes nonzero as follows.
Use a sequence of Givens rotations G to transform the first nonzero column of A, say
Aem, m ≥ 2, to a multiple of e1. Then GHAG is still upper triangular with zero
diagonal, first m−1 columns equal to zero and the mth column equal to a multiple of
e1. Then we move the (1,m) nonzero entry to the (1, 2) position with a permutation
P2,m, where P2,m swaps the second and mth row/column of GHAG. The resulting
matrix PH2,mG

HAGP2,m is still upper triangular. Hence below we assume that a12 6= 0
in A.

Write A =
[
A11

0
A12

A22

]
, where A11 = A(1 : 2, 1: 2) =

[
0
0
a12
0

]
. To use the induction

hypothesis, we need to make sure that A22 is upper triangular with rank(A22) ≥ n−1,
that is, the geometric multiplicity of the eigenvalue zero is at most n − 1. Since it
cannot be greater than n, rank (A22) ≥ n − 2 and so care is needed only when
rank (A22) = n − 2. Notice first that, in this case, n ≥ null(A) ≥ null(A22) = n and
so rank (A) = n. This implies that the second row of A cannot be zero. In order to
unitarily transform A so that rank(A22) = n−1, we can use the same technique as that

in the proof of Lemma 15: first unitarily transform Â = QHAQ with Q = diag(1, Q̂1)

so that Â is upper triangular and the first n columns of Â(2 : 2n, 2: 2n) become zero.
Notice that the first column of A(2 : 2n, 2 : 2n) is zero and so e1 can be taken as the

first column of Q̂1. In other words, Q can be chosen to have the form Q = diag(I2, Q1)

with Q1 a unitary matrix of order 2n − 2, implying that the second row of Â is not
zero.

Now, the size of Â(2 : n+ 1, n+ 2: 2n) is n× (n− 1). Thus rank (Â(2 : n+ 1, n+
2: 2n)) ≤ n− 1 and there exists a row, k say, that linearly depends on the remaining

rows of Â(2 : n+ 1, n+ 2: 2n). Since the first row of Â(2 : n+ 1, n+ 2: 2n) is not zero,

k can be chosen such that 1 < k ≤ n+ 1. Apply a Givens rotation to Â in the planes
(2, k + 1) so that the obtained matrix Ã satisfies the following conditions:

• its (1, 2) entry is again non-zero, and

• rank (Ã(3 : 2n, 3: 2n)) = n− 1.

Such a rotation always exists (almost all rotations suffices) and we still have Ã(2 : 2n, 2: n+

1) = 0. Now the induction hypothesis can be applied to Ã.

We are now ready to describe an algorithm that stably computes the Schur form
in Theorem 2 when ` = 2. Let A = UHTU be any computed Schur decomposition of
the matrix A in Theorem 2, and suppose that some of the 2× 2 diagonal blocks of T
are derogatory.

If all eigenvalues have algebraic multiplicity at most n then we can reorder the
diagonal entries of T using the Bai-Demmel algorithm [1], as was discussed in Section
3. Thus assume that one eigenvalue α has algebraic multiplicity n+ t with 1 ≤ t ≤ n.
If t = n, we use the procedure described in the proof of Lemma 16 to further unitarily
reduce T − αI to an upper triangular matrix T1 with 2 × 2 nonderogatory diagonal
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blocks. T1 + αI is the desired Schur form of A.
If t < n, note that all other eigenvalues must have algebraic multiplicity less

than n. By using the Bai-Demmel algorithm [1] we pair as many α as possible with
eigenvalues other than α thereby forming nonderogatory blocks in the top-left corner
of T . In doing so, we use Lemma 15 to ensure that the resulting 2t× 2t bottom-right
corner of T has eigenvalue α with geometric multiplicity no larger than t. Thus we
are left with

(16) T =

[
T11 T12
0 T22

]
,

where T22 ∈ C2t×2t contains 2× 2 diagonal blocks with eigenvalue α and rank (T22 −
αI) ≥ t. Lemma 16 is then applied to T22 − αI as above to obtain a unitarily similar
upper triangular matrix with nonderogatory 2× 2 diagonal blocks.

4.2. The real case. To describe an algorithm that works in real arithmetic and
computes the Schur decomposition in Theorem 3, we need a real version of Lemma
16.

Lemma 17. Let A ∈ R2n×2n and suppose that the spectrum of A contains a pair
of nonreal complex eigenvalues a± ib and a real eigenvalue α of geometric multiplicity
at most n. Then there exists a Schur form T of A, such that

(i) T (1 : 4, 1: 4) =


a b ∗ ∗
−b a ∗ ∗

α ∗
α

, and

(ii) α is an eigenvalue of T (5 : 2n, 5: 2n) with geometric multiplicity at most n−2.

Proof. Let s ≤ 2n− 2 and k ≤ n be the algebraic and geometric multiplicities of
α as an eigenvalue of A. Consider an arbitrary real Schur form of A and reorder the
diagonal blocks, using the Bai-Demmel algorithm [1] so as to obtain a Schur form T
of A such that the leading 2 × 2 block is as in (i) and α appears on the diagonal of

X̂ = T (3 : s+ 2, 3: s+ 2). Thus the nullity of X̂ − αI is k ≤ n and, as in Lemma 15,

we can find an orthogonal Q̂0 such that

X0 = Q̂T0 X̂Q̂0 =

[
αIk C
0 TB

]
is upper triangular. By applying a unitary similarity transformation defined by Q0 =
I2 ⊕ Q̂0 ⊕ I2n−2−s to T , we get a Schur form T0 of A whose leading 4 × 4 block
satisfies (i). It also satisfies condition (ii) if k ≤ n − 2. Let us assume that k = n or

k = n − 1 and let C = Q̂1R be a “bottom-up” QR factorization of C (notice that
this matrix may be singular). For a matrix M ∈ Fm×n, we say that M = QR is a
bottom-up QR factorization of M if Q ∈ Fm×m is a unitary matrix (orthogonal in
the real case) and R(m : −1 : 1, :) is upper triangular. If fud(M) = M(m : −1 : 1, :)
and fud(M) = QfRf is a (full) QR factorization of fud(M), then a bottom-up
factorization of M is M = QR where R = fud(Rf ) and Q = fud([fud(Q∗

f )]∗). Define

Q1 = I2 ⊕ Q̂1 ⊕ I2n−2−s. Then T1 = QT1 T0Q1 is a real Schur form of A and

X1 = T1(3 : s+ 2, 3 : s+ 2) =

[
αIk R
0 TB

]
.

We examine the following three cases separately:
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k = n. In this case null(X1 − αIs) = n, the size of R is n× (s− n) and s− n ≤
2n − 2 − n = n − 2. Hence the two first rows of R are zero and so null(X1(3 : s, 3 :
s)− αIs−2) = n− 2. Therefore, T1 satisfies conditions (i) and (ii).

k = n− 1 and s < 2n− 2. Now null(X1−αIs) = n− 1, the size of R is (n− 1)×
(s−n+ 1) and s−n+ 1 < 2n−2−n+ 1 = n−1. The first row of R is zero and since
rank(X1−αIs) = s−n+1 we can conclude that rank(X1(3 : s, 3 : s)−αIs−2) ≥ s−n
(with equality if the second row of R is not a linear combination of the remaining
rows in

[
R
TB

]
). Thus null(X1(3 : s, 3 : s)−αIs−2) ≤ (s− 2)− (s− n) = n− 2. Again

T1 satisfies the desired conditions.
k = n− 1 and s = 2n− 2. We have X1 = T1(3 : 2n, 3 : 2n) and so the only

eigenvalue of T1(3 : 2n, 3 : 2n) is α. In addition null(X1 − αI2n−2) = n − 1 and so
X1−αI fulfils the hypothesis of Lemma 16. It was shown in the proof of that lemma
that there is an orthogonal matrix U such that (X̃1 − αI) = UT (X1 − αI)U is a
matrix in real Schur form and satisfies two conditions: its (1, 2) entry is not zero and

rank (X̃1−αI)(3 : 2(n− 1), 3: 2(n− 1)) = n− 2. If V = I2⊕U then V TT1V is a real
Schur form of A which satisfies conditions (i) and (ii).

It is worth remarking that it is only when s = 2n−2 and null(X1−αIs) = n−1 that
the 4× 4 leading block of the Schur form constructed in Lemma 17 is nonderogatory.
This corresponds to the case k = n− 1 = s/2 in the proof of Lemma 17. In any other
case the geometric multiplicity of α in that block is two.

We now have the artillery to describe a stable algorithm that computes the Schur
form of A in Theorem 3 for ` = 2. Suppose a real Schur form of A is given. Any 2× 2
block on the diagonal associated to a pair of nonreal complex conjugate eigenvalues
is obviously nonderogatory, so we only need to take care of the real eigenvalues. The
case when all eigenvalues have algebraic multiplicities at most n was discussed in
Section 3. In the real case with ` = 2 there cannot be nonreal complex eigenvalues
of algebraic multiplicity greater than n. Hence, we only have to deal with the case
when exactly one real eigenvalue α has algebraic multiplicity greater than n. We first
use Lemma 17 as many times as possible, that is, we pair two copies of α with as
many pairs of nonreal complex conjugate eigenvalues as possible. After doing this
we are left with real eigenvalues only. Henceforth, Lemma 15 and Lemma 16 can be
used as in the complex case to get a Schur form of A with all its diagonal blocks
either nonderogatory of size 2 × 2 or of size 4 × 4 with eigenvalues whose geometric
multiplicity is at most two.

We illustrate this process in the following example.

Example 18. Let n = 4, ` = 2 and let A be the following matrix in real Schur
form:

A =



1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
0 −1 ∗ ∗ ∗ ∗ ∗
1 0 ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗
1 ∗ ∗ ∗

1 ∗ ∗
a ∗

1

 .

where a is either 1 or 2. Thus the distinct eigenvalues of A are 1, i and −i when a = 1
and 1, 2, i and −i when a = 2. The algebraic multiplicity of 1 is 5 > n or 6 > n
according as a = 2 or a = 1 but its geometric multiplicity must be at most 4. Let us
assume that it is 4. Under these conditions (see [3, Thm. 1.7]) A is a linearization of a
4×4 quadratic matrix polynomial P (λ) with nonsingular leading coefficient. Now, by
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[15, Th. 3.6], P (λ) is not triangularizable over R[λ]. Hence there is no real Schur form
of A with four nonderogatory blocks of size 2×2 in the diagonal. In other words, any
real Schur form of A with the properties of Theorem 3 must have, at least, one block
of size 4 × 4 with 1 as an eigenvalue of geometric multiplicity 2. This is consistent
with Theorem 4.1 of [15] and must be revealed by the algorithmic process.

Our goal is to find an orthogonal matrix Q ∈ R8×8 such that QTAQ is a real
Schur form with two nonderogatory blocks of size 2 × 2 and one block of size 4 × 4
with only one real eigenvalue whose geometric multiplicity is 2. We use the procedure
developed in Lemmas 15–17 as follows.

Step 1: We are under the hypothesis of Lemma 17. Use Bai-Demmel algorithm

to exchange entry (1, 1) and block
[
0
1
−1
0

]
to obtain a new real Schur form T1 = QT1 AQ1

with diagonal diag (B1, 1, 1, 1, 1, a, 1) where B1 is similar to
[
0
1
−1
0

]
.

Let us assume now that a = 2. The case a = 1 will be dealt with later on.
Step 2: Use Bai-Demmel algorithm to exchange entries (7, 7) and (8, 8) so that

all equal eigenvalues appear together in the diagonal. We get a new real Schur form

T2 = QT2 T1Q2 =


B1 ∗ ∗ ∗ ∗ ∗ ∗

1 ∗ ∗ ∗ ∗ ∗
1 ∗ ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
2

 .

T2 satisfies condition (i) of Lemma 17. We proceed as indicated in steps 1-3 of the
proof of that lemma to produce a real Schur form which also satisfies condition (ii).

Step 3: Extract the following submatrix T2(3 : 7, 3 : 7)

X =


1 ∗ ∗ ∗ ∗

1 ∗ ∗ ∗
1 ∗ ∗

1 ∗
1

 ,
and obtain an orthonormal basis Q̂1 of Ker(X − I5) (using the singular value decom-
position, for instance). By hypothesis, the geometric multiplicity of eigenvalue 1 is

4. Then dim Ker(X − I5) = 4 and so the size of Q̂1 is 5 × 4. Complete Q̂1 up to an

orthogonal matrix Q̃1 (using, for example, the QR factorization of Q̂1). Then

Q̃T1XQ̃1 =

[
I4 c
0 1

]
,

where c is not the zero vector. Compute a bottom-up QR factorization of c. In this
case we can use a Householder reflection, Q̂T2 (= Q̂2) so that Q̂T2 c = [ 0 0 0 d ]

T

with d 6= 0. Define Q̃2 = diag(Q̂2, 1) and Q3 = diag(I4, Q̃1Q̃2). Then

T3 = QT3 T2Q3 =


B ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 0 0 ∗
1 0 0 0 ∗

1 0 0 ∗
1 d ∗

1 ∗
2

 .

Since d 6= 0, the geometric multiplicity of 1 as eigenvalue of T3(5 : 8, 5 : 8) is 2.
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Step 4: We could successively permute the first and second and then the second
and third rows and columns of T3(5 : 8, 5 : 8) to get the desired matrix. However,
T3(5 : 8, 5 : 8) satisfies the hypothesis of Lemma 15 and we will proceed as indicated in
its proof: use Bai-Demmel algorithm to swap block

[
1 d
1

]
and the entry 2 in position

(8, 8). The resulting matrix is

T4 =


B ∗ ∗ ∗ ∗ ∗

1 0 0 ∗ ∗
1 0 ∗ ∗

1 ∗ ∗
2 ∗

C

 .
where C is similar to

[
1 d
1

]
and so, it is nonderogatory. If C is itself upper triangular

then T4 is the desired matrix. Otherwise,
Step 5: Reduce C to upper triangular form by orthogonal similarity and apply

it to the last two rows and columns of T4 to obtain:

T5 =


B ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 ∗ ∗ ∗
1 0 ∗ ∗ ∗

1 ∗ ∗ ∗
2 ∗ ∗

1 g
1

 .

T5 is a real Schur form of A with two nonderogatory blocks of size 2 × 2 and one
block of size 4 × 4 in the diagonal. The geometric multiplicity of 1 as eigenvalue of
T5(1 : 4, 1 : 4) is two; thus we have a desired Schur form for a = 2.

Assume now that a = 1. We skip step 2 and go straight ahead to
Step 3: Now X = T1(3 : 8, 3 : 8) is a 6 × 6 matrix, Q̂1 is a 6 × 4 matrix with

orthonormal columns. We can complete it to a 6× 6 orthogonal matrix Q̃1 such that

Q̃T1XQ̃1 =

[
I4 C
0 TC

]
,

where TC =
[
1 r32

1

]
. Compute a bottom-up QR factorization of C = Q̂2R and define

Q3 = diag(I4, Q̃1Q̃2) with Q̃2 = diag(Q̂2, I2). Then

T3 = QT3 T2Q3 =


B ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 0 0 0
1 0 0 0 0

1 0 0 r12
1 r21 r22

1 r32
1

 ,

where r21r12 6= 0 and r21r32 6= 0 (that is, r21 6= 0 and at least one of r12 or r32 is not
zero) because otherwise null(T3 − I) > 4. Thus T3 is a real Schur form of A which
satisfies conditions (i) and (ii) of Lemma 17.

Step 4: Deflate T3(1 : 4, 1 : 4) and pay attention to Y = T3(5 : 8, 5 : 8). This
is a 4 × 4 real matrix with all eigenvalues 1. Its algebraic multiplicity is 4 and its
geometric multiplicity is 2 because r21r12 6= 0 and r21r32 6= 0. We use the proof of
Lemma 16 to get a real Schur form with two nonderogatory blocks of size 2× 2 in the
diagonal.
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First we define Z = Y − I4, which is a nilpotent matrix, and notice that if S is a
real Schur form of Z then S+ I4 is a real Schur form of Y . Now we apply the method
proposed in the proof of Lemma 16: observe that the first nonzero column of Z is
the second one and so we use a Givens rotation in order to replace that column by a
multiple of e1. In the present case a permutation of the second and third rows and
columns suffices:

PT1 ZP1 =

 0 0 r21 r22
0 0 0 r12
0 0 0 r32
0 0 0 0


Next, we permute the second and third rows and columns to get

Z1 = PT2 P
T
1 ZP1P2 =

 0 r21 0 r22
0 0 0 r32
0 0 0 r12
0 0 0 0

 .
With the notation of Lemma 15, A22 =

[
0
0
r12
0

]
and n = 2. Thus, if r12 6= 0 then

rank (A22) = 1 = n − 1 and no further transformation is needed on Z1 because it
is upper triangular with 2 × 2 nonderogatory diagonal blocks. But if r12 = 0 then
rank(A22) = 0 = n−2 and one additional transformation is needed. In fact, as shown
above and in the proof of Lemma 16, r32 6= 0 and we can perform a Givens rotation
on rows and columns two and three to place nonzero elements in (1, 2) and (3, 4) of
Z1.

Summarizing, there is an orthogonal matrix Q = Q1Q3Q4 with Q4 = I4⊕P1P2G
where G is an appropriate Givens rotation (the identity if r12 6= 0) such that

T = QTAQ =


B ∗ ∗ ∗ ∗ ∗ ∗

1 0 0 0 0 0
1 0 0 0 0

1 s12 s13 s14
1 s23 s24

1 s34
1

 ,

and s12 6= 0 and s34 6= 0. QTAQ is a real Schur form of A with two nonderogatory
blocks of size 2× 2 and one block of size 4× 4 in the diagonal. Again, the geometric
multiplicity of 1 as an eigenvalue of T (1 : 4, 1 : 4) is two.

5. Parameterized linear systems. We consider parameterized linear systems
of the form

(17) P (ω)x = b(ω), x = x(ω).

This type of systems appear when computing numerical solutions of differential equa-
tions which arise in areas including electromagnetic scattering, wave propagation
in porous media or structural dynamics (see, for example [5, 7, 12], and the refer-
ences therein). The coefficient matrix in (17) is the matrix polynomial in (1) and
b may be constant [9, 12] or a (in general, nonlinear) function of the parameter ω
[5, 7]. For quadratic matrix polynomials ω is either real or pure imaginary with
|ω| ∈ I = [ω`, ωh], ω` � ωh [5, 7, 9, 12] and the solution of (17) is to be computed for
many values of the parameter ω. In particular, in [7] b(ω) is supposed to be analytic
in I except at points ω where detP (ω) = 0; the solution x(ω) then inherits the same
property. Whether we are interested in analytic solutions of (17) or in solutions for



REDUCTION OF MATRIX POLYNOMIALS TO SIMPLER FORMS 25

finitely many values of ω, reduced forms R(λ) of P (λ) can be used to convert system
(17) into a simpler equivalent one

(18) R(ω)y = c(ω), y = y(ω).

In this section we show how to obtain c(ω) from b(ω) so that the solution of (17) can
be given explicitly in terms of b(ω) and the solution of (18).

Let CL(P ) and CL(R) = S−1CL(P )S be the left companion matrices of P (λ) and
R(λ), respectively, with S = [X CL(P )X . . . CL(P )`−1X]. On using [3, Prop. 1.2],
we have that for every ω ∈ C which is not an eigenvalue of P ,

P (ω)−1 = (eT` ⊗ In)(ωI − CL(P ))−1(e1 ⊗ In)

= (eT` ⊗ In)S
(
ωI − CL(R)

)−1
S−1(e1 ⊗ In).(19)

Since CL(P ) = SCL(R)S−1 is a left companion matrix, S−1 must be of the form

S−1 = [Y CL(R)Y . . . CL(R)`−1Y ]

for some `n× n matrix Y , and S−1(e1 ⊗ In) = Y = [Y1 · · · Yn ]
T

Also,(
ωI − CL(R)

)−1
= E(ω)

[
R(ω)−1 0

0 I

]
F (ω),

where

E(ω) =



B`−1(ω) −I 0 · · · 0

B`−2(ω) 0 −I
. . .

...
...

...
. . .

. . . 0
...

...
. . . −I

B0(ω) 0 · · · · · · 0

 , F (ω) =


I ωI · · · ω`−2I ω`−1I

0
. . .

. . . ω`−2I
...

. . .
. . .

. . .
...

...
. . .

. . . ωI
0 · · · · · · 0 I


with B0(ω) = I and Bj(ω) = ωBj−1(ω) +R`−j for j = 1, . . . , `−1. Let [Z1 . . . Z`] =
(eT` ⊗ In)S denote the last n rows of S. Then

P (ω)−1 =
(∑̀
i=1

ZiB`−i(ω)
)
R(ω)−1

(∑̀
i=1

ωi−1Yi

)
−
`−1∑
j=1

Zj

( ∑̀
i=j+1

ωi−(j+1)Yi

)
.

If we let c(ω) =
(∑`

i=1 ω
i−1Yi

)
b(ω) and solve (18) for y(ω) then for the solution x(ω)

to the parameterized linear system (17) we have

x(ω) =
∑̀
i=1

ZiB`−i(ω)y(ω)−
`−1∑
j=1

Zj

( ∑̀
i=j+1

ωi−(j+1)Yib(ω)
)
.

The structure of S and that of the left companion matrix can be exploited to construct
the last n rows of S and the first n columns of S−1.

6. Conclusions. All matrix polynomials with nonsingular leading coefficients
can be reduced to triangular form while keeping the size, degree, and eigenstructure
of the original matrix polynomial by means of unimodular transformations. We do not
have a practical way to compute the unimodular transformations, so instead, we have
proposed a practical procedure that, starting from a Schur form of any linearization
λI −A of a given n× n matrix polynomial of degree `, consists of three steps:
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1. moving the diagonal elements (and the 2 × 2 diagonal blocks, in the real
case) of the Schur form so as to obtain a new Schur form with some specific
properties,

2. using the obtained Schur form to construct a full column rank matrix X
satisfying the conditions of Theorem 1 (X may be taken to have orthonormal
columns), and

3. performing a similarity structure preserving transformation S = K`(A,X)
as in (2) so that S−1AS is the left companion matrix of a monic triangular
matrix polynomial of degree ` (only the last n columns of S−1AS are needed).

We showed how to implement step 1 so that the procedure reduces any quadratic
matrix polynomials to triangular form. For ` > 2, however, we only discussed how to
succeed with step 1 in the case when no eigenvalue has algebraic multiplicity larger
than n.

Reduction to other simple forms like block-diagonal, block-triangular or Hessen-
berg forms was also considered. In particular, it was shown that if a Hessenberg form
of a linearization, when partitioned in `×` blocks, has unreduced diagonal blocks then
the matrix polynomial can be brought to Hessenberg form using steps 2 and 3 above
(with the obvious substitutions “ Schur form” by “Hessenberg form” and “triangular
matrix” by “Hessenberg matrix”).
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