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ROBUST CHAOS REVISITED

PAUL GLENDINNING

Abstract. Robust chaos is an important idea in the study of
piecewise smooth maps. The different techniques used to prove the
existence of robust chaos are reviewed a new genericity condition
for the classic example is established. The theoretical conditions
for the existence of robust chaos are verified numerically providing
additional evidence for robust chaos in some examples.

1. Introduction

In a seminal paper, Banerjee, Yorke and Grebogi [4] introduced the
idea of robust chaos in the context of a piecewise linear maps of the
plane. The idea has been useful in the analysis of many examples
of piecewise smooth systems, but there is still some uncertainty of
precisely what has been established. In their book on bifurcations of
piecewise smooth systems di Bernardo et al. note that ‘... additional
(possibly generic) conditions must be true in order to guarantee that
such a scenario definitely occurs, and the precise enumeration of the
parameter region in which the chaotic attractor occurs remains an open
problem.’ ([5], p. 157-8.) It seems remarkable that despite the influ-
ence of the original papers very little appears to have been done to
determine what is known. The aim of this article is to consider the
different approaches to robust chaos and to discuss the extent to which
the mechanisms are fully understood and in particular (Lemma 2) an-
other generic condition required for the arguments of Banerjee et al
[3, 4] to hold is identified. This will involve revisiting not only the
work of Banerjee et al. [3, 4], but also important contributions from
Misiurewicz [15] and Young [21]. These provide rigorous results that
can be applied to examples, and in the final sections of this paper
we adapt these to obtain numerical confirmation of the assumptions
of Young’s Theorem, and hence establish (up to the accuracy of the
numerics) the existence of robust chaos by other means.

Contrary to common practice in mathematics papers I will discuss
what I do not understand as well as what I do understand. This means
that some questions arising in the former cases may be due to my own
lack of imagination rather than a broader lack of understanding. This
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approach has some dangers, but I hope that it will highlight interesting
questions for future research.

It is probably not useful to over-define the concept of robust chaos.
Roughly speaking a family of dynamical systems defined by parameters
in some set P ⊆ Rm has robust chaos if there exists an open set of
parameter values R ∈ P such that for all parameters in R the system
has a chaotic attractor. The fact that the set R is open means that
the existence of chaotic attractors is stable to perturbations, hence the
term robust chaos.

Of course, the question of how the parametrization is defined was
not addressed and so the ‘definition’ above is liable to abuse. It is easy
to define a family in which all members of the family are conjugate via
a linear transformation, and hence the dynamics of every member of
the family is equivalent. In my view this is not in the spirit of [3, 4],
though it has been used, and van Strien [19] addresses this point quite
effectively.

Robust chaos was originally defined in the context of the border
collision normal form [16]. Let z = (x, y)T then the border collision
normal form, with the notation of [4], is the continuous map

zn+1 = F (zn) =

{
JLzn +m if xn < 0

JRzn +m if xn ≥ 0
, (1)

where

Jk =

(
τk 1
−δk 0

)
, k = L,R, and m =

(
µ
0

)
. (2)

The parameters τk and δk are generally taken to be fixed, and µ is the
bifurcation parameter. Following [4] we will concentrate on parameters
with µ > 0 and hence without loss of generality µ = 1 (by rescaling
the variables) and

0 < δk ≤ 1, k = L,R, τL > 1 + δL, τR < −(1 + δR). (3)

We will denote the set of border collision normal forms (1), (2) with
µ = 1 and (3) as BCNFRC .

If F ∈ BCNFRC then F has two fixed points, X in x > 0 and Y in
x < 0, with

X =
(

1
1+δR−τR

,− δR
1+δR−τR

)
, Y =

(
− 1

τL−1−δL
, δL
τL−1−δL

)
. (4)

Both are saddles: the Jacobian matrix at Y , JL, has one eigenvalue
greater than one and the other (also positive) less than one whilst the
Jacobian matrix at X, JR, has one eigenvalue less than −1 and the
other between −1 and zero. Note that since δk > 0, k = L,R, F is
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a homeomorphism and the image of the half-plane with x < 0 is the
half-plane with y > 0 whilst the image of the half-plane with x > 0 is
the half-plane with y < 0. Note also that the x-axis is the image of the
y-axis. These observations will be useful later.

Banerjee et al. [3, 4] use arguments based on the geometry of the
stable and unstable manifolds of X and Y to suggest that the border
collision normal form with parameters satisfying (3) has robust chaos.
These arguments are discussed in section 2, where we highlight some
issues in the sketch proof presented in [4]. The issues do not imply that
the statement is incorrect, but some of the arguments do appear to be
incomplete (as is normal in a sketch proof). In section 3 we indicate
how Misiurewicz [15] resolves some of the issues raised for the case of
negative determinants δk. In section 4 we describe Young’s approach
to the problem [21], and in section 5 the application of this approach to
the border collision normal form is discussed. In sections 6 and 7 these
ideas are applied to the negative determinant case of Misiurewicz and
the classic paramaters of (3), showing how the conditions of Young’s
Theorem can be verified numerically. Finally, in section 8 recent results
on robust chaos for expanding maps are given. In this case it is possible
to have fully two-dimensional attractors for open sets of parameters,
whilst those of the classic robust chaos are quasi-one-dimensional with
a fractal structure in the second dimension.

This article concentrates on the questions arising from the important
observations in [4]. There are many other approaches to piecewise
smooth systems (e.g. [1]), and although the border collision normal
form was derived in the context of bifurcations of piecewise smooth
maps in 1982 [16], its simplicity of form and intriguing complexity of
dynamics had already been recognised (e.g. [8, 14]), but a full historical
discussion of the approaches to and observations of bifurcations and
complicated dynamics for these maps is beyond the scope of this article.

It is worth emphasising that the close scrutiny of the sketch proof in
[4] is worthwhile because of the importance of the idea of robust chaos
in the study of piecewise smooth systems. In other words, whilst the
discussion of section 2 presents a critique of [4], it is not intended in any
way to be critical of the fundamental insights of that paper. Indeed, it
may be me that is being slow to understand the detailed steps!

2. Geometry of the stable and unstable manifolds

The analysis of [4] involves three steps. First the stable and unstable
manifolds of Y (the fixed point in x < 0) are used to define a trapping
region, i.e. a polygon such that all initial conditions starting within
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Figure 1. 10000 iterates of the initial condition
(0.2,−0, 1) of the border collision normal form showing
strange attractors with one and two components respec-
tively. (a) τL = 1.8, τR = −1.7, δL = 0.3, δR = 0.2. For
these values of the parameter the left hand side of (5)
is approximately 0.1865, so Lemma 1 holds, and the left
hand side of (9) is approximately 1.6757 so Lemma 2 also
holds. (b) τL = 1.4, τR = −1.4, δL = 0.3, δR = 0.2. For
these values of the parameter the left hand side of (5)
is approximately 0.0582, so Lemma 1 holds, and the left
hand side of (9) is approximately - 0.1140 so Lemma 2
does not hold.

the polygon remain in the polygon for all time, and hence that there
is at least one attractor in the polygon. Second, it is shown that there
is a transverse intersection between the stable and unstable manifolds
of X (the fixed point in x > 0), and hence that there is ‘a chaotic
orbit’ [4]. Finally, these two observations together with the existence
of a heteroclinic connection between the unstable manifold of Y and
the stable manifold of X are used to show that the ‘chaotic orbit’ is
the unique attractor in the polygon. Banerjee et al. [4] also use the
(stated) continuity of Lyapunov exponents to argue that the attractor
is robust, though this is unnecessary since if the previous three steps are
correct then there is a unique chaotic attractor at each parameter value
identified and no further work is required to prove that the attractor
is robust.

To show that there must be some issues about the proof consider the
attractor of Figure 1, which is a numerical extension of the example
in [5] but with non-zero values of the determinants. The parameters
satisfy the conditions of the statements from [4], but it is in two com-
ponents and bounded away from the fixed point X which lies between
the two components. Assuming that the chaotic orbit referred to in [4]
is a chaotic set associated with the transverse homoclinic orbit to X,
then X is in the closure of the chaotic set and hence in the attractor.
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This is clearly not the case here, so some element of the sketch proof
will need modification For a more detailed description of the homoclinic
bifurcations in piecewise-smooth systems see [18].

Lemma 1. Suppose that F ∈ BCNFRC and denote the eigenvalues of
JL by λkL, k = 1, 2 with 0 < λ2L < 1 < λ1L. If

τLδL − δ2L − δLλ2L − δLδR + τRδLλ1L + δRλ2L − τRδL > 0. (5)

then there exists a closed polygonal region D such that z ∈ D implies
F (z) ∈ D.

Note that (5) is precisely equation (5) of [4]. Of course, the fact that
z ∈ D implies F (z) ∈ D means that F n(z) ∈ D for all n = 1, 2, 3, . . . .

Proof of Lemma 1: LetX = (X1, X2)
T and similarly for other points.

The geometry of the stable and unstable manifolds of Y is shown in
Figure 2a. The eigenvalues λkL are the solutions of λ2 − τLλ+ δL = 0
and the corresponding eigenvectors are (−λkL, δL)

T . Using this it is
straightforward to calculate the intersection D of the local unstable
manifold of Y with the x-axis and the intersection S of the local stable
manifold of Y with the y-axis:

D =

(
λ1L − 1

τL − 1− δL
, 0

)T

S =

(
0,− λ1L − δL

τL − 1− δL

)T

. (6)

It is straightforward to show that (3) implies that D1 > 1. The stable
manifold of Y bends on the y-axis and the continuation of the branch
Y S intersect the x-axis at C where

C =

(
δL(τL − δL − λ2L

(τL − 1− δL)(δRλ2L − τRδL)
, 0

)T

. (7)

Now suppose that D1 ≤ C1, and so 1 < D1 < C1. Then the x-axis
with 0 < x < C1 maps to the line L connecting (1, 0)T to F (C) and
this line contains F (1, 0) = (τR + 1,−δR)

T . Since τR < −1 this lies in
x < 0 and so the ‘rest’ of the line L does too, in particular F (C) lies in
x < 0. (This is important – it is necessary to ensure that the point C
is actually on the stable manifold of Y and not simply on the extension
of this line.) Since F (C) is by definition on the line Y S, this also shows
that F (D) is on the line segment connecting F (C) and (1, 0)T .

Now consider the region D = Y DCS. By construction the image of
the boundary of D is in D and hence F (D) ⊆ D.

�
Now consider the geometry of the stable and unstable manifolds of

X (see Figure 2b). The eigenvalues of JR are λkR, k = 1, 2 satisfying
λ2 − τRλ + δR = 0 and (3) implies that they can be labelled so that
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Figure 2. Geometry of the invariant manifolds. (a) For
the fixed point Y ; (b) for the fixed point X showing a
homoclinic point, H.

λ1R < −1 < λ2R < 0. Both the local stable and unstable manifolds
have positive slopes, the steeper being the stable manifold. The local
unstable manifold is the line segment TF (T ) where T is the intersection
of the unstable manifold with the x-axis:

T =

(
1− λ1R

1 + δR − τR
, 0

)
, (8)

(remember τR < −1). A short algebraic manipulation shows that 0 <
T1 < 1. The extension of the unstable manifold from T into y > 0
will be the image of the line segment F (T )F−1(T ), i.e. the image of
the part of the local unstable manifold that is in x < 0. This is a line
segment F 2(T )T and since F (T ) is in x < 0 then F 2(T ) is in y > 0 as
shown. Thus there will be a homoclinic intersection between the local
stable manifold of X and this extension of the unstable manifold of X
provided F 2(T ) lies to the left of the local stable manifold as indicated
in Figure 2b resulting in the homoclinic intersection point H.

Lemma 2. Suppose that F ∈ BCNFRC and denote the eigenvalues of
JR by λkR, k = 1, 2, with λ1R < −1 < λ2R < 0. If

(τLτR − δR)λ1R + ( δL
δR

+ δL − 1)λ2R − τRδL − τLδR + τR − τL > 0 (9)

then the stable and unstable manifolds of X intersect transversely.

Proof: By brute force calculation F 2(T ) lies on the stable manifold
of X if the right hand side of (9) is zero.

�
I am not aware of the condition (9) in the literature, although as we

shall see it explains the apparently anomalous behaviour of Figure 1.
To see that (9) is not a consequence of the existence of the bounding
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region D it is easier to consider the special case

δL = δR = b, τL = −τR = a. (10)

In this case (5) becomes

2a− 2b− λ2L − aλ1L + λ2L > 0

and as b → 0, λ1L → a and λ2L → 0 so the condition is simply 2−a > 0
or a < 2. Similarly (9) becomes

−2a(1− b) + bλ2R − (a2 + b)λ1R > 0

and as b → 0, λ1R → −a and λ2R → 0 so the condition is simply −2a+
a3 > 0 or a >

√
2. This shows that if (5) holds then for some parameters

(9) holds whilst for other it does not. Moreover, the thresholds in
the limit b → 0 make a connection with one-dimensional tent maps
(unimodal maps with slope of modulus a, 1 < a ≤ 2) blindingly obvious
– though I confess I did not think of it until I had gone through this
analysis. If

√
2 < a ≤ 2 then the attractor of the tent map is an

interval and the non-trivial fixed point (the fixed point on the side
that the map has negative slope) has a homoclinic connection, whilst
if 1 < s <

√
2 there is no homoclinic connection to the non-trivial

fixed point and the attractor is contained in the union of two disjoint
intervals. This is essentially the explanation for Figure 1: there is no
homoclinic connection to X, though presumably there is a transverse
homoclinic orbit to an unstable orbit of period two since the attractor
appears to have two components.

Having clarified the conditions for the existence of a transverse ho-
moclinic intersection between the stable and unstable manifolds of X,
the next step is to argue that there is a unique chaotic attractor as-
suming that (5) and (9) are satisfied. Note that if (9) is not satisfied
then there can still be robust chaos involving homoclinic connections
to orbits other than the fixed point X, but we will concentrate here on
the argument of [4].

There are two natural conjectures arising from the discussion above.

Conjecture 3. The set of F ∈ BCNFRC such that (5) holds has
robust chaos.

This is the original statement of [4] and [3]. Lemma 2 shows that
the argument of [4] based on transverse intersections of the stable and
unstable manifolds of X do not hold here, although it is quite possible
that by replacing F by F 2k for some k ≥ 1 in different regions of
the parameter space there might be a way to extend their argument
over the whole of this parameter space. Indeed, my guess is that this
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conjecture is true; all I am pointing out is that the received argument
is not sufficient to establish it.

Conjecture 4. The set of F ∈ BCNFRC such that (5) and (9) hold
has robust chaos.

For the parameter values of Conjecture 4 there is a trapping region
and hence at least one attractor (Lemma 1) and a transverse intersec-
tion between the stable and unstable manifolds of X (Lemma 2), and
so the geometry is as described in [4].

The argument of [4] involves an application (uncontroversial) of the
Lambda Lemma [2, 17]. Putting the two parts of Figure 2 together we
see that there is a transverse intersection between the local unstable
manifold of Y and the local stable manifold ofX, at a heteroclinic point
T say. By definition F k(T ) → X and F k(T ) lies in x > 0 for all k > 0.
Hence given any η > 0 there is a small part of the unstable manifold
of Y through T which is within η of the local unstable manifold of
X after some number of iterations in x > 0. Let W u(X) denote the
unstable manifold of X. Since the unstable manifold of X is the union
of images of any sufficiently small part of the local unstable manifold
of X containing X, the continuity of F implies that given any point
x ∈ W u(X) and ϵ > 0 then by choosing η small enough there will be
a point on the image of the unstable manifold of Y close to T that
maps within ϵ of x. Hence for all x ∈ W u(X) and ϵ > 0 there exists
y ∈ W u(Y ) such that |x− y| < ϵ.

Banerjee et al now argue [4] that this, together with the observa-
tions made above, is enough to establish Conjecture 4. Their (sketch)
demonstration, with the notation above, is [4]: Since W u(Y ) comes ar-
bitrarily close to W u(X), the attractor must span W u(Y ) in one side of
the heteroclinic point. [Paragraph] Since all initial conditions in x < 0
tend to W u(Y ) and all initial conditions in x > 0 converge to W u(X),
and since there are points in W u(Y ) in every neighbourhood of W u(X),
we conclude that the attractor is unique. Precisely the same wording is
used in the expanded version [3] so we learn nothing new there.

I do not fully understand the first sentence. It seems likely that
an argument along the lines of: the chaotic set comes arbitrarily close
to the unstable manifold of X and hence, since it is recurrent and F
is a homeomorphism, arbitrarily close to preimages of this set, and
since at least one side of the unstable manifold of Y through T comes
arbitrarily close to the local unstable manifold of X, then the attractor
is arbitrarily close to (at least) one side of the unstable manifold of Y
in a neighbourhood of T . However, the use of the word span suggests
something stronger, that every point on the unstable manifold of T
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close to T and on one side of T is arbitrarily close to the attractor, and
this is not clear from the description of the chaotic orbit.

I do not fully understand the second sentence. It is true that under
iteration in x < 0 (resp. x > 0) orbits tend to the local unstable
manifold of Y (resp. X). However, this does not imply contraction
towards an arbitrary point on the global unstable manifolds. Indeed
it is easy to choose two points on W u(X) in x < 0 (and y < 0) and
hence by the Lambda Lemma two points inW u(Y ), whose separation is
increased by iteration in x < 0. However, points separated by a vector
in the stable eigendirections (e.g. the eigenvector of λ2L in x < 0) are
contracted so provided such points exist locally, or exist sufficiently
frequently locally, the an argument like this should hold.

The point of the previous two paragraphs is that although Banerjee
et al [3, 4] have described an important and real phenomenon, it is
worth challenging the community to work harder on the precise state-
ments and arguments that justify their conclusions. This is not simply
a mathematical nicety; I feel that this understanding would help un-
derstand other features of piecewise smooth systems too.

Establishing the status of the two conjectures above is left as an
open problem (and I hope I am not being stupid for not seeing the
full argument). Let me help (or muddy the waters) by adding another
conjecture which makes the possible status of ‘the chaotic orbit’ of [4]
more explicit. Reasons for believing this conjecture are given in the
next section, section 3.

Conjecture 5. Fir F ∈ BCNFRC there is an open set of parameter
values such that (5) and (9) hold, the sytem has robust chaos, and the
attractor is the closure of W u(X).

3. Misiurewicz’s Theorem and Lozi maps

Lozi [14] introduced the maps

L(x, y) = (1− a|x|+ y, bx) (11)

as a piecewise linear model of the (smooth) Hénon map [12]. The
hope was that the lack, for typical parameters, of a critical set on
which the Jacobian has a zero eigenvalue would make it possible to
prove the existence of strange attractors in this model problem, where
the existence of strange attractors for the Hénon map was proving
remarkably hard to establish rigorously. The Lozi map is a subclass of
the border collision normal form with

−τR = τL = a, δL = δR = −b, µ = 1. (12)
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If b > 0 (i.e. δL and δR both equal and negative), a > 0 and a+1−b >
0 then there is a fixed point fixed point X in x > 0,

X =

(
1

a+ 1− b
,

b

a+ 1− b

)T

. (13)

This is a saddle, with eigenvalues λ2R < −1 < 0 < λ1R < 1 if

a > 1− b. (14)

In 1980 Misiurewicz showed that provided some further conditions hold
there is indeed robust chaos, although his result pre-dates the definition
of [4]. A subset A of R2 is topologically transitive if for all open Uk

k = 0, 1 with Uk ∩ A ≠ ∅ there exists n such that F n(U0) ∩ U1 ̸= ∅.

Theorem 6. (Misiurewicz [15]) Suppose that

a > 0 and 0 < b < min

{
4− 2a, a

√
2− 2,

a2 − 1

2a+ 1

}
. (15)

Then the attractor of the Lozi map (11) is the closure of W u(X) and
the map is topologically transitive on this set.

Note that (14) is implied by the conditions of the theorem. Parts
of the proof are similar to those rehearsed in section 2, but simplified
reflecting the fact that the stable and unstable manifolds of a fixed
point in x < 0 are not needed. Thus Conjecture 5 holds in this negative
determinant case. In the case of positive determinants considered in
section 2 the extra flipping due to the fact that the stable eigenvalue
at X is negative complicates the geometry. We leave it as a (second)
challenge to modify Misiurewicz’s construction to obtain a proof in a
similar style.

4. Invariant measures and Young’s Theorem

Very little has been written about the existence of invariant mea-
sures for the dynamics of the normal form within the border collision
community. However, Lozi maps and their generalizations have been
considered in this light [7, 13, 21] and this provides a theoretical frame-
work within which the existence of measures can be established. The
key to this is Young’s Theorem [21]. The existence of an invariant
measure with non-trivial support shows that there is an attractor on
which the dynamics acts as a sort of probability distribution asymptot-
ically. We will not go into details here and the reader unfamiliar with
invariant measures should simply think of this as a way of describing
chaos (although not all invariant measures are chaotic). See [13] for a
readable introduction.
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Young [21] provides a result that can be used to prove the existence
of chaotic attractors in a wide class of maps that include the border
collision normal form. Let R = [0, 1]× [0, 1] and let S = {a1, . . . , ak}×
[0, 1] be a set of vertical switching surfaces with 0 < a1 < · · · < ak < 1.
Then f : R → R is a Young map if f is continuous, f and its inverse
are C2 on R\S and f = (f1, f2)

T satisfies the expansion properties
(H1)-(H3) below on R\S.

(H1) inf

{(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)−
(∣∣∣∂f2

∂x

∣∣∣− ∣∣∣∂f2
∂y

∣∣∣)} ≥ 0,

(H2) inf

(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣) = u > 1, and

(H3) sup

{(∣∣∣∂f1
∂y

∣∣∣+ ∣∣∣∂f2
∂y

∣∣∣)(∣∣∣∂f1
∂x

∣∣∣− ∣∣∣∂f1
∂y

∣∣∣)−2
}

< 1.

Young’s Theorem describes measures that project nicely onto one-
dimensions. Technically this is expressed as having absolutely continu-
ous conditional measures on unstable manifolds. Intuitively this means
that locally the measure projects nicely onto one dimension.

Let Jac(f) denote the Jacobian matrix of f and recall that u is
defined in (H2).

Theorem 7. (Young, [21]) If f is a Young map, |Jac(f)| < 1 for
x ∈ R\S, and there exists N ≥ 1 such that uN > 2 and fk(S)∩S = ∅,
1 ≤ k ≤ N , then f has an invariant probability measure that has
absolutely continuous conditional measures on unstable manifolds.

Since the result is for piecewise C2 maps and the conditions only
depend on derivatives this result has the important corollary that re-
sults for the piecewise linear border collision normal form, which should
more correctly be called a truncated normal form, persist when small
nonlinear terms are added.

In the piecewise linear context, consider a general piecewise affine
continuous map of the form (1) but with linear parts JR and JL defined
by

Jk =

(
Ak B
Ck D

)
(16)

k = R,L and with a general constant m ∈ R2. Then the assumptions
(H1)-(H3) above become

(|Ak| − |B|)− (|Ck| − |D|) ≥ 0, k = R,L
|Ak| − |B| > 1, k = R,L

(|B|+ |D|)/(|Ak| − |B|)2 < 1 k = R,L.
(17)
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Corollary 8. Let F : R2 → R2 be a map of the form (1) with arbitrary
m ∈ R2 and matrices Jk, k = R,L given by (16) with coefficients which
satisfy (17). Suppose that the map takes some rectangle D = [a, b] ×
[c, d] with a < 0 < b into itself and let S = {0} × [c, d] (the segment
of the y-axis in D). Let u = mink=R,L(|Ak| − |B|). If there exists an
integer N > 0 such that uN > 2 and F p(S) ∩ S = ∅ for 1 ≤ p ≤ N
then F has an attractor with an invariant probability measure that has
absolutely continuous conditional measures on unstable manifolds.

N describes how many iterates of the map are applied before return-
ing to the critical set, and hence provides a bound on the horizontal
expansion of segments. This implies that Young’s Theorem can be
slightly rewritten in a stronger form.

Conjecture 9. (Modified Young’s Theorem). Theorem 7 and Corol-
lary 8 remain true if the final condition is replaced by ‘there exists an
integer N ≥ 1 such that uN > 2 and F p(S) ∩ S = ∅ for 1 ≤ p < N ’.

The only difference is the inequality on p is replaced by strict inequal-
ity. Note that Young herself remarks that if N = 1 then the condition
is empty (which is the case for the strict inequality of Conjecture 9
but not for the inequality of Theorem 7) and has an illustration with
F (C)∩C ̸= ∅ claiming this is allowed, which is not the case if equality
holds. This, together with the remark that the importance of N is
that the proof of the theorem can be repeated with fN instead of f
in this case, strongly suggests that Conjecture 9 is correct, though I
do not consider myself a strong enough ergodic theorist to state this
categorically1. However, all the numerical results below assume this
modified result, which we will refer to as MYT.

For the border collision normal form where the matrices JR and JL
are (

τk 1
−δk 0

)
, α = L,R,

see (2), so the conditions (17) become

|τk| − 1− |δk| ≥ 0, k = R,L
|τk| > 2, k = R,L

1/(|τk| − 1)2 < 1 k = R,L.
(18)

The third of these equations is implied by the second, so only the
the first two of these equations act as conditions. Unfortunately the
second condition is restrictive in a way which means that (for example)

1I have also had informal confirmation of this from a researcher working directly
in this area.
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the Lozi map with parameters defined by (15) cannot be considered
directly because a (which is effectively τk) is less than two. But, as
Young herself points out, this problem can be avoided by a simple
scaling. Two other problems need to be addressed before the result
can be applied: the rectangular region R must be identified and then
the exponent N computed. The first of these problems needs some
thought, and it is easier to use a non-rectangular region with a view
to minimizing N (the proof of Theorem 7 is unaffected provided the
region intersects vertical lines in at most one connected component).
The problem of determining N is where computer simulations come
into their own. These three factors: scaling, existence of an trapping
region and the calculation of the exponent N are the subject of the
next section.

5. Young’s Theorem and the Border Collision Normal
Form

Given ε > 0 let y = εz, then in terms of the new coordinates (x, z)
the border collision normal form F ∈ BCNFRC is(

xn+1

zn+1

)
=

(
τk ε

−δk/ε 0

)(
xn

zn

)
+

(
1
0

)
(19)

with k = R if xn ≥ 0 and k = L if xn ≤ 0. Young’s conditions on the
derivatives, (17), therefore become

ε(|τk| − ε)− |δk| ≥ 0, k = R,L
|τk| − ε > 1, k = R,L

ε/(|τk| − ε)2 < 1 k = R,L.
(20)

If ε ∈ (0, 1) and |δk| < ε then the second inequality, |τk| > 1+ε, implies
both the first and the third.

Suppose D is a trapping region for the border collision normal form
in the standard coordinates (1), and D′ is the corresponding region in
the new coordinates (x, z). Then clearly D′ is a trapping region, and
the intersection, C, of D with the critical line x = 0 is mapped by the
coordinate transformation to the intersection, C ′, of the transformed
critical line (still x = 0) with D′. Since the map (x, y) → (x, z) is a
differentiable conjugacy for the dynamics if ε ̸= 0, the geometric con-
dition of Young’s Theorem can either be written in the old coordinates
or the new coordinates, and we will choose to continue to work in the
new coordinates.
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In the statement of Young’s Theorem the trapping region is a rec-
tangle, but the proof relies only on the expansion properties of near-
horizontal segments, and so works for any invariant region which in-
tersects the critical line and its images nicely. In particular we may
take a convex trapping region that intersects vertical lines in at most
one connected component instead of R. These comments lead to the
following reformulation of Young’s Theorem for the border collision
normal form.

Theorem 10. Let F : R2 → R2 be the border collision normal form
(1) and suppose F has a convex trapping region D which intersects the
critical line {x = 0} in a closed, non-empty line segment C. If MYT
holds and there exists ε > 0 and N ≥ 1 such that inequalities (20) hold,
and (|τk| − ε)N > 2 with F p(C) ∩ C = ∅ for 1 ≤ p < N , then F has
an attractor with an invariant probability measure that has absolutely
continuous conditional measures on unstable manifolds.

As before, note that if N = 1 then we interpret the final condition
to be automatically true (as a property of the empty set) and the
condition becomes simply that inequalities (20) hold and |τk| − ε > 2.
We shall use the conditions from Theorem 10 to verify the existence of
invariant measures for the border collision normal form.

Since the result is for piecewise C2 maps and the conditions only
depend on derivatives this result has the important corollary that re-
sults for the piecewise linear border collision normal form, which should
more correctly be called a truncated normal form, persist when small
nonlinear terms are added.

Corollary 11. Suppose that F ∈ BCNFRC, F has a trapping region
D which is mapped strictly inside itself, and MYT holds for F . Let
vε be a continuous function on D such that F + vε and its inverse are
C2 on D\C, and v and its first derivatives have modulus less than ε
on D\C. Then for all ϵ > 0 sufficiently small, F + vε has an attractor
with an invariant probability measure that has absolutely continuous
conditional measures on unstable manifolds.

Proof: For sufficiently small ε > 0 D is a trapping region for F + v
since F (D) is strictly contained in D. Similarly, the assumptions of
Young’s Theorem hold for F + v hold if ϵ is sufficiently small by the
continuity of F + v and its first derivatives in D\C.

�
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Figure 3. Geometry of the trappingregion for parame-
ters in P . (a) F 2(Q) to the left of the y-axis; (b) F 2(Q)
to the right of the y-axis. F−1(Q) is the intersection of
the line segment QF (Q) with the y-axis.

6. The Lozi Map revisited

Detailed analysis of the geometry of invariant sets in these piece-
wise linear examples frequently flounders on the rocks of infeasibly
long algebraic expressions and their interpretation. It is however often
possible to express conditions implicitly in terms that a computer can
verify using only the four elementary operations of addition and sub-
traction, multiplication and division. In this section we will combine
the theoretical approach of the previous section with, where appropri-
ate, numerical confirmation of the algebraic conditions that apply. To
emphasise that this approach has been taken we add the caveat (Nu-
merical) to all the theorems stated, and in the proofs the places where
computer verification has been used is indicated by italics.

Our first result in this section applies Theorem 10 to the region of
parameters identified in Misiurewicz’s Theorem (Theorem 6). Recall
that MYT is the Modified Young’s Theorem of Conjecture 9.

Theorem 12. (Numerical) If MYT holds then the attractor of the Lozi
map described in Theorem 6 has an invariant probability measure that
has absolutely continuous conditional measures on unstable manifolds.

Proof: Let Q be the intersection of the unstable manifold of the fixed
point X with the x-axis. Then for parameters satisfying (15) F (Q) is
in x < 0 and the triangle QF (Q)F 2(Q) is a trapping region [15]. The
point F 2(Q) may be in x < 0 or x > 0; the geometry is sketched in
Figure 3.

The intersection of this trapping triangle with the critical line (the
y-axis) is a vertical line segment SF−1(Q), where S is the intersection
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of F 2(Q)Q with the y-axis if F 2(Q) is in x < 0 as shown in Figure 3a,
or the intersection of F (Q)F 2(Q) with the y-axis if F 2(Q) is in x > 0
as in Figure 3b. If F 2(Q) is on the y-axis then S = F 2(Z).

To apply Young’s Theorem in the form of Theorem 10 let ε = b in
(19). Then the three inequalities (20) are all satisfied provided

a > 1 + b (21)

since 0 < b < 1. It is easy to prove analytically that (21) holds for all
parameters in (15) and that in fact a− b > v where

v = 14− 9
√
2 ≈ 1.272. (22)

(This is derived by considering a − b at the intersection the lines b =
4 − 2a and b =

√
2a − 2, which lies just outside the region defined by

(15) and gives a lower value for a− b than any other point.) By direct
calculation v2 < 1 but v3 ≈ 2.058 > 2.

Thus the line segment F−1(Q)S = C represents the critical line in
the trapping triangle, so we can apply Theorem 10 with N = 3 and
u = v provided F (C) and F 2(C) are both disjoint from C. Now, F (C) =
QF (S) which is in x > 0, and F 2(C) = F (Q)F 2(S) which lies in x < 0
provided F 2(S) lies in x < 0. The condition that F 2(S)1 < 0 can easily
(but painfully) be calculated and yields a polynomial inequality, but
we have checked numerically that F 2(S) is in x < 0 for all parameters
defined by (15) and hence Theorem 10 can be applied to show the
existence of an invariant measure as stated.

�
The numerical verification referred to in this proof is neither sophis-

ticated nor exhaustive: a 100× 100 grid was set up in parameter space
containing the region defined by (15) and the position of F 2(S) was
calculated on this grid, checking that F 2(S)1 < 0. Much more sophis-
ticated approaches could clearly be used, but the importance of the
result does not seem to merit that degree of effort!

It is also possible to consider parameter values outside the region
defined by Theorem 6. The triangle QF (Q)F 2(Q) described above is
an trapping region over a much larger range of parameter values than
the set defined by (15) in Theorem 6. Indeed, the results of Young [21]
show the existence of a ‘nice’ invariant measure for all parameters in
the shaded region of Figure 4 which lie below the line (a−b)3 = 2. This,
and the significance of the different shading in Figure 4, are explained
below.

Theorem 13. Suppose that a Lozi map has a convex trapping region
D which intersects the critical line x = 0 on a line segment C. If MYT
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Figure 4. Parameter space for the Lozi map: the is an
attractor with a ‘nice’ invariant measure for parameters
in the shaded region which lies below the line b = a− 2

1
3

indicated in bold. This line leaves the shaded region just
to the left of the local maximum in b. The right hand
shaded region has an invariant region with F 2(Q) to the
right of the y-axis, the left hand region has an invariant
region with F 2(Q) on the left of the y-axis.

holds, 0 < b < 1, and there exists N > 0 such that

(a− b)N > 2 (23)

and F k(C) ∩ C = ∅, 1 ≤ k < N , the F has an attractor in D with an
invariant probability measure that has absolutely continuous conditional
measures on unstable manifolds.

Proof: If (a − b)N > 2 then a − b > 1 and so the inequalities (20)
are satisfied with ε = b < 1. This, together with (23) and the self-
intersection condition for C imply that the conditions of Theorem 10
are satisfied and the result follows.

�

Corollary 14. Suppose that a > 1 + b, 0 < b < 1 and define S and Q
as in the proof of Theorem 12. If MYT holds and QF (Q)F 2(Q) is a
trapping region, (a− b)3 > 2, F (S) lies in x > 0 and both F 2(S) lies in
x < 0, then F has an invariant probability measure that has absolutely
continuous conditional measures on unstable manifolds.
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Proof: Since C, the critical line in the trapping region, is the line
segment F−1(Q)S, F (C) = QF (S) and since Q is in x > 0, F (C) is in
x > 0 provided F (S) is in x > 0. Similarly, as F 2(C) = F (Q)F 2(S)
and F (Q) is in x < 0, the interval F 2(C) lies in x < 0 if F 2(S) is also
in x < 0.

�

Regions on which the assumptions of Theorem 14 holds are easy
to calculate numerically and an example is shown in Figure 4. Note
that (a − b)3 > 2 is the same as b < a − 2

1
3 ; the straight line in

Figure 4 is the boundary of this region. The issue to be determined
numerically is whether QF (Q)F 2(Q) is a trapping region. Since the
map is piecewise linear in each half-plane this is a simple question
about whether the images of the points Q, F (Q), F−1(Q), F 2(Q) and
S. Since the images of the first three of these points are known and
in the closed triangle QF (Q)F 2(Q) only the images of the latter two
points need to be checked. In the left hand shaded region QF (Q)F 2(Q)
is a trapping region with F 2(Q) in x > 0 with the conditions on F (S)
and F 2(S) satisfied, and the right hand shaded region is the same but
with F 2(Q) in x < 0.

Thus Figure 4 is effectively itself a theorem. The structure of the
computer programme used to generate it is as follows. For each param-
eter (a, b) covering a given region of parameter space (e.g. in Figure 4
a 200× 200 grid covering (a, b) ∈ [1.2, 2]× [0, 0.8] was used).

• Calculate Q from its theoretical value, then F (Q), F 2(Q) and
F 3(Q) by iteration.

• Calculate the points U and V on the (extended) lines F (Q)F 2(Q)
and F 2(Q)Q respectively, which have y-coordinates equal to
[F 3(Q)]2.

• If F 3(Q)1 < U1 and/or F 3(Q)1 > V1 then go to the next value
of (a, b) as the triangle QF (Q)F 2(Q) is not a trapping region.
Otherwise:

• If F 2(Q)1 < 0 then calculate the point S on the intersection of
F 2(Q)Q with the y-axis.

• If F 2(Q)1 > 0 then calculate the point S on the intersection of
F 2(Q)F (Q) with the y-axis.

• Calculate the iterates F (S) and F 2(S).
• If F (S)1 > 0 and F 2(S)1 < 0 then plot the point (a, b) as
these are on the same side of the y-axis as F (O) and F 2(O)
respectively, and hence the first two images of the critical line
OS do not intersect OS.

• Repeat for the next value of (a, b).
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Attention has been restricted here to the Lozi map studied by Misi-
urewicz [15] described in section 3, but analogous statements hold for
the more general border collision normal form with negative determi-
nants.

7. Attractors for Robust Chaos

Although Lemma 1 provides a trapping region for the border collision
normal form, this region is by no means optimal in general, and to
maximize the value of N in Young’s Theorem (Theorem 7) it helps to
minimize the size of the critical line that needs to be considered.

Recall the geometry of the stable and unstable manifolds of Y shown
in Figure 2a used to construct the trapping region of Lemma 1. The
local unstable manifold of Y has a fold on the x-axis at the point D
and (if F ∈ BCNFRC) D1 > 1 and so (as τR < −1), F (D) lies in
x < 0 with y < 0. Let U be the intersection of the line DF (D) with
the (negative) y-axis, and let V be the intersection of the extension of
this line with the local stable manifold of Y , so V lies to the left of the
switching surface in y < 0.

Lemma 15. If F ∈ BCNFRC satisfies (5) the closed triangle Y DV is
a trapping region.

Proof: Note that F (D) lies to the right of V (inside the original
trapping region, which exists by Lemma 1), Y is a saddle and JL has
positive eigenvalues. The triangle Y DV is the union of two parts,
Y OUV in x < 0 and ODU in x > 0, where O represents the origin.

Consider the image of the region Y OUV . F (U) lies on the x-axis to
the left of D and the right of the local stable manifold of Y , F (O) =
(1, 0)T which is to the left of D as well, and F (V ) is on the line V Y
as it is on the local stable manifold of Y . Thus the images of Y , O, U
and V lie in Y DV and so F (Y OUV ) ⊆ Y DV .

Now consider the image ofODU . The previous paragraph establishes
that F (O) and F (U) are in Y DV and F (D) is in ODV by definition as
it is on the line DV . Hence, as F is affine in x ≥ 0 F (ODV ) ⊂ Y DV .

�
Theorem 16. Suppose F ∈ BCNFRC, (5) holds, and let ε = max{δR, δL}.
If MYT holds then Y TV as defined above is a trapping region. Fur-
thermore, if there exists N ≥ 1 such that

(|τk| − ε)N > 2, k = R,L (24)

and both F k(O) and F k(U) lie on the same side of the critical line
x = 0 for 1 ≤ k < N , then F has an attractor with an invariant
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Figure 5. (τL, τR)-parameter space for robust: there
is a convex invariant set for parameters in the shaded
region, and the additional shading indicates those regions
for which an invariant measure can be proved to exist
with N = 3, 4, 5, 6 moving down the figures. In (a) δR =
δL = 0.5, so the issue of choosing ε to be the larger of
δL and δR creates no restrictions; in (b) δL = 0.5 and
δR = 0.2 so we need to take ε = δL.

probability measure that has absolutely continuous conditional measures
on unstable manifolds.

Proof: Suppose that δL ≥ δR. Let ε = δL and consider the change
of variable in section 5 which leads to (19). Equation (24) implies that
|τk| − ε > 1 k = R,L and so the second of inequalities (20) is satisfied.
Since ε < 1 the first and third inequalities of (20) are automatically
satisfied. Hence the inequalities (20) hold and the theorem follows
from the statement of Theorem 10. The argument for the inequalities
is entirely analogous if δR > δL.

�

Figure 5 shows the numerically computed regions where the condi-
tions of this Theorem apply for N = 3, 4, 5, 6 (the regions exist for
decreasing τR). The structure of the computer programme used to
generate this figure is essentially the same as the programme described
at the end of section 6. Where more than one value of N can be cho-
sen we shade it in keeping with the lower value of N . The right hand
boundary corresponds to equality in (5). Note that for larger |τR| our
application of Young’s Theorem does not even cover the whole of this
boundary in the case δR = δL = 0.5 illustrated in Figure 5a. It would
be interesting to know how far the results could be extended.
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8. Robust Chaos with two-dimensional attractors

If at least one of the determinants δk has modulus greater than one
a new possibility arises: the existence of strange attractors that have
orbits dense in a two-dimensional region. If both determinants have
modulus greater than one then the strong expansion means that to
have attractors some folding is necessary and so the map cannot be a
homeomorphism and δLδR < 0.

Using the theoretical work of Buzzi [6] and Tsujii [20] it can be shown
that there is an open set of parameters for the border collision normal
form for which there is a two-dimensional strange attractor [9, 10].
Moreover, there are open sets of the parameters (τk, δk), k = L,R,
such that if µ < 0 the border collision normal form has a stable fixed
point, whilst if µ > 0 it has a two-dimensional (robust chaos) chaotic
attractor [11].

This poses an interesting question about the quasi-one-dimensional
attractors for the area contracting cases described here: is it possible to
have robust chaos in µ > 0 and a simple stable periodic orbit in µ < 0?
If µ < 0 then a map F ∈ BCNFRC has no fixed points, so there can
be no equivalent of the fixed point to two-dimensional attractor result.
However, can there be stable periodic orbits in µ < 0 at the parameter
values having robust chaos?

9. Conclusion

The concept of robust chaos provides an important way of looking at
the attractors of piecewise smooth maps. Since it was introduced in [4]
it has been applied many times, but there are still questions about the
mathematical status of the examples cited (though no dispute about
the phenomenon). In this paper I have tried to summarise what is
known, adding an extra condition which is necessary, but may not be
sufficient, for the phenomenon to occur in the border collision normal
form via homoclinic intersections. I have also described other work
that helps to understand the phenomenon, notably [15] and [21].

I have added a refinement to Young’s Theorem as stated in [21] and
verified the conditions of this Modified Young’s Theorem on the com-
puter, therefore (up to one’s confidence in the algebraic evaluation of
computers, the consistency of computer programmes, and MYT) con-
firmed the existence of robust chaos over a range of parameter values.

Inevitably when discussing open problems there is an element of
personal prejudice here. I have tried to be open about what I under-
stand and what I do not understand, and it is quite possible that I
am being dim-witted about some results; I leave that to the reader to
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determine through their own efforts. I think this effort is worthwhile.
The phenomenon is real and interesting. A more thorough (or at least
transparent) set of results would help our understanding of a broad
range of problems in piecewise smooth dynamical systems.
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