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NONBACKTRACKING WALK CENTRALITY FOR DIRECTED

NETWORKS

FRANCESCA ARRIGO†, PETER GRINDROD‡, DESMOND J. HIGHAM§, AND VANNI

NOFERINI¶

Abstract. The theory of zeta functions provides an expression for the generating function of
nonbacktracking walk counts on a directed network. We show how this expression can be used to
produce a centrality measure that eliminates backtracking walks at no cost. We also show that the
radius of convergence of the generating function is determined by the spectrum of a three-by-three
block matrix involving the original adjacency matrix. This gives a means to choose appropriate
values of the attenuation parameter. We find that three important additional benefits arise when we
use this technique to eliminate traversals around the network that are unlikely to be of relevance.
First, we obtain a larger range of choices for the attenuation parameter. Second, because the radius
of convergence of the generating function is invariant under the removal of certain types of nodes,
we can gain computational efficiencies through reducing the dimension of the resulting eigenvalue
problem. Third, the dimension of the linear system defining the centrality measures may be reduced
in the same manner. We show that the new centrality measure may be interpreted as standard Katz
on a modified network, where self loops are added, and where nonreciprocal edges are augmented
with negative weights. We also give a multilayer interpretation, where negatively weighted walks
between layers compensate for backtracking walks on the only non-empty layer. Studying the limit
as the attenuation parameter approaches its upper bound allows us to propose an eigenvector-based
nonbacktracking centrality measure in this directed network setting. We find that the two-by-two
block matrix arising in previous studies focused on undirected networks must be extended to a new
three-by-three block structure to allow for directed edges. We illustrate the centrality measure on
a synthetic network, where it is shown to eliminate a localization effect present in standard Katz
centrality. Finally, we give results for real networks.

Key words. generating function, inverse participation ratio, Katz, localization, loops, multi-
layer, graph spectrum, backtracking walks.
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1. Motivation. The tasks of community detection and node centrality mea-
surement can both be addressed by quantifying traversals around a network; either
random [20, 24] or deterministic [5, 10]. In particular, the concept of a walk, which
allows nodes and edges to be revisited, forms the basis of the Katz centrality measure
[15, 30], whose limiting value corresponds to eigenvector centrality [3, 4]. However, all
walks are not created equal. Recently, several authors have argued that certain, back-
tracking, walks, should be ignored. These walks include at least one back-and-forth
flip between a pair of nodes. One concrete justification for the use of nonbacktracking
walks is that localization effects can sometimes be avoided [22, 16, 27]. In the context
of community detection, a nonbacktracking version of spectral clustering was proposed
in [19]. A nonbacktracking analogue of eigenvector centrality was developed in [22]
for undirected networks, and a Katz version was proposed in [13] and studied from
a matrix polynomial perspective. However, none of those references handle directed
edges. In this work, we therefore address the case of nonbacktracking walk centrality
for directed networks.
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The paper is organized as follows. In Section 2 we introduce some background
concepts and notation and, in particular, set up the task of computing nonbacktrack-
ing walk centrality on a directed network. In Section 3 we review a recurrence that
allows us to count nonbacktracking walks and leads to a closed form generating func-
tion. This allows us to conclude that nonbacktracking walk centrality on a directed
network may be computed at the same cost as Katz centrality. Section 4 shows that
the new centrality measure may also be interpreted as standard Katz on a modified
version of the network, where self loops and negative versions of non-reciprocal edges
have been added. We also show that the measure may be viewed from a multilayer
perspective. The nonbacktracking walk centrality measure involves a downweighting
parameter whose range of values is determined by the radius of convergence of the
generating function. We show in Section 5 how this upper limit is related to the
spectral radius of a three-by-three block matrix built from the underlying adjacency
matrix. We also show that the spectral radius is unchanged when nodes of certain
types are removed, and we argue that this property can have computational ben-
efits. Section 6 considers the limiting values of the downweighting parameter. In
particular, by allowing the downweighting parameter to approach its upper bound,
we arrive at a generalization to directed networks of the nonbacktracking eigenvector
centrality measure proposed in [22]. Section 7 gives a rigorous analysis of the new
measure on a synthetic network. On this example, in the limit of large network size
the nonbacktracking measure can avoid a localization issue present in the Katz ver-
sion. In Section 8 we give experimental results on some real networks, and we finish
in Section 9 with a brief discussion.

2. Background and Problem Setting. We begin this section with some def-
initions and notation. Let G = (V,E) be a directed graph (digraph) with n nodes.
Suppose that the graph does not contain self loops (edges from a node to itself) or
multiple edges, and assume moreover that it is unweighted, i.e., all its edges have unit
weight. The graph can thus be represented by means of an n × n binary adjacency
matrix A = (aij). Here aij = 1 if there is a directed edge from node i to node j, and
aij = 0 otherwise.

The identity matrix, whose order will be clear from the context, will be denoted
by I. The ith column of the identity matrix of order n will be denoted by ei ∈ R

n.
The vector 0 ∈ R

n will be the vector of all zeros and 1 ∈ R
n the vector of all ones.

We use 1̂ ∈ R
n−1 and êi ∈ R

n−1 (for i = 1, . . . , n−1) to denote the vectors containing
the first (n− 1) components of vectors 1 and ei, respectively. We use ‖v‖2 to denote
the Euclidean norm of a vector v, and ρ(M) to denote the spectral radius of a square
matrix M .

We denote a directed edge from i to j by i→j. We call an edge i→j reciprocal,
and denote this by i ↔ j, if i→j ∈ E and j→i ∈ E. We denote by S = (sij) ∈ R

n×n

the adjacency matrix of the subgraph of G obtained by removing all edges that are
not reciprocal. The entries of this matrix may thus be defined as sij = aijaji.

A walk of length r from node i1 to node ir+1 is a sequence of r + 1 nodes
i1, i2, . . . , ir+1 such that iℓ→iℓ+1 ∈ E for all ℓ = 1, 2, . . . , r. A standard result shows
that (Ar)ij counts the number of walks of length r from node i to node j [9]. We will
use the notation

a b c · · · h

to denote a walk that uses nodes a b c · · ·h in that order. Where necessary, we use ⋆
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as a placeholder for a general node and indicate the walk length. So, for example,

i ⋆ ℓ ⋆ · · · ⋆ j of length r

denotes a walk from i to j of length r whose third node must be ℓ .
We denote by D the diagonal matrix whose diagonal entries are Dii = (A2)ii =

(S1)i. Hence Dii counts the number of neighbours of i that are connected to i by
reciprocal edges. We use douti to denote the out-degree of node i, that is, the number
of nodes that i can reach in one step. So dout := A1 is the vector of out-degrees.
Similarly, dini denotes the in-degree of node i, that is the number of nodes that can
reach i in one step. In vector form, din := AT1, where AT denotes the transpose of
A.

A walk is said to be backtracking if it contains at least one sequence of nodes
of the form i ℓ i, and nonbacktracking otherwise. We will use BTW and NBTW as
shorthand for backtracking walk and nonbacktracking walk, respectively. We note
that NBTWs have typically been studied on undirected networks [1, 16, 19, 22, 28],
but the definition continues to make sense in the directed case. We will denote by
pr(A) the matrix whose (i, j)th entry counts the number of NBTWs of length r from
node i to node j. Note that this is the nonbacktracking analogue of the matrix power
Ar. To illustrate the idea, in Figure 1 we show an example of a windmill network—
this class of networks will be studied more comprehensively in Section 7. It is easily
verified that

p1(A) = A =




0 1 0 0 0 0 1
0 0 0 0 0 0 1
0 0 0 1 0 0 1
0 0 0 0 0 0 1
0 0 0 0 0 1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 0




, p2(A) = A2−D =




0 1 1 1 1 1 1
1 0 1 1 1 1 0
1 1 0 1 1 1 1
1 1 1 0 1 1 0
1 1 1 1 0 1 1
1 1 1 1 1 0 0
0 1 0 1 0 1 0




and

p3(A) =




1 0 1 2 1 2 0
0 1 0 1 0 1 0
1 2 1 0 1 2 0
0 1 0 1 0 1 0
1 2 1 2 1 0 0
0 1 0 1 0 1 0
0 0 0 0 0 0 3




.

For example, there are two walks of length three from node 1 to node 2, given by 1272
and 1712. Both of these are backtracking, and hence (p3(A))12 = 0.

The concept of walk counting has proved useful in the development of network
centrality measures. Katz centrality [15] assigns a value ki = eTi k to node i according
to

(2.1a) (I − αA)k = 1,

where α > 0 is a parameter. To ensure that ki > 0, this parameter must be re-
stricted to the range 0 < α < 1/ρ(A), in which case we may expand the resolvent

3



Fig. 1. Windmill network with m = 3 triangles.

(I − αA)
−1

= I + αA+ α2A2 + · · · , so that ki may be written as

(2.1b) ki = 1 +
∞∑

r=1

n∑

j=1

αr(Ar)ij .

In this way, we see that ki from (2.1b) may be viewed as a weighted sum of all walks∗

emanating from node i, with the count for walks of length r scaled by αr. In the limit
as α→ 1/ρ(A), the Katz centrality vector k approaches the Perron-Frobenius vector
of A, which corresponds to eigenvector centrality [3, 4], when the graph under study
is strongly connected.

Katz centrality gives the same weight to all walks of the same length. For example,
in Figure 1, 717171 has the same influence on the centrality measure as 712756, even
though the latter, nonbacktracking, walk, traverses the network more widely and is
likely to be more relevant in terms of message passing or disease spreading. This type
of argument motivated the authors in [13] to propose and study a nonbacktracking
analogue of Katz centrality, restricted to the case of undirected networks, where A =
AT . Here, the node centrality vector is defined as

(2.2a) b = 1+
∞∑

r=1

trpr(A)1,

where 0 < t < 1 is a parameter analogous to α. Hence, node i is assigned the centrality

(2.2b) bi = 1 +
∞∑

r=1

n∑

j=1

tr(pr(A))ij .

It was shown in [13] that, for undirected networks, the NBTW centrality vector (2.2a)
can be computed as cheaply as the Katz version in (2.1a). Further, in an appropriate
sense, the limiting value of b as a function of t in (2.2a) agrees with the nonback-
tracking eigenvector centrality measure proposed in [22] for undirected networks.

Our aim here is to consider the NBTW centrality measure (2.2b) in the case
where the network has directed edges.

∗The unit shift on the right hand side of (2.1b), which does not affect the relative ordering of
the node centralities, may be regarded as arising from a single walk of length zero.
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3. Recurrence and Generating Function. We now quote a three-term recur-
rence that relates pr(A) to pr−1(A), pr−2(A) and pr−3(A), and leads to an expression
for the generating function

∑∞
r=0 t

rpr(A). The result may be traced back to [6]. A
more accessible treatment from the perspective of graph theory and linear algebra
may be found in [29]. We also note that in the case of an undirected network, the
recurrence collapses to a two-term expression that was discovered independently in
the theory of zeta functions of graphs [28] and exploited in [13] from a network science
perspective.

Theorem 3.1. In the notation above, p0(A) = I, p1(A) = A, p2(A) = A2 − D
and

(3.1) pr(A) = Apr−1(A) + (I −D) pr−2(A)− (A− S) pr−3(A), ∀r ≥ 3.

Further, let M(t) = I − At + (D − I)t2 + (A − S)t3 and suppose t is such that the
power series φ(A, t) :=

∑∞
r=0 t

rpr(A) converges. Then

(3.2) M(t)φ(A, t) = (1− t2)I.

Proof. See [6, 29].
Recall from (2.2a) that we may compute the NBTW centrality vector as b =

φ(A, t)1. Theorem 3.1 shows that this may be written as the linear system

(3.3)
(
I −At+ (D − I)t2 + (A− S)t3

)
b = (1− t2)1.

We see that the coefficient matrix has the same sparsity as I − αA in (2.1a), which
shows that NBTW centrality for a directed network may be computed at least as
cheaply as Katz centrality. Further comments on computational complexity will be
given in Section 5.

Remark 3.2. The results in Theorem 3.1 correspond naturally to a recursive
proof on walk length where new edges are added at the start of a walk. An alternative
recurrence for pr(A) could be established via a proof that adds edges at the end of
the walk. This leads to the relationships

pr(A) = pr−1(A)A+ pr−2(A)(I −D)− pr−3(A)(A− S)

and

φ(A, t)M(t) = (1− t2)I,

which are equivalent to (3.1) and (3.2), respectively.
Remark 3.3. It is easily checked that equation (3.3) reduces to (I − At)b = 1,

i.e., to the linear system (2.1a), when the network does not contain reciprocal edges,
and thus pr(A) = Ar.

Let us now define, for r ≥ 2, the 3n× n matrix

(3.4) qr(A) :=




pr(A)
pr−1(A)
pr−2(A)


 .

Then, if we let

(3.5) C :=



A (I −D) (S −A)
I 0 0
0 I 0


 ∈ R

3n×3n
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it holds from Theorem 3.1 that qr(A) = Cqr−1(A) for r ≥ 3, and thus

(3.6) qr(A) = Cr−2q2(A), for r ≥ 2.

This will prove useful in section 5, where we study the radius of convergence of the
power series.

4. Other Interpretations. In the previous section we characterized NBTW
centrality in terms of a linear system. To add further insight, we now interpret this
system heuristically from two alternative viewpoints.

4.1. Katz on a Modified Graph. To give another interpretation of the NBTW
centrality measure in (3.3), we first note that the walk-counting motivation for Katz
centrality continues to make sense when the edge weights are nonnegative integers.
In this case we interpret an integer weight s as representing s distinct edges between
two nodes. For example, in a transport setting, if there are two roads between Pisa
and Florence and three roads between Florence and Bologna, then there are 2×3 = 6
distinct ways to get from Pisa to Bologna with these roads.

Now, the centrality measure b in (3.3) arises when standard Katz, with α = t, is
applied to a modified network with adjacency matrix

A(t) := A− (D − I)t− (A− S)t2,

and with the right-hand side rescaled by a factor 1 − t2. In this modification to
the network, each node i is given a self loop with a integer weight, 1 − Dii, scaled
by t. Also, the unit weight on each nonreciprocal edge i→j is decreased by t2. It
must therefore be the case that adding these self loops and reweighting nonreciprocal
edges and then applying the standard Katz procedure, with a rescaled right-hand
side, is entirely equivalent to restricting to NBTW counts on the original graph. To
understand this equivalence, we may consider what happens when we count “standard
walks” by powering up A(t).

We note that on one hand, this alternative interpretation is conceptually easier,
in the sense that we need only consider standard walks. On the other hand, the
interpretation is conceptually harder, in the sense that we must relate walks on a
modified, weighted graph (with scaled integer weights, that for the loops may even
be negative) to NBTWs on the original graph.

When considering traversals around the modified graph, we should regard
• each loop as representing a walk of length two, since the extra factor of t in
its weight indicates that it is compensating for traversals that use one extra
edge, and

• each non-reciprocal edge as representing both a walk of length one and a walk
of length three. In the latter case, the weight t2 indicates that the edge is
counteracting the presence of traversals that use two extra edges.

Focusing on distinct nodes i 6= j and walks of length r, we will give an explanation
that relies on induction. So, we assume that the weighted count for NBTWs of
any s < r in the original graph is correctly matched by the ts coefficient in (1 −
t2) (I − tA(t))

−1
1. Now, since A(t) is formed from A by adding extra edges and

weights, it is clear that any walk of length r in the original graph is also present in
the modified graph, and in both cases this walk contributes to the tr term in the
respective Katz resolvent. Our task is now to show that the modifications in A(t)
reduce the count in such a way that what remains as the tr coefficient corresponds
precisely to the count for NBTWs of length r in A.
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Fig. 2. Illustration of walks on the modified graph, for ℓ ↔ j. In reaching node j via its
neighbour ℓ, an immediate backtrack to node ℓ is eliminated by the loop at node ℓ. Hence the
continuation that finishes ℓjℓj must be treated as a special case. Walks finishing ℓjhj for h 6= ℓ are
eliminated by the loop at node j.

Fig. 3. Illustration of walks on the modified graph, variation of Figure 2 where ℓ→j. In this
case, a continuation that finishes ℓjℓj is not possible.

For convenience, we will form longer walks by adding edges at the end of shorter
walks. With this viewpoint, the loops in A(t) are used to balance the presence of
BTWs of the form

i ⋆ · · · ⋆ ℓ j ⋆ j of length r.

To get an overview of the next step in the argument, we turn to Figures 2 and 3.
Here, a walk on the modified graph reaches node j after r − 2 steps, and it does so
via some neighbour ℓ of j.
Case 1: We focus first on the case where the edge ℓ→j is reciprocated, as in Figure 2.
Here sℓj = sjℓ = 1 and (S − A)ℓj = (S − A)jℓ = 0. The walk may perform a final
backtracking double-step either by visiting a distinct neighbour h 6= ℓ and returning to
j, or by revisiting ℓ and returning to j. We must distinguish between these two types
because our inductive argument assumes that we have already removed backtracking
walks of length less than r—so a walk that revisits node ℓ corresponds to a length
r− 1 backtracking walk ending at ℓ. Such a walk has already been removed from the
count, so will not be further propagated when we increase length by one (i.e., multiply
by tA(t)). In essence, the negative loop attached at node ℓ has already taken care of
this case. In more detail, ignoring node ℓ, there are Djj − 1 distinct neighbours of
j such that j ↔ ⋆, each offering a final backtracking double-step. Their presence is
compensated for by the loop at node j. This is consistent with (I − tA(t))

−1
1, giving
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part of the required expression. The case

(4.1) i ⋆ · · · ⋆ ℓ j ℓ j of length r

must be treated differently because, by induction, walks on the modified graph of the
form

i ⋆ · · · ⋆ ℓ j ℓ of length r − 1

have already been removed from the coefficient of tr−1. Hence, we cannot simply
propagate the count by adding the final edge ℓ→j. Instead, we must propagate the
count from length r − 2 to r. The number of walks of the form (4.1) is precisely the
number of walks of the form

i ⋆ · · · ⋆ ℓ j of length r − 2.

Hence, to deal with walks of the form (4.1) we simply subtract the tr−2 coefficient.

This is consistent with (I − tA(t))
−1

(−t2)1, so, overall, a factor 1 − t2 arises in the
right-hand side of (3.3).
Case 2: Now consider the alternative case where the edge ℓ→j is not reciprocated, as
in Figure 3. Here (S −A)ℓj = −1 and (S −A)jℓ = 0. The arguments in Case 1 must
be adapted slightly because there is no longer a backtracking walk of length r − 1
ending at ℓ. Since this nonexistent walk will not have been removed at the previous
level, we must not add it back in, which explains the extra −(A− S)t2 term in A(t).

4.2. Relationship to Multilayer Networks. From Theorem 3.1 and (3.6),
since p0(A) = I we see that the NBTW counting matrix pr(A) may be constructed by
taking the rth power of C and extracting the upper left n×n block. The matrix C can
be viewed as the supra-adjacency matrix associated with a multilayer network. Here,
as shown in Figure 4, we have three layers, each of which contains the same set of
nodes. This type of multilayering structure is usually referred to as node aligned [17].
In this setting, the diagonal blocks describe interactions within each layer, while the
off-diagonal blocks describe interactions between layers. Forming powers of the matrix
C counts walks around the multilayer structure where edges within and between layers
are treated equally. From (3.5) we see that interactions occurring within layer 1 are
described by A, while those occurring within layers 2 and 3 are both described by a
zero matrix. In particular, having entered layer 2 or 3, the walk may be continued
only by moving back up to the previous layer. Intuitively, the effect of moving down
the layers is to introduce negatively weighted walks that cancel the contribution of the
BTWs within layer 1. Moving back up the layers, to return to layer 1, causes extra
edges to be traversed; so we take one extra step on moving from layer 2 back to layer
1 and two extra steps on moving from layer 3 to layer 2 and then to layer 1. These
extra steps are needed to match the number of edges used by the equivalent BTWs
taking place within layer 1.

5. The Radius of Convergence. In this section we study the radius of con-
vergence of the power series φ(A, t) in Theorem 3.1. The parameter t > 0 represents
a weight for walks taking place in the network under study; therefore, it is natural to
require t ∈ (0, 1), so that shorter walks are given more importance than longer ones.†

†It is worth mentioning that the series defining φ(A, t) makes sense for t ∈ C. We restrict
ourselves to the case of t ∈ (0, 1) since we are interested in the application to network science.
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Fig. 4. Representation of the multilayer network described by the matrix C in (3.5).

From a practical perspective, it is necessary to know what further restriction, if any,
is required. The following result gives a characterization in terms of the matrix C in
(3.5). We note that in some special cases the convergence radius of Φ(A, t) may be
larger than 1/ρ(C). A complete characterization will be given in [2] using the theory
of matrix polynomials.

Theorem 5.1. The power series φ(A, t) =
∑∞
r=0 t

rpr(A) converges if 0 < t <
1/ρ(C).

Proof. Recall (3.4) and (3.6), and, for the sake of convenience, set pr(A) = 0 for
all r < 0. We then have

q1(A) :=



A
I
0


 and q0(A) :=



I
0
0


 ,

and thus q1(A) = Cq0(A) and q2(A) = Cq1(A) − q0(A) = (C2 − I)q0(A). Then a
straightforward computation shows

φ(A, t) =

∞∑

r=0

trpr(A) = [I, 0, 0]T
∞∑

r=2

trqr(A) + I + tA

= q0(A)
T

(
∞∑

r=2

trCr−2q2(A)

)
+ I + tA

= q0(A)
T

(
∞∑

r=2

trCr−2(C2 − I)q0(A) + q0(A) + tq1(A)

)

= q0(A)
T

(
∞∑

r=2

trCrq0(A) + q0(A) + tCq0(A)− t2
∞∑

r=0

trCrq0(A)

)

= q0(A)
T

(
(1− t2)

∞∑

r=0

trCr

)
q0(A)

and thus the series φ(A, t) converges if
∑∞
r=0 t

rCr does, i.e., if tρ(C) < 1.
Theorem 5.2. Let Rψ be the radius of convergence of ψ(A, t) =

∑∞
r=0 t

rAr and
let Rφ be the radius of convergence of φ(A, t) =

∑∞
r=0 t

rpr(A). Then, Rψ ≤ Rφ.
Proof. Since every nonbacktracking walk is a walk, elementwise it holds that

pr(A) ≤ Ar. This implies that elementwise

|φ(A, t)| ≤ |ψ(A, t)| ,
9



and hence the radius of convergence of the right-hand side is less than or equal than
the radius of convergence of the left-hand side.

Theorem 5.2 shows that the interval in which the downweighting parameter of
Katz centrality is allowed to vary is larger when f(z) = (1 − tz)−1 is applied to
A(t) instead of A. Indeed, in the former case t ∈ (0, 1/ρ(C)), while in the latter
t ∈ (0, 1/ρ(A)).

In the next subsection, we show that the spectral radius of C does not change
when certain types of nodes are removed from the graph.

5.1. Pruning and the Spectral Radius. In the remainder of this section we
assume without loss of generality that the graph under study is weakly connected,
i.e., that each node in the network is reachable from any other node when all the
edges are regarded as having no orientation. (Otherwise, the problems that we study
below break down into essentially independent subtasks; see [2] for further details.)
A node i will be called a source node if it only has outgoing links and thus douti > 0
and dini = 0; similarly, i will be referred to as a dangling node if dini > 0 and douti = 0,
i.e., if it only has incoming links. For the sake of clarity in the exposition, we will
assume that the graph represented by A has only one source (resp., dangling) node,
namely node n.‡ If the graph has more than one, the following reasoning can be
applied iteratively. In the remainder of this section we adopt the following notation.
We denote by Â = (âij) the (n− 1)× (n− 1) adjacency matrix of the graph obtained

after node n is removed. The matrix Ŝ = (ŝij) will have entries ŝij = âij âji and the

diagonal matrix D̂ will be such that D̂ii = (Â2)ii. If n is a source, then Aen = 0

and eTnA = [aTR, 0] = [an1, an2, . . . , an,n−1, 0], where A = (aij) are the entries of the
adjacency matrix; similarly, if n is a dangling node, then eTnA = 0T and Aen =
[aTC , 0]

T = [a1n, a2n, . . . , an−1,n, 0]
T . Note that, since the graph is assumed to be

weakly connected and since n is either a source or a dangling node, then aC ,aR 6= 0̂.
Once node n is removed from the graph, the three-by-three block matrix analogue of
(3.5) used to determine the number of NBTWs in the new graph has the form

Ĉ :=



Â (I − D̂) (Ŝ − Â)
I 0 0
0 I 0


 ∈ R

(3n−3)×(3n−3).

The following theorem tells us that removing source and dangling nodes from a
network does not alter the spectral radius of the three-by-three block matrix used to
determine the number of NBTWs.

Theorem 5.3. In the above notation,

det(λI3n − C) = (λ3 − λ) det(λI3n−3 − Ĉ).

Proof. Let F (λ) = Iλ3 −Aλ2 + (D − I)λ+ (A− S). The matrix equation



λI −A D − I A− S
−I λI 0
0 −I λI





I λI λ2I
0 I λI
0 0 I


 =



⋆ ⋆ F (λ)
−I 0 0
0 −I 0


 ,

‡This can be obtained after relabelling the nodes and, consequently, after a symmetric permuta-
tion applied to the matrix A.
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where ⋆ denotes a block whose exact form is not relevant for the argument, shows
that det(λI−C) = detF (λ). Similarly, one can prove that det(λI− Ĉ) = det F̂ (λ) =:

det(Iλ3 − Âλ2 + (D̂ − I)λ+ (Â− Ŝ)).

It is easily seen that

(5.1) F (λ) =

[
F̂ (λ) g(λ)aC

h(λ)aTR λ3 − λ

]
,

where the functions g(λ) and h(λ) are defined as:

(1) g(λ) = 0, h(λ) = 1− λ2 if doutn = 0;
(2) h(λ) = 0, g(λ) = 1− λ2 if dinn = 0.

Hence, F (λ) is block triangular and the statement immediately follows.

The class of nodes that can be removed from the network without affecting the
radius of convergence of φ(A, t) =

∑
r pr(A)t

r is broader than the one we just de-
scribed. Let us call node i a reciprocal leaf connected to node j if Aei = AT ei = ej ;
here, the node has a single neighbour, connected by a reciprocal edge. Suppose now
with no loss of generality that node n is a reciprocal leaf and is connected to node
n − 1. The following result shows that we can also safely remove reciprocal leaves
from the network.

Theorem 5.4. In the notation above,

det(λI3n − C) = λ3 det(λI3n−3 − Ĉ).

Proof. A proof may be given along the same lines of that of Theorem 5.3 by using
the fact that now

F (λ) =

[
F̂ (λ) + λên−1ê

T
n−1 −λ2ên−1

−λ2êTn−1 λ3

]

and detF (λ) = λ3 det F̂ (λ). Indeed it holds

detF (λ) = λ3 det(F̂ (λ) + λên−1ê
T
n−1) + λ2 det

([
(F̂ (λ))1:n−2,1:n−1

−λ2êTn−1

])

= λ3 det(F̂ (λ) + λên−1ê
T
n−1)− λ4 det(F̂ (λ))1:n−2,1:n−2

= λ3 det F̂ (λ) + λ4 det(F̂ (λ))1:n−2,1:n−2 − λ4 det(F̂ (λ))1:n−2,1:n−2

= λ3 det F̂ (λ),

where in the second-to-last equality we have expanded the determinant with respect
to the last row (or, equivalently, column).

Theorems 5.3 and 5.4 are computationally relevant because, as established in
Theorem 5.1, in order to understand what range of t values is valid, we require ρ(C).
The results show that before computing ρ(C) we are allowed to iteratively prune
sources, dangling nodes and reciprocal leaves from the network. In the next section,
we show that the linear system defining the NBTW centralities is also amenable to
pruning.
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5.2. Pruning the linear system. In this section we study how the linear sys-
tem (3.3) changes when source nodes, dangling nodes and reciprocal leaves are re-
moved from the network. First, let us assume, without loss of generality, that node n
is the only source (resp., dangling) node in the network. We describe what happens in
the two different cases, depending on the type of node. We adopt the same notation
as in subsection 5.1. Furthermore, b̂ will denote the vector containing the first n− 1
components of the NBTW centrality vector b = (bi).

(1) dinn = 0. Intuitively, since n is a source node, it sends information to the rest
of the graph, and thus its importance will depend on the importance of the nodes
it is pointing to. On the other hand, the importance of the other nodes will not be
affected by the importance of node n, since there is no route connecting these nodes
to n. Algebraically, the matrix M(t) can be written as

M(t) =

[
M̂(t) 0

(t3 − t)aTR 1− t2

]
,

where here and in the following M̂(t) = I− Ât+(D̂− I)t2+(Â− Ŝ)t3, and thus (3.3)
is equivalent to

{
M̂(t)b̂ = (1− t2)1̂

bn = 1 + taTRb̂.

(2) doutn = 0. Here, because n has no access to the rest of the network, we know
that its centrality value is 1. Indeed, the linear system (3.3) can be rewritten

{
M̂(t)b̂ = (1− t2)[1̂+ taC ]

bn = 1.

Note that the nodes pointing to node n and, more generally, the other nodes that can
reach it, gain some of their importance from the presence of node n. This is why the
right-hand side of the system is perturbed by the pruning operation.

Let us now consider the case where n is a reciprocal leaf connected to node n− 1.
This last case results as a combination of the above two, when aC = aR = ên−1; the
importance of node n is non-trivial and that of all the other nodes is computed by
modifying the right-hand side of the system to take into account the leaf removal. It
can be shown that

M(t) =

[
M̂(t) + t2ên−1ê

T
n−1 −tên−1

−têTn−1 1

]

and hence (3.3) can be written as

{
M̂(t)b̂ = (1− t2)[1̂+ tên−1]

bn = (1− t2) + tbn−1.

Overall, we conclude that the NBTW measure may be computed by solving a lin-
ear system whose dimension is that of the network remaining after all source/dangling
nodes and reciprocal leaves have been pruned, and then, if required, recovering the cen-
trality of the pruned nodes via simple scalar recurrences.
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6. Limiting Behavior. In [13] it was shown in the undirected case that the
Katz-style NBTW measure recovers the eigenvector version of [22] as the attenuation
parameter approaches its upper limit. Here we show that in the more general case of
directed edges, a related eigenvector limit arises. This gives a natural generalization
of the work in [22] to the directed case, and we note that the lack of symmetry takes
us from a two-by-two block matrix to a new three-by-three extension.

We also mention that a spectral algorithm for community detection based on
nonbacktracking walks was introduced and studied in [19]. It is interesting to note
that those authors considered directed networks, yet their heuristic arguments led
them to a block two-by-two matrix (as found in [22, 13] for nonbacktracking centrality
on undirected networks) rather than the three-by-three structure that we present here.

In order to make the dependence on the attenuation parameter explicit, in the
remainder of this section we use b(t) in place of b to denote the NBTW centrality
vector. The theorem also considers the more straightforward t→ 0+ limit.

Theorem 6.1. Let b(t) be the NBTW centrality vector, defined as in (3.3), with
t ∈ (0, ρ(C)−1). Then, the ranking produced by b(t) converges to that produced by the
vector of outdegrees dout = (douti ) as t→ 0+.

Moreover, suppose that I − ρ(C)−1C has rank n − 1. Then, as t → (1/ρ(C))
−

the ranking produced by b(t) converges to that given by the first n components of the
eigenvector of C associated with the eigenvalue ρ(C).

Proof. By using (2.2b) and the definition of φ(A, t) one finds that entrywise

bi(t) = eTi φ(A, t)1 = 1 + douti t+O(t2)

and the first part of the statement follows.
For the second part, we first note that ρ(C) must be an eigenvalue of C.§ Then

note that, since b(t) solves (3.3), it follows that

(I − tC)




b(t)
tb(t)
t2b(t)


 =




(I −At+ (D − I)t2 + (A− S)t3)b(t)
0

0


 .

Hence, for 0 < t < ρ(C)−1, b(t) solves the NBTW system (3.3) if and only if

(I − tC)




b(t)
tb(t)
t2b(t)


 = (1− t2)




1

0

0


 .

So, to study the limiting behaviour, t→ ρ(C), we can focus on

(1− t2)(I − tC)−1




1

0

0


 .

At this point observe that I − tC can be seen as a matrix whose entries depend
analytically on the real variable t. As such, it admits an analytic singular value
decomposition (see, e.g., [7, 14, 25]). In more detail, we can write

I − tC = U(t)Σ(t)V (t)T =

n∑

i=1

σi(t)ui(t)vi(t),

§This follows from results in the theory of matrix polynomials, see, e.g., [11, 21, 23, 26] and
references therein.
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where U(t), V (t) are orthogonal and analytic for all real t, Σ(t) is diagonal and analytic
for all real t, ui(t) (resp., vi(t)) is the ith column of U(t) (resp. V (t)) and σi(t) =
(Σ(t))ii. We assume, without loss of generality, that the functions σi(t) are labelled
in such a way that

σ1(ρ(C)
−1) ≥ · · · ≥ σn−1(ρ(C)

−1) > σn(ρ(C)
−1) = 0.

Since I − tC is invertible for all 0 ≤ t < ρ(C)−1, we can write

(1−t2)(I−tC)−1




1

0

0


 = (1−t2)

n∑

i=1

υi(t)

σi(t)
ui(t) = (1−t2)υn(t)

σn(t)
un(t)+O

(
σn(t)

σn−1(t)

)
,

where

υi(t) := vi(t)
T




1

0

0


 .

Now, define

b̃(t) =
σn(t)

(1− t)2υn(t)
b(t).

The rankings given by b̃(t) and b(t) are equivalent, since they only differ by an overall
scalar multiplicative factor.

To conclude the proof, it now suffices to observe that
• υn(t) 6= 0 for all t ∈ [0, ρ(C)−1], as can be shown by technical arguments
similar to those in [13];

• σn(t)/σn−1(t) → 0 for t → ρ(C)−1, since by assumption I − ρ(C)−1C has
rank n− 1;

• un(t) is the right singular vector corresponding to σn(t), and therefore con-
verges to the right null space of I − ρ(C)−1C as t → ρ(C)−1, i.e., the eigen-
vector of C associated with ρ(C).

We note that, using the results in [28, 29], it is possible to prove that the assump-
tion that (I−ρ(C)−1C) has rank n−1 is automatically satisfied when the underlying
graph is strongly connected. Hence, any problem may be broken down into a set of
subproblems for which the assumption holds; see [2].

7. Analysis for Windmill Networks. In this section, we introduce and study
windmill networks; the case with m = 3 triangles was defined in Section 2 and illus-
trated in Figure 1. On this class of directed networks, Katz and NBTW centrality
can be shown to behave differently. The networks are not trees, so in both cases
the generating function has a finite radius of convergence. However, the restriction
required for Katz centrality produces a localization effect that can be avoided with
the NBTW version.

To quantify localization, we use the approach of [12]. Suppose we have a family
of unit Euclidean norm vectors x ∈ R

n, defined for all large n. Then the inverse
participation ratio is defined to be S(x) :=

∑n
i=1 x

4
i . The family of vectors is said

to be localized if S = O(1) and nonlocalized if S = o(1), as n → ∞. Intuitively,
localization implies that the majority of the mass in the vector is confined to a finite
subset of components (in our case a single component).
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Figure 1 illustrates a directed windmill network with m = 3 triangles. In the
general case we have a hub that is involved inm triangles. The network has n = 2m+1
nodes. Labelling the hub as node n for convenience, we have the following edges

• undirected edges from node n to all other nodes in the network,
• a directed edge from node 2i− 1 to node 2i for all 1 ≤ i ≤ m.

By symmetry, when we study an eigenvector of A or C, or a vector of walk-based
centrality measures, on this class of network, there will be at most three distinct
components; these will correspond to the odd-numbered nodes from 1 to 2m− 1, the
even-numbered nodes, and the hub node n. Hence, we will use nodes 1, 2 and n as
representatives.

Before giving a full asymptotic analysis, we will make some general remarks. For
small α or t, the Katz and NBTW centralities correspond to out-degree centrality.
Since node n has out-degree 2m whereas the remaining nodes have out-degrees of
either one or two, it follows that, with out-degree centrality, node n is assigned almost
all the measure: doutn /‖dout‖2 = 1+O(m−1), and douti /‖dout‖2 = O(m−1) for all other
i. Hence, the inverse participation ratio is S(dout/‖dout‖2) = 1 + O(m−1) and the
measure is localized. We show below that Katz centrality does not allow α to become
sufficiently large to overcome this effect, whereas NBTW centrality does. Referring
to Figure 1 we see that if we count standard walks starting from node n, we may
backtrack to node n on every second step, e.g., after using the edge 7 → 1, we may
return to 7 via 1 → 7, whence we have a further 2m choices for the next edge. Hence,
the overall walk count can grow by a factor 2m every two steps. If we do not allow
backtracking, then a full, one-way, triangle must be completed before we can return
to the hub; so the overall walk count can only grow by a factor of roughly m every
three steps. This relates to the terms (2m)

1

2 and m
1

3 that arise in the analysis below.

7.1. Katz Centrality. To study Katz centrality on this example, we first con-
sider the spectrum of the adjacency matrix A. An eigenpair satisfies Ax = λx, which
reduces to

mx1 +mx2 = λxn, x2 + xn = λx1, xn = λx2.

Requiring x 6= 0 leads to the condition

(7.1) λ3 − 2mλ−m = 0.

Straightforward analysis shows that, for large m, this cubic has three real roots. The
largest root in modulus, λ1, is positive and bounded below by

√
2m. Moreover, given

any ǫ > 0 there existsm0 ∈ N such thatm > m0 ⇒
√
2m < λ1 <

√
2m+ǫ. Therefore,

taking 0 < α < 1/
√
2m is a sufficient condition for the Katz parameter to be within

the allowed range, and it is a good approximation of the exact allowed interval for
large values of m.

Now, the Katz system (2.1a) reduces to

kn − α(mk1 +mk2) = 1, k1 − α(k2 + kn) = 1, k2 − αkn = 1.

This solves to give

(7.2) kn =
1 + 2mα+mα2

1− 2mα2 −mα3
, k2 =

1 + α

1− 2mα2 −mα3
, k1 =

1 + 2α+ α2

1− 2mα2 −mα3
.

We note that as α increases away from zero, the denominator in these expressions
vanishes precisely at the reciprocal of the largest root of the cubic appearing in (7.1).
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To choose a large α that is consistent with the upper bound, we set α = c/
√
2m,

for some 0 < c < 1. We are interested in the behaviour of the inverse participation
ratio in the limit m → ∞. Using standard asymptotic expansions, we find that the
denominator of the Katz components in (7.2) has the form

1− 2mα2 −mα3 = (1− c2)
(
1 +O(1/

√
m)
)
.

It then follows that

(7.3a) kn =
√
m

( √
2c

1− c2

)
(
1 +O(1/

√
m)
)

and

(7.3b) k1 = k2 =

(
1

1− c2

)(
1 +O(1/

√
m)
)
.

Consequently,

(7.4) ‖k ‖2 =
√
m

(√
2
√
1 + c2

1− c2

)
(
1 +O(1/

√
m)
)
.

Let k̃ := k/‖k ‖2 be the normalized Katz vector. Then, it follows from (7.3a),
(7.3b) and (7.4) that

k̃n =
c√

1 + c2

(
1 +O(1/

√
m)
)
, k̃2 = O(1/

√
m), k̃1 = O(1/

√
m).

The inverse participation ratio for Katz centrality is found to be

S(k̃) =
n∑

i=1

k̃4i =
c4

(1 + c2)2
+O(1/

√
m).

We see that this quantity is O(1), and hence the centrality measure is localized.

7.2. Nonbacktracking Walk Centrality. To investigate NBTW centrality on
a windmill network, we begin by characterizing the spectral radius of the matrix C
in (3.5). Write Cv = λv, where λ 6= 0, and partition v into three vectors of equal
dimension: vT = [xT ,yT , zT ]. Then, after eliminating y and z, we arrive at

(
λ3I − λ2A+ λ(D − I) + (A− S)

)
x = 0.

The relevant equations for xn, x1 and x2, are then, respectively,

λ3xn − λ2(mx1 +mx2) + λ(2m− 1)xn = 0,

λ3x1 − λ2(x2 + xn) + x2 = 0,

λ3x2 − λ2xn = 0.

Eliminating x1 and x2, and using λ 6= 0 and xn 6= 0, we arrive at

λ5 − λ3 −mλ2 +m = 0.

The roots are ±1 and the cube roots of m. So ρ(C) = m1/3.
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The directed NBTW linear system (3.3) reduces to

bn −mtb1 −mtb2 + (2m− 1)t2bn = 1− t2,

b1 − tb2 − tbn + t3b2 = 1− t2,

b2 − tbn = 1− t2.

This solves to give

bn =
1 + 2mt+ (m− 1)t2 − 2mt3 − 2mt4 +mt6

1− t2 −mt3 +mt5
,

b2 =
1 + t+ (2m− 2)t2 − t3 − (2m− 1)t4

1− t2 −mt3 +mt5
,

b1 =
1 + 2t+ (2m− 1)t2 + (2m− 4)t3 − (2m+ 1)t4 − (4m− 3)t5 + t6 + (2m− 1)t7

1− t2 −mt3 +mt5
.

We note that in each case the denominator has roots ±1 and the cube roots of 1/m.
Hence, as t increases from zero the denominators first vanish at t = m−1/3, which is
the reciprocal of ρ(C). This is consistent with Theorem 5.1. Setting t = cm− 1

3 , for
some 0 < c < 1, we find that

bn =
2cm

2

3

1− c3

(
1 +O(m− 1

3 )
)
, b2 =

2c2m
1

3

1− c3

(
1 +O(m− 1

3 )
)

and b1 satisfies the same expansion as b2. Then,

‖b ‖2 =
2
√
2c2m

5

6

1− c3

(
1 +O(m− 1

3 )
)
.

The normalized NBTW centrality vector b̃ := b/‖b ‖2 then has components

b̃n =
m− 1

6

√
2c

(
1 +O(m− 1

3 )
)
, b̃2 =

m− 1

2

√
2

(
1 +O(m− 1

3 )
)
, b̃1 =

m− 1

2

√
2

(
1 +O(m− 1

3 )
)
,

and we find that the inverse participation ratio has the expansion

S(b̃) =
n∑

i=1

b̃4i =
m− 2

3

4c4
+O(m−1).

We see that with this choice of t, the NBTW centrality measure is nonlocalized.

8. Experiments. In this section we describe the results of some numerical tests
performed on real-world networks. All digraphs used here can be found at [8] un-
der different “groups”. The network Pajek/GlossGT represents connections be-
tween words from the graph/digraph glossary. Pajek/California was constructed
by expanding a 200-page response set to a search engine query ‘California’, as used
for the HITS algorithm [18]. The network Gleich/wb-cs-Stanford reflects the
Stanford CS web, where a link in the graph represents an actual link in the web.
This network has 1299 nonzeros on the main diagonal which we removed before per-
forming our computations. The last three networks all belong to the SNAP group.
SNAP/Epinions is a who-trusts-whom online social network of a general consumer
review site: Epinions.com. Members of the site can decide whether to “trust” each
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Fig. 5. Scatter plot of the Katz (horizontal axis) and NBTW (vertical axis) centrality vectors.
Note that the top Katz centrality score is shared by two nodes, which also have identical NBTW
centrality; in this case the two symbols occupy the same place in the scatter plot.

other. The network SNAP/wiki-talk summarises users and discussions from the in-
ception of Wikipedia until January 2008. Nodes in the network represent Wikipedia
users and a directed edge from node i to node j indicates that user i at least once
edited a talk page of user j. Finally, SNAP/cit-Patents is a citation network among
US Patents. The data set includes all the utility patents granted between 1975 and
1999 and all citations made by them.

8.1. NBTW Centrality vs. Katz. We first show with a small example how
NBTW broadcast centrality may differ from Katz centrality when identifying the most
important broadcasters in a network. We performed our test on the small network
Pajek/GlossGT. This network contains 72 nodes, but we restrict ourselves to its
largest weakly connected component, which has 60 nodes. For this digraph it holds
that ρ(A) = ρ(C) = 1 and thus the parameters used in the computation of the
two centrality indices can be selected to be the same. In our test α = t = 0.9.
Figure 5 scatter plots the NBTW and Katz centrality vectors. It can be seen that
the two centrality measures do not identify the same top broadcasters. Moreover,
looking at the correlation coefficients between the rankings, we have that the Pearson’s
correlation coefficient between the Katz and NBTW centralities is 0.49, so there is
not a strong correlation.

In Figures 6 and 7 we display two network visualisations, where node size is
proportional to centrality; with Katz in Figure 6 and NBTW in Figure 7. Two nodes
share the top Katz centrality. These are connected through a reciprocal edge and
are pointed to by the third Katz-ranked node, which is a source node with outdegree
equal to one. It can thus be argued that these nodes are identified as the most
influential because they point to or are involved in a closed cycle of small length.
Indeed, when computing the Katz centrality, short, backtracking walks, are given as
much importance as nonbacktracking walks of the same length. In this example, the
NBTW measure gives top ranking to a node with outdegree two and, as is also clear
from Figure 5, generally provides a more even (less localized) spread of values across
the nodes.

8.2. Nodal Pruning. We saw in subsections 5.1 and 5.2 that both the cost of
computing ρ(C) in order to establish a suitable range for the parameter t, and the
cost of solving the overall linear system (3.3) may be reduced by iteratively removing
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Fig. 6. Representation of the network Pajek/GlossGT where node size is proportional to Katz
centrality.

Table 1
Description of the dataset: name of the digraph, number of nodes n and number of edges m,

percentage of nodes n% and edges m% retained after leaf pruning.

NAME n m n% m%

Pajek/California 9,664 16,150 2% 3%
Gleich/wb-cs-stanford 9,914 35,555 57% 80%
SNAP/soc-Epinions1 75,888 508,837 36% 85%

SNAP/wiki-talk 2,394,385 5,021,410 4% 29%
SNAP/cit-Patents 3,774,768 16,518,947 0% 0%

source/dangling nodes and reciprocal leaves until none remain. The benefits will, of
course, depend on the level of dimension reduction achieved. To investigate this issue,
in this set of numerical tests we worked on larger networks to understand the extent to
which the size of the problem reduces when we remove these types of nodes from real
world directed graphs. In Table 1 we display the name of the network, the number
of nodes and edges in the original data, and the percentage of nodes and edges that
are retained in the network when sources, dangling nodes and reciprocal leaves are
successively eliminated from each network. We will denote these quantities by n%
and m%, respectively.

The results are displayed in Table 1. The network SNAP/cit-Patents retained
no nodes; all dangled at some stage, or became sources or leaves. Generally, we see
that significant reductions were achieved in all cases, with the linear system dimen-
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Fig. 7. Representation of the network Pajek/GlossGT where node size is proportional to
NBTW centrality.

sion, n, reduced to at least 57% of its original value. Hence, we conclude that the
approach of iteratively removing sources, dangling nodes, and reciprocal leaves can
be of computational benefit.

9. Summary. The concept of a walk around a network has proved to be ex-
tremely useful in the derivation of network centrality algorithms. In this work, we
argued that some types of walk are less relevant than others. Focusing on the general
case of directed networks, we showed that backtracking walks can be eliminated ef-
fectively, leading to new network centrality measures with attractive properties and,
perhaps surprisingly, reduced computational cost. This approach allowed us to ex-
tend the original nonbacktracking Katz-like measure from [13], which dealt with the
undirected case. We showed that the underlying generating function, and its radius
of convergence, were intimately connected to a three-by-three block matrix defined
in terms of the original adjacency matrix. In the undirected case, this block matrix
collapses down to a two-by-two form that has appeared in previous nonbacktracking
studies. From a computational perspective, a useful result is that the radius of con-
vergence of the generating function does not change when the problem dimension is
reduced by the iterative removal of certain types of nodes. Moreover, the resulting
linear system for centrality may also be couched in terms of the remaining, lower
dimensional, system. We showed in practice that these pruning operations can lead
to significant reductions in problem size.

The treatment of nonbacktracking walk combinatorics given here has focused on
network centrality issues and used the tools of matrix analysis. Follow-up work, in

20



preparation [2], will adopt a matrix polynomial viewpoint in order to consider further
spectral properties of the generating function and to study more general edge breaking
and divide-and-conquer style approaches to reducing the network dimension.
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[25] Noferini, V. (2017) A formula for the Fréchet derivative of a generalized matrix function. SIAM
J. Matrix Anal. Appl.

[26] Noferini, V. & Poloni, F. (2015) Duality of matrix pencils, Wong chains and linearizations.
Linear Algebra Appl., 471, 730–767.

[27] Pastor-Satorras, R. & Castellano, C. (2016) Distinct types of eigenvector localization in net-
works. Scientific Reports, 6, 18847.

[28] Stark, H. & Terras, A. (1996) Zeta Functions of Finite Graphs and Coverings. Advances in
Mathematics, 121(1), 124–165.

[29] Tarfulea, A. & Perlis, R. (2009) An Ihara formula for partially directed graphs. Linear Algebra
and its Applications, 431, 73–85.

[30] Wasserman, S. & Faust, K. (1994) Social Network Analysis: Methods and Applications. Cam-
bridge University Press, Cambridge.

22


