
Incomplete LU preconditioner based on max-plus
approximation of LU factorization

Hook, James and Tisseur, Francoise

2016

MIMS EPrint: 2016.47

Manchester Institute for Mathematical Sciences
School of Mathematics

The University of Manchester

Reports available from: http://eprints.maths.manchester.ac.uk/
And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097

http://eprints.maths.manchester.ac.uk/

INCOMPLETE LU PRECONDITIONER BASED ON
MAX-PLUS APPROXIMATION OF LU FACTORIZATION ∗

JAMES HOOK† AND FRANÇOISE TISSEUR‡

Abstract. We present a new method for the a priori approximation of the orders of magnitude
of the entries in the LU factors of a complex or real matrix A. This approximation can be used
to quickly determine the positions of the largest entries in the LU factors of A and these positions
can then be used as the sparsity pattern for an incomplete LU factorization preconditioner. Our
method uses max-plus algebra and is based solely on the moduli of the entries of A. We also present
techniques for predicting which permutation matrices will be chosen by Gaussian elimination with
partial pivoting. We exploit the strong connection between the field of Puiseux series and the max-
plus semiring to prove properties of the max-plus LU factors. Experiments with a set of test matrices
from the University of Florida sparse matrix collection show that our max-plus LU preconditioners
outperform traditional level of fill methods and have similar performance to those preconditioners
computed with more expensive threshold-based methods.

Key words. max-plus algebra, LU factorization, Hungarian scaling, linear systems of equations,
sparse matrices, incomplete LU factorization, preconditioning.

AMS subject classifications. 65F08, 65F30, 15A23, 15A80.

1. Introduction. Max-plus algebra is the analog of linear algebra developed
for the binary operations max and plus over the real numbers together with −∞,
the latter playing the role of additive identity. Max-plus algebraic techniques have
already been used in numerical linear algebra to, for example, approximate the orders
of magnitude of the roots of scalar polynomials [17], to approximate the moduli of the
eigenvalues of matrix polynomials [1, 9, 13], and to approximate singular values [8].
These approximations have been used as starting points for iterative schemes or in the
design of preprocessing steps to improve the numerical stability of standard algorithms
[3, 6, 13]. Our aim is to show how max-plus algebra can be used to approximate the
sizes of the entries in the LU factors of a complex or real matrix A and how these
approximations can subsequently be used in the construction of an incomplete LU
(ILU) factorization preconditioner for A.

In order to be able to apply max-plus techniques to the matrix A ∈ Cn×n we
must first transform it into a max-plus matrix. We do this using the valuation map

Vc : C→ R := R ∪ {−∞}, Vc(x) = log |x|, (log 0 = −∞). (1.1)

The valuation map is applied to matrices componentwise so that Vc(A) ∈ Rn×n is a
max-plus matrix. Note that for x, y ∈ C, Vc(xy) = Vc(x) + Vc(y), and when |x| � |y|
or |x| � |y| then Vc(x+ y) ≈ max{Vc(x),Vc(y)}. This suggests using the operations
max and plus, which we denote by ⊕ and ⊗, respectively, in place of the classical
addition and multiplication once we have applied the map Vc.

The fundamental basis for our approximation of the magnitude of the entries of
the LU factors of A ∈ Cn×n is

∗Version of December 6, 2016. This work was supported by Engineering and Physical Sciences
Research Council grant EP/I005293. The work of the second author was also supported by a Royal
Society-Wolfson Research Merit Award.
†Bath Institute for Mathematical Innovation, University of Bath, Bath, BA2 7AY, UK

(j.l.hook@bath.ac.uk).
‡School of Mathematics, The University of Manchester, Manchester, M13 9PL, UK. (fran-

coise.tisseur@manchester.ac.uk).

1

(a) the fact that the entries in the lower triangle of L and the upper triangle of
U can be expressed explicitly in terms of determinants of submatrices S of
A, and

(b) the heuristic that, when the matrix S has large variation in the size of its
entries, Vc

(
det(S)

)
≈ perm

(
Vc(S)

)
, where perm is the max-plus permanent.

We use (a) and (b) to define a lower triangular max-plus matrix L and an upper
triangular max-plus matrix U such that

Vc(L) ≈ L, Vc(U) ≈ U , (1.2)

and refer to L and U as the max-plus LU factors of A := Vc(A) ∈ Rn×n. The
approximation (1.2) is a heuristic which only aims to capture the order of magnitude
of the entries of L and U . One way to think about the max-plus LU approximation
of the LU factors of A is as an intermediate between the true LU factors of A and a
symbolic or boolean factorization which, based purely on the pattern of nonzero entries
in A, predicts the nonzero patterns of the LU factors. We show that the matrix-matrix
product L ⊗ U is usually not a factorization of A but that it “balances” A.

In order for the max-plus approximation to be useful in practice, it is essential
that the cost of computing it is less than the cost of computing the LU factorization
exactly. We show that the max-plus LU factors can be computed by solving maximally
weighted tree problems. As a result we provide an algorithm for computing the LU
approximation of A ∈ Cn×n with worst case cost O

(
nτ + n2 log n

)
, where τ is the

number of nonzero entries in A. Note that this cost depends on the number of nonzero
entries in A and not on the number of nonzero entries in the LU factors of A. Thus
while the approximate LU factors will exhibit fill-in just as in the exact case, the cost
of computing the approximation is not affected by fill-in and will therefore be less
than computing the exact LU factors. If the matrix A is first reordered according to
its optimal assignment, so that the product of the moduli of the entries on its diagonal
is maximized, then our approximation of the LU factors can be computed in parallel
by n separate computations, each of individual cost O

(
τ + n log n

)
. If we seek only

the positions and values of the k largest entries in each row of U and column of L,
or if we seek only the position and values of the entries that are greater in modulus
than some threshold, then this cost can be reduced further.

An approximation of the size of the entries in the LU factors of a sparse matrix A
can be used to help construct an ILU preconditioner for solving Ax = b, that is, a pair
of sparse lower and upper triangular matrices L,U such that the preconditioned matrix
AU−1L−1 is more amenable to iterative methods such as GMRES [16]. Two classes
of ILU preconditioners are threshold ILU and ILU(k). In threshold ILU, Gaussian
elimination is applied to A but any computed element with modulus less than some
threshold value is set to zero. Threshold ILU can produce effective preconditioners,
but it can be quite slow. This is because there is a lot of work spent computing values
that turn out to be less than the threshold and also because the sparse data structures
that store the matrix entries are constantly being updated to accommodate the larger
entries that are to be saved. For ILU(k) preconditioners, a sparsity pattern for the
incomplete LU factors is first computed from a symbolic factorization that determines
the level of fill-in of each fill-in entry of A [16, Sec. 10.3]. A fill-in entry is dropped
when its level of fill is above k and the corresponding entry in the sparsity pattern
matrix is set zero. The ILU factors are then computed using a variant of Gaussian
elimination restricted to the sparsity pattern such as that provided in [16, Alg. 10.3].
The ILU(k) preconditioners can be computed quickly (for small k) but they do not

2

reliably result in effective preconditioners as they do not consider numerical values.
Our max-plus LU approximation enables us to take a hybrid approach that offers
the best of both of these methods as it uses the max-plus LU factors to define the
sparsity pattern of the ILU preconditioners. Provided the entries of L and U give
good approximations of the size of the true LU entries, our approach results in an
ILU pair very close to the one obtained through standard threshold ILU, but our
ILU pair can be computed considerably faster than the threshold ILU pair using the
techniques for computing ILU(k) factors.

The remainder of this paper is organized as follows. In Section 2 we introduce
the max-plus permanent and discuss how it can be used to approximate the order of
magnitude of the determinant of a complex matrix. This approximation forms the
basis of our LU factor approximation. In Section 3 we define the max-plus LU factors
of a max-plus matrix and argue that they can be used to approximate the orders of
magnitude of the entries in the LU factors of a complex matrix. We also show how our
max-plus LU factorization can be adapted to include pivoting and examine the special
case of Hungarian scaled matrices. In Section 4 we examine the connection between
max-plus LU factors and the LU decomposition of matrices of Puiseux series, and use
this connection to prove several of the theoretical results that are stated earlier in the
paper. In Section 5 we give a derivation of our different max-plus LU algorithms and
describe our max-plus ILU preconditioner. In Section 6 we apply our max-plus LU
approximation and ILU preconditioning technique to a set of test problems from real
life scientific computing problems.

Throughout this paper, complex matrices will be denoted by capital letters with
their entries denoted by the corresponding lower case letter in the usual way A =
(aij) ∈ Cn×n. Matrices of complex Puiseux series will be denoted by capital letters
with a tilde and their entries by the corresponding lower case letter also with a tilde
Ã = (ãij) ∈ C{{z}}n×n, where C{{z}} denotes the field of Puiseux series. Max-plus
matrices will be denoted by calligraphic capital letters and their entries by the corre-

sponding lower case calligraphic letter A = (aij) ∈ Rn×n. Since the most important
results of this paper are the heuristic max-plus approximations, we will present these
results in the style of theorems with a justification following each heuristic in lieu of
a proof.

2. Heuristic approximation of the determinant. If we replace the sum by a
maximum and the product by a summation in the Leibniz formula for the determinant
of A ∈ Cn×n,

det(A) =
∑

π∈Π(n)

sgn(π)

n∏
i=1

ai,π(i),

where Π(n) is the set of all permutations on {1, . . . , n}, and replace the complex scalars
ai,π(i) by scalars ai,π(i) ∈ R, we obtain the formula for the max-plus permanent of

A = (aij) ∈ Rn×n,

perm(A) = max
π∈Π(n)

n∑
i=1

ai,π(i) =
⊕

π∈Π(n)

n⊗
i=1

ai,π(i). (2.1)

The following heuristic is fundamental to our max-plus LU approximation.

3

Heuristic 2.1. Let A ∈ Cn×n be sparse with nonzero entries that vary widely in
magnitude and let Vc be as in (1.1). Then

Vc
(

det(A)
)
≈ perm

(
Vc(A)

)
. (2.2)

Justification. The determinant of A is a sum of terms the vast majority of which
are zero (due to sparsity) and the remainder of which vary widely in order of magnitude
(due to the wide variation in entry magnitude). The order of magnitude of the sum of
a small number of terms of widely varying magnitude can then be approximated by
the order of magnitude of the greatest of those terms, which is precisely perm(Vc(A)).

We show in Section 4 that the permanent can also be used to calculate the exact
asymptotic growth rate of the determinant of a generic matrix of Puiseux series, which
provides some additional support for Heuristic 2.1. In the meantime let us look at a
few examples.

Example 2.2. We use the logarithm in base 10 for Vc and consider

A =

 10 0 1000
1 10 0
0 1 1

 , A = Vc(A) =

 1 −∞ 3
0 1 −∞
−∞ 0 0

 ,
For this example, perm(A) = 3, which provides an order of magnitude approximation
of det(A) = −900 since log |det(A)| ≈ 2.95.

Of course we can easily find counter examples where the approximation in (2.2)
is very poor. However, we can think of these matrices as occupying a set of small
measure, so that the order of magnitude of the determinant of a “typical” complex
matrix will be well approximated.

Example 2.3. Consider A ∈
[
ω1

ω3

ω2

ω4

]
∈ C2×2 with |ωi| = 1, i = 1, . . . , 4 so that

Vc(A) =
[

0
0

0
0

]
, where Vc(x) := log10 |x|. Choosing ωi = 1, i = 1, . . . , 4 yields a sin-

gular A and log |det(A)| = −∞, which is not detected by the max-plus approximation
since perm(Vc(A)) = 0. Likewise whenever det(A) is close to zero the max-plus ap-
proximation will not be accurate. However for most choices of ω the approximation
will capture the order of magnitude of det(A). Indeed if each ωi is an independent ran-
dom variable uniformly distributed on the unit circle then |det(A)| has expected value
E
(
|det(A)|

)
= 4/π ≈ 1, and for small ε > 0, the probability P

(
|det(A)| ≤ ε

)
≈ ε/π.

Thus the choices of ωi for which the max-plus approximation fails to capture the order
of magnitude of det(A) represent a set of small measure.

3. Max-plus LU factors. An LU decomposition of A ∈ Cn×n is a factorization
of A into two factors, a unit lower triangular matrix denoted by L and an upper
triangular matrix denoted by U such that A = LU . The entries of the L and U
factors can be given explicitly in terms of determinants of submatrices of A (see [5,
p. 35] or [10, p.11]) by

lik = det
(
A([1 : k − 1, i], 1 : k)

)
/ det

(
A(1 : k, 1 : k)

)
, i ≥ k, (3.1)

ukj = det
(
A(1 : k, [1 : k − 1, j])/ det

(
A(1 : k − 1, 1 : k − 1)

)
, j ≥ k, (3.2)

and lik = ukj = 0 for i, j < k, where A(i : j, k : `) denotes the submatrix of A formed
by the intersection of the rows i to j and columns k to `. If both the numerator
and denominator in (3.1)–(3.2) are zero then we use the convention 0/0 = 0. If the

4

denominator is equal to zero but the numerator is not, then we say that A does not
admit an LU decomposition. If all of the denominators in (3.1)–(3.2) are nonzero
then A = LU is the unique LU decomposition of A.

Based on these formulae we define the max-plus LU factors of A ∈ Rn×n to be the
unit lower triangular max-plus matrix L and the upper triangular max-plus matrix U
with entries given by

lik = perm
(
A([1 : k − 1, i], 1 : k)

)
− perm

(
A(1 : k, 1 : k)

)
, i > k, lii = 0, (3.3)

ukj = perm
(
A(1 : k, [1 : k − 1, j])− perm

(
A(1 : k − 1, 1 : k − 1)

)
, j ≥ k, (3.4)

and lik = ukj = −∞ if i, j < k. If the two terms on the right hand side of (3.3) or
(3.4) are −∞ then we use the convention −∞− (−∞) = −∞. If the second term is
−∞ but the first is not, then we say that A does not admit max-plus LU factors.

Heuristic 3.1. Let A ∈ Cn×n and suppose that Vc(A) admits max-plus LU

factors L,U ∈ Rn×n. Then A admits an LU decomposition A = LU with

Vc(L) ≈ L, Vc(U) ≈ U .

Justification. From Heuristic 2.1, we expect that the determinant of a submatrix
of A is zero if and only if the permanent of the corresponding submatrix of Vc(A)
is minus infinity. Therefore if Vc(A) admits max-plus LU factors then A admits an
LU factorization A = LU , where the LU factors are as in (3.1)–(3.2). Taking the
valuation of these expressions, applying Heuristic 2.1 and comparing to (3.3)–(3.4)
gives the required result.

Example 3.2. The matrix A of Example 2.2 has LU factorization

A =

 10 0 1000
1 10 0
0 1 1

 =

 1 0 0
0.1 1 0
0 0.1 1

 10 0 1000
0 10 −100
0 0 11

 = LU,

and max-plus LU factors

L =

 0 −∞ −∞
−1 0 −∞
−∞ −1 0

 , U =

 1 −∞ 3
−∞ 1 2
−∞ −∞ 1

 ,
which provide good approximations of the orders of magnitude of the entries in L,U .

Example 3.3. The LU factorization of the matrix A of Example 2.3 with |ωi| = 1
is given by

A =

[
ω1 ω2

ω3 ω4

]
=

[
1 0
ω3

ω1
1

] [
ω1 ω2

0 ω4 − ω2ω3

ω1

]
= LU

and the max-plus LU factors of Vc(A) are given by

L =

[
0 −∞
0 0

]
, U =

[
0 0
−∞ 0

]
.

Since Vc(A) is independent of the choice of the ωi since |ωi| = 1 so are its max-plus
LU factors. The (2, 2) entry of U is the only entry where the max-plus approximation

5

is not guaranteed to be perfectly accurate but for most choices of the ωi, the max-plus
approximation captures the order of magnitude of the entries of L and U . There is,
however, a small set of parameter values of small measure for which the max-plus
approximation is not accurate.

Our definition of the max-plus LU factors of a max-plus matrix was chosen so
that that we could use it to approximate the orders of magnitude of the entries in the
LU factors of a complex matrix. But what do the max-plus LU factors of a max-plus

matrix A ∈ Rn×n tell us about A?
Theorem 3.4. Suppose that A = (aij) ∈ Rn×n has max-plus LU factors L,U ∈

Rn×n. Then for each i, j = 1, . . . , n either

(L ⊗ U)ij := max
1≤k≤n

(lik + ukj) > aij , (3.5)

where the maximum is attained by at least two different values of k or

(L ⊗ U)ij = aij . (3.6)

The proof of Theorem 3.4 is provided in Section 4. We say that the max-plus matrix
product L ⊗ U balances A.

3.1. Pivoting. After k steps of Gaussian elimination applied to A ∈ Cn×n, the
matrix A is reduced to

Mk · · ·M1A = U (k) =

[
U

(k)
11 U

(k)
12

0 U
(k)
22

]
, (3.7)

where the Mi are Gauss transforms and U
(k)
11 ∈ Ck×k is upper triangular. Like the

LU factors themselves, the entries of U (k) can be expressed in terms of determinants
of submatrices of A as the next lemma shows.

Lemma 3.5. Let A ∈ Cn×n have an LU factorization and let U (k) be as in (3.7).
Then

u
(k)
ij =

{
det
(
A([1 : k, i], [1 : k, j])

)
/ det

(
A(1 : k, 1: k)

)
, i, j > k,

uij otherwise,
(3.8)

where U = U (n−1) is the upper triangular factor in the LU factorization of A.
Proof. Suppose that i, j > k. Let Ri and Cj be elementary matrices swapping

rows k + 1 and i, and columns k + 1 and j, respectively. Define A′ := RiACj and
let U ′(k) be the matrix obtained after performing k steps of Gaussian elimination on

A′. Then U ′(k) = RiU
(k)Cj and in particular u

′(k)
k+1,k+1 = u

(k)
ij . The Gauss transform

M ′k+1 at step k+1 has the form I+mk+1e
T
k+1, where eTi mk+1 = 0 for i = 1, . . . , k+1

so that the (k+ 1, k+ 1) entries of U ′(k) and M ′k+1U
′(k) = U ′(k+1) are the same, that

is, u
′(k)
k+1,k+1 = u

′(k+1)
k+1,k+1. But u

′(k+1)
k+1,k+1 = u′k+1,k+1 and by (3.2),

u′k+1,k+1 = det
(
A′(1 : k + 1, [1 : k + 1])/ det

(
A′(1 : k, 1 : k)

)
= det

(
A([1 : k, i], [1 : k, j])

)
/ det

(
A(1 : k, 1: k)

)
.

The next steps of Gaussian elimination leave the (i, j) entries of U (k) with min{i, j} ≤
k unchanged so that u

(k)
ij = uij for min{i, j} ≤ k.

6

We say that A ∈ Cn×n is partial pivoting free if

|u(k)
k+1,k+1| = max

k+1≤i≤n
|u(k)
i,k+1|, k = 0, . . . , n− 1, (3.9)

where U (0) = A. If the matrix A is partial pivoting free then it is possible to ap-
ply Gaussian elimination with partial pivoting to A without the need for any row
interchanges.

Let A = LU be the LU decomposition of A and suppose that we compute an
approximate LU pair L̂, Û ∈ Cn×n using Gaussian elimination. The backward error
of these approximate LU factors is equal to the perturbation ∆A ∈ Cn×n such that
A+ ∆A = L̂Û and is known to satisfy [7, Lem. 9.6]

‖∆A‖∞ ≤
nu

1− nu‖|L||U |‖∞ ≤ γn
(
1 + 2(n2 − n)ρn(A)

)
‖A‖∞,

where u is the unit roundoff and ρn(A) is the growth factor for A defined by

ρn(A) =

max
0≤k≤n−1

(
max

k≤i,j≤n
|u(k)
ij |
)

max
i,j
|aij |

. (3.10)

Thus if ‖∆A‖∞ is small relative to ‖A‖∞, which certainly happens when ρn(A) is
small, then the factorization is stable, otherwise it it unstable [7, Sec. 9.3].

In analogy to (3.9) we say that the max-plus matrix A ∈ Rn×n is partial pivoting
free if

u(k)
k+1,k+1 = max

k+1≤i≤n
u(k)
i,k+1, k = 0, . . . , n− 1, (3.11)

where u(0)
ij := aij and

u(k)
ij :=

{
perm

(
A([1 : k, i], [1 : k, j])

)
− perm

(
A(1 : k, 1 : k)

)
, i, j > k,

uij otherwise.
(3.12)

Also, in analogy to (3.10) we define the max-plus growth factor of A ∈ Rn×n by

%n(A) = max
0≤k≤n−1

(
max

k≤i,j≤n
u(k)
ij

)
− max

1≤i,j≤n
aij ≥ 0. (3.13)

Theorem 3.6. If A ∈ Rn×n is partial pivoting free then %n(A) = 0.
The proof of Theorem 3.6 is deferred to Section 4.
Heuristic 3.7. For A ∈ Cn×n we have Vc

(
ρn(A)

)
≈ %n

(
Vc(A)

)
.

Justification. From Lemma 3.5 and Heuristic 2.1 we have Vc(u(k)
ij) ≈ u(k)

ij . The
result then follows from the comparison of (3.10) and (3.13).

If Vc(A) is partial pivoting free then it follows from Theorem 3.6 that %n
(
Vc(A)

)
=

0 so that, based on Heuristic 3.7, the growth factor ρn(A) should to be of order one,
implying a backward stable LU factorization. As before this is a heuristic and it is
not difficult to construct counterexample matrices A for which Vc(A) is partial or full
pivoting free but that cannot be factorized in a stable way without further pivoting.

Theorem 3.6 and Heuristic 3.7 suggest applying a permutation P to a given A
such that Vc(PA) is partial pivoting free. We show in Section 5.2 how to update

7

our max-plus LU algorithm to include partial pivoting. Another option is to apply
Hungarian scaling, which is a two-sided diagonal scaling applied to A ∈ Cn×n along
with a permutation P that maximizes the product of the moduli of the diagonal
entries of the matrix

H = PD1AD2, (3.14)

where D1, D2 ∈ Rn×n are nonsingular and diagonal, and such that H’s entries satisfy

|hij | ≤ 1, |hii| = 1 i, j = 1, . . . , n. (3.15)

We refer to any complex matrix satisfying (3.15) as a Hungarian matrix. The max-

plus matrix H = Vc(H) ∈ Rn×n is such that hij ≤ 0, hii = 0, i, j = 1, . . . , n and is
referred to as a max-plus Hungarian matrix.

Theorem 3.8. Max-plus Hungarian matrices always admit max-plus LU factors.

Proof. Suppose H ∈ Rn×nmax is Hungarian. From (3.3) and (3.4) we have that

perm
(
H(1 : k, 1 : k)

)
6= −∞, k = 1, . . . , n,

is a sufficient condition for H to admit max-plus LU factors. Since hii = 0 for
i = 1, . . . , n, we have perm

(
H(1 : k, 1 : k)

)
≥ 0 for k = 1, . . . , n.

Theorem 3.9. A max-plus Hungarian matrix is partial pivoting free.

Proof. It follows from (3.11) and (3.12) that H is partial pivoting free if

perm
(
H(1 : k + 1, 1 : k + 1)

)
≥ perm

(
H([1 : k, i], [1 : k + 1])

)
(3.16)

for all i = k + 1, . . . , n and for all k = 0, . . . , n − 1. But since hij ≤ 0 for all i, j, the
permanent of any submatrix of H must be nonpositive. Hence the right hand side of
the inequality in (3.16) must be less than or equal to zero. Also, since H has zero
diagonal entries, the permanent of any principal leading submatrix of H is equal to
zero. Therefore the inequality in (3.16) must have left hand side equal to zero so that
H is partial pivoting free.

Therefore given A ∈ Cn×n we apply Hungarian scaling to obtain H = PD1AD2

and from Theorems 3.6 and 3.9, and Heuristic 3.7, we expect that it should be possible
to factorize H in a stable way without any need for interchange. This preprocessing
technique was originally suggested by Olschowka and Neumaier in [14]. They prove
that Hungarian scaling removes the need for interchange in Gaussian elimination
for some special classes of matrices. Whilst our results do not constitute a definite
theorem they provide some intuitive explanation for the widely observed fact that
Hungarian scaling significantly reduces the need for pivoting (see Section 6).

Example 3.10. Let A =
[

1
10

10−3

1

]
. We have that Vc(A) =

[
0
1
−3
0

]
is not partial

pivoting free since U (0) = Vc(A) is such that u(0)
21 = 1 > u(0)

11 = 0. Similarly A is
not partial pivoting free. It is easy to check that the matrices PA and Vc(PA) with
P =

[
0
1

1
0

]
are both partial pivoting free. Now a Hungarian scaling for A with P = I,

D1 = diag(1, 10−2), and D2 = diag(1, 102) is given by H = PD1AD2 =
[

1
10−1

10−1

1

]
so that Vc(H) =

[
0
−1
−1
0

]
. Theorem 3.9 guarantees that Vc(H) is partial pivoting free

and it is easy to check that H is also partial pivoting free.

8

4. Puiseux series. There is a stronger connection between the field of complex
Puiseux series and the semiring Rmax = (R,⊕,⊗) than between the field of complex
numbers and Rmax, which we now exploit to prove properties of the max-plus LU
factors as well as Theorems 3.4 and 3.6, and to provide further justification of Heuris-
tic 2.1. This section is not needed for the derivation on the max-plus LU algorithms
presented in Section 5.

Complex Puiseux series

f(z) =

∞∑
i=k

ciz
i
m , (4.1)

with m ∈ N, k ∈ Z, ci ∈ C, i ≥ k, and ck 6= 0 form an algebraically closed field
under addition and multiplication denoted by C{{z}}. On that field, we define the
valuation

Vp : C{{z}} 7→ R, Vp(f) = −k/m, (4.2)

that is, the valuation of a Puiseux series is minus the degree of its lowest order term.
This valuation provides a near homeomorphism between C{{z}} and Rmax,

Vp(fg) = Vp(f)⊗ Vp(g), for all f, g ∈ C{{z}}, (4.3)

Vp(f + g) ≤ Vp(f)⊕ Vp(g), for all f, g ∈ C{{z}},
Vp(f + g) = Vp(f)⊕ Vp(g), for almost all f, g ∈ C{{z}},

where the third relation holds except for when Vp(f) = Vp(g) and the coefficient of
the lowest order term of f is equal to minus that of g. As for complex matrices, the
valuation Vp is applied componentwise to matrices with Puiseux series entries. We
decorate matrices in C{{z}}n×n with a tilde to distinguish them from matrices in
Cn×n.

Any entry of Ã ∈ C{{z}}n×n can be written as

ãij = cijz
−Vp(ãij) + higher order terms,

where C = (cij) =: L(Ã) ∈ Cn×n is the matrix of lowest order term coefficients of

Ã with L : C{{z}}n×n 7→ Cn×n. For a set of permutations Φ ⊂ Π(n), we define the
map gΦ : Cn×n 7→ C by

gΦ(C) =
∑
π∈Φ

sign(π)

n∏
i=1

ciπ(i). (4.4)

Note that gΠ(n)(C) = det(C). For A ∈ Rn×n such that perm(A) 6= −∞ we denote by

ap(A) =
{
π ∈ Π(n) :

n∑
i=1

aiπ(i) = perm(A)
}

the set of optimal assignments for A.
The next lemma identifies the set of matrices with Puiseux series entries such

that the valuation of the determinant is exactly the permanent of the valuation (see
Heuristic 2.1 for matrices with complex entries).

9

Lemma 4.1. Let Ã ∈ C{{z}}n×n and suppose that g
ap(Vp(Ã))

(
L(Ã)

)
6= 0, where

g, ap, and L are defined above. Then Vp
(

det(Ã)
)

= perm
(
Vp(Ã)

)
.

Proof. Let A = Vp(Ã) ∈ Rn×n. First suppose that perm(A) = −∞. Then for
each permutation π ∈ Π(n) there exists i such that aiπ(i) = −∞ so that ãiπ(i) = 0.

Thus det(Ã) =
∑
π∈Π(n) sign(π)

∏n
i=1 ãiπ(i) = 0 and Vp

(
det(Ã)

)
= perm(A).

Now suppose that perm(A) 6= −∞ and let C = L(Ã). Then

det(Ã) =
∑

π∈Π(n)

sign(π)

n∏
i=1

ãiπ(i) =
∑

π∈Π(n)

sign(π)
(
z−

∑n
i=1 aiπ(i)

n∏
i=1

ciπ(i) + h.o.t.
)
,

where h.o.t. stands for higher order terms. We break the sum into two parts, one
over ap(A) and one over Π(n) \ ap(A). We have that∑
π∈ap(A)

sign(π)
(
z−

∑n
i=1 aiπ(i)

n∏
i=1

ciπ(i) + h.o.t.
)

= z−perm(A)
∑

π∈ap(A)

sign(π)

n∏
i=1

ciπ(i)+

h.o.t.

= z−perm(A)gap(A)(C) + h.o.t.,

where gap(A)(C) is defined in (4.5). Since for π ∈ Π(n)\ap(A),
∑n
i=1 aiπ(i) < perm(A),

z−
∑n
i=1 aiπ(i) is higher order than z−perm(A) and so is∑

π∈Π(n)\ap(A)

sign(π)
(
z−

∑n
i=1 aiπ(i)

n∏
i=1

ciπ(i) + h.o.t.
)
.

Hence, det(Ã) = z−perm(A)gap(A)(C) + h.o.t. and Vp
(

det(Ã)
)

= perm(A) since
gap(A)(C) 6= 0.

The next lemma will be useful to show that Vp
(

det(Ã)
)

= perm
(
Vp(Ã)

)
holds

for generic matrices Ã ∈ C{{z}}n×n but also to explain what we mean by generic in
this context.

Lemma 4.2. Let gΦ be as in (4.4). Then the set

Gn = {C ∈ Cn×n : gΦ(C) 6= 0 for all nonempty Φ ⊂ Π(n)} (4.5)

is a generic (open and dense) subset of Cn×n.
Proof. For each Φ ⊂ Π(n), gΦ(C) is a polynomial in the coefficients of C. A

polynomial is either identically equal to zero or only zero on some low dimensional
subset. Therefore

V (gφ) = {C ∈ Cn×n : gΦ(C) = 0},

is either the whole of Cn×n or it is a lower dimensional subset of Cn×n. Choose
some permutation π ∈ Φ and define Cπ ∈ Cn×n by cij = 1 if j = π(i) and cij = 0
otherwise. By construction we have gΦ(Cπ) = sign(π) = ±1 6= 0 and therefore
Cπ 6∈ V (gφ). Therefore V (gφ) cannot be the whole of Cn×n and must instead be a
lower dimensional subset. Thus Cn×n \ V (gφ) is a generic subset of Cn×n. Finally
note that

Gn =
⋂

φ⊂Π(n)

{
Cn×n \ V (gφ)

}
,

10

is a finite intersection of generic subsets and is therefore generic.

Now if Ã ∈ C{{z}}n×n is such that L(Ã) ∈ Gn then g
ap(Vp(Ã))

(
L(Ã)

)
6= 0.

Lemma 4.2 states that Gn is a generic set, so that the property g
ap(Vp(Ã))

(
L(Ã)

)
6= 0

is a generic property for Ã ∈ C{{z}}n×n with respect to the topology induced by
the map L : C{{z}}n×n 7→ Cn×n. A more intuitive way of understanding this result

is that, if we have a matrix Ã where the leading order coefficients L(Ã) have been
chosen at random, according to a continuous distribution, then with probability one
g

ap(Vp(Ã))

(
L(Ã)

)
6= 0 will hold. We then say that Vp

(
det(Ã)

)
= perm

(
Vp(Ã)

)
holds

for “almost all” Ã ∈ C{{z}}n×n.
Example 4.3. Consider

Ã =

 z−1 0 z−3

1 z−1 0
0 1 1

 , Vp(Ã) =

 1 −∞ 3
0 1 −∞
−∞ 0 0

 , L(Ã) =

 1 0 1
1 1 0
0 1 0

 .
It is easy to check that L(Ã) ∈ G3, det(Ã) = −z−3 + z−2, and that Vp

(
det(Ã)

)
=

perm
(
Vp(Ã)

)
= 3 as expected from Lemma 4.1.

We now show how to use Puiseux series to further justify Heuristic 2.1.
Justification of Heuristic 2.1. For f(z) = cz−Vp(f) + h.o.t. ∈ C{{z}} with c 6= 0,

we have that log|z| |f(z)| → −Vp(f) as |z| → 0. Therefore, for z0 in the domain of
the asymptotic regime of f , we have that log|z0| |f(z0)| ≈ −Vp(f).

Now suppose that x0 ∈ C is some value of interest and that we know Vp(f) but
not f , where f ∈ C{{z}} is a Puiseux series with f(ž0) = x0 for some ž0 ∈ C. Then,
assuming ž0 is small enough so that it is in the domain of the asymptotic regime of f
we have

Vc(x0) = log |x0| = log |f(ž0)| = log |ž0| log|ž0| |f(ž0)| ≈ − log |ž0|Vp(f). (4.6)

This approximation falls short of being a theorem because we have no way of guar-
anteeing that ž0 is in the domain of the asymptotic regime of f . In other words there
is no uniform scale for determining what constitutes a small value of z ∈ C.

We can apply the same idea to approximate the determinant of A ∈ Cn×n. Sup-
pose that we know Vp(Ã) with Ã ∈ C{{z}}n×n such that Ã(ž0) = A for some ž0 ∈ C
and L(Ã) ∈ Gn. Then, assuming ž0 is in the domain of the asymptotic regime of Ã,
if follows from (4.6) that

Vc(A) ≈ − log |ž0|Vp(Ã). (4.7)

Since Ã(ž0) = A we have det(A) = f(ž0), where f = det(Ã) ∈ C{{z}}. Assuming
that ž0 is in the domain of the asymptotic regime of f and applying (4.6) we have

Vc
(

det(A)
)
≈ − log |ž0|Vp(det(Ã)).

Using Lemma 4.1 and (4.7) we obtain that Vc
(

det(A)
)
≈ perm

(
Vc(A)

)
, which pro-

vides another justification for Heuristic 2.1.

We will need the next lemma.
Lemma 4.4. Let C ∈ Cn×n \ Gn with Gn as in (4.5). Then any k × k submatrix

of C is in Ck×k \ Gk.

11

Proof. If P,Q ∈ Cn×n are permutation matrices then C ∈ Cn×n \ Gn if and only
if PCQ ∈ Cn×n \ Gn so it suffices to prove the result for the principal submatrix C of
order k, which we denote by S. For any Ψ ⊂ Π(k), we construct Φ ⊂ Π(n) by setting
Φ = {π[ϕ] ∈ Π(n) : ϕ ∈ Ψ}, where

π[ϕ](i) =

{
ϕ(i), 1 ≤ i ≤ k,
i, k + 1 ≤ i ≤ n.

Then

gΦ(C) =
∑
π∈Φ

sign(π)

n∏
i=1

ciπ(i) =
∑
$∈Ψ

sign($)

k∏
i=1

si$(i)

n∏
i=k+1

cii = gΨ(S)

n∏
i=k+1

cii

so that gΨ(S) = 0 if and only if gΦ(C) = 0. Hence C ∈ Cn×n \ Gn if and only if
S ∈ Ck×k \ Gk.

As for complex matrices, an LU factorization of Ã ∈ C{{z}}n×n is a factorization

of Ã into a lower triangular matrix L̃ ∈ C{{z}}n×n with ones on the diagonal and an

upper triangular matrix Ũ ∈ C{{z}}n×n such that Ã = L̃Ũ . When the factorization

exists, the nonzero entries of L̃ and Ũ can be defined as in (3.1)–(3.2) with Ã in place
of A. The next result should be compared to Heuristic 3.1.

Theorem 4.5. Let Ã ∈ C{{z}}n×n be such that L(Ã) ∈ Gn and suppose that

Vp(Ã) ∈ Rn×n admits max-plus LU factors L,U ∈ Rn×n. Then Ã admits an LU

factorization Ã = L̃Ũ , where

Vp(L̃) = L, Vp(Ũ) = U .

If for Ã ∈ C{{z}}n×n, Vp(Ã) does not admit max-plus LU factors then Ã does not
admit an LU factorization.

Proof. Let A = Vp(Ã). From Lemmas 4.1 and 4.4 we have

Vp
(

det
(
Ã([i1, . . . , ik], [j1, . . . , jk])

))
= perm

(
A([i1, . . . , ik], [j1, . . . , jk])

)
,

for all submatrices of Ã since L(Ã) ∈ Gn. Therefore a submatrix of Ã has zero

determinant if and only if the corresponding submatrix of Vp(Ã) has permanent equal
to minus infinity. Thus if A admits max-plus LU factors then an LU factorization of
Ã exists with entries given by (3.1)–(3.2).

If Vp(Ã) does not have max-plus LU factors then this means that for some i, j, k,
the first term on the right hand side of (3.3) or (3.4) is equal to −∞ but the second
term is not. As a result the denominator on the right hand side of (3.1) or (3.2) is

equal to 0 but numerator is not so Ã does not have an LU factorization.

Recall from Section 3 that for A,B, C ∈ Rn×n, the product A⊗B balances C if for
every i, j = 1, . . . , n either (A⊗B)ij = cij or (A⊗B)ij = max1≤k≤n(aik + bkj) > cij ,
where the maximum must be attained by at least two different values of k.

Lemma 4.6. Let Ã, B̃ ∈ C{{z}}n×n. Then the product Vp(Ã) ⊗ Vp(B̃) balances

Vp(ÃB̃).

Proof. We have (ÃB̃)ij = cz−max1≤k≤n(Vp(ãik)+Vp(b̃kj)) + h. o. t., where c ∈ C is
the coefficient of the lowest order term in the sum. Therefore

Vp(ÃB̃)ij = max
1≤k≤n

(Vp(ãik) + Vp(b̃kj)) =
(
Vp(Ã)⊗ Vp(B̃)

)
ij
, (4.8)

12

unless c = 0, which is only possible if the maximum in (4.8) is attained more than once,

in which case Vp(ÃB̃)ij < max1≤k≤n
(
Vp(ãik) + Vp(b̃kj)

)
=
(
Vp(Ã)⊗Vp(B̃)

)
ij

.

We are now ready to prove Theorems 3.4 and 3.6.

Proof of Theorem 3.4. Suppose that A = Vp(Ã) ∈ Rn×n admits max-plus

LU factors L,U ∈ Rn×n, where Ã ∈ C{{z}}n×n is such that L(Ã) ∈ Gn. Then by

Theorem 4.5, Ã has LU factorization Ã = L̃Ũ with Vp(L̃) = L and Vp(Ũ) = U and

by Lemma 4.6 the product L ⊗ U balances A = Vp(Ã).

Proof of Theorem 3.6. Let Ã ∈ C{{z}}n×n satisfy the conditions in the statement

of Theorem 4.5. Now let Ũ (k) = M̃k · · · M̃1Ã = M̃kŨ
(k−1) be the matrix obtained

after k steps of Gaussian elimination applied to Ã = Ũ (0), where M̃k = I−m̃ke
T
k , with

ek the kth unit vector, m̃k = [0, . . . , 0, m̃k+1,k, . . . , m̃n,k]T , and m̃ik = ũ
(k−1)
ik /ũ

(k−1)
kk .

By Lemma 4.6, the product Vp(M̃k)⊗ Vp(Ũ (k−1)) balances Vp(Ũ (k)), which yields

Vp(ũ(k)
ij) =: u(k)

ij ≤ max{u(k−1)
ij , u(k−1)

ik + u(k−1)
kj − u(k−1)

kk }, i, j ≥ k. (4.9)

Next, we show by induction on k that u(k)
ij ≤ maxp,q ap,q for all i, j, and k. Since

Ũ (0) = Ã, Vp(Ũ (0)) = Vp(Ã) so that u(0)
ij ≤ maxp,q ap,q for all i, j. Assume that

u(`)
ij ≤ maxp,q ap,q for all i, j and ` ≤ k − 1. Since A = Vp(Ã) is partial pivoting free,

u(k−1)
kk ≥ u(k−1)

ik , which combined with (4.9) and the induction hypothesis gives

u(k)
ij ≤ max{u(k−1)

ij , u(k−1)
kj } ≤ max

p,q
ap,q

for all i, j. Hence %n(A) = max0≤k≤n−1

(
maxk≤i,j≤n u(k)

ij

)
− max1≤i,j≤n aij ≤ 0.

But, by definition, %n(A) ≥ 0 so %n(A) = 0.

5. Max-plus LU algorithm. Computing the max-plus LU factors directly from
the formulae (3.3)–(3.4) is computationally expensive as each entry in either the lower
part of L or the upper part of U requires the computation of two max-plus permanents,
or in other words, the solution of two optimal assignment problems. The best known
algorithms for computing an optimal assignment of A ∈ Rn×nmax have worst case cost
O
(
nτ +n2 log n

)
, where τ is the number of nonzeros in A. So the computation of the

LU factors using (3.3)–(3.4) can cost as much as O
(
n2τ+n3 log n

)
operations. We now

describe a more efficient approach, which consists of simultaneously computing all the
permanents needed for all the entries in a row of U or a column of L, while sharing
some of the computation along the way. The bipartite graph set-up underpinning our
method will be familiar to readers who already have some knowledge of primal dual
optimal assignment solvers such as the Hungarian algorithm.

To A = (aij) ∈ Rn×n, we associate a bipartite graph G = (X,Y ;E) with left
vertices X = {x(1), . . . , x(n)}, right vertices Y = {y(1), . . . , y(n)}, and edge set E.
We include an edge eij in E from x(i) to y(j) with weight w(eij)) = aij whenever
aij 6= −∞. Thus the edges out of a left vertex x(i) represent the finite entries in the
ith row of A (see Figure 5.1(a)).

A matching M is a subset of E with the property that no vertex in M is incident
to more than one edge. Vertices which are incident to edges in M are said to be

13

A =

 a b −∞
c d e
−∞ f −∞


x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

a
b

c

d
e

f

(a)

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

a
−b
−c

d
e

f

(b)

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

a
−b

−c

d

e

f

(c)

Fig. 5.1. (a) Bipartite graph G of A with matching M = {e12, e21} highlighted with thicker
lines. (b) Residual graph RG(M) with directed path σ = {e32, e12, e11, e21, e23} highlighted with
thicker lines. (c) Transpose residual graph RG(M) with cycle c = {e12, e22, e21, e11} highlighted
with thicker lines.

matched. The weight of a matching w(M) is the sum of its edge weights. Given a
matching M we define the residual graph RG(M) to be the bipartite graph obtained
from G by reversing the direction of all of the edges in M and changing the sign of
the edges’ weight (see Figure 5.1(b)). Note that we maintain the labelling of edges
even when they are reversed. Thus eij labels either the forwards edge from x(i) to
y(j) or the backwards edge from y(j) to x(i), depending on wether or not is has been
reversed. We do not switch to labelling this edge as eji. We define the weight w(σ)
of a directed path or cycle σ through RG(M) to be equal to the sum of the weights
of its constitute edges in RG(M). For the directed path σ = {e32, e12, e11, e21, e23}
through RG(M) in Figure 5.1(b), w(σ) = f − b+ a− c+ e. We denote by RT (M) the
transpose residual graph obtained from R(M) by reversing the direction of all edges
(see Figure 5.1(c)).

Given a subset S of the edges of RG(M) we augment M according to S, written
as M4S, by taking all the edges that appear in either M or S but not both, that is,

M4S := {M ∪ S} \ {M ∩ S}.

When we augment with respect to a path/cycle trough RG(M), we treat the path/
cycle as a set of edges. For the path σ = {e32, e12, e11, e21, e23} in Figure 5.1(b),
we have that M4σ = {e11, e23, e32}, which is a matching between the left vertices
{x(1), x(2), x(3)} and the right vertices {y(1), y(2), y(3)} with weight w(M4σ) =
a+ e+ f = w(M) + w(σ).

A maximally weighted spanning tree T through R(M) rooted at x(k) consists of
the maximally weighted paths from x(k) to every reachable left and right vertex. The
depth of a reachable vertex is the weight of the corresponding maximally weighted
path in T . If T does not reach a vertex then this vertex has depth −∞.

Our max-plus LU algorithm relies on the following result.

Proposition 5.1. Let A ∈ Rn×n have max-plus LU factors L = (lij) and
U = (uij), and let G be the bipartite graph associated with A with left vertices X =
{x(1), . . . , x(n)} and right vertices Y = {y(1), . . . , y(n)}. Let M` be a maximally

14

weighted matching between the left vertices {x(1), . . . , x(`)} and right vertices {y(1),
. . . , y(`)}. Then

• ukj is either the weight of the maximally weighted path through R(Mk−1) from
x(k) to y(j) for j ≥ k, or −∞ if there is no such path,

• likis either the weight of the maximally weighted path through RT (Mk) from
x(k) to x(i) for i > k, or −∞ if there is no such path.

The proof of Proposition 5.1 is technical and is left to Appendix A.

The sequence of maximally weighted matchings M1, . . . ,Mn can be obtained it-
eratively starting with M0 = ∅. At step k > 0, Mk−1 is augmented with respect to
a maximally weighted path through RG(Mk−1) from x(k) to y(k) to form Mk. The
n−k maximally weighted paths needed to calculate the kth row of U can be obtained
by solving a single maximally weighted spanning tree problem rooted at x(k). The
kth column of L can be obtained in a similar way. These yield the following algorithm.

Algorithm 5.2 (Max-plus LU). Given A ∈ Rn×n this algorithm returns a unit
lower triangular matrix L and an upper triangular matrix U such that L,U are max-
plus LU factors for A.

% G denotes the bipartite graph associated with A with left vertices

% X = {x(1), . . . , x(n)} and right vertices Y = {y(1), . . . , y(n)}.
1 Set the lower part of U and strictly upper part of L to −∞, and the diagonal

entries of L to 0.
2 Set M0 = ∅.
3 for k = 1 : n
4 Compute the maximally weighted spanning tree T through RG(Mk−1)

rooted at x(k).
5 for j = k : n
6 ukj = depth of y(j) in T .
7 end
8 Mk = Mk−14σ, where σ is the maximally weighted path through

RG(Mk−1) from x(k) to y(k).
9 Compute the maximally weighted spanning tree T ′ through RTG(Mk)

rooted at x(k).
10 for i = k + 1 : n
11 lik = depth of x(k) in T ′.
12 end
13 end

If A does not admit max-plus LU factors then at some step k of Algorithm 5.2,
y(k) will have depth −∞ and there will be no path from x(k) to y(k) so the algorithm
will not be able to augment the matching Mk−1 in line 8.

Example 5.3. We apply Algorithm 5.2 to compute the max-plus LU factors for

A =

 1 −∞ 3
0 1 −∞
−∞ 0 0

 .
k = 1. The maximally weighted spanning tree T through RG(M0) = G rooted at x(1)

is highlighted with thicker red lines in Figure 5.2(a). The depths of the Y
vertices (i.e., 1 for y(1), −∞ for y(2) as it is not reached by the spanning
tree, and 3 for y(3)) give the entries for the first row of U .

15

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

1

3 0

1

0

0

(a) RG(M0) = G

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

−1

3 0

1

0

0

(b) RG(M1)

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

−1

3
0

−1

0

0

(c) RG(M2)

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

−1

3 0

1 0

0

(d) RTG(M1)

x(1)

x(2)

x(3)

y(1)

y(2)

y(3)

−1

3 0−1

0

0

(e) RTG(M2)

Fig. 5.2. Bipartite graphs produced by Algorithm 5.2 for the matrix A of Example 5.3. Maxi-
mally weighted spanning trees and paths are highlighted in thicker red lines.

The maximally weighted path σ through RG(M0) from x(1) to y(1) consists
of a single edge σ = {e11} so that M1 = M04σ = {e11} yielding the residual
graph RG(M1) displayed in Figure 5.2(b).
The maximally weighted spanning tree T ′ through RTG(M1) rooted at x(1)
is highlighted with thicker red lines in Figure 5.2(d). The depths of the X
vertices give the entries for the first column of L.

k = 2. Figure 5.2(b) highlights the maximally weighted spanning tree T through the
residual graph RG(M(1)) rooted at x(2). The depths of the Y vertices give
the entries for the second row of U .
The maximally weighted path σ through RG(M1) from x(2) to y(2) consists of
a single edge σ = {e22} (Figure 5.2(b)) so that M(2) = M(1)4σ = {e11, e22}.
The residual graph RG(M(2)) is shown in Figure 5.2(c). The maximally
weighted spanning tree T ′ through RTG(M(2)) rooted at x(2) is highlighted in
Figure 5.2(e). The depths of the X vertices give the entries for the second
column of L below the diagonal.

k = 3. The maximally weighted spanning tree T through RG(M2) rooted at x(3) is
highlighted in Figure 5.2(c). The depth of the y(3) vertex gives the entry for
the third row of U .

The algorithm returns the max-plus LU factors

L =

 0 −∞ −∞
−1 0 −∞
−∞ −1 0

 , U =

 1 −∞ 3
−∞ 1 2
−∞ −∞ 1

 .
Algorithm 5.2 requires the solution of maximally weighted spanning tree problems

in steps 4 and 9. Note that the spanning tree T in step 4 provides the maximally
weighted path σ needed in step 8. To efficiently solve the maximally weighted spanning
tree problems for a given bipartite graph G = (X,Y ;E), we follow an approach taken
by Orlin and Lee for the optimal assignment problem [15]. Their approach consists

16

of adjusting the edge weights of G by defining a potential φ : X,Y 7→ R so that,
for each edge e ∈ E from a vertex a to a vertex b, the new edge weight is given by
w′(e) = w(e)− φ(a) + φ(b) with the property that w′(e) ≤ 0. This leads to adjusted
path weights w′(σ) = w(σ)−φ(a)+φ(b), for a path σ from vertex a to vertex b. Hence
if σ is a maximally weighted path from a to b for the original bipartite graph then
it stays maximally weighted for the bipartite graph with adjusted weights, and vice
versa. Now since all the adjusted edge weights are nonpositive, Dijkstra’s algorithm
can then be used to compute the maximally weighted spanning trees and the depth
w′(σ) of each of its maximally weighted paths σ. Then the depth of σ for the original
graph G is given by w(σ) = w′(σ) + φ(a)− φ(b).

The computational cost of adjusting the weights using the technique in [15] is done
in O(τ) operations, where τ is the number of edges in G. Dijkstra’s algorithm solves
the maximally weighted spanning tree problem with worst case cost O

(
τ+n log n

)
for

a graph with n vertices and τ edges. Since we need to compute 2n of such spanning

trees, our max-plus LU algorithm applied to A ∈ Rn×n will have worst case cost
O
(
nτ + n2 log n

)
, where τ is the number of finite entries in A.

5.1. Max-plus LU algorithm for Hungarian matrices. Algorithm 5.2 sim-
plifies if we first apply a Hungarian scaling and an optimal assignment to A to produce
a Hungarian scaled and reordered max-plus matrix H. In particular, if A = Vc(A)
with A ∈ Cn×n, then H = Vc(H) with H as in (3.14) is Hungarian. The next lemma
shows that there is no need to compute the sequence of maximally weighted match-
ings M1, . . . ,Mn (see step 8 of Algorithm 5.2) as these come for free for Hungarian
matrices.

Lemma 5.4. Let H ∈ Rn×n be a Hungarian matrix (i.e., hij ≤ 0, hii = 0,
1 ≤ i, j ≤ n) and let G = (X,Y ;E) be the corresponding bipartite graph. Then the
sets of edges Mk = {e11, . . . , ekk}, k = 1, . . . , n are maximally weighted matchings
between the left vertices {x(1), . . . , x(k)} and the right vertices {y(1), . . . , y(k)} for
k = 1, . . . , n.

Proof. We note that every principal submatrix Hk of order k of a Hungarian
matrix H is Hungarian. Since Hk has nonpositive entries,

∑k
i=1 hi,π(i) ≤ 0 for any

π ∈ Π(k). Now for π = id, the identity permutation,
∑k
i=1 hii = 0 so that π = id is an

optimal assignment for Hk. But an optimal assignment corresponds to a permutation
representing a maximally weighted perfect matching between the left and right vertices
of the bipartite graph associated with Hk, in other words, Mk = {e11, . . . , ekk} is a
maximally weighted matching between {x(1), . . . , x(k)} and {y(1), . . . , y(k)}.

Knowing this sequence of maximally weighted matchings a priori enables us to
parallelize Algorithm 5.2. We no longer need to compute the maximally weighted
paths through R(Mk) before we can form Mk+1 and compute the maximally weighted
paths through R(Mk+1). Instead we can treat each R(Mk) separately, computing the
kth row of U and (k − 1)th column of L in parallel.

Algorithm 5.5 (Max-plus LU for Hungarian matrix). Given a Hungarian ma-

trix H ∈ Rn×n, this algorithm returns a unit lower triangular matrix L and an upper
triangular matrix U such that L,U are max-plus LU factors for H.

% G denotes the bipartite graph associated with H with left vertices
% X = {x(1), . . . , x(n)} and right vertices Y = {y(1), . . . , y(n)}.

1 Set the lower part of U and strictly upper part of L to −∞, and the diagonal
entries of L to 0.

2 Set M0 = ∅.
17

3 for k = 1 : n
4 Set Mk = {e11, . . . , ekk}.
5 Compute the maximally weighted spanning tree T through RG(Mk−1)

rooted at x(k).
6 for j = k : n
7 ukj = depth of y(j) in T .
8 end
9 Compute the maximally weighted spanning tree T ′ through RTG(Mk)

rooted at x(k).
10 for i = k + 1 : n
11 lik = depth of x(k) in T ′.
12 end
13 end

Because the entries of H are nonpositive, we can use Dijkstra’s algorithm to
compute the maximally weighted spanning trees in steps 4 and 8. Thus our max-plus
LU algorithm applied to H ∈ Rn×nmax will have worse case cost O

(
nτ +n2 log n

)
, where

τ is the number of finite entries in H.
Dijkstra’s algorithm permanently labels vertices in decreasing order of their depth

in the tree. This means that when we run Dijkstra’s algorithm to compute the kth
row of U or kth column of L, we are given the position and value of the entries one at
a time in decreasing order of their value. If we are only interested in entries that are
greater than some threshold, or if we only want to know the m largest entries in each
row then we can stop Dijkstra’s algorithm earlier and reduce the cost considerably.
The exact cost of this implementation will depend heavily on the particular details of
the problem matrix. This approach will not work for a non-Hungarian scaled matrix
as while Dijkstra’s algorithm will always label vertices in decreasing order, it will be
in the order of their adjusted depths. So we can not be sure that we have found the m
largest entries until we have computed all of the adjusted depths and then converted
them back into their true depths using the potential.

5.2. Max-plus LU algorithm with partial pivoting. At each step k of the
max-plus algorithm, the unmatched left vertices can be permuted to maximize the
weight of the augmenting path. For this, we find a maximally weighted path through
RG(Mk−1) from {x(k), . . . , x(n)} to y(k). If this maximally weighted path roots at
x(i) then we swap x(i) with x(k) and perform step k of Algorithm 5.2. Note that a
maximally weighted path through RG(Mk−1) from {x(k), . . . , x(n)} to y(k) or more
generally to {y(k), . . . , y(n)} can be obtained by solving one maximally weighted
spanning tree problem. This is done by adding a root vertex r and connecting it
to each unmatched left vertex x(j), j = k, . . . , n by an edge of weight zero (see
Figure 5.3(a)). We then compute the maximally weighted spanning tree through
RG(Mk−1) ∪ {r} rooted at r.

Algorithm 5.6 (Max-plus LU with partial pivoting). Given A ∈ Rn×n, this
algorithm returns a permutation π, a unit lower triangular matrix L and an upper
triangular matrix U such that L,U are max-plus LU factors for the partial pivoting
free matrix Pπ ⊗A, where (Pπ)ij = 0 for j = π(i) and (Pπ)ij = −∞ otherwise.

% Gπ denotes the bipartite graph associated with A with left vertices
% Xπ = {x

(
π(1)

)
, . . . , x

(
π(n)

)
} and right vertices Y = {y(1), . . . , y(n)}

% for some permutation π.
1 Set the lower part of U and strictly upper part of L to −∞, and the diagonal

18

entries of L to 0.
2 Set M0 = ∅ and π = [1, 2, . . . , n].
3 for k = 1 : n
4 Add a root vertex r and connect it to each left vertex x

(
π(j)

)
,

j = k, . . . , n by an edge of weight zero.
5 Compute the maximally weighted spanning tree T through RGπ (Mk−1)

rooted at r.
6 Swap π(k) with π(i), where x

(
π(i)

)
is the 2nd vertex on the maximally

weighted path from r to y(k).
7 forj = k, . . . , n
8 ukj = depth of y(j) in T
9 end

10 Mk = Mk−14σ, where σ is the maximally weighted path through
RGπ (Mk−1) from x

(
π(k)

)
to y(k).

11 Compute the maximally weighted spanning tree T ′ through RTGπ (Mk)
rooted at x

(
π(k)

)
.

12 for i = k + 1 : n
13 lik = depth of x

(
π(k)

)
in T ′

14 end
15 end

Line 6 in Algorithm 5.6 is the interchanging step. It is not difficult to see that
Pπ ⊗A is partial pivoting free.

Example 5.7. Let us apply Algorithm 5.6 to A =
[

1
3

2
5

]
. Let π = [1, 2].

k = 1. We adjoin a root vertex r to the bipartite graph RGπ (M0) = Gπ and con-
nect it to the left vertices of x(π(1)), x(π(2)) by an edge of weight zero.
The maximally weighted spanning tree T through RGπ (M0) ∪ {r} rooted at
r is shown with thicker lines in Figure 5.3(a). The depths of the Y ver-
tices (i.e., 3 for y(1) and 5 for y(2)) define the entries of the first row of U .
Since the maximally weighted path is the one from x(π(2)), we we swap π(1)
with π(2) so that π = [2 1]. Then the maximally weighted path σ through
RGπ (M0) from x(π(1)) to y(1) consists of a single edge {eπ(1),1} = {e21} so
that M1 = M04{e21} = {e21} yielding the residual graph RGπ (M1) displayed
in Figure 5.3(b). The maximally weighted spanning tree T ′ through RTGπ (M1)
rooted at x(π(1)) = x(2) is highlighted with thicker red lines in Figure 5.3(c).
The depths of the path from x(π(1)) to x(π(2)), i.e., −2, defines l21.

k = 2. We adjoin a root vertex r to the bipartite graph RGπ (M1). Figure 5.3(d)
highlights the maximally weighted spanning tree T through RGπ (M1) ∪ {r}
rooted at r. The depths of the Y vertices define the last row of U .

Hence we obtain

Pπ⊗A =

[
−∞ 0

0 −∞

]
⊗
[

1 2
3 5

]
=

[
3 5
1 2

]
, L =

[
0 −∞
−2 0

]
, U =

[
3 5
−∞ 3

]
.

5.3. Max-plus incomplete LU preconditioner. Given the max-plus LU fac-
tors L and U of Vc(A) we define the max-plus ILU preconditioner as follows. For a
threshold t we store

Sij =

{
1 if lij ≥ log t+ maxk log |aik| or uij ≥ log t+ maxk log |aik|,
0 otherwise.

(5.1)

19

x(1)

x(2)

r

y(1)

y(2)

0

0

1

2

3

5

(a) RGπ (M0) ∪ {r}

x(2)

x(1)

y(1)

y(2)

−3

5

1

2

(b) RGπ (M1)

x(2)

x(1)

y(1)

y(2)

−3

5

1

2

(c) RTGπ (M1)

x(2)

x(1)

r

y(1)

y(2)

0

−3

5

1

2

(d) RGπ (M1) ∩ {r}

Fig. 5.3. Bipartite raphs produced by Algorithm 5.6 applied to A =
[1
3

2
5

]
.

We then compute the incomplete LU factors for A restricted to positions where S is
nonzero using, for example, the general static pattern ILU algorithm describe in [16,
Alg. 10.1] or the more practical variant [16, Alg. 10.3].

6. Numerical experiments. For our numerical experiments, we select all real
nonsymmetric matrices in the University of Florida sparse matrix collection [4] of size
100 ≤ n ≤ 5000 that have numeric value symmetry no greater than 0.9, and that are
structurally nonsingular. When two matrices from the same group have size n and
number of nonzero entries within 1% of each other then we consider these matrices
as duplicate and remove one of them. This leaves us with a total of 260 matrices. We
used MATLAB to perform the computations. Note that our max-plus LU algorithms
are implemented as research codes rather than efficient implementations and, for this
reason, we only work with matrices of moderate sizes. For the valuation Vc, we use
the logarithm to base 10.

6.1. Stability of Gaussian elimination with no pivoting. The aim of our
first set of experiments is to compare the numerical stability of Gaussian elimination
with no pivoting applied to Hungarian scaled and reordered matrices H in (3.14), and
to reordered matrices PπA, where π is the permutation returned by Algorithm 5.6.
For each matrix A in the test set we construct H using the HSL code MC64 [11] and
PπA using our MATLAB implementation of Algorithm 5.6. Theorem 3.6 together
with Heuristic 3.7 suggest that the growth factors for both H and PπA are of order
one since both Vc(H) and Vc(PπA) are partial pivoting free. Although this is just
a heuristic, we expect the LU factorization with no pivoting of H and PπA to have
better numerical stability than for A. To examine the stability of Gaussian elimination
on these two classes of matrices we compute the relative backward errors

ηX =
‖X − L̂Û‖F
‖X‖F

for X = H and X = PπA, where L̂ and Û are the computed LU factors of the LU
factorization of X. We also use Gaussian elimination with no pivoting to compute
the LU factorizations of the original matrices A. For each class of matrices, i.e.,
X = A,H and PπA, we plot in Figure 6.1 the proportion of problems for which we

20

10
-15

10
-10

10
-5

α

0

0.2

0.4

0.6

0.8

1

P
ro
p
o
rt
io
n
o
f
p
ro
b
le
m
s
w
it
h
η
X
≤

α

X = A (120 fails)

X = P
π
 A (60 fails)

X = H (23 fails)

Fig. 6.1. Proportion of problems with relative backward error ηX ≤ α for X = A,H, PπA.

are able to compute LU factors without breakdown and with ηX ≤ α against α. If
the factorization breaks down or if ηX ≥ 10−1, we record a fail. Without pivoting or
scaling, the LU factorization fails for almost half of the test matrices A and ηA ≤ 10−10

for 53% of the test matrices. After applying the max-plus LU permutation Pπ to A,
the number of failed LU factorizations falls from 120 to 60, and ηPπA ≤ 10−10 for 64%
of the test matrices. The number of failed LU factorizations is lower for Hungarian
scaled matrices H (only 23 fails) and ηH ≤ 10−10 for 86% of the test matrices. Since
our aim is to build a new class of incomplete LU preconditioners and

• for the vast majority of matrices in the test set a reasonably stable LU fac-
torization with no pivoting is possible if A is Hungarian scaled and reordered
into H,

• Hungarian scaling has been shown experimentally to be beneficial for iterative
methods [2],

• the max-plus LU algorithm is easier to implement for Hungarian scaled ma-
trices,

from here on we will work with the subset of test problems for which the Hungarian
scaled and reordered matrix H can be factorized with no pivoting and with ηH < 0.1.
This results in a test subset of 233 matrices.

6.2. Max-plus LU approximation. The max-plus LU approximation can as-
sist in the computation of an ILU preconditioner by providing a prediction of the
positions of larger entries in the LU factors of H. One way of measuring the quality
of this prediction is to treat the max-plus LU approximation as a binary classifier.
For the LU factorization H = LU of a matrix H from the test set and its max-plus
LU factors L,U , we predict that |lij | ≥ 10−t for i > j if and only if lij ≥ −t, and
likewise for the entries of U . The entries of L and U are then labeled as true positive
or true negative according to the scheme displayed in Figure 6.2(a) (for example, for
a given t, the (i, j) entry of L is true positive if lij ≥ −t and log10 |lij | ≥ −t). The
accuracy of the classifier is defined by

accuracy =
number of true positives and true negatives

number of nonzeros in L and U
,

21

lij , uij

log10 |lij |, log10 |uij |

false -ve true +ve

false +vetrue -ve

-2

(a)

lij , uij

log10 |lij |, log10 |uij |

soft
true +ve

soft
true -ve

-1

-2

-3

(b)

Fig. 6.2. Labelling of the nonzero entries in the L and U factors for calculating (soft) accuracy
and (soft) precision for t = 2. The axes cross at (−2,−2).

Table 6.1
Proportion of test problems with with (soft) accuracy and (soft) precision greater than p for

t = 2.

p 0.8 0.85 0.9 0.95
A(p) 85% 83% 79% 71%
SA(p) 97% 93% 90% 85%
P (p) 86% 83% 80% 59%
SP (p) 93% 91% 89% 72%

and the precision is defined by

precision =
number of true positives

number of entries in L and U such that |lij | ≥ 10−t and |uij | ≥ 10−t
.

We also define the soft accuracy and soft precision, which are calculated in the same
way using the number of entries in L and U that are soft true positive and soft
true negative, where the labelling “soft true positive” and “soft true negative” is
done according to the scheme displayed in Figure 6.2(b). We record in Table 6.1 the
following proportions:

A(p) = proportion of test examples with accuracy ≥ p,
SA(p) = proportion of test examples with soft accuracy ≥ p,
P (p) = proportion of test examples with precision ≥ p,

SP (p) = proportion of test examples with soft precision ≥ p,

for p = 0.80, 0.85, 0.9, 0.95 and t = 2. The scores in Table 6.1 are quite high and
show that, for our test set, the max-plus LU factors provide a good prediction of the
position of the larger entries in L and U .

6.3. Behaviour of max-plus ILU preconditioning. In this section, we ex-
amine the behaviour of our max-plus ILU preconditioner on our test set of 233 Hun-
garian matrices H. We apply GMRES with a right ILU preconditioner to the systems
Hx = b. For the ILU preconditioner, we use

1. threshold ILU as implemented in MATLAB’s ilu function with the options
setup.type = ’crout’; setup.milu = ’off’;

22

Table 6.2
Number of test matrices N for which ILU(k) is used with level k.

Level k 0 1 2 3 4 5 ≥ 6
of test matrices 104 45 28 10 8 4 34

2. ILU(k) through the MATLAB function iluk from [12] and level of fill in k,
3. ILU(0) with zero level of fill in,
4. max-plus ILU by forming the pattern matrix S in (5.1) and by calling iluk

with input parameters set up to bypass the symbolic factorization.

For both threshold ILU and max-plus ILU, we used 10−2 as the drop-off tolerance.
The level k for ILU(k) is chosen as the smallest integer such that the resulting ILU
factors are denser than those obtained by the max-plus method. We justify this choice
at the end of this section. The distribution of the levels k is shown in Table 6.2.

We use unrestarted GMRES with tolerance set to 10−5. A test matrix is marked
as a fail if GMRES fails to converge within maxit iterations. For each preconditioned
system, we record the number of GMRES iterations required for convergence multi-
plied by the sum of the number of nonzero entries in H and the number of nonzero
entries in the ILU factors. For the unpreconditioned systems we record the number of
GMRES iterations multiplied by the number of nonzero entries in H. These measures
give an approximation of the cost of the GMRES solves but do not include the cost of
constructing the preconditioner. The left plot in Figure 6.3 is a performance profile
that compares this cost measure over the different ILU strategies. For the unprecon-
ditioned systems, GMRES fails to converge in less than maxit=100 iterations for 144
out of 233 problems and has clearly the worse performance. Systems preconditioned
by ILU(k) have a cost greater than double that of the best method about 50% of the
problems. The figure shows that the performance of the max-plus ILU preconditioned
systems is close to that of the standard threshold ILU preconditioned systems. For
about 80% of problems the cost of the max-plus method is within a factor of 2 of the
best method. We performed the same set of tests but with BICGSTAB in place of
GMRES for the iterative solver. The corresponding performance profile (see right plot
in Figure 6.3) shows that the different ILU preconditoners exhibit the same behaviour
as for GMRES.

The cost measure that we have used tends to decrease with the number of nonzero
positions included in the ILU factors for all three different ILU techniques. As a result,
our choice for the level k is slightly generous to the ILU(k) method. Of course the
total cost of solving the linear system should also include the cost of computing the
ILU factors, which increases with the number of nonzero positions, so that in practice
choosing denser ILU factors is not an advantage. We use this cost measure here for
its simplicity. We note that the cost of computing the max-plus ILU preconditioner is
smaller than that of the standard threshold ILU preconditioner and roughly the same
as computing the ILU(k) preconditioner.

7. Conclusion. We presented a new method for approximating the order of
magnitude of the entries in the LU factors of a matrix A ∈ Cn×n. This method uses
max-plus algebra and is based solely on the moduli of the entries in A. If the matrix A
is first Hungarian scaled and reordered then this LU approximation can be computed
in parallel with n independent computations of cost O

(
τ + log(n)

)
. If we seek only

the positions and values of the largest entries in the LU factors then this cost can be
reduced further.

23

1 2 3 4 5 6

α

0

0.2

0.4

0.6

0.8

1

w
it
h
in

α
of

b
es
t

Cost of GMRES solve (maxit = 100, right precond)

threshold ILU (15 fails)
max-plus ILU (38 fails)
ILU(k) (59 fails)
ILU(0) (88 fails)
no precond (144 fails)

1 2 3 4 5 6

α

0

0.2

0.4

0.6

0.8

1

w
it
h
in

α
of

b
es
t

Cost of BICGSTAB solve (maxit = 100)

threshold ILU (42 fails)
max-plus ILU (59 fails)
ILU(k) (61 fails)
ILU(0) (98 fails)
no precond (157 fails)

Fig. 6.3. Performance profile comparing relative costs of GMRES (left plot) and BICGSTAB
(right plot) solves for different ILU preconditioning strategies.

We have shown that this approximation can be used to help compute an ILU
preconditioner for A. First we reorder and rescale A to obtain a Hungarian matrix
H, then we compute the positions of the largest entries in the LU factors of H and
finally we use these positions as the sparsity pattern for an ILU preconditioner. The
resulting preconditioner tends to outperform the comparable ILU(k) preconditioner
and have performance very close to a comparable threshold ILU preconditioner.

The numerical examples presented in this paper represent a proof of principal
that the max-plus ILU technique can be advantageous in the solution of sparse linear
systems.

REFERENCES

[1] M. Akian, S. Gaubert, and A. Marchesini. Tropical bounds for eigenvalues of matrices. Linear
Algebra Appl., 446:281–303, 2014.

[2] M. Benzi, J. C. Haws, and M. Tůma. Preconditioning highly indefinite and nonsymmetric
matrices. SIAM J. Sci. Comput., 22(4):1333–1353, 2000.

[3] D. A. Bini and V. Noferini. Solving polynomial eigenvalue problems by means of the Ehrlich-
Aberth method. Linear Algebra Appl., 439(4):1130–1149, 2013.

[4] T. A. Davis and Y. Hu. The University of Florida sparse matrix collection. ACM Trans. Math.
Software, 38(1):1:1–1:25, 2011.

[5] F. R. Gantmacher. The Theory of Matrices, volume one. Chelsea, New York, 1959. ISBN
0-8284-0131-4. x+374 pp.

[6] S. Gaubert and M. Sharify. Tropical scaling of polynomial matrices. In Positive systems, volume
389 of Lecture Notes in Control and Information Sciences, pages 291–303. Springer-Verlag,
Berlin, 2009.

[7] N. J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, second edition, 2002. ISBN 0-89871-521-0.
xxviii+680 pp.

[8] J. Hook. Max-plus singular values. Linear Algebra Appl., 486:419–442, 2015.
[9] J. Hook and F. Tisseur. Max-plus eigenvalues and singular values: a useful tool in numerical

linear algebra, 2016. In preparation.
[10] A. S. Householder. The Theory of Matrices in Numerical Analysis. Blaisdell, New York, 1964.

ISBN 0-486-61781-5. xi+257 pp. Reprinted by Dover, New York, 1975.
[11] HSL. A collection of Fortran codes for large scale scientific computation.

http://www.hsl.rl.ac.uk/.
[12] K. Miller. ILU(k) Preconditioner. https://uk.mathworks.com/matlabcentral/fileexchange/

48320-ilu-k--preconditioner.
[13] V. Noferini, M. Sharify, and F. Tisseur. Tropical roots as approximations to eigenvalues of

matrix polynomials. SIAM J. Matrix Anal. Appl., 36(1):138–157, 2015.

24

[14] M. Olschowka and A. Neumaier. A new pivoting strategy for Gaussian elimination. Linear
Algebra Appl., 240:131–151, 1996.

[15] J. B. Orlin and Y. Lee. Quickmatch–a very fast algorithm for the assignment problem. Working
papers 3547-93, Massachusetts Institute of Technology (MIT), Sloan School of Manage-
ment, 1993.

[16] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, second edition, 2003. ISBN 0-89871-534-2. xviii+528
pp.

[17] M. Sharify. Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis: Appli-
cation to the Optimal Assignment Problem and to the Accurate Computation of Eigen-
values. PhD thesis, Ecole Polytechnique, Palaiseau, France, Sept. 2011. Available from
http://hal.archives-ouvertes.fr/docs/00/64/38/36/PDF/thesis.pdf.

Appendix A.

This appendix presents several technical results needed to prove Proposition 5.1.
We refer to Section 5 for notation and definitions.

Lemma A.1. Let G be a bipartite graph with left vertices X = {x(1), . . . , x(n)}
and right vertices Y = {y(1), . . . , y(n)} and let M be a matching between {x(1), . . . ,
x(k)} and {y(1), . . . , y(k)}. The following statements hold.

(i) If σ is a direct path through the residual graph RG(M) from the unmatched
left vertex x(k + 1) to the unmatched right vertex y(k + 1) then M4σ is
a matching between the left vertices {x(1), . . . , x(k), x(k + 1)} and the right
vertices {y(1), . . . , y(k), y(k + 1)}, with weight w(M4σ) = w(M) + w(σ).

(ii) If C is a cycle through the residual graph RG(M) then M4C is a matching
between the same vertices as M with weight w(M4C) = w(M) + w(C).

(iii) If σ is a direct path through the residual graph RG(M) from the unmatched
left vertex x(k + 1) to the matched left vertex x(k) then M4σ is a matching
between the left vertices {x(1), . . . , x(k + 1)} \ {x(k)} and the right vertices
{y(1), . . . , y(k)} with weight w(M4σ) = w(M) + w(σ).

(iv) If S1 and S2 are disjoint subsets of edges, each either a path or a cycle in
RG(M), then w

(
M4(S1 ∪ S2)

)
= w(M) + w(S1) + w(S2).

Proof. (i) There are no edges into any unmatched left vertices or out of any
unmatched right vertices, so that σ can only visit its origin vertex x(k+1), destination
vertex y(k+ 1) as well as the vertices matched by M . Since σ is a path from x(k+ 1)
it must include exactly one edge out of this vertex and since this vertex is unmatched
in M there can be no edge out of it in M . Thus M4σ contains exactly one edge
incident to the origin vertex x(k + 1). Likewise for the destination vertex, M4σ
contains exactly one edge incident to y(k + 1).

Let u be a matched left vertex visited by σ. Then σ must include an edge into u,
which being a right-to-left edge must be an edge in M , σ must also include an edge
out of u, which being a left-to-right edge must not be in M . Thus M4σ contains
exactly one edge incident to u. Likewise if v is a matched right vertex visited by σ
then M4σ contains exactly one edge incident to v.

Matched vertices that are not visited by σ are unaffected, likewise unmatched
vertices are unaffected. Thus M4σ is a subset of E, with exactly one edge incident
to each of the left vertices {x(1), . . . , x(k), x(k + 1)} and each of the right vertices
{y(1), . . . , y(k), y(k + 1)}, and no edge incident to any other vertices.

The weight of M4σ is equal to w(M) plus the weight of any edges in σ but not in
M minus the weight of any edges in M and σ. Since any edge in M ∩σ is a backward
edge with a extra minus sign and any edge in σ/M is a forwards edge without an
extra minus sign, we have w(M4σ) = w(M) + w(σ).

(ii) The proof of (ii) is the same as for (i) but without the origin or destination

25

vertices.
(iii) The argument is the same as (i) except for the destination vertex x(k). This

vertex is incident to exactly one edge in M , which is a right-to-left vertex, since σ
ends at this vertex it must also contain this edge and therefore M4σ does not contain
an edge incident to x(k).

(iv) Since S1 ∪ S2 = ∅ we have M4(S1 ∪ S2) = (M4S1)4S2. Hence,

w
(
(M4S1)4S2

)
= w(M4S1) + ŵ(S2),

where ŵ(S2) is the weight of the edge set S2 in the residual graph RG(M4S1).
However since S1 and S2 are disjoint we have ŵ(S2) = w(S2), where w(S2) is the
weight of the edge set S2 in the residual graph RG(M). (this follows because none of
the edges affected by augmenting with respect to S1 are in the set S2). Therefore we
have

w
(
M4(S1 ∪ S2)

)
= w

(
(M4S1)4S2

)
= w(M4S1) + w(S2)

= w(M) + w(S1) + w(S2).

For the residual graph RG(M) in Figure 5.1(b) and
(i) the path σ = {e32, e12, e11, e21, e23} , we have that M4σ = {e11, e23, e32},

which is a matching between the left vertices {x(1), x(2), x(3)} and the right
vertices {y(1), y(2), y(3)} with weight w(M4σ) = a+ e+ f = w(M) +w(σ),

(ii) the cycle c = {e22, e12, e11, e21} through RG(M) with weight w(σ) = d −
b + a − c we have that M4c = {e11, e22}, which is a matching between
the left vertices {x(1), x(2)} and the right vertices {y(1), y(2)} with weight
w(M4c) = a+ d = w(M) + w(c),

(iii) the path σ = {e32, e12, e11, e21} through RG(M) with weight w(σ) = f −
b + a − c, we have that M4σ = {e11, e32}, which is a matching between
the left vertices {x(1), x(3)} and the right vertices {y(1), y(2)}, with weight
w(M4σ) = a+ f = w(M) + w(σ).

Lemma A.2. Let G be the bipartite graph associated with A ∈ Rn×n with left ver-
tices {x(1), . . . , x(n)} and right vertices {y(1), . . . , y(n)}. Then perm(A([i1, . . . , ik],
[j1, . . . , jk]) is the weight of the maximally weighted matching between the left vertices
{x(i1), . . . , x(ik)} and the right vertices {y(i1), . . . , y(ik)}.

Proof. Any matching M between the left vertices {x(1), . . . , x(k)} and the right
vertices {y(1), . . . , y(k)} can be represented by a unique permutation π ∈ Π(k) so
that Mπ is the matching that matches x(i) to y

(
π(i)

)
. Now consider w(Mπ) =∑k

i=1 ax(i)y(π(i)) so that the weight of the maximally weighted matching is given by

max
π∈Π(k)

w(Mπ) = max
π∈Π(k)

k∑
i=1

ax(i)y(π(i)) = perm(A([i1, . . . , ik], [j1, . . . , jk]).

Lemma A.3. Let G = (X,Y ;E) be a bipartite graph and let Mπ ⊂ E, Mω ⊂ E
be matchings defined by the permutations π ∈ Π(k) and ω ∈ Π(k + 1), respectively.
Then there exists a path σ through RG(M) from x(k+1) to y(k+1) as well as disjoint
cycles C1, . . . , Cm through RG(M), such that Mω = Mπ4

(
σ ∪ C1 ∪ · · · ∪ Cm

)
.

26

Proof. We will prove the lemma by constructing the path and cycles as follows.
Set σ(1) = x(k + 1), then set

σ(2) = y
(
ω(k + 1)

)
, σ(3) =x

(
π−1ω(k + 1)

)
,

σ(4) = y
(
ωπ−1ω(k + 1)

)
, σ(5) =x

(
π−1ωπ−1ω(k + 1)

)
,

There is no right vertex y(j) with π−1(j) = k+ 1 since the domain of π is {1, . . . , k}.
Also all subsequent vertices visited by the constructed path can only have one pre-
decessor as π and ω are permutations. Therefore σ cannot contain any cycle and
must terminate since there are only finitely many vertices that it can visit without
repetition. The only way that the path can terminate is by reaching a vertex where
the next step is not well defined and the only such vertex is y(k+1). The constructed
path therefore terminates at σ(2`) = y(k + 1).

Next we pick any left vertex x matched by Mπ, which is not visited by σ. We
construct a new path starting from x with the same rule that we used for constructing
σ. Since there are no possible termination point, where π−1 or ω are not defined, this
new path must be cyclic. If the constructed cycle is of length 2 then we discount the
cycle but still record the constituent vertices as having been visited. We construct
further cycles C1, . . . , Cm until all matched vertices have been visited.

By construction each vertex matched by Mπ either has the same matching under
Mω or is incident to two edges in σ ∪ C1 ∪ · · · ∪ Cm. One edge from Mπ and one
from Mω. When we augment by taking the symmetric difference, the edge from Mπ

is replaced by the one from Mω. Likewise the origin and destination vertices are each
incident to an edge which is in Mω but not in Mπ, so these edges are also included
when we augment.

The following theorem shows us how we can obtain a sequence of maximally
weighted matchings by augmenting with respect to maximally weighted paths through
the residual graph. This is the mechanism by which we will compute all of the entries
in the max-plus LU factors.

Theorem A.4. Let G = (X,Y ;E) be a bipartite graph and let M be a maximally
weighted matching between the left vertices {x(1), . . . , x(k)} and the right vertices
{y(1), . . . , y(k)}. The following hold.

(i) If σ is a maximally weighted path trough RG(M) from the unmatched left ver-
tex x(k+1) to the unmatched right vertex y(k+1) then M4σ is a maximally
weighted matching between the left vertices {x(1), . . . , x(k+ 1)} and the right
vertices {y(1), . . . , y(k + 1)}.

(ii) If σ be a maximally weighted path through RG(M) from the unmatched left
vertex x(k + 1) to the matched left vertex x(k) then M4σ is a maximally
weighted matching between the left vertices {x(1), . . . , x(k− 1), x(k+ 1)} and
the right vertices {y(k), . . . , y(k)}.

Proof. (i) Let σ be a path through RG(M) and let C1, . . . , Cm be disjoint cycles
in RG(M). Then by Lemma A.1(iv) w

(
M4(σ ∪ C1 ∪ · · · ∪ Cm

))
= w(M) + w(σ) +

w(C1) + · · · + w(Cm). It follows from Lemma A.1(ii) that if C is single cycle then
M4C is a matching between the same vertices as M , and since M is the maximally
weighted matching on its matched vertices, w(M4C) = w(M) + w(C) ≤ w(M) so
that w(C) ≤ 0 showing that any cycle in RG(M) must have nonpositive weight.

Now consider maxM ′ w(M ′), where the maximum is taken over all matchings
from {x(1), . . . , x(k + 1)} to {y(k), . . . , y(k + 1)}. Lemma A.3 tells us that every
matching M ′ from {x(1), . . . , x(k + 1)} to {y(k), . . . , y(k + 1)} can be written as the

27

augmentation of the matching M with respect to some path and cycles. Therefore

max
M ′

w(M ′) = w(M) + max
σ,C1,...,Cm

w(σ) + w(C1) + · · ·+ w(Cm),

where the maximum is taken over all paths through RG(M) from x(k+ 1) to y(k+ 1)
and disjoint cycles C1, . . . , Cm in RG(M). Since the cycle weights are all nonpositive
we have

max
M ′

w(M ′) ≤ w(M) + max
σ

w(σ)

and since the upper bound is attained by the matching M ′ = M4 arg maxσ w(σ),
where arg maxσ w(σ) is a maximally weighted path through RG(M) from x(k+ 1) to
y(k + 1), we have

max
M ′

w(M ′) = w
(
M4 arg max

σ
w(σ)

)
.

Hence M4 arg maxσ w(σ) is a maximally weighted matching between the left vertices
{x(1), . . . , x(k + 1)} and the right vertices {y(1), . . . , y(k + 1)}.

(ii) This follows from Lemmas A.1 and A.3 in analogy to Theorem A.4.

We are now ready to prove Proposition 5.1.
Proof. [Proof of Proposition 5.1]
Let Mk be a maximally weighted matching between the left vertices {x(1), . . . ,

x(k)} and the right vertices {y(1), . . . , y(k)} and let σ be a maximally weighted path
through R(M) from the unmatched left vertex x(i) with i > k to the matched left
vertex x(k). Then from Lemma A.2 we have perm

(
A(1 : k, 1 : k)

)
= w(M). From

Theorem A.4 we have that M4σ is the maximally weighted matching between the
left vertices {x(1), . . . , x(k− 1), x(i)} and the right vertices {y(1), . . . , y(k)}. So that
from Lemma A.2 we have perm

(
A([1 : k − 1, i], 1 : k)

)
= w(M4σ). Finally using

Lemma A.1 we have w(M4σ) = w(M) + w(σ) and using the expression for lik for
i > k in (3.3), we have that,

lik=perm
(
A([1 : k−1, i], 1 : k)

)
−perm

(
A(1 : k, 1 : k)

)
=w(M)+w(σ)−w(M) = w(σ).

Similarly for the upper factor. Let Mk−1 be a maximally weighted matching between
the left vertices {x(1), . . . , x(k − 1)} and the right vertices {y(1), . . . , y(k − 1)} and
let σ be a maximally weighted path through R(M) from the unmatched left vertex
x(k) to the unmatched right vertex y(j), for j ≥ k. Then from Lemma A.2 we have

perm
(
A(1 : k − 1, 1 : k − 1)

)
= w(M).

From Theorem A.4 we have that M4σ is the maximally weighted matching between
the left vertices {x(1), . . . , x(k)} and the right vertices {y(1), . . . , y(k − 1), y(j)}. So
that from Lemma A.2 we have

perm
(
A(1 : k, [1 : k − 1, j])

)
= w(M4σ).

Finally using Lemma A.1 we have w(M4σ) = w(M)+w(σ) and using the expression
for ukj for j ≥ k in (3.3), we have that,

ukj = perm
(
A(1 : k, [1 : k − 1, j])

)
− perm

(
A(1 : k − 1, 1 : k − 1)

)
= w(M) + w(σ)− w(M) = w(σ).

28

