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Abstract. B.K.Matilal, and earlier J.F.Staal, have suggested a reading
of the ‘Nyāya five limb schema’ (also sometimes referred to as the In-
dian Schema or Hindu Syllogism) from Gotama’s Nyāya-Sūtra in terms
of a binary occurrence relation. In this paper we provide a rational jus-
tification of a version of this reading as Analogical Reasoning within
the framework of Polyadic Pure Inductive Logic.
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Introduction

In the Nyāya-Sūtra (∼150CE), Gotama discussed the structure of logical rea-
soning, offering a fundamental schema consisting of:

• statement of the thesis,
• statement of a reason,
• an example supporting the reason on the grounds of similarity to the

present case,
• application of the above to the present case,
• conclusion.

B.M Matilal [5] gives this ‘time-honoured’ illustration of the schema:

• There is fire on the hill.
• For there is smoke.
• (Wherever there is smoke, there is fire), as in the kitchen.
• This is such a case (smoke on the hill).
• Therefore it is so, i.e. there is fire on the hill.

It is often emphasised that this reasoning should be understood as occurring
in the context of a debate, employed to persuade an opponent. Hence the
apparently unnecessary number of steps; they each have a role. Considering
the argument taken out of this context, it is commonly rephrased as

• (Wherever there is smoke, there is fire), as in the kitchen.
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• There is smoke on the hill. A
• Therefore there is fire on the hill.

This is clearly close to one of the Aristotelian syllogisms, but the Indian
Schema, as we shall call it, can be reduced to it only at the cost of imposing
the perspective of our contemporary deductive logic and rendering the example
(almost1 redundant. See for instance [2] for a collection of papers relating to
attempts at understanding and formalising the schema in various ways. We have
suggested in [7] and [8] that returning to the position where the example itself
carries the weight of the evidence, somehow itself representing the universal
implication, allows formulations of the argument within Pure Inductive Logic
(to be introduced shortly) which can be justified as rational on the grounds
of following from principles usually accepted in that subject as rational. When
the example is so taken to encapsulate the evidence, the argument may be
rephrased as2

• When there was smoke in the kitchen, there was fire.
• There is smoke on the hill. B
• Therefore there is fire on the hill.

– with the rider that the kitchen is a good example, which is taken to
mean that the example captures all the relevant information.

Regarding this rider the Nyāya-Sūtra is a cryptic text and does not elab-
orate on its methodology. Nevertheless it is clear that the relationship here
between smoke and fire is not simply taken to be contingent, coincidental, but
fundamental, a concomitance, or even causal relationship, that cannot be oth-
erwise. Being a good example then can be equated with capturing this link,
rather as in mathematics we may give a ‘proof by example’. Of course the
problem in practice of precisely demarcating what we mean by this notion in
general appears immensely difficult but fortunately that is not our problem in
this short paper. We shall simply be interested in providing a justification for
this inference on the grounds of its logical form alone.

The Paks.a Formalisation

In our previous attempts [7] and [8] at formalising B we worked within Unary
Predicate Logic, so using S, F, h and k in the obvious sense we employed S(k)
to express There is smoke in the kitchen, F (h) to express There is fire on the
hill etc.. Within Pure Inductive Logic, B then becomes the assertion that, in
the absence of any other pertinent information S(h) and S(k)→ F (k) provide
grounds for accepting F (h). In [7] and [8] we elaborated on the background
and evidence for this reading of the schema (and so will not repeat ourselves
here) and showed that such inference is indeed justified by certain well accepted

1 It has been suggested that under such a perspective, the role of the example may
be to ensure existential import, see e.g. [4, p16].

2 Notice that we are taking the evidence as a single instance of a kitchen, hence the
switch from ‘whenever’ on line 1 to ‘when’.



rational symmetry principles of probability assignment and in consequence is
itself rational.

Some authors however, notably Staal [12] and Matilal [5], have suggested
that it is much closer to the Indian way of thinking to formalise the Indian
Schema by employing a binary relation standing for ‘occurring at’: According
to Staal in Indian logic an entity is never regarded in isolation but always
considered as occurring at a locus, and the fundamental relation which underlies
all expressions is that between an entity and its locus (paks.a). Using R for this
relation and f, s, h, k for fire, smoke, hill and kitchen respectively, B becomes
the claim that, in the absence of any other pertinent information, R(s, h) and
R(s, k)→ R(f, k) provide grounds for accepting R(f, h). In this note we show
that Pure Inductive Logic supports this version as a rational inference. To
facilitate this we first need to summarize some necessary background from Pure
Inductive Logic and briefly explain what this logic is attempting to elucidate.

Pure Inductive Logic

The framework for Pure Inductive Logic is Predicate Logic employing a lan-
guage L with a finite set of relation symbols R1, . . . , Rq, countably many con-
stants a1, a2, a3, . . . and no function symbols nor equality.3 SL denotes the set
of sentences of L and QFSL denotes the set of quantifier free sentences in SL.

A probability function on L is a function w : SL→ [0, 1] such that for any
θ, φ, ∃xψ(x) from SL,

(i) If |= θ then w(θ) = 1.

(ii) If θ |= ¬φ then w(θ ∨ φ) = w(θ) + w(φ).

(iii) w(∃xψ(x)) = lim
n→∞

w

(
n∨
i=1

ψ(ai)

)
.

Any function w satisfying the above conditions has the properties we usually
expect of probability (see [10, Prop. 3.1]), in particular if ψ logically implies θ
then w(ψ) ≤ w(θ).

Given a probability function w and θ, φ ∈ SL with w(φ) > 0 we define the
conditional probability of θ given φ as usual by

w(θ |φ) =
w(θ ∧ φ)

w(φ)
. (1)

With a fixed φ ∈ SL, w(φ) > 0, the function defined by (1) is also a
probability function.

3 In place of ai we sometimes use other letters to avoid subscripts or double sub-
scripts.



The aim of Pure Inductive Logic (see for example [10]) is to investigate
the logical or rational assignment of belief, as subjective probability,4 in the
absence of any intended interpretation. To explain this, consider a valid natural
language argument, such as A where lines 1 and 2 are the premises and line 3 the
conclusion. What we understand here by ‘valid’ is that this conclusion is true
whenever the premises are true independently of the meaning of ‘fire’ ‘smoke’,
‘kitchen’ etc.. In other words the conclusion is a logical consequence of the
premises depending only on their form and not on the meaning or interpretation
we give to ‘fire, kitchen’ etc..

Most natural language ‘arguments’ however are not so valid. Instead the
premises only seem to provide some support for the conclusion rather than
deem it categorically true. B is just such an example (though as Matilal points
out at [4, p16] and [5, p197] contemporary scholars have commonly understood,
and in consequence criticised, the Indian schema as aiming to render a valid
conclusion). Nevertheless we can still investigate the question of how much of
this support is logical or rational, depending only on the form of the premises
and conclusion and not on the actual interpretation of ‘fire’, ‘smoke’ etc.. So,
just as Predicate Logic seeks to understand the notion of logical consequence
by considering sentences of a formal language devoid of any particular inter-
pretation, Pure Inductive Logic aims to address the more general issue of the
logical or rational assignment of probabilities to sentences of a formal language
(such as L above) in the absence of any particular interpretation. Note that
this is indeed a more general issue since the support given by some evidence
to a hypothesis arguably can be measured by the conditional probability of
the hypothesis given the evidence. A hypothesis is a logical consequence of
the evidence just when this support is total (probability 1) for all probability
functions giving non-zero probability to the evidence.

A key requirement here is the rationality of the probability assignment
(without it we would get no further than simply standard Predicate Logic).
Whilst we may not know exactly what we mean by ‘rational’ here neverthe-
less there are, in this completely uninterpreted context, some constraints or
principles governing this assignment that we feel are rational and should be
enforced. The most basic of these is that since there is no reason to treat any
one constant any differently from any other interchanging constants should not
alter the assigned probabilities. Precisely, a rational probability function should
satisfy:

The Constant Exchangeability Principle, Ex. If θ ∈ SL and the con-
stant symbol aj does not appear in θ then w(θ) = w(θ′) where θ′ is the result
of replacing each occurrence of ai in θ by aj.

5

4 In our view this makes it an obvious logic to investigate ‘analogical arguments’
where it is subjective probability which is being propagated by considerations of
rationality.

5 This formulation of Ex is equivalent to that given in, say, [10], and avoids intro-
ducing extra notation.



Similarly, in the absence of any particular interpretation there is no reason
to treat a relation any differently from its negation. This leads to the rationality
requirement on a probability function that it satisfy,

The Strong Negation Principle, SN. w(θ) = w(θ′) where θ′ is the result
of replacing each occurrence of the relation symbol Pi in θ by ¬Pi.

A word of caution here however. In our main theorem below we will formalise
B in a predicate language and then, in this rarified set-up, argue that adopting
the above principles Ex+SN, the conditional probability of the conclusion given
the conjunction of the premises must be at least 1/2 (in fact strictly greater than
1/2 in all except exceptional circumstances). However for one to accept this
conclusion requires one to agree, or allow for the sake of argument, that all the
relevant information is given in the premises,6 so that the actual interpretation
ceases to matter and nothing essential is lost in the resulting formalisation as
simply uninterpreted sentences of a predicate logic.7 This is what we intend by
a ‘good example’.

The Main Result

The following theorem shows that when formalising the Indian Schema as in
the section before last (that is, via a binary relation representing ‘occurring at’)
and assuming that the condition on the example being a good one is taken to be
that it represents all the relevant information, the Schema is at least as rational
as Ex+SN. By this we mean that any probability function on L (where from
now on L is the fixed language with single binary relation symbol R) satisfying
Ex+SN gives probability at least 1/2 to fire occurring on the hill given (just)
that smoke occurs on the hill, and that smoke in the kitchen implied fire in the
kitchen.

Theorem 1 Let w be a probability function on SL satisfying Ex+SN. Let
h, k, s, f be distinct constants from amongst the a1, a2, a3, . . ..
Then8

w(R(f, h) |R(s, h) ∧ (R(s, k)→ R(f, k))) ≥ w(R(f, h) |R(s, h)) ≥ 1/2. (2)

A few remarks are in order here. Firstly one might object that for the
claimed justification one really requires the left hand term to be strictly greater
than 1/2. In fact it is not difficult to show that if for a particular probability
function w satisfying Ex+SN the left hand term of (2) - and hence also the

6 Of course one has a vast background knowledge about fires and kitchens etc. none
of which is alluded to in these premises.

7 In other words such reasoning is appropriate only in so far as one is content to
apply a principle of ceteris paribus.

8 To avoid problems with zero denominators we identify w(θ |φ) ≥ w(ψ | η) with
w(θ ∧ φ) · w(η) ≥ w(ψ ∧ η) · w(φ).



middle term - does take the value 1/2 then this w must give the same value
1/2 to

w(R(s, kn+1) |R(s, k1) ∧R(s, k2) ∧ . . . ∧R(s, kn)) (3)

for any number of ‘kitchens’ k1, k2, . . . , kn+1. In other words w must completely
dismiss any inductive influence, informally, no matter if all the many kitchens
seen in the past have been smokey this evidence amounts to nothing when it
comes to the probability assigned to the next kitchen seen being also smokey.
Thus to say that a purportedly rational w could fail to give the left hand side
of (2) a value not strictly greater than 1/2 entails saying that it is rational to
give (3) a value of 1/2 for all n, a not-inconsistent position to take but one
which is hardly popular.

Of course one might wish that the support is not simply greater than 1/2 but
actually substantially greater. However that can only be achieved by making
additional assumptions beyond simply Ex+SN and currently we cannot envis-
age any such assumption which would avoid introducing a subjective element
(just how much is ‘substantially greater’?). This would seem to directly con-
flict with the idea of probabilities being assigned on purely rational or logical
grounds.

A second remark here concerns our formalization of B. We have chosen to
capture ‘when there was smoke in the kitchen there was fire’, by R(s, k) →
R(f, k). Various other formulations are possible here, for example

R(s, k)←→ R(f, k), R(s, k) ∧R(f, k).

In each case one can prove by the same methods that for a probability func-
tion satisfying Ex+SN conditioning R(f, h) on this evidence together with
R(s, h) gives a value of at least one half, see Theorem 5 in the appendix.
However in these cases it is currently open whether or not we can still interleaf
w(R(f, h) |R(s, h)) as in Theorem 1.9

Thirdly, in case the reader might object here that the second inequality in
(2) already gives the claimed ‘support’ for R(f, h) from evidence R(s, h) alone
we are at pains to point out that by the assumption that all pertinent evidence
has been included one cannot simply throw away the R(s, k)→ R(f, k).

Finally we remark that Matilal’s suggestion from [5, p197] that the reason-
ing in the Indian Schema may be more correctly understood as inductive, and
for practical purposes providing knowledge of the real world, seems to us along
the lines of the approach we have adopted here: we take the assignment of a
probability of at least one half to the conclusion (equivalently, the conclusion
being at least as probable as its negation) to be a justification for giving the
conclusion the status of a working assumption.

9 There are several other currently open problems with these, and other formulations
(see for example [7], [8], [9]), in particular when the evidence involves multiple
smokey kitchen, and the heterogenous non-smokey lakes, a case not treated at all
in this paper.



Conclusion

We have shown that a version of the Indian Schema expressed in terms of
the binary occurrence relation, as suggested by Staal and Matilal, is actually
a consequence of the two of the central principles in Pure Inductive Logic,
Constant Exchangeability and Strong Negation. By this we certainly do not
wish to imply that the ancients were somehow aware of these principles (so this
paper is not at all intended as a contribution to the History of Indian Logic).
Rather we simply intend to point out that the everyday common senseness of
the Indian Schema does in fact have a formal justification as rational within
the context of Pure Inductive Logic.

This paper has left much open for further research and investigation. For
example in the way we formalise the schema in terms of the paks.a, the con-
comitance, should it be implication, bi-implication or conjunction? Should ‘hill’
be thought of as a constant or a predicate etc., etc.? There is also the issue of
the effect of heterogenous examples and of mixtures of multiple reasons of both
kinds. We have already considered some of these questions in [7], [8] and [9]
within the context of Pure Inductive Logic but much remains unanswered. One
advantage of using this framework is that following recent advances (see [10])
it is now equipped with some powerful representation theorems and a choice of
attractive rational principles in addition to Ex+SN. Nevertheless there is the
question whether this is the best framework in which to investigate such clas-
sical analogical reasoning, and certainly other have previously been proposed,
for example [3], [6], [11]. Hopefully this short note will stimulate answers to
these questions, not least from the Indian Logic community who clearly (unlike
the present authors) have first hand access to the original texts and language.
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8. Paris, J.B. & Vencovská, A., The Indian Schema Analogy Principles, submitted
to the IfCoLog Journal of Logics and their Applications. Currently available at
http://eprints.ma.man.ac.uk/2436/01/covered/MIMS ep2016 8.pdf
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Appendix

To prove the theorem we need to appeal to a representation theorem for prob-
ability functions on L satisfying Ex. First we introduce some notation.

For the language L as above a state description for a1, . . . , an is a sentence
of L of the form ∧

i,j≤n

R(ai, aj)
εi,j

where the εi,j ∈ {0, 1} and R(ai, aj)
1 = R(ai, aj), R(ai, aj)

0 = ¬R(ai, aj). By
a theorem of Gaifman, see [1], or [10, Chapter 7], a probability function on SL
is determined by its values on the state descriptions.

Let D = (di,j) be an N × N {0, 1}-matrix. Define a probability function
wD on SL by setting

wD

 ∧
i,j≤n

R(ai, aj)
εi,j


to be the probability of (uniformly) randomly picking, with replacement, h(1), h(2),
. . . , h(n) from {1, 2, . . . , N} such that for each i, j ≤ n, dh(i),h(j) = εi,j . This
uniquely determines a probability function on SL satisfying Ex. (For details
see e.g. [10, Chapter 7]).

Clearly convex mixtures of these wD also satisfy Ex. Indeed by the proof of
[10, Theorem 25.1] it follows that any probability function w satisfying Ex can
be approximated arbitrarily closely on QFSL by such convex mixtures. More
precisely:

Lemma 2 For a probability function w on SL satisfying Ex and θ1, . . . , θm ∈
QFSL and ε > 0 there is an N ∈ N and λD ≥ 0 for each N ×N {0, 1}-matrix
D such that

∑
D λD = 1 and for j = 1, . . . ,m,

|w(θj)−
∑
D

λDw
D(θj)| < ε.

We can extend this representation result to probability functions satisfying
additionally SN as follows.

For θ ∈ SL let θ¬ be the result of replacing each occurrence of R in θ by
¬R and similarly for matrix D as above let D¬ be the result of replacing each



occurrence of 0/1 in D by 1/0 respectively. For w a probability function on SL
set w¬ to be the function on SL defined by

w¬(θ) = w(θ¬).

Then w¬ satisfies Ex and the probability function 2−1(w+w¬) satisfies Ex+SN.
Conversely if w satisfies Ex+SN then w = w¬ so

w = 2−1(w + w¬).

Thus every probability function satisfying Ex+SN is of the form 2−1(v+v¬) for
some probability function v satisfying Ex and conversely every such probability
function satisfies Ex+SN.

Notice that if
w =

∑
D

λDw
D

then
w¬ =

∑
D

λDw
D¬

and
2−1(w + w¬) =

∑
D

λD2−1(wD + wD
¬

).

In particular then by Lemma 2,

Lemma 3 For a probability function w on SL satisfying Ex+SN and θ1, . . . , θm ∈
QFSL and ε > 0 there is an N ∈ N and λD ≥ 0 for each N ×N {0, 1}-matrix
D such that

∑
D λD = 1 and for j = 1, . . . ,m,

|w(θj)− 2−1
∑
D

λD(wD(θj) + wD
¬

(θj))| < ε.

Let w be a probability function on SL satisfying Ex and for a 2× 2 {0, 1}-
matrix

E =

[
e11 e12

e21 e22

]
let

|E|w = w(R(a1, a3)e11 ∧R(a1, a4)e12 ∧R(a2, a3)e21 ∧R(a2, a4)e22).

We will omit the subscript w if it is clear from the context. Notice that when
D = (di,j) is an N ×N {0, 1}-matrix, then for E as above we have

|E|wD = N−4
∑
i,j,r,s

de11i,r d
e12
i,s d

e21
j,r d

e22
j,s , (4)

where x1 = x, x0 = 1− x. We will write |E|D in place of |E|wD .



A useful observation is that for any probability function w satisfying Ex,
|E| is invariant under permuting rows and permuting columns so for example∣∣∣∣∣1 0

1 0

∣∣∣∣∣ =

∣∣∣∣∣0 1

0 1

∣∣∣∣∣ ,
∣∣∣∣∣1 1

0 0

∣∣∣∣∣ =

∣∣∣∣∣0 0

1 1

∣∣∣∣∣ ,
∣∣∣∣∣1 0

0 1

∣∣∣∣∣ =

∣∣∣∣∣0 1

1 0

∣∣∣∣∣ ,∣∣∣∣∣1 0

0 0

∣∣∣∣∣ =

∣∣∣∣∣0 1

0 0

∣∣∣∣∣ =

∣∣∣∣∣0 0

0 1

∣∣∣∣∣ =

∣∣∣∣∣0 0

1 0

∣∣∣∣∣ , (5)

etc. We will use this observation frequently in what follows.

Let

X =

∣∣∣∣∣1 1

1 1

∣∣∣∣∣ +

∣∣∣∣∣0 0

0 0

∣∣∣∣∣ , Y =

∣∣∣∣∣1 1

1 0

∣∣∣∣∣ +

∣∣∣∣∣0 0

0 1

∣∣∣∣∣ , T =

∣∣∣∣∣1 0

1 0

∣∣∣∣∣ , U =

∣∣∣∣∣1 0

0 1

∣∣∣∣∣ , Z =

∣∣∣∣∣0 0

1 1

∣∣∣∣∣ .
Lemma 4 For any probability function w satisfying Ex we have T,Z ≥ U and
X ≥ 2Z, 2T .

Proof. We shall prove that T ≥ U , the other inequalities follow similarly. Let
D = (di,j) be an N ×N {0, 1}-matrix and assume first that w = wD. By the
above observation,

T =
1

2

(∣∣∣∣∣1 0

1 0

∣∣∣∣∣
D

+

∣∣∣∣∣0 1

0 1

∣∣∣∣∣
D

)
U =

1

2

(∣∣∣∣∣1 0

0 1

∣∣∣∣∣
D

+

∣∣∣∣∣0 1

1 0

∣∣∣∣∣
D

)
so T ≥ U is the inequality∑

i,j,r,s

di,r(1− di,s)dj,r(1− dj,s) +
∑
i,j,r,s

(1− di,r)di,s(1− dj,r)dj,s ≥

∑
i,j,r,s

di,r(1− di,s)(1− dj,r)dj,s +
∑
i,j,r,s

(1− di,r)di,sdj,r(1− dj,s)

which is equivalent to the sum over r, s of(∑
i

di,r(1− di,s)

)2

+

∑
j

(1− dj,r)dj,s

2

− 2

(∑
i

di,r(1− di,s)

)∑
j

(1− dj,r)dj,s


being nonnegative, and hence clearly true. From this it follows that the result
holds for convex combinations of the wD and hence by Lemma 2 for general w
satisfying Ex.

Proof of Theorem 1 We start with the left hand side inequality. Let w be
a probability function satisfying Ex+SN. If w(R(s, h) ∧ (R(s, k) → R(f, k))
and/or w(R(s, h)) equals 0 then (2) holds by our convention, so assume that
these values are nonzero. Consider an approximation 2−1

∑
D λD(wD + wD

¬
)

of w for the θ of the form

R(f, h)e11 ∧R(f, k)e12 ∧R(s, h)e21 ∧R(s, k)e22



with small ε and N ∈ N as guaranteed by Lemma 3.
For an N × N {0, 1}-matrix D = (di,j), write u for 2−1(wD + wD

¬
). We

have

u(R(f, h) ∧R(s, h) ∧ (R(s, k)→ R(f, k)) = 2−1(XD + 2TD + YD),

u(R(s, h) ∧ (R(s, k)→ R(f, k)) = 2−1(XD + 2TD + 3YD + 2UD),

u(R(f, h) ∧R(s, h)) = 2−1(XD + 2TD + 2YD),

u(R(s, h)) = 2−1(XD + 2TD + 4YD + 2UD + 2ZD).

Let D̂ be another (not necessarily distinct) N ×N {0, 1} matrix. Working with
approximations of w for arbitrarily small ε it can be seen that to show (2) for
w it suffices to demonstrate that for any pair D, D̂ we have

(XD + 2TD + YD)(XD̂ + 2TD̂ + 4YD̂ + 2UD̂ + 2ZD̂) +

(XD̂ + 2TD̂ + YD̂)(XD + 2TD + 4YD + 2UD + 2ZD) ≥

(XD + 2TD + 3YD + 2UD)(XD̂ + 2TD̂ + 2YD̂) +

(XD̂ + 2TD̂ + 3YD̂ + 2UD̂)(XD + 2TD + 2YD).

This simplifies to

2XDZD̂+4TDZD̂+2YDZD̂+2XD̂ZD+4TD̂ZD+2YD̂ZD ≥ 4YD̂YD+2UDYD̂+2UD̂YD

and since by Lemma 4 we have ZD ≥ UD, ZD̂ ≥ UD̂, it suffices to show that

(XD + 2TD)ZD̂ + (XD̂ + 2TD̂)ZD ≥ 2YD̂YD. (6)

We have

XD + 2TD =
∑
i,j

[(∑
r

di,rdj,r
)2

+
(∑

s

(1− di,s)(1− dj,s)
)2

+ 2
(∑

r

di,rdj,r
)(∑

s

(1− di,s)(1− dijs)
)]

=
∑
i,j

(∑
r

di,rdj,r +
∑
s

(1− di,s)(1− dj,s)
)2

=
∑
i,j

(xi,j + yi,j)
2, (7)

where

xi,j =
∑
r

di,rdj,r, yi,j =
∑
s

(1− di,s)(1− dj,s).

Similarly

ZD =
∑
i,j

(∑
r,s

di,rdi,s(1− dj,r)(1− dj,s)
)

=
∑
i,j

z2i,j (8)



where
zi,j =

∑
r

di,r(1− dj,r),

and, using (5),

YD =
∑
i,j

(∑
r

(1− di,r)dj,r
)(∑

s

di,sdj,s +
∑
s

(1− di,s)(1− dj,s)
)

=
∑
i,j

zi,j(xi,j + yi,j). (9)

Similarly for D̂ = (d̂i,j). Writing ui,j for xi,j + yi,j etc., the inequality (6)
becomes(∑

i,j

u2i,j
)(∑

i,j

ẑ2i,j
)

+
(∑
i,j

û2i,j
)(∑

i,j

z2i,j
)
≥ 2
(∑
i,j

zi,jui,j
)(∑

i,j

ẑi,j ûi,j
)

which holds since for any particular pairs i, j and g, h,

u2i,j ẑ
2
g,h + û2g,hz

2
i,j ≥ 2zi,jui,j ẑg,hûg,h.

Turning to the right hand side inequality it is enough to show that

w(R(f, h) ∧R(s, h)) ≥ 2−1w(R(s, h)),

equivalently

w(R(f, h) ∧R(s, h)) ≥ w(¬R(f, h) ∧R(s, h)).

Proceeding as above (but much simpler since it does not need to involve the
D̂) it is sufficient to show that

XD + 2TD ≥ 2UD + 2ZD,

and indeed this holds by Lemma 4.
2

Theorem 5 Let w be a probability function on SL satisfying Ex+SN. Let
h, k, s, f be distinct constants from amongst the a1, a2, a3, . . ..
Then

w(R(f, h) |R(s, h) ∧ (R(s, k)←→ R(f, k))) ≥ 1/2.

w(R(f, h) |R(s, h) ∧ (R(s, k) ∧R(f, k))) ≥ 1/2.

Proof Starting with the bi-implication case and proceeding as in the proof of
the second inequality in Theorem 1 it is enough to show that

XD + 2TD ≥ 2YD. (10)

To this end notice that

XD =
∑
r,s

((∑
i

di,rdi,s
)2

+
(∑

i

(1− di,r)(1− di,s)
)2)

,



2TD = 2
∑
r,s

(∑
i

di,r(1− di,s)
)2
,

2YD =
∑
r,s

2
((∑

i

di,r(1−di,s)
)(∑

i

(1−di,r)(1−di,s)+
∑
i

di,r(1−di,s)
)(∑

i

di,rdi,s
))
.

Writing

Ar,s =
∑
i

di,rdi,s, Br,s =
∑
i

(1− di,r)(1− di,s), Cr,s =
∑
i

di,r(1− di,s)

the required inequality becomes∑
r,s

(
A2
r,s +B2

r,s + 2C2
r,s − 2Ar,sCr,s + 2Br,sCr,s

)
≥ 0,

which clearly holds.

The second inequality in the theorem can likewise be reduced to showing
that XD ≥ YD and this follows from (10) and Lemma 4.

2


