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Abstract

We propose a novel approach to solve polynomial eigenvalue problems via linearization.
The novelty lies in (a) our choice of linearization, which is constructed using input from
tropical algebra and the notion of well-separated tropical roots, (b) an appropriate scaling
applied to the linearization and (c) a modified stopping criterion for the QZ iterations that
takes advantage of the properties of our scaled linearization. Numerical experiments show
that our polynomial eigensolver computes all the finite and well-conditioned eigenvalues to
high relative accuracy even when they are very different in magnitude.
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1 Introduction

Our aim is to design an algorithm that computes all the finite and well-conditioned eigenvalues
of matrix polynomials P (z) =

∑d
i=0 z

iPi of degree d to a high relative precision even when these
eigenvalues are very different in magnitude. To this end, we use a Lagrange linearization of P
with interpolation nodes chosen as “well-separated” tropical roots of the associated tropical scalar
polynomial t×p(x) = max0≤i≤d ‖Pi‖xi. The tropical roots of t×p are the points at which the
maximum is attained for at least two values of i for some x. They can be computed in only O(d)
operations and they are known to offer order of magnitude approximations to the moduli of the
eigenvalues of P , in particular when the norms of the matrices Pi vary widely [6, 18, 19]. Matrix
polynomials with such property occur frequently in applications—see the NLEVP collection of test
problems [5]. Their associated tropical scalar polynomials t×p have tropical roots that are quite
different in magnitude and, as a result, the eigenvalues of P have large variation in their magnitude.

The standard way of computing eigenvalues of P (z), i.e., the roots of detP (z) = 0, is via
linearization of P , that is, by computing the eigenvalues of a larger matrix polynomial L(z) =
A − zB, which is linear in z and has the same eigenvalues as P (z). Then any eigensolver for
generalized eigenproblems can be called to find the eigenvalues of L and thereby that of P [17].
Note that special care needs to be taken with this solution process. Indeed solving the polynomial
eigenvalue problem (PEP) by applying a backward stable algorithm (e.g., the QZ algorithm) to a
linearization can be backward unstable for the PEP [21]. Also, unless the block structure of the
linearization is respected (and it is not by standard techniques), the conditioning of the eigenvalues
of the larger linear problem L(z) can be worse than that for the original matrix polynomial P (z),
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since the class of admissible perturbations is larger [13, 14]. These issues are likely to occur when
P has coefficient matrices whose norms vary widely.

With the aim of addressing these issues, an algorithm proposed by Gaubert and Sharify [9]
and recently analyzed in [20], uses the tropical roots τj of t×p to scale the (eigenvalue) parameter

z = τj z̃ and then computes the eigenvalues of the tropically scaled matrix polynomial P̃ (z̃) :=

(t×p(τj))
−1P (z) via the QZ algorithm applied to a companion linearization of P̃ (z̃). This process

is repeated for each of the t ≤ d distinct tropical roots τj , j = 1, . . . , t. Then, after scaling back
the computed eigenvalues, an extraction strategy is applied to retrieve the ds eigenvalues of P ,
where s is the size of P . Although rigorous backward stability results exist for this algorithm [20],
it remains expensive with worse case complexity O(d4s3).

Instead, we propose to use a single call to the QZ algorithm applied to a tropically scaled
Lagrange linearization with well-separated tropical roots as interpolation nodes resulting in an
algorithm of complexity O(d3s3). We show through numerical experiments that if we alter the
stopping criterion of the QZ algorithm so as to take into account some of the properties of our
chosen linearization then our approach computes all the finite and well-conditioned eigenvalues of
P to high relative precision.

In Section 2 we introduce our choice of Lagrange linearization. In Section 3 we give numer-
ical evidence of the claim that for certain types of matrix pencils an adapted version of the QZ
algorithm computes the well-conditioned finite eigenvalues with high relative precision, even when
these eigenvalues are very different in magnitude. Section 4 introduces the concept of well-separated
tropical roots and shows that when the interpolation nodes are chosen as well-separated tropical
roots, the Lagrange-type linearization of Section 2 can be scaled resulting in a matrix pencil that
has the structure described in Section 3. Section 5 discusses the sensitivity and stability of the
scaled Lagrange linearization. In Section 6 our new algorithm based on a tropically scaled La-
grange linearization is compared to other eigensolvers based on linearization. For all the problems
considered, our new algorithm computes eigenvalues with a small backward error. Section 7 gives
the conclusions.

2 Lagrange linearization

Let P be a matrix polynomial of degree d. We only consider regular matrix polynomials, i.e.,
square matrix polynomials whose determinant is not identically equal to zero. The grade of a
polynomial is any integer number larger than or equal to the degree of the polynomial. A regular
matrix pencil L(z) = A − zB is a linearization of a regular matrix polynomial P (z) if there exist
unimodular matrices E(z) and F (z) such that

E(z)L(z)F (z) =

[
P (z)

I

]
.

As defined in [15], L(z) is a strong linearization of P (z) of grade g ≥ degP if it is a linearization
and if the reversed matrix pencil revL(z) = zL(z−1) = zA − B is a linearization of the reversed
matrix polynomial revP (z) = zgP (z−1).

Take d different points σi ∈ C, i = 1, 2, . . . , d with corresponding barycentric weights βi, i.e.,
β−1i =

∏
j 6=i(σi−σj). Let the highest degree coefficient of P be denoted as Pd. A Lagrange pencil

very similar to one of the forms given in [2, 7] is the following:

L(z) =


Pd β1P (σ1) β2P (σ2) · · · βdP (σd)
−Is (z − σ1)Is
−Is (z − σ2)Is

...
. . .

−Is (z − σd)Is

 . (1)

The pencil L(z) in (1) is a strong linearization if we consider P as having grade d+ 1.

Theorem 1. The regular matrix pencil L(z) as defined in (1) is a strong linearization of the
regular matrix polynomial zd+10 + P (z) of grade d + 1, where P (z) is of degree d with leading
matrix coefficient Pd.
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Proof. Consider the following equality
Pd β1P (σ1) β2P (σ2) · · · βdP (σd)

−Is (z − σ1)Is
−Is (z − σ2)Is

...
. . .

−Is (z − σd)Is




l(z)Is
l1(z)Is
l2(z)Is

...
ld(z)Is

 =


P (z)

0
0
...
0

 (2)

with l(z) =
∏d
i=1(z − σi) and li(z) = l(z)/(z − σi). Because the second factor F1(z) in the left-

hand side is of full rank for every value of z, this polynomial block column can be extended into a
unimodular matrix F (z) = [F1(z), F2(z)]. Denoting the top block row of the linearization L(z) by
A1(z) and the remaining rows by A2(z), we have that[

A1(z)
A2(z)

]
[F1(z), F2(z)] =

[
P (z) Y (z)

0 X(z)

]
.

Because A2(z) has full rank for every z (as well as F (z)), we get that X(z) is unimodular. Hence,
defining the unimodular matrix E(z) equal to[

I −Y (z)X(z)−1

0 X(z)−1

]
,

it follows that

E(z)L(z)F (z) =

[
P (z) 0

0 Isd

]
.

Similarly, one can show that L(z) is a strong linearization of P (z) considering P (z) of grade
d+ 1. �

Theorem 2. If x and y are right and left eigenvectors, respectively, corresponding to the finite
eigenvalue λ of the matrix polynomial P (z), the strong linearization L(z) as defined in (1) has the
following vectors v and w as right and left eigenvectors corresponding to the same eigenvalue λ:

v = [l(λ)Is l1(λ)Is · · · ld(λ)Is]
T
x

w = [l(λ)Is − β1P (σ1)l1(λ) · · · − βdP (σd)ld(λ)]
H
y when λ 6= σi, i = 1, 2, . . . , d

Proof. Multiplying the left and right hand side of equation (2) to the right by the vector x, it
follows that when x is a right eigenvector of P (z), the vector v satisfies L(λ)v = 0. Because the
vector

[l(λ)Is l1(λ)Is · · · ld(λ)Is]
T

is of full rank for each value of λ, the vector v is nonzero, i.e., it is a right eigenvector of L(z)
corresponding to the eigenvalue λ.

In the same way, when multiplying the linearization L(λ) to the left by the vector

yH [l(λ)Is − β1P (σ1)l1(λ) · · · − βdP (σd)ld(λ)] ,

we get [
yHP (λ) 0 · · · 0

]
.

Hence, if y is a left eigenvector of P (z) corresponding to eigenvalue λ, the vector w, when it is
nonzero, is a left eigenvector of L(z) corresponding to the same eigenvalue λ. When λ is different
from each of the interpolation nodes σi, i = 1, 2, . . . , d, the first block component of w is clearly
different from zero. �

Remark. The (d+1)s×(d+1)s Lagrange linearization (1) has the same eigenvalues as P (z) plus an
extra n eigenvalues at infinity. Linearizations of size ds×ds for s×s matrix polynomials of degree
d expressed in the Lagrange basis exist [22, Thm. 4.8]. However, at this point, we were not able to
use a scaling/balancing strategy leading to accurate eigenvalues using these ds × ds linearization.
The reason may be due to the fact that with the linearization (1), there is a clear distinction between
the top block row defining the coefficients of the matrix polynomial P (z) with respect to the basis as
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it is determined by the remaining block rows (see (2)). Such distinction between the basis on one
hand and the coefficients with respect to this basis of a specific matrix polynomial on the other hand,
allows the use of the same framework to perform a structured backward error analysis for different
choices of bases in [16]. We note that the trivial eigenvalues at infinity, that is, those associated
with the first block column of A, can easily be deflated after computing a QR factorization of the
first block column or block row of the linearization. Finally we comment that numerically, we do
not need the strong linearization property.

3 Accurate eigenvalues for certain types of matrix pencils

Consider an m×m matrix pencil A− zB, where

(i) A has entries of the form aij = x+iy with x and y pseudorandomly chosen from the standard
normal distribution and i =

√
−1 so that the entries of A have magnitude of order one (in

MATLAB notation, A = randn(m)+i*randn(m)),

(ii) B is a block diagonal matrix with first diagonal block possibly equal to zero (implying trivial
eigenvalues at infinity A− zB) and the other s× s diagonal blocks being diagonal matrices
or dense matrices but in contrast to the magnitude of the entries in A, entries from different
diagonal blocks in B can be very different in magnitude. The diagonal blocks except the
possibly first zero block can be in any order on the diagonal of matrix B.

The large difference in magnitude in the entries of B leads generically to a large difference in the
magnitude of the eigenvalues of A− zB. When this difference in magnitude is less than ε−1mach, the
QZ algorithm as implemented in LAPACK (and used by MATLAB) computes eigenvalues that
have a small relative error (when well-conditioned). However, when this difference is of the order
larger than ε−1mach, the LAPACK implementation of the QZ algorithm decides too fast that the
corresponding computed eigenvalues are infinite. To address this issue, we modify the LAPACK
routine ZHGEQZ slightly such that besides the trivial eigenvalues at infinity only finite eigenvalues are
generated which can be large when they correspond to exact infinite eigenvalues. More precisely,
at two places in the fortran code, we replace the value of BTOL by the smallest positive nonzero
floating point number avoiding that a specific element of the B matrix is explicitly set to zero,
leading to a computed infinite eigenvalue. At the same time, the maximum number of iterations
MAXIT is increased. To summarize, our algorithm to compute the eigenvalues of the structured
matrix pencil A− zB consists of three steps:

• if the first block of matrix B is zero, deflate the trivial infinite eigenvalues based on the first
block column;

• reduce the matrix pencil to generalized Hessenberg form;

• compute the generalized Schur form using our modified version of ZHGEQZ.

The algorithm then returns the upper triangular pencil TA − zTB . The finite eigenvalues λ are
obtained as

λ =
α

β
,

where α and β are the corresponding diagonal elements of TA and TB , respectively. The magnitude
of α will be of order 100 while the magnitude of β determines the magnitude of λ.

We performed several numerical experiments using this strategy and did not find any example
where our method does not compute the well-conditioned eigenvalues with high relative precision.
We illustrate the behaviour of our adaptation of the QZ algorithm by performing the following
experiments.

Numerical example 1: The size s of the diagonal blocks of B is 2, the first diagonal block
being the 2 × 2 zero matrix and the other 16 diagonal blocks being dense matrices with entries
generated similarly to the entries of A but scaled with factors 10−5, 10−4, . . . , 1010. These blocks are
then permuted so that B does not have a graded structure. Such matrix pencils have eigenvalues
with order of magnitudes lying between 10−10 and 105. For 100 sample matrices, the left plot
in Figure 1 shows the relative errors for the eigenvalues computed by ZHGEQZ and ordered from
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Figure 1: Relative error of computed eigenvalues of structured matrix pencils as defined in Ex-
ample 1 using the unaltered implementation of ZHGEQZ (left) and using our adaptation of the QZ
LAPACK implementation (right).

small to large in modulus. For the same set of matrices, the right plot in Figure 1 displays the
relative errors of the eigenvalues computed by our modification of ZHGEQZ. The “exact” eigenvalues
are computed in high precision using the Multiprecision Computing Toolbox for MATLAB from
Advanpix [1]. For each pencil in the test set, the corresponding relative errors are joined by
straight lines. We see that the unaltered version of ZHGEQZ computes accurate eigenvalues for a
lot of samples but there are samples such that only the smallest eigenvalues are relatively accurate
while the accuracy decreases in the same degree as the magnitude of the eigenvalue increases. One
can check that in all these cases at least one of the larger eigenvalues has been approximated by
an eigenvalue at infinity.

There is a rule of thumb that says that, to first order in the perturbation, the forward error
is bounded above by the condition number times the backward error. The QZ algorithm as
implemented in LAPACK is numerically stable in the sense that the computed eigenvalues are the
exact eigenvalues of a slightly perturbed pencil (A+ ∆A)− z(B + ∆B), where the perturbations
are such that ‖∆A‖ ≤ pA(n)‖A‖εmach and ‖∆B‖ ≤ pB(n)‖B‖εmach with pA(n), pB(n) low degree
polynomials in n and εmach the machine precision. So the left plot in Figure 1 shows that some
of the large eigenvalues in magnitude have large condition numbers with respect to unstructured
perturbations of the pencils A− zB (we confirmed this by computing the unstructured eigenvalue
condition number κ(λ) in (28)). This behaviour is not observed on the right plot in Figure 1, which
suggests that the perturbations generated during the QZ iterations with our modified stopping
criterion are not general perturbations but that they are structured perturbations.

Numerical example 2: The data is generated similarly to Example 1 but the factors multi-
plying the diagonal blocks of B are taken to the power 4, i.e., 10−20, 10−16, . . . , 1040. Eigenvalues
of such pencils have magnitudes of the order 10−40 up to 1020. We take 100 samples and plot the
relative errors for the computed eigenvalues ordered from small to large in modulus in Figure 2 only
for our modified version of ZHGEQZ because the unadapted version struggles to return meaningful
eigenvalues in this case because their (unstructured) condition number is too large.

In Section 5 a more detailed explanation for the good behaviour of our adaptation is given in
terms of the graded structure of the backward error as well as the graded structure of the left and
right eigenvectors. This is not done for the general case but directly for the scaled linearization for
the polynomial eigenvalue problem that we describe in the next section. However, similar results
are valid for the more general case even when the diagonal blocks of B are not ordered in magnitude
as in our previous examples.

4 Interpolation nodes and balancing strategy

We now show how to choose the interpolation nodes for the Lagrange linearization L in (1) together
with a specific balancing of the matrices such that the resulting matrix pencil has the structure
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Figure 2: Relative error of computed eigenvalues of structured matrix pencils as defined in Exam-
ple 2 using our adaptation of the QZ LAPACK implementation

and property of those in Section 3.

4.1 Choice of the points σi (part 1)

Consider the Lagrange linearization L(z) = A − zB in (1). Before constructing L, we scale the
matrix polynomial P (z) such that the norm of the highest degree coefficient Pd becomes 1. This
is equivalent to a scaling of the first block row of A and B. We can scale all block columns (except
the first one) by σ−1i , leading to the following matrix pencil

L1(z) = A1 − zB1 =


Pd β1P (σ1)/σ1 β2P (σ2)/σ2 · · · βdP (σd)/σd

−Is (z/σ1 − 1)Is
−Is (z/σ2 − 1)Is

...
. . .

−Is (z/σd − 1)Is

 . (3)

Except for the first block row of A1, all other nonzero elements of that matrix are equal to −1.
The matrix B1 is a (block-)diagonal matrix with nonzero diagonal blocks −σ−1i Is.

If we can choose the points σi such that

‖P (σi)‖|βi|
|σi|

= O(1), i = 1, . . . , d (4)

then all the nonzero blocks of A1 will have norm of order one, and the matrix pencil A1 − zB1

will have the properties described in Section 3, which allows the computation of eigenvalues (if
well-conditioned) to high relative precision even when they are very different in magnitude. Note
also that the backward error analysis of standard linearization processes indicates that to compute
eigenvalues with small backward errors, it is important for the nonzero blocks of the linearization
to have norm close to one (see [12, 14, 21]).

We show next that a possible choice for the points σi, i = 1, . . . , d is based on a set of well-
separated tropical roots τ̃`, ` = 1, 2, . . . , t̃. We introduce this type of tropical roots in the next
subsection.

4.2 Well-separated tropical roots

Let us first repeat the concept of tropical roots. Given the norms ‖Pj‖ of the matrix coefficients

Pj of the matrix polynomial P (z) =
∑d
j=0 Pjz

j , we define the tropical (or max-times) scalar
polynomial

t×p(x) = max
0≤j≤d

‖Pj‖xj ,

where x takes nonnegative real values. As mentioned in the introduction, the tropical roots of
t×p are points at which the maximum is attained for at least two values of j for some x (see for
example [18, 19] for a precise definition of tropical roots together with their multiplicities).
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The tropical roots and their corresponding multiplicities m` can easily be obtained using the
Newton polygon of t×p(x) defined as the upper boundary of the convex hull of the set of points
(j, log(‖Pj‖), j = 0, . . . , d. If we denote by

k0 = 0 < · · · < kt = d

the abscissae of the vertices of the Newton polygon then t×p(x) has t distinct roots given by

τ` =

(
‖Pk`−1

‖
‖Pk`‖

)1/m`

, ` = 1, . . . , t, (5)

with multiplicities m` = k` − k`−1, ` = 1, . . . , t, respectively. Note that
∑t
`=1m` = d, i.e., a

tropical scalar polynomial of degree d has d tropical roots counting multiplicities. We have that

τ
k`−1

` ‖Pk`−1
‖ = τk`` ‖Pk`‖
≥ τ j` ‖Pj‖, k`−1 < j < k` (6)

≥ τ j`′‖Pj‖, `′ 6= `, k`′−1 ≤ j ≤ k`′ . (7)

For (4) to hold with σi equal to a tropical root, the latter need to be separated in a certain
sense. Therefore, we introduce the concept of well-separated tropical roots,

τ̃` =

(
‖Pk̃`−1

‖
‖Pk̃`‖

)1/m̃`

, ` = 1, 2, . . . , t̃, (8)

τ̃` with corresponding multiplicities m̃` and t̃ ≤ t. They form a subset of the tropical roots but
each well-separated tropical root τ̃` has a larger multiplicity m̃` ≥ m`. To determine the indices

k̃0 = 0 < · · · < k̃t̃ = d

with k̃` ∈ {k0, . . . , kt}, we add the condition that the numbers τ̃` have to be well-separated in the
sense that

τ̃` ≤ γτ̃`+1, ` = 1, 2, . . . , t̃− 1 (9)

for a chosen value of the separation parameter γ < 1. In this case the inequalities (6)–(7) have to
be relaxed as follows:

τ̃
k̃`−1

` ‖Pk̃`−1
‖ = τ̃ k̃`` ‖Pk̃`‖ (10)

≥ ρ−1τ̃ j` ‖Pj‖, k̃`−1 < j < k̃` (11)

≥ ρ−1τ̃ j`′‖Pj‖, `′ 6= `, k̃`′−1 ≤ j ≤ k̃`′ (12)

where ρ ≥ 1 is the relaxation parameter.
Note that (10)–(12) do not determine a unique set of indices k̃`, ` = 1, . . . , t̃. The standard

algorithm for computing the tropical roots of t×p based on the convex hull of the points (j, ‖Pj‖),
j = 0, 1, . . . , d (see for example [19]) can be extended to compute well-separated tropical roots τ̃`.
Note that the angles between the different segments of the approximation of the Newton polygon
of t×p(x) defined by the indices k̃`, ` = 0, . . . , t̃ are connected to the separation parameter γ while
the distance between this approximation of the Newton polygon and the points above it, is linked
to the relaxation parameter ρ (see Figure 4).

4.3 Choice of the points σi (part 2)

To avoid clutter in the notation, we drop in what follows the tilde in the notation for the well-
separated tropical roots. Based on the knowledge of the well-separated tropical roots τ` and their
corresponding multiplicities m`, the points σi are chosen as follows:

{σi}k`i=k`−1+1 = {m` roots of unity multiplied by τ`} . (13)

7



Hence, each of the interpolation points σi satisfies

|σi| = τ`, k`−1 + 1 ≤ i ≤ k`.

Note that in this case
k∏̀

j=k`−1,j 6=i

(σi − σj) = m`σ
m`−1
i . (14)

4.4 Upper bound for ‖P (σi)‖|βi|
|σi|

Let us first derive an upper bound for ‖P (σi)‖. Suppose σi corresponds to the well-separated
tropical root τ`. Hence, we get the following upper bound:

‖P (σi)‖ ≤
d∑
k=0

|σi|k‖Pk‖ (15)

≤
k`−1−1∑
k=0

|σi|k‖Pk‖+

k∑̀
k=k`−1

|σi|k‖Pk‖+

d∑
k=k`+1

|σi|k‖Pk‖ (16)

≤
k`−1−1∑
k=0

τk` ‖Pk‖+

k∑̀
k=k`−1

τk` ‖Pk‖+

d∑
k=k`+1

τk` ‖Pk‖. (17)

From (10) and (11), an upper bound for each of the terms in this sum is given by

ρτ
k`−1

` ‖Pk`−1
‖ = ρτk`` ‖Pk`‖. (18)

Let us now derive an upper bound for |βi/σi|. When k`−1 < i ≤ k`, i.e., when σi corresponds
to the well-separated tropical root τ`, we can write β−1i as

β−1i =
∏
j 6=i

(σi − σj) (19)

=

k`−1∏
j=1

(σi − σj) ·
k∏̀

j=k`−1+1,j 6=i

(σi − σj) ·
d∏

j=k`+1

(σi − σj) (20)

= σ
k`−1

i

k`−1∏
j=1

(1− σj
σi

) ·m`σ
m`−1
i ·

d∏
j=k`+1

σj

d∏
j=k`+1

(
σi
σj
− 1). (21)

Going from (20) to (21), we have pulled out in each factor of the first product σi and in each factor
of the third product σj and we made use of (14).

Using the separation parameter γ and the correspondence between the interpolation points σi
and the well-separated tropical roots τ`, gives us the following lower bound for |β−1i σi|

|β−1i σi| ≥ m`τ
k`
` Γ`

d∏
j=k`+1

|σj | (22)

with

Γ` =

t∏
j=1,j 6=`

(1− γ|`−j|)mj .

Hence, an upper bound for the largest term in the sum (17) based on (18) and (22) is given by

ρτk`` ‖Pk`‖
(
m`τ

k`
` Γ`

d∏
j=k`+1

|σj |
)−1

. (23)
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Figure 3: The values ‖P (σi)‖|βi|/|σi|, i = 1, 2, . . . , d for well-separated tropical roots

From (8), we know that
‖Pk`‖∏d

j=k`+1 |σj |
= ‖Pd‖

so that the upper bound (23) is equal to

ρ

m`Γ`
‖Pd‖. (24)

Hence, taking all terms together, we derive the upper bound

‖P (σi)‖|βi|
|σi|

≤ ρ(d+ 1)

m`Γ`
‖Pd‖. (25)

Note that when the classical tropical roots are already very well-separated and have multiplicity
one, i.e., when Γ` ≈ 1, ρ = 1, there will only be 2 terms that are large in the sum and the
upper bound can be well approximated by 2‖Pd‖. This upper bound is obtained in practice as the
following numerical experiments illustrate.

4.5 Numerical experiments

Experiment 1: Let us first show that ‖P (σi)‖|βi|/|σi| is of order one and bounded above by a
number slightly larger than 2 for very well-separated tropical roots having multiplicity one. For
that, we take well-separated tropical roots τ` = 102(`−1), ` = 1, 2, . . . , 10 having multiplicitym` = 1.
The coefficient matrices Pi of the matrix polynomial P of degree d are constructed as θiUi, where the
Ui are random unitary matrices and the scalars θi are chosen such that t×p(x) = max0≤i≤d ‖Pi‖xi
has tropical roots τ`, ` = 1, . . . , 10. The highest degree coefficient is scaled such that its norm is
equal to one. Figure 3 shows the values ‖P (σi)‖|βi|/|σi| for 100 samples for P (z) and confirm the
analysis in Section 4.4.
Experiment 2: In this case, we choose the tropical roots not well-separated, e.g., τ` = (1.5)`−1,
` = 1, 2, . . . , 20. Note that 1.519 ≈ 2.2 · 103. Hence, the 20 tropical roots are relatively near to
each other. We take 100 samples of P (z) constructed as in Experiment 1. The left plot in Figure 5
shows that with the choice σi = τi, i = 1, . . . , `, ‖P (σi)‖|βi|/|σi| can have large magnitude. The
right plot in Figure 5 is obtained by using well-separated tropical roots constructed from P with
a separation parameter γ = 5−1. Note the significant improvement in the boundedness of the
magnitude of ‖P (σi)‖|βi|/|σi|.

The Newton polygon associated with t×p(x) = max0≤j≤d ‖Pj‖xj for one sample of P (z) is
plotted in Figure 4 together with its approximation defining the well-separated roots. The latter
are given in Table 1.

4.6 Summary of the balancing strategy

The scaling and balancing strategy that is used in the numerical experiments is summarized as
follows:
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are derived for Example 2 of the numerical experiments

Table 1: Well-separated tropical roots τ̃` and their multiplicities m̃` for a sample matrix polynomial
from Example 2.

τ̃` 1.2e+0 6.2e+0 3.1e+1 1.9e+2 1.2e+3 2.2e3

m̃` 2 6 2 7 2 1

• Compute well-separated tropical roots τ` (for a given separation parameter γ) and the cor-
responding interpolation points σi using (13) so that

‖P (σi)‖|βi|
|σi|

≤ ρ(d+ 1)

m`Γ`
‖Pd‖ = O(1)‖Pd‖

with a value of the relaxation parameter not much larger than one, i.e., ρ ≈ 1.

• Scale the matrix polynomial P (z)← P (z)
‖Pd‖ such that the norm of the highest degree coefficient

Pd becomes equal to one.

• Construct the Lagrange-type linearization A− zB (3) with the top block row of A equal to[
Pd

β1P (σ1)

σ1

β2P (σ2)

σ2
· · · βdP (σd)

σd

]
• Apply the modified QZ algorithm excluding nontrivial roots at infinity.

5 Sensitivity of the scaled Lagrange linearization

The numerical experiments in Section 3 suggest that the backward error of the modified QZ
iterations when applied to a matrix pencil of the form described in Section 4.6 is structured. Let
us explain this in more detail. Suppose we have a finite eigenvalue λ with corresponding right and
left eigenvectors v and w, respectively, for the matrix pencil zB −A, i.e.,

(λB −A)v = 0, w∗(λB −A) = 0.

Putting an error ∆A on A and ∆B on B, the eigenvalue λ changes into λ+ ∆λ while the left and
right eigenvectors change into v + ∆v and w + ∆w. It is easy to show that, up to first order, the
relative error on a simple finite and nonzero eigenvalue λ is

|∆λ|
|λ|

=
|w∗(λ∆B −∆A)v|

|λw∗Bv|
. (26)
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Figure 5: The values ‖P (σi)‖|βi|/|σi|, i = 1, 2, . . . , d for not well-separated (left) and well-separated
tropical roots (right)

Taking into account a normwise upper bound for the errors ∆A and ∆B, i.e., ‖∆A‖ ≤ ε‖A‖ and
‖∆B‖ ≤ ε‖B‖, leads to an upper bound for the relative error on the eigenvalue

|∆λ|
|λ|
≤ κ(λ)ε, (27)

where

κ(λ) =
(|λ|‖B‖+ ‖A‖)‖w‖‖v‖

|λ||w∗Bv|
(28)

is the eigenvalue condition number of λ as defined in [11]. Now if we let

α = w∗Av, β = w∗Bv

then λ = α
β . Taking the left and right eigenvector of norm one, the upper bound (27) can be

written as
|∆λ|
|λ|
≤
(
‖A‖
|α|

+
‖B‖
|β|

)
ε. (29)

Because of the assumptions, |α| ≤ ‖A‖ and |β| ≤ ‖B‖. To obtain a small upper bound, |α| should
be close to ‖A‖ and |β| should be close to ‖B‖.

Assume now that the pencil is scaled in such a way that ‖A‖ = ‖B‖ = 1. Note that our
balancing strategy leads to a pencil zB−A with ‖A‖ of order one and ‖B‖ = τ̃−11 . Without loss of
generality, we can assume that the problem is scaled such that the smallest well-separated tropical
root τ̃1 is equal to one. Suppose that λ ≥ 1. Because λ = α/β, we can rewrite (29) as

|∆λ|
|λ|
≤
(
‖A‖
|α|

+
|λ|‖B‖
|α|

)
ε.

Hence, the upper bound will grow when |λ| grows. This behaviour is observed on the left plot in
Figure 1. The fact that this is not observed on the right plot in Figure 1 when using our adaptation
of the QZ LAPACK implementation tells us that the above analysis cannot be used in this case.
Instead we can look at formula (26) for the relative error that is valid up to first order. Let us
assume that ‖A‖ and ‖B‖ are of order one, that ‖v‖ = ‖w‖ = 1, and that the eigenvalues are
of order one or larger. To obtain a relative error of the order of the machine precision εmach, the
backward error ∆B (and ∆A) and the left and right eigenvectors should be such that w∗Bv as
well as w∗∆Bv behave as λ−1 and λ−1εmach respectively, while w∗∆Av is of the order of εmach.
Currently, we are not able to prove that this is the case for our scaling strategy together with the
adapted version of the QZ algorithm. But all the numerical experiments we performed, indicate
that this is the case as we now illustrate with an example.
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Figure 6: Backward error on matrix A (top) and on matrix B (middle). Graded character of the
matrices V and W (bottom).
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5.1 Numerical illustration of the graded backward error

Let P (z) be a matrix polynomial of degree d = 10 whose coefficients are random 2×2 matrices with
entries taken from the standard normal distribution but scaled such that the well-separated tropical
roots are {τi} = {100, 103, . . . , 1027} each with multiplicity one. Such matrix polynomial has
eigenvalues with magnitude varying between 1 and 1027. Figure 6 (top row) shows the magnitude
of the entries of the backward error matrix on A corresponding to computed eigenvalues using our
adapted version of the QZ algorithm while the middle row shows the backward error on the matrix
B. The backward error matrices are computed using the Multiprecision Computing Toolbox for
MATLAB from Advanpix [1]. Note the graded character in the backward error on the matrix B.
The graded character of the right and left eigenvector matrices V and W is shown at the bottom
of Figure 6. Without this graded character and the graded structure of the backward error on B,
it would not be possible to obtain the eigenvalues with high relative accuracy.

6 Numerical experiments

For our numerical experiments we only show the backward error for the computed eigenvalues
because the backward error for the corresponding eigenpairs is very similar. Following [21] the

backward error ηP (λ̃) for a computed finite eigenvalue λ̃ of P can be computed as

ηP (λ̃) =
‖P (λ̃)−1‖−12∑d
i=0 |λ̃|i‖Pi‖2

=
σmin(P (λ̃))∑d
i=0 |λ̃|i‖Pi‖2

. (30)

Let Λ̃(P ; Alg.j) be the set of approximate finite eigenvalues of P computed by some algorithm
Alg.j. We denote by

ηmax
P (Alg.j) = max{ηP (λ̃) : λ̃ ∈ Λ̃(P ; Alg.j)} (31)

the largest backward error for the eigenvalues of P computed by algorithm Alg.j. We use ηmax
P (Alg.j)

to compare the backward stability of five different eigensolvers for polynomial eigenvalue problems:

Alg.1 modified LAPACK implementation of the QZ algorithm applied to tropically scaled La-
grange linearization using classical tropical roots (5);

Alg.2 modified LAPACK implementation of the QZ algorithm applied to tropically scaled La-
grange linearization using well-separated tropical roots (8);

Alg.3 MATLAB’s polyeig function;

Alg.4 quadeig from [10] when the degree of the matrix polynomial is 2;

Alg.5 Gaubert and Sharify’s Algorithm [9, Alg. 1] (see also [18, Alg. 4.1]). We use the same
MATLAB implementation as in [18].

We tested the five algorithms on all the square matrix polynomials from the NLEVP collec-
tion [5] having size s ≤ 300. Table 2 only lists the NLEVP problems for which one of the algorithms
returns a large backward error, that is, problems for which ηmax

P (Alg.j) ≥ 10dsεmach for algorithm
Alg.j as this indicates backward instability for this algorithm. The large backward errors are
highlighted in bold in the table. For this set of test problems, all algorithms except polyeig (i.e.,
Alg.3) return eigenvalues with small backward errors. Recall that Gaubert and Sharify’s algorithm
(i.e., Alg.5) calls the QZ algorithm t times, where t is the number of tropical roots. Algorithms
Alg.1 and Alg.2 only use one call to the QZ algorithm but our current implementation requires
complex arithmetic even if the matrix polynomial has real coefficients. For all the problems in
Table 2, the classical tropical roots are well-separated, which explains why the largest backward
errors are the same for Alg.1 and Alg.2.

We collected several matrix polynomials artificially constructed so as to have eigenvalues of
widely varying magnitude. These test problems can be generated by the MATLAB function get P1.
Again we only display in Table 3 results for problems for which at least one of the algorithms

1The corresponding files can be downloaded from https://people.cs.kuleuven.be/marc.vanbarel/downloads/

get_P.zip.
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Table 2: Largest backward errors of eigenvalues computed by algorithms Alg.1–Alg.5 on s × s
matrix polynomials of degree d from the NLEVP collection. The last column lists the number t of
tropical roots associated with the matrix polynomial.

Problem d s Alg.1 Alg.2 Alg.3 Alg.4 Alg.5 t
cd player 2 60 4.1e-16 4.1e-16 3.1e-10 2.5e-16 1.9e-13 2

damped beam 2 200 4.8e-16 4.8e-16 2.6e-11 2.9e-16 9.1e-17 1
hospital 2 24 3.9e-15 3.9e-15 2.9e-13 1.3e-15 2.6e-15 1

metal strip 2 9 3.0e-16 3.0e-16 4.1e-14 6.8e-16 3.7e-16 2
orr sommerfeld 4 64 1.5e-15 1.5e-15 9.1e-08 — 4.5e-15 2

planar waveguide 4 129 2.7e-15 2.7e-15 4.7e-12 — 1.6e-14 2
power plant 2 8 1.3e-16 1.3e-16 5.3e-12 4.2e-18 1.5e-18 1

Table 3: Largest backward errors of eigenvalues computed by algorithms Alg.1–Alg.5 on s × s
matrix polynomials of degree d generated by get P. The last two columns list the number t of
tropical roots associated with the matrix polynomial and the number t̃ of well-separated tropical
roots .

Problem d s Alg.1 Alg.2 Alg.3 Alg.4 Alg.5 t t̃
Problem 1 7 4 3.0e-15 3.0e-15 2.5e-02 — 2.0e-14 7 7
Problem 2 7 4 8.5e-16 8.5e-16 1.2e-01 — 3.5e-12 7 7
Problem 4 2 5 6.1e-16 6.1e-16 5.8e-06 1.6e-13 1.4e-15 2 2
Problem 5 2 5 3.4e-16 3.4e-16 1.1e-16 4.2e-12 1.5e-16 2 2
Problem 7 2 10 3.2e-16 3.2e-16 2.1e-16 1.3e-02 1.6e-16 2 2
Problem 8 2 10 2.4e-16 2.4e-16 6.4e-15 5.4e-12 1.5e-16 2 2
Problem 9 2 40 5.6e-16 5.6e-16 7.6e-07 1.3e-15 2.5e-16 2 2

Problem 10 5 20 8.8e-16 8.8e-16 5.4e-12 — 2.6e-15 2 2
Problem 11 10 8 2.4e-15 1.5e-15 2.9e-12 — 1.8e-12 4 3
Problem 12 4 30 1.1e-15 1.1e-15 1.5e-12 — 1.5e-15 2 2
Problem 13 4 9 1.1e-14 4.0e-15 4.6e-12 — 1.5e-15 3 2
Problem 17 10 2 2.9e-15 2.9e-15 1.2e-01 — 7.7e-14 10 10
Problem 18 4 4 9.5e-16 1.1e-15 5.7e-11 — 4.1e-15 2 2
Problem 19 4 4 6.0e-16 6.0e-16 9.8e-14 — 3.1e-16 2 2
Problem 20 5 4 1.2e-15 1.2e-15 3.4e-06 — 1.4e-11 3 3
Problem 21 5 4 7.5e-16 7.5e-16 2.7e-07 — 4.7e-10 3 3
Problem 22 4 4 1.4e-15 1.4e-15 6.5e-07 — 8.2e-13 3 3

returns a backward error larger than 10dsεmach. We also exclude scalar polynomials (s = 1)
and Problem 14, which is the orr sommerfeld problem from NLEVP (see Table 2). Such large
backward errors are highlighted in bold. The quadratic eigensolver polyeig with the default
parameters guarantees to return eigenvalues with small backward errors when t = 1, which is not
the case for these problems. Gaubert and Sharify’s algorithm (Alg.5) computes eigenvalues with
large backward errors for some of these problems whereas the backward errors are small for the
eigenvalues computed by both Alg.1 and Alg.2. Note that t > t̃ for Problem 11 and Problem 13

and for both problems, ηmax
P (Alg.1) > ηmax

P (Alg.2). We show in the next set of experiments that
ηmax
P (Alg.1)� ηmax

P (Alg.2) can happen.
Large backward errors tend to occur when the nonzero blocks in the linearization have widely

varying magnitude (see [12, 14, 21]). We showed in Section 4 that for the matrices βiP (σi)/σi in
the first block row of the Lagrange linearization to have norm one, the tropical roots need to be
well-separated. We also showed numerically in Section 4 that when the tropical roots are close
to each other, the matrices βiP (σi)/σi can have large norms. This can have an impact on the
backward error as we now illustrate using Example 4 from [9]. These matrix polynomials can be
generated using the MATLAB commands

s = 8; d = 10; scaling = [-5,-2,-3,-4,2,0,3,-3,4,2,5];

for i = 1:d+1

P{i} = randn(s) * 10^scaling(i);

end

We generated 100 samples and computed their eigenvalues with algorithm Alg.1 which uses classi-
cal tropical roots and algorithm Alg.2 which uses well-separated tropical roots. The largest back-
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Figure 7: ηmax
P (Alg.1) (blue squares) versus ηmax

P (Alg.2) (red stars) for 100 samples of Example 4
from [9].

ward errors for each sample are plotted in Figure 7. The plot shows that for backward stability,
it is important to use well-separated tropical roots when constructing the Lagrange linearization.
Hence algorithm Alg.2 is preferred to algorithm Alg.1.

7 Concluding remarks

We provided strong numerical evidence that indicates that for matrix pencils A − zB for which
A has entries of magnitude one and B is block diagonal with diagonal blocks allowed to have
large variation in the magnitude of their norms (i.e., ‖Bii‖ � ‖Bjj‖ or ‖Bii‖ � ‖Bjj‖, i 6=
j), the QZ algorithm with an appropriate stopping criterion computes all the finite and well-
conditioned eigenvalues to high relative accuracy even when these eigenvalues are very different in
magnitude. We showed that for computing eigenvalues of a matrix polynomial P (z), a Lagrange
linearization A − zB of P can be built with A and B having the above properties. For this we
introduced the notion of well-separated tropical roots and used them as interpolation nodes in
the Lagrange linearization (3). We showed that this choice gives an upper bound for the norms
of the blocks in the top block row of order one leading to a matrix pencil A − zB with the
specific desired structure. We performed numerical experiments showing that our eigensolver for
polynomial eigenvalue problems computes eigenvalues with backward errors close to the machine
precision even when these eigenvalues are very different in magnitude, a property not shared by
existing methods based on linearization.

Several of the results of this manuscript are only evidenced by numerical experiments. In future
work, we will try to define in a rigorous way the structure of the matrix pencil allowing the QZ
algorithm to compute all (well-conditioned) eigenvalues with a high relative precision. As we have
demonstrated numerically in this paper, this is connected to a graded structure in the backward
error generated by the QZ algorithm. Currently a lot of research is done proving the backward
stability of applying the QZ algorithm to certain types of linearizations, e.g., [8]. However, because
only the well-known backward error properties of the QZ algorithm are used, the backward error
on the matrix polynomial is one where all the coefficients are taken together normwise, without
taking into account the possible difference in norm of each of the coefficients separately. This
implies that when the norms of these coefficients are very different in magnitude, only part of the
eigenvalues can be computed accurately and a different scaling with a new application of the QZ
algorithm is necessary to compute another part of the spectrum. Taking into account the graded
structure of the backward error when applying the QZ algorithm to certain structured matrix
pencils, it could be possible to obtain a backward relative error of the size of the machine precision
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on each of the coefficients of the matrix polynomial separately.
The number of different well-separated tropical roots is always equal to or smaller than the

number of classical tropical roots. Hence, when using tropical scaling together with the block
companion linearization, the number of different applications of the QZ algorithm can be reduced
if the number of well-separated tropical roots is smaller. Note that this type of scaling can also
be used even when solving the scalar polynomial problem when the classical balancing can not be
applied on the companion matrix, e.g., when this balancing destroys the structure allowing for a
fast implementation of the QR algorithm based on the structure of the companion matrix. Very
recently a fast implementation of the QZ algorithm for the block companion pencil was developed
in [3]. A fast scalar implementation of the QR algorithm for the companion matrix can be found in
[4]. Both algorithms are proven to be normwise stable. However, as this manuscript shows, when
the eigenvalues differ a lot in magnitude, the goal should be a fast algorithm having componentwise
backward stability.
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