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A MAX-PLUS APPROACH TO INCOMPLETE CHOLESKY
FACTORIZATION PRECONDITIONERS

JONATHAN HOGG∗, JAMES HOOK† , JENNIFER SCOTT∗, AND FRANÇOISE TISSEUR‡

Abstract. We present a new method for constructing incomplete Cholesky factorization
preconditioners for use in solving large sparse symmetric positive-definite linear systems. This
method uses max-plus algebra to predict the positions of the largest entries in the Cholesky factor and
then uses these positions as the sparsity pattern for the preconditioner. Our method builds on the
max-plus incomplete LU factorization preconditioner recently proposed in [J. Hook and F. Tisseur,
Incomplete LU preconditioner based on max-plus approximation of LU factorization, MIMS Eprint
2016.47, Manchester, 2016] but applied to symmetric positive-definite matrices, which comprise an
important special case for the method and its application. A attractive feature of our approach is that
the sparsity pattern of each column of the preconditioner can be computed in parallel. Numerical
comparisons are made with other incomplete Cholesky factorization preconditioners using problems
from a range of practical applications. We demonstrate that the new preconditioner can outperform
traditional level-based preconditioners and offer a parallel alternative to a serial limited-memory
based approach.

Key words. Sparse symmetric linear systems, incomplete factorizations, preconditioners,
Hungarian scaling, max-plus algebra, sparsity pattern.
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1. Introduction. Incomplete Cholesky (IC) factorizations are an important
tool in the solution of large sparse symmetric positive-definite linear systems of
equations Ax = b. Preconditioners based on an incomplete factorization of A
(that is, a factorization in which some of the fill entries that would occur in a
complete factorization and possibly some of the entries of A are ignored) have
been in widespread use for more than 50 years (see, for example, [33] for a brief
historical overview that highlights some of the most significant developments). For
general nonsymmetric systems, incomplete LU (ILU) factorization preconditioners
are frequently used as they work well for a wide range of problems and, again, many
variants have been proposed (see [30] for an introduction). The basic idea is to
compute a factorization A ≈ LU (or A ≈ LLT in the positive-definite case) with L
and U sparse triangular matrices with the fill-in (that is, the entries in L and U that
lie outside the sparsity pattern of A) restricted to some sparsity pattern S. Recently,
Hook and Tisseur [19] have shown how max-plus algebra can be used to approximate
the order of magnitude of the moduli of the entries in the LU factors of A and have
used this to construct the sparsity pattern of ILU preconditioners. Max-plus algebra
is the analog of linear algebra developed for the binary operations max and plus over
the real numbers together with −∞, the latter playing the role of additive identity; an
introduction and a large number of references to the literature may be found in [10,
Chap. 35]. In the past few years, max-plus algebra has been used to examine a number
of numerical linear algebra problems [2, 13, 16, 27]. While the numerical experiments
reported on in [19] were limited to modest-sized sparse problems (of order up to 103),
they did indicate the potential of the approach to compute ILU preconditioners that
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can outperform traditional level of fill methods and be competitive with a threshold-
based method.

One drawback of the max-plus method is that the sparsity pattern S cannot be
updated to account for any pivoting during the factorization of A, so that the pattern
chosen by the max-plus analysis is only useful when the factorization does not require
row or column interchanges. An attractive feature of symmetric positive-definite
matrices is that they will always (in exact precision) admit a Cholesky factorization
without pivoting. However, if A is close to being indefinite or if an incomplete
factorization is computed, then breakdown can occur (that is, a zero or negative pivot
is encountered). In this case, we follow Manteuffel [26] and add a small multiple of the
identity, that is, we factorize DAD+αI for some shift α > 0 and diagonal scaling D.
This avoids the need for pivoting and preserves the chosen sparsity structure S of the
factors and, as shown recently by Scott and Tůma [34, 35], the resulting IC factors
generally still provide an effective preconditioner for A. We observe that prescaling
of A is essential to limit the size of the shift; preordering is also normally needed to
limit fill in the factors (and hence the number of entries that are dropped during the
incomplete factorization).

The aim of this paper is to present an algorithm for constructing IC
preconditioners for large sparse positive-definite problems using max-plus algebra
to predict the positions of the largest entries in the Cholesky factor. The sparsity
pattern Sj of each column j can be determined in parallel. Once Sj is found, the IC
factorization can be computed using a conventional serial procedure or using the novel
approach of Chow and Patel [3] who propose using an iterative method to compute
the entries of the factors. All the nonzero entries in the incomplete factors can be
computed in parallel and asynchronously, using a number of sweeps of an iterative
method. A key issue with their approach is that the pattern S must be chosen a
priori.

The remainder of this paper is organized as follows. In Section 2, we briefly
recall max-plus incomplete LU factorizations and then, in Section 3, we focus on
positive-definite matrices. We present algorithms for computing each column of the
max-plus factor independently. Results for a wide range of problems are presented in
Section 4 and comparisons are given between our new max-plus IC preconditioner and
both level-based and memory-based IC preconditioners used with the preconditioned
conjugate gradient method. In Section 5, we present alternative approaches to
the max-plus computation. Finally, some concluding remarks and possible future
directions are given in Section 6. Note that we do not assume that the reader is
familiar with the use of max-plus algebra but define the concepts that we need as
necessary.

Throughout this paper, matrices are denoted by capital letters with their entries
given by the corresponding lower case letter in the usual way, that is, A = (aij) ∈
Rn×n. Max-plus matrices are denoted by calligraphic capital letters and their entries
by the corresponding lower case calligraphic letter, that is, A = (aij) ∈ Rn×nmax , where
Rmax = R ∪ {−∞}.

2. Max-plus approximation of LU factorization. In [19], the authors use
max-plus algebra to introduce the following method for approximating the moduli of
the entries of the L and U factors of sparse matrices.

Consider the map V defined as

V : R→ Rmax

x 7→ log |x|, (2.1)
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with the convention that log 0 = −∞. For x, y ∈ R, V(xy) = V(x) + V(y), and
when |x| � |y| or |x| � |y|, V(x + y) ≈ max{V(x),V(y)}, which suggests using the
operations max and plus in place of the classical addition and multiplication once we
have applied the map V. The set Rmax endowed with the addition x⊕ y = max{x, y}
and the multiplication x ⊗ y = x + y is called the max-plus semiring. It is not a
ring as there is no additive inverse and hence there is no max-plus subtraction. The
identity elements are −∞ for the addition and 0 for the multiplication. When applied
componentwise to a matrix, the map (2.1) allows us to transform the matrix A ∈ Rn×n
into a max-plus matrix, i.e., V(A) = A is a matrix with entries aij = log |aij | in Rmax.
The max-plus matrix V(A) is termed the valuation of A.

It is well-known that the entries in the lower triangle of L and the upper triangle
of U of a LU factorization of A ∈ Rn×n can be expressed explicitly in terms of
determinants of submatrices A (see [12, p. 35]). Using this fact and the heuristic that
V
(

det(A)
)
≈ perm

(
V(A)

)
, where

perm(A) = max
π∈Π(n)

n∑
i=1

ai,π(i) ∈ Rmax, (2.2)

is the max-plus permanent of A ∈ Rn×nmax , Π(n) being the set of all permutations on
{1, . . . , n}, Hook and Tisseur [19] define the max-plus LU factors of A ∈ Rn×nmax as
the lower triangular max-plus matrix L and upper triangular max-plus matrix U with
entries

lik = perm
(
A([1 : k − 1, i], 1: k)

)
− perm

(
A(1 : k, 1: k)

)
, i ≥ k, (2.3)

ukj = perm
(
A(1 : k, [1 : k − 1, j])− perm

(
A(1 : k − 1, 1: k − 1)

)
, j ≥ k, (2.4)

and lik = ukj = −∞ if i, j < k. If the two terms on the right hand side of (2.3) or
(2.4) are −∞ then the convention −∞ − (−∞) = −∞ is used. If the second term
is −∞ but the first is not, then A does not admit max-plus LU factors. Hook and
Tisseur show that L and U are such that

V(L) ≈ L, V(U) ≈ U , (2.5)

where the symbol “≈” should be interpreted componentwise as “offers an order of
magnitude approximation”.

Example 2.1. Consider

A =

 −10 10 −103

0 1 −1
103 1 10−2

 , V(A) =

 1 1 3
−∞ 0 0

3 0 −2

 .
We compute the max-plus LU factors of V(A) using (2.3) and (2.4). For such small
examples we can evaluate the permanent of a matrix or submatrix by simply evaluating
all possible permutations and recording the maximum. E.g.

u33 = perm
(
A([1 : 3], [1 : 3])

)
− perm

(
A(1 : 2, 1: 2)

)
= max{−1, 1,−∞, 4,−∞, 6} −max{1,−∞} = 5.

We obtain

L =

 0 −∞ −∞
−∞ 0 −∞

2 3 0

 , U =

 1 1 3
−∞ 0 0
−∞ −∞ 5

 ,
3



which provides a good approximation of the order of magnitude of the entries in the
LU factors of A

L =

 1 0 0
0 1 0
−100 1001 1

 , U =

 −10 10 −1000
0 1 −1
0 0 −98999

 ,
where u33 is only provided to five significant digits.

2.1. Paths through bipartite graphs. In practice, we need a more efficient
way to compute the max-plus LU factors of a matrix. The following technique enables
us to compute all the entries in a row of the upper factor U or column of the lower
factor L by solving a single maximally weighted path problem. This is many times
more efficient than computing each entry individually by evaluating the permanents
in (2.3) and (2.4).

For A ∈ Rn×nmax , let B(A) denote the bipartite graph with left vertices X =
{x(1), . . . , x(n)}, right vertices Y = {y(1), . . . , y(n)} and a directed edge e : x(i) 7→
y(j) of weight aij , whenever aij 6= −∞. We say that a subset of edges M ⊆ B(A)
is a matching between X` = {x(1), . . . , x(`)} and Y` = {y(1), . . . , y(`)} if the edges
in M only visit the vertices in X` ∪ Y` and if each vertex in X` ∪ Y` is incident to
exactly one edge in M . The weight of a matching is the sum of its constituent edge
weights. Note that the edges in a maximally weighted matching between X` and
Y` will correspond to the entries in a permutation that attains the maximum in the
expression (2.2) applied to the `th principal submatrix perm

(
A[1 : `, 1: `]

)
. Given a

bipartite graph B(A) and a matching M between X` and Y` we form the residual
bipartite graph R(M) from B(A) by reversing the direction of and minimising the
weight of every edge in M . Hook and Tisseur’s max-plus LU algorithm relies on the
following result.

Proposition 2.2. Let A ∈ Rn×nmax have max-plus LU factors L = (lij) and U =
(uij), and let B(A) be the bipartite graph associated with A. Let M` be a maximally
weighted matching between the left vertices {x(1), . . . , x(`)} and right vertices {y(1),
. . . , y(`)} of B(A). Then

(i) for j ≥ k, ukj is either the weight of the maximally weighted path through
R(Mk−1) from x(k) to y(j), or −∞ if there is no such path,

(ii) for i > k, lik is either the weight of the maximally weighted path through
RT (Mk) from x(k) to x(i), or −∞ if there is no such path.

We refer to [19, Appendix A] for a proof of this result.

2.2. Hungarian matrices and fill paths. A matrix H ∈ Rn×n is said to be
Hungarian if its entries satisfy |hij | ≤ 1 and |hii| = 1, for all i, j = 1, . . . , n. It is well-
known that for any matrix A ∈ Rn×n of full structural rank there exists a permutation
matrix P and diagonal matrices D1, D2 such that PD1AD2 is a Hungarian matrix and
that such a scaling is a highly effective preprocessing step both for sparse direct solvers
and for incomplete factorizations. The idea was originally introduced by Olschowka
and Neumaier [28] in the mid 1990s. They proposed an optimal assignment problem
to compute an ordering and scaling to reduce the need for pivoting within Gaussian
elimination; their work was further developed by Duff and Koster [8] (see also Gupta
and Ying [14]). The idea was subsequently extended to symmetric systems [7, 9] and
over the last fifteen years or so, it has been adopted by the sparse linear algebra
community for both nonsymmetric and symmetric problems (see, for example, [1, 15,
17, 18, 24, 31, 32]).

4



A max-plus matrix H ∈ Rn×nmax is said to be Hungarian if its entries satisfy hij ≤ 0
and hii = 0, for all i, j = 1, . . . , n. Note that H ∈ Rn×n is Hungarian if and only if
V(H) is Hungarian. It is shown in [19, Thm. 3.8] that max-plus Hungarian matrices
always admit max-plus LU factors.

Let H ∈ Rn×nmax be a Hungarian matrix and let G(H) be the precedence graph of H,
that is the graph with vertices {1, . . . , n} and a directed edge e : i→ j of weight hij ,
whenever hij 6= −∞. A path σ of length ` from i to j in G(H) is a sequence of `+ 1
distinct vertices i = σ(1), σ(2), . . . , σ(`), σ(`+1) = j, such that hσ(k),σ(k+1) 6= −∞ for
all k = 1, . . . , `. The weight of a path W (σ) is given by the sum of its edge weights.
We allow paths of zero length that consist of a single vertex and have zero weight but
we do not allow paths to visit the same vertex more than once. Let Σ(i, j,H) be the
set of all paths in G(H) from i to j. A path σ of length ` from i to j is a fill path if
σ(1) = i, σ(k) < min{i, j} for k = 2, . . . , ` and σ(` + 1) = j. Let ΣF (i, j,H) be the
set of all fill paths from i to j in the graph G(H). Clearly, ΣF (i, j,H) ⊆ Σ(i, j,H).
The Hungarian property allows us a neater description of the max-plus LU factors in
terms of fill paths through G(H) as follows.

Proposition 2.3. Let H ∈ Rn×nmax be Hungarian and have max-plus LU factors
L = (lij) and U = (uij). Then

lij =

{
maxσ∈ΣF (i,j,HT )W (σ) for i ≥ j,
−∞ otherwise,

(2.6)

uij =

{
maxσ∈ΣF (i,j,H)W (σ) for i ≤ j,
−∞ otherwise,

(2.7)

where we use the convention maxσ∈ΣF (i,j,H)W (σ) = −∞, whenever ΣF (i, j,H) = ∅,
i.e., whenever there is no fill path from i to j.

Proof. Since H is Hungarian we have hij ≤ 0 for all i, j = 1, . . . , n and any
matching between vertices in B(H) will have non-positive weight. Therefore any
weight zero matching will automatically be a maximally weighted matching. A weight
zero matching between the left vertices {x(1), . . . , x(k)} and the right vertices {y(1),
. . . , y(k)} is given by Mk = {x(1) 7→ y(1), . . . , x(k) 7→ y(k)}. We can therefore use
this matching to compute the max-plus LU factors as in Proposition 2.2.

For j ≥ k, consider a path ς through R(Mk−1) from x(k) to y(j). Since R(Mk−1)
is a bipartite graph, ς must alternate between the left and right vertices. Because the
only right to left edges in R(Mk−1) come from the reversed edges in Mk−1, if σ visits
y(i) then it must visit x(i) on its next step for i = 1, . . . , k−1, and σ may not visit any
y(i) with i > k− 1 until its final step as otherwise it would have no edges available to
continue moving along. Therefore, ς =

(
x(i1), y(i2), x(i2), y(i3), . . . , x(i`), y(i`+1)

)
, for

some sequence of distinct indices i1, . . . , i`+1 with i1 = k, i1 . . . , i` ≤ k and i`+1 = j.
Notice that the sequence i1, . . . , i`+1 gives us a path σ = (i1, . . . , i`+1) in G(H), which
satisfies the conditions to be a fill path from k to j. The weight of the path in the
bipartite graph ς is equal to the sum of its left to right edge weights and its right to
left edge weights. But because every edge in Mk−1 has weight zero, the right to left
edges make zero contribution to this sum. The weight of the path is thus given by

W (ς) =
∑̀
t=1

hi(t),i(t+1),

which is exactly the same as the weight of the fill path σ through the precedence
graph. Therefore, for every path ς through R(Mk−1) from x(k) to y(j) there is
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a fill path σ through G(H) from k to j with the same weight. The converse is
also true. If σ = (i1, . . . , i`+1) is a fill path through G(H) from k to j then ς =(
x(i1), y(i2), x(i2), y(i3), . . . , x(i`), y(i`+1)

)
is a path through R(Mk−1) from x(k) to

y(j), with the same weight as σ. Thus the characterization of the entries in the upper
triangle of U in Proposition 2.2(i) and that in (2.6) are identical. The proof for the
lower triangular factors is the same only we work with the graphs generated from
HT .

3. The max-plus IC factorization. We now focus on symmetric positive-
definite matrices A ∈ Rn×n. For such matrices, there exists a unique lower triangular
matrix L ∈ Rn×n such that A = LLT ; this is the Cholesky factorization of A. The
following result is from Olschowka and Neumaier [28].

Lemma 3.1. Let A ∈ Rn×n be a symmetric positive-definite matrix and let D ∈
Rn×n be the diagonal matrix with diagonal entries dii = 1/

√
aii, i = 1, . . . , n, then

H = DAD,

is a symmetric positive-definite Hungarian matrix.
Let H ∈ Rn×n be a symmetric positive-definite Hungarian matrix with the

Cholesky factorization H = LLT . If D̃ ∈ Rn×n is the diagonal matrix with diagonal
entries d̃ii = lii > 0 then

L̃ = LD̃−1, Ũ = D̃LT

provides an LU factorization of H, H = L̃Ũ , with l̃ii = 1 for all i = 1, . . . , n. We
can therefore use (2.5) to approximate the moduli of the entries of L̃ and Ũ in terms
of the max-plus LU factors L,U ∈ Rn×nmax of the valuation H = V(H) and since H is
Hungarian, these factors always exist. Also, since H is symmetric, H is also symmetric
and (2.6) becomes

lij = uji =

{
maxσ∈ΣF (i,j,H)W (σ) for i ≥ j,
−∞ otherwise,

(3.1)

which gives the max-plus approximation

V(L̃) ≈ L, V(Ũ) ≈ U .

Now, by construction, ũii = l2ii so that d̃ii = lii =
(
ũii
)1/2

for all i. Note from (2.6)
that the diagonal entries of U are all equal to zero, i.e., uii = 0 for all i = 1, . . . , n. This
is because the length zero path from i to itself is a fill path of length zero and there are
no edges or paths with weight greater than zero. Thus the max-plus approximation
gives d̃ii ≈ 1 for all i, or equivalently, D̃ ≈ I. We therefore have L = L̃D̃ ≈ L̃,
which gives the following max-plus approximation of the modulus of the entries in the
Cholesky factor

V(L) ≈ L ⇐⇒ log |lij | ≈ lij , 1 ≤ i, j ≤ n. (3.2)

Given the valuation H ∈ Rn×nmax of a symmetric positive-definite Hungarian matrix
H ∈ Rn×n, we say that L with entries given by (3.1) is the max-plus Cholesky factor
of H.
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1 2 3 4
−0.5

−1

−2

−3

-1

Fig. 3.1. Precedence graph G(H) for the matrix of Example 3.2.

1 2 3 4
−0.5

−1

−2

−3

Fig. 3.2. Precedence graph G
(
H(2)

)
for the matrix of Example 3.2.

Example 3.2. Consider

H =


1 10−0.5 10−1 0

10−0.5 1 10−2 10−3

10−1 10−2 1 10−1

0 10−3 10−1 1

 , H = V(H) =


0 −0.5 −1 −∞
−0.5 0 −2 −3
−1 −2 0 −1
−∞ −3 −1 0

 ,
where H is Hungarian and symmetric positive definite.

Figure 3.1 displays the precedence graph G(H). Suppose that we want to
compute the 2nd column of L. From (3.1) we have l12 = −∞, l22 = 0, l32 =
maxσ∈ΣF (2,3,H)W (σ), where ΣF (2, 3,H) = {(2, 3), (2, 1, 3)}. Since W (2, 3) = −2 and
W (2, 1, 3) = −1.5 we have l32 = −1.5. Similarly, l42 = maxσ∈ΣF (2,4,H)W (σ), where

ΣF (2, 4,H) = {(2, 4)} and since W (2, 4) = −3, we have l42 = −3. Note that Σ(2, 4,H)
also contains the paths (2, 3, 4) and (2, 1, 3, 4). Note also that W (2, 1, 3, 4) = −2.5,
which is greater than W (2, 4), but we do not count the weight of the path (2, 1, 3, 4)
as it is not a fill path.

The remaining columns of L can be computed in the same way to give the max-plus
Cholesky factor of H,

L =


0 ∞ ∞ −∞
−0.5 0 ∞ ∞
−1 −1.5 0 ∞
−∞ −3 −1 0

 .
This provides a good approximation of the order of magnitude of the moduli of the
entries in the Cholesky factor of H

L =


1 0 0 0

0.316 0.949 0 0
0.1 −0.023 0.995 0
0 0.001 0.101 0.995

 , V(L) =


0 −∞ −∞ −∞
−0.5 −0.023 −∞ −∞
−1 −1.642 −0.002 −∞
−∞ −2.977 −0.998 −0.002

 .
We now define H(k) ∈ Rn×nmax , 1 ≤ k ≤ n to be the matrix with entries given by

h(k)ij =

{
hij for i ≤ k,

−∞ otherwise.
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Thus G
(
H(k)

)
is the graph with vertices {1, . . . , n} that contains all edges from

{1, . . . , k} to itself and all edges from {1, . . . , k} to {k + 1, . . . , n} but no edges from
{k + 1, . . . , n} to itself or from {k + 1, . . . , n} to {1, . . . , k}. This construction is
illustrated for the matrix of Example 3.2 in Figure 3.2.

Lemma 3.3. Let H ∈ Rn×nmax be the valuation of a symmetric positive-definite
Hungarian matrix then

ΣF (k, i,H) = Σ
(
k, i,H(k)

)
,

for k = 1, . . . , n and i = k, . . . , n.
Proof. The set ΣF (k, i,H) contains the zero length path σ = (k) if and only if

i = k. Likewise for Σ
(
k, i,H(k)

)
. Now suppose that σ ∈ ΣF (k, i,H) is a path of length

` > 0. Since σ is a fill path from k to i it must satisfy σ(1) = k, σ(j) < k for j = 2, . . . , `
and σ(` + 1) = i. Therefore σ traverses ` − 1 edges between the vertices {1, . . . , k}
then traverses an edge from {1, . . . , k} to i, since all of these edges are also contained
in G

(
H(k)

)
we have σ ∈ Σ

(
k, i,H(k)

)
. Conversely, suppose that σ ∈ Σ

(
k, i,H(k)

)
is a path of length ` > 0. Since σ is a path from k to i it must satisfy σ(1) = k
and σ(` + 1) = i. However, since there are no edges from vertices {k + 1, . . . , n} to
{1, . . . , n} in G

(
H(k)

)
, the path σ can only visit a vertex in {k+ 1, . . . , n} as its final

vertex so that σ(j) ≤ k for j = 2, . . . , `. Moreover, since σ(1) = k and σ is a path
and, as such, must consist of a sequence of distinct vertices, we have σ(j) < k for
j = 2, . . . , ` and therefore σ ∈ ΣF (k, i,H).

Corollary 3.4. Let H ∈ Rn×nmax be the valuation of a symmetric positive-definite
Hungarian matrix and let L be the Cholesky factor of H, then for i ≥ k

lik = max
σ∈ΣF (k,i,H)

W (σ) = max
σ∈Σ(k,i,H(k))

W (σ).

To compute the kth column of L it is therefore sufficient to compute the weight
of the maximally weighted path from k to i for all i = k+ 1, . . . , n in H(k). Since the
entries of H are non-positive this can be done using Dijkstra’s algorithm [5] with worst
case cost O

(
Ek + n log(n)

)
, where Ek is the number of nonzero entries in H(k). The

algorithm is given as Algorithm 1. For efficiency it uses a priority heap data structure
that stores indices with an associated priority. The operation push(heap, index,
priority) adds or updates an index-priority pair in the heap, whilst the operation
(index, priority) = pop max(heap) returns and removes the index-priority pair with
maximum priority.

3.1. Max-plus IC preconditioner pattern. We can use the max-plus
Cholesky factor L ∈ Rn×nmax of V(H) to construct a sparsity pattern for an IC
preconditioner for a symmetric positive-definite Hungarian matrix H ∈ Rn×n as
follows. If we want the IC pattern to include the positions of all of the entries in the
exact Cholesky factor L of H that are greater in modulus than some drop tolerance
ε > 0, then (3.2) suggests using the pattern S ∈ {0, 1}n×n given by

sij =

{
1 if lij ≥ log ε,

0 otherwise.
(3.3)

The total number of nonzero entries per column can also be restricted to an integer
m, by setting sij = 1 for only the m largest positions in the jth column, as predicted
by (3.2).
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Algorithm 1 Given the valuation H ∈ Rn×nmax of a real symmetric positive-definite
Hungarian matrix and an integer k, 1 ≤ k ≤ n, this algorithm computes the kth
column of the max-plus Cholesky factor L of H.

1: set di = −∞ and checkedi =false, 1 ≤ i ≤ n
2: initialize heap; push(heap, k, 0)
3: while heap is non empty do
4: (i, di) = pop max(heap)
5: set checkedi =true
6: if i ≤ k then
7: for all j such that hij 6= −∞ and checkedj =false do
8: dcand = di + hij
9: if dcand > dj then

10: set dj = dcand
11: push(heap, j, dcand)
12: end if
13: end for
14: end if
15: if i ≥ k then
16: lik = di
17: end if
18: end while

If we are computing the max-plus Cholesky factor of H in order to predict
the positions of large entries in the Cholesky factor L of H then we can speed up
Algorithm 1 by terminating it early. Algorithm 2 calculates the positions of the m
largest entries in the kth column of L. If there are fewer than m entries greater
than some chosen threshold log ε then it will instead return the positions of the
r < m entries that are greater than log ε. The worst-case cost of this algorithm
is O

(
Ek,m,ε + Vk,m,ε log(n)

)
, where Ek,m,ε is the total number of edges explored in

line 6 of Algorithm 2 and Vk,m,ε is the number of times the algorithm passes round
the while loop that begins on line 3. A possible approximation of these quantities for
the case ε = 0 is given by

Ek,m,0 = Ek
m

n− k
, Vk,m,0 =

km

n− k
+m.

Here the assumption is that vertices are examined and checked in a uniform random
order and that the number of nonzero entries per row in H is constant.

It is interesting to compare the max-plus pattern (3.3) with the level of fill IC(k)
pattern. The IC(k) pattern P ∈ {0, 1}n×n can be expressed as

pij =

{
1 if there is a fill path of length ≤ k from i to j through G(H),

0 otherwise,

whereas, using (3.1), the max-plus IC pattern S ∈ {0, 1}n×n in (3.3) can be expressed
as

sij =

{
1 if there is a fill path of weight ≥ log ε from i to j through G(H),

0 otherwise.

9



The level of fill approach drops entries that correspond to longer paths, while the max-
plus approach drops entries that correspond to paths with less weight. By taking this
extra information into account the max-plus approach has the ability to produce more
effective preconditioners, by dropping some smaller entries with lower level of fill and
including some larger entries with higher level of fill. Note that in the special case that
H ∈ Rn×n has hii = 1, 1 ≤ i ≤ n and hij = γ < 1 for all other nonzero positions, then
the IC(k) pattern will be identical to the max-plus pattern chosen using ε = γk+1.

Algorithm 2 Given the valuation H ∈ Rn×nmax of a real symmetric positive-definite
Hungarian matrix, a tolerance ε > 0, and two integers m, k, 1 ≤ m, k ≤ n, this
algorithm computes the kth column of a pattern matrix with 0 and 1 entries such
that there are 1’s in the r ≤ m entries corresponding the largest entries in the kth
column of the max-plus Cholesky factor L of H that are greater than log ε.

1: for i = 1, . . . , n set di = −∞ and checkedi =false
2: initialize heap; push(heap, k, 0)
3: set pik = 0 for i = 1, 2, . . . , n; set r = 0
4: while r < m do
5: (i, di) = pop max(heap)
6: if di < log ε then exit
7: set checkedi = true
8: if i ≤ k then
9: for all j such that hij 6= −∞ and checkedj =false do

10: dcand = di + hij
11: if dcand > dj then
12: set dj = dcand
13: push(heap, j, dcand)
14: end if
15: end for
16: end if
17: if i ≥ k then
18: pik = 1
19: r = r + 1
20: end if
21: end while

4. Numerical Results. We present numerical results for problems taken from
the UFL Sparse Matrix Collection [4]. We select all symmetric positive-definite
matrices of order n > 5000 except those that are diagonal or represent minor variations
on other matrices. This gives a set of 132 problems. In each test, the matrix A is
reordered, scaled and, if necessary, shifted to avoid breakdown of the factorization so
that the incomplete factorization of

Â = DQTAQD + αI

is computed, where Q is a permutation matrix, D is a diagonal scaling matrix with
entries dii = 1/

√
(QTAQ)ii and α is a non-negative shift. The permutation matrix

Q is computed using the Sloan profile reduction ordering algorithm [29, 36, 37]. This
ordering is used since, in our experience, it frequently leads to a reduction in the
number of conjugate gradient iterations [34, 35]. Preconditioned conjugate gradients
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(PCG) is applied to the original matrix A (so that the incomplete preconditioner is

(L̂L̂T )−1 with L̂ = QD−1L). The strategy for choosing α is as described in [34] (see
also [25]). The max-plus IC factorization is started with α = 0 but if a zero (or
negative) pivot is encountered, a nonzero α is employed (the initial value used in our
experiments is 0.001) and the factorization restarted. This process may need to be
repeated more than once, with α increased (normally by a factor of 2) each time the
factorization breaks down. For our test set, we found that the largest shift needed by
the max-plus IC factorization was 0.064.

We use the implementation MI21 of PCG provided by the HSL mathematical
software library [20]. For each problem, we terminate the computation if a limit of
either 10,000 iterations or 10 minutes is reached. The PCG algorithm is considered
to have converged on the ith step if

‖ri‖2
‖r0‖2

≤ 10−10,

where ri is the current residual vector and r0 = b − Ax0 is the initial residual. In
all our experiments, we take the initial solution guess to be x0 = 0 and choose the
right-hand side b so that the solution is the vectors of 1’s. If PCG fails to converge
within our chosen limits, the result is recorded as a failure. All runs are performed on
a dual socket E5-2695 v3 machine using the Intel Compiler Suite v16.0.1. We use the
MKL’s sparse triangular solve and matrix-vector routines to apply the preconditioner
and calculate matrix-vector products Ax.

To measure the performance of PCG, we use the following statistics:
nitr: the number of iterations required for PCG to converge.
mapcg: the total number of memory accesses to perform PCG, given by

mapcg = nitr × (nnz(A) + 2 nnz(L)), (4.1)

where nnz(A) and nnz(L) are the number of entries in the lower triangle of
A and in the (incomplete) Cholesky factor, respectively. This represents a
matrix-vector multiplication, and a forwards and a backwards solve with L
at each iteration. In an ideal implementation, runtime would be proportional
to mapcg.

We compare the new max-plus IC preconditioner with the following
preconditioners.
Diagonal: Equivalent (in exact arithmetic) to no preconditioning as our pre-scaling

results in all diagonal entries being 1.0.
IC(0): Incomplete Cholesky based on the sparsity pattern of A. A drop tolerance

δ = 10−3 is applied in a post-factorization filtering step (so that all entries in
the computed factor that are of absolute value less than δ are discarded).

IC(1): Incomplete Cholesky based on the pattern of A plus one level of fill. A drop
tolerance δ = 10−3 is applied in a post-factorization filtering step.

HSL MI28: A limited memory IC preconditioner developed by Scott and Tůma [34, 35].
We use the default drop tolerances of 10−3 and 10−4 and allow up to 10 fill
entries in each column of the incomplete factor (the software’s parameters
lsize and rsize that control the memory usage and sparsity of the factor are
both set to 10).

Note that, for each problem and each algorithm, a different shift α may be needed.
A nonzero value is only used if, during the construction of the preconditioner, a zero
or negative pivot is encountered.
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We do not report detailed times to form the preconditioner as the purpose of
this study is to evaluate the numerical quality of the preconditioner, rather than to
develop an efficient implementation. However, to give an indication of runtimes for our
current code, we comment that for each of our test problems, our basic max-plus serial
implementation takes less than 7 minutes to construct the preconditioner. The slowest
max-plus time that gives a preconditioner that leads to PCG converging within our
chosen limits is for problem Janna/Bump 2911. In this case, our prototype code takes
approximately 260 seconds to construct the preconditioner, followed by 58 seconds to
run PCG, which compares to around 14 seconds for constructing IC(0), followed by
90 seconds to run PCG. For IC(1) (respectively, HSL MI28) the corresponding times
are 30 seconds (respectively, 55 seconds) for constructing the preconditioner and 95
seconds (respectively, 35 seconds) to run PCG. The max-plus implementation can
potentially be accelerated through the use of parallel processing as the pattern of
each column can be calculated independently but implementing this efficiently is non
trivial. We observe that the patterns of the columns of IC(1) (and more generally,
IC(k)) can also be computed in parallel [21]) but HSL MI28 is a serial approach.

4.1. Max-plus parameters. Our algorithm for determining the incomplete
max-plus pattern has three parameters: m, the maximum number of entries per
column, ε, the max-plus drop tolerance, and δ, a tolerance that is applied to filter the
final L factor. To be consistent with the IC(0) and IC(1) preconditioners, the later is
set to 10−3.

To establish suitable settings for m and ε, we perform experiments on a subset of
15 matrices. This subset was chosen by ordering the test set in order of nnz(A) and
then choosing (approximately) every 10th example. We present results in Table 4.1
for m = 10 and 20 with ε = 10−4, 10−5 and 10−6. For comparison, the results for the
other IC approaches are shown in Table 4.2. As m increases and ε decreases, more
entries are included in the factors. The results show that typically the relaxation of ε
has little effect on the size of the factors, although for some problems using ε ≤ 10−5

can significantly decrease the number of iterations required (e.g. AMD/G2 circuit,
ND/nd6k, Janna/Bump 2911). We therefore choose to use ε = 10−6 in the rest of this
paper. We observe that we also experimented with using ε = 0.0. For a small number
of examples, this can further reduce the number of iterations (e.g. for Williams/cant,
the count is cut from 2016 to 1617) but the time to compute the preconditioner
increases significantly (for many of our tests, compared to using ε = 10−6, the time
for ε = 0.0 increases by more than 50 percent and this is not fully offset by the
reduction in the iteration count).

The effect of m is much more dramatic, both in terms of increased factor size
and decreased number of iterations. When we consider the balance of these qualities
in the number of memory accesses mapcg, the best result can go in either direction.
As m = 10 always gives the sparsest factors, we choose m = 10 for the remainder
of this paper. The combination m = 10, ε = 10−6 has the property that (on these
15 matrices) the size of the factors is always smaller or commensurate with those
produced by HSL MI28 with the selected settings for its input parameters.

4.2. Comparison with other IC preconditioners. To assess the
performance of the different preconditioners on our test set of 132 problems, we employ
performance profiles [6]. The performance ratio for an algorithm on a particular
problem is the performance measure for that algorithm divided by the smallest
performance measure for the same problem over all the algorithms being tested (here
we are assuming that the performance measure is one for which smaller is better,
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Table 4.1
Results for various values of the max-plus parameters m and ε for a subset of 15 matrices.

Entries in bold are within 10% of the best.

Problem nnz(L)× 106 nitr mapcg × 109

ε = 10−4 10−5 10−6 10−4 10−5 10−6 10−4 10−5 10−6

Pothen/bodyy5 m = 10 0.08 0.08 0.08 6 5 5 0.001 0.001 0.001
m = 20 0.08 0.08 0.08 6 5 5 0.001 0.001 0.001

HB/bcsstk18 m = 10 0.11 0.11 0.11 80 80 80 0.025 0.025 0.025
m = 20 0.13 0.13 0.13 63 54 53 0.021 0.019 0.018

GHS psdef/minsurfo m = 10 0.27 0.30 0.32 9 7 6 0.006 0.005 0.005
m = 20 0.27 0.30 0.32 9 7 6 0.006 0.005 0.005

GHS psdef/apache1 m = 10 0.82 0.82 0.83 140 141 140 0.274 0.276 0.277
m = 20 0.96 0.99 1.03 126 127 117 0.281 0.292 0.277

AMD/G2 circuit m = 10 1.26 1.49 1.61 123 89 84 0.364 0.304 0.308
m = 20 1.28 1.56 1.78 123 89 70 0.370 0.317 0.280

Rothberg/cfd2 m = 10 2.78 2.78 2.78 598 599 599 4.29 4.30 4.30
m = 20 3.83 3.83 3.83 526 525 527 4.88 4.87 4.88

Williams/cant m = 10 2.52 2.52 2.52 1899 1902 1899 13.4 13.5 13.4
m = 20 3.05 3.05 3.05 2115 2130 2106 17.2 17.3 17.1

DNVS/shipsec5 m = 10 3.89 3.90 3.90 171 168 168 2.21 2.17 2.17
m = 20 4.61 4.66 4.67 189 189 189 2.72 2.74 2.74

Williams/consph m = 10 3.26 3.26 3.26 182 183 182 1.74 1.75 1.74
m = 20 3.95 3.95 3.95 158 157 158 1.73 1.72 1.73

ND/nd6k m = 10 0.67 0.70 0.71 218 178 176 1.05 0.863 0.860
m = 20 0.67 0.70 0.73 218 179 156 1.05 0.868 0.766

Boeing/pwtk m = 10 7.13 7.13 7.13 3058 3258 3244 61.7 65.8 65.5
m = 20 8.56 8.56 8.56 2109 2103 2104 48.6 48.5 48.5

Schenk AFE/af shell3 m = 10 13.6 13.6 13.6 434 434 434 15.8 15.8 15.8
m = 20 18.3 18.3 18.3 327 325 325 14.9 14.8 14.8

Oberwolfach/bone010 m = 10 43.8 43.8 43.8 2054 2040 2039 255. 253. 253.
m = 20 52.3 52.3 52.3 1862 1853 1890 262. 261. 266.

GHS psdef/audikw 1 m = 10 47.1 47.1 47.1 952 958 956 127. 128. 128.
m = 20 55.1 55.1 55.1 899 896 896 134. 134. 134.

Janna/Bump 2911 m = 10 70.7 70.9 70.9 190 189 189 39.3 39.2 39.2
m = 20 82.0 82.8 83.0 213 170 170 48.9 39.3 39.3

Table 4.2
Results for other IC preconditioner for our subset of 15 matrices. - indicates failure to converge

within our set limits.

Problem nnz(L)× 106 nitr mapcg × 109

Diag. IC(0) IC(1) MI28 diag IC(0) IC(1) MI28 Diag. IC(0) IC(1) MI28

Pothen/bodyy5 0.02 0.06 0.08 0.08 186 67 29 5 0.021 0.014 0.007 0.001
HB/bcsstk18 0.01 0.07 0.11 0.13 1343 332 153 35 0.140 0.073 0.046 0.012
GHS psdef/minsurfo 0.04 0.12 0.16 0.32 103 31 20 6 0.021 0.011 0.009 0.005
GHS psdef/apache1 0.08 0.29 0.45 0.92 479 285 286 127 0.227 0.255 0.348 0.274
AMD/G2 circuit 0.15 0.44 0.58 1.77 1524 471 274 66 1.13 0.619 0.438 0.262
Rothberg/cfd2 0.12 1.60 3.45 2.84 5824 539 390 430 10.8 2.60 3.32 3.13
Williams/cant 0.06 2.03 4.37 2.66 4133 2703 1561 1279 8.93 16.5 16.8 9.40
DNVS/shipsec5 0.18 3.39 5.12 5.15 3259 511 279 72 17.9 6.09 4.29 1.11
Williams/consph 0.08 2.85 5.86 3.84 1307 242 134 103 4.20 2.12 1.98 1.11
ND/nd6k 0.02 1.16 2.26 0.69 - 551 100 194 - 3.18 0.798 0.938
Boeing/pwtk 0.22 5.77 8.37 8.00 - 6276 2249 1195 - 110. 51.0 26.2
Schenk AFE/af shell3 0.50 9.04 11.5 14.1 3330 872 561 323 33.5 23.7 18.0 12.0
Oberwolfach/bone010 0.99 36.3 77.2 46.1 9978 1847 1186 1438 382. 201. 226. 185.
GHS psdef/audikw 1 0.94 39.2 76.5 48.7 7009 1317 541 475 289. 155. 104. 64.9
Janna/Bump 2911 2.91 62.8 101. 78.4 8821 357 247 114 628. 68.2 66.2 25.3
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Fig. 4.1. Performance profile comparing nitr across various preconditioners.
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IC(0) (11 failures)

IC(1) (6 failures)

HSL MI28 (3 failures)

max-plus (8 failures)

for example, the iteration count). The performance profile is the set of functions
{pi(f) : f ∈ [1,∞)}, where pi(f) is the proportion of problems where the performance
ratio of the i-th algorithm is at most f . Thus pi(f) is a monotonically increasing
function taking values in the interval [0, 1]. In particular, pi(1) gives the fraction of
the examples for which algorithm i is the winner (that is, the best according to the
performance measure), while if we assume failure to solve a problem (for example,
through the maximum iteration count or time limit being exceeded) is signaled by
a performance measure of infinity, p∗i := limf→∞ pi(f) gives the fraction for which
algorithm i is successful.

Figures 4.1 and 4.2 present performance profiles for the iteration counts nitr and
memory accesses mapcg, respectively. We use a logarithmic scale in order to observe
the performance of the algorithms over a large range of f while still being able to
discern in some detail what happens for small f . The highest number of failures (a
third of the examples) results from using diagonal preconditioning while HSL MI28

has only 3 failures. In terms of both iteration counts and memory accesses, HSL MI28

has the best performance but the max-plus preconditioner also performs well and
outperforms the level-based preconditioners.

5. Alternative approaches to the max-plus computation. As already
observed, a potentially attractive feature of Algorithm 1 is that each column of
L can be computed independently. However, because each of these independent
computations requires access to all, or at least a large part of, the matrix H, it
may be difficult to fully leverage this parallelism in practice. Further, on many-core
architectures, as memory bandwidth is a limiting factor for Algorithm 1, achieving a
high level of parallel efficiency may be difficult. A possible alternative is the following
serial method, which is analogous to classical Gaussian elimination.

For a Hungarian max-plus matrix H ∈ Rn×nmax with precedence graph G(H), we
say that a path σ = σ(1), . . . , σ(`) is a below k path if σ(t) ≤ k for t = 2, . . . , ` − 1.
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Fig. 4.2. Performance profile comparing mapcg in (4.1) across various preconditioners.
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Let Σk(i, j,H) denote the set of all below k paths from i to j through G(H). Below
zero paths are given by paths of length one, that is,

Σ0(i, j,H) = {(i, j) : hij 6= −∞}.

Recall that a path σ from i to j is a fill path if σ(t) ≤ min{i, j} for t = 2, . . . , `−1.
We denote by ΣF (i, j,H) the set of all fill paths in G(H) from i to j. Note that if σ
is a below min{i, j} path from i to j then it is also a fill path. We can therefore use
(3.1) to express the entries of the max-plus Cholesky factor L of H in terms of below
k paths as

lij = max
σ∈ΣF (i,j,H)

W (σ) = max
σ∈Σj(i,j,H)

W (σ), i ≥ j.

Now define W(0), . . . ,W(n) ∈ Rn×nmax to be weight matrices with entries

w(k)ij = max
σ∈Σk(i,j,H)

W (σ), (5.1)

that is, w(k)ij is equal to the weight of the maximally weighted below k path in G(H)
from i to j and lij = w(j)ij . To compute these weights we set W(0) = H and then
compute the remaining weight matrices iteratively using the following result.

Lemma 5.1. Let H ∈ Rn×nmax be a Hungarian max-plus matrix. Then for k =
1, . . . , n− 1,

w(k + 1)ij = max{w(k)ij ,w(k)i,k+1 + w(k)k+1,j}, 1 ≤ i, j ≤ n. (5.2)

Proof. Let σ = σ(1), . . . , σ(`) and suppose that σ ∈ Σk+1(i, j,H). If ` = 2 then
σ ∈ Σ0(i, j,H) ⊆ Σk(i, j,H). If ` > 2 then consider s = max`−1

t=2 σ(t). If s ≤ k
then σ ∈ Σk(i, j,H), otherwise if s = k + 1 then σ can be broken down into two
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paths σ1 = σ(1), . . . , σ(r) from i to k + 1 and σ2 = σ(r), . . . , σ(`) from k + 1 to
j, where r = arg max`−1

t=2 σ(t) is unique since σ is an acyclic path. Clearly we have
W (σ) = W (σ1) +W (σ2) and since the only possible intermediate vertices on σ1 and
σ2 have index less than k+1 we also have σ1 ∈ Σk(i, k+1,H) and σ2 ∈ Σk(k+1, j,H).
Therefore every path in Σk+1(i, j,H) is either a path in Σk(i, j,H) or it corresponds
to a pair of paths one from each of Σk(i, k + 1,H) and Σk(k + 1, j,H) so that

w(k + 1)ij ≤ max{w(k)ij ,w(k)i,k+1 + w(k)k+1,j}, 1 ≤ i, j ≤ n.

To prove the reverse inequality note that Σk(i, j,H) ⊆ Σk+1(i, j,H) and that any pair
of paths σ1 ∈ Σk(i, k+ 1,H) and σ2 ∈ Σk(k+ 1, j,H) can concatenated to give a new
path σ = (σ1, σ2) ∈ Σk+1(i, j,H).

Because we only ever need to work with the most recently computed set of k-path
weights, it suffices to store them in a single matrix W. This matrix W plays the role
of the intermediate upper factor in classical Gaussian elimination.

Algorithm 3 Given the valuation H ∈ Rn×nmax of a real symmetric positive-definite
Hungarian matrix, this algorithm returns its max-plus Cholesky factor.

1: set W = H
2: for k = 1, . . . , n do
3: set L(k : n, k) =W(k : n, k)
4: for i, j > k such that wik 6= −∞ and wjk 6= −∞ do
5: set wij = max{wij ,wik + wjk}
6: end for
7: end for

Example 5.2. We apply Algorithm 3 to

H =


0 −1 −1 −∞ −∞
−1 0 −3 −∞ −1
−1 −3 0 −2 −∞
−∞ −∞ −2 0 −6
−∞ −1 −∞ −6 0

 .
and record the matrix W at line 7 for each value of k until the algorithm terminates.
This yields

W(1) =


0 −1 −1 −∞ −∞
−1 0 −2 −∞ −1
−1 −2 0 −2 −∞
−∞ −∞ −2 0 −6
−∞ −1 −∞ −6 0

 , W(2) =


0 −1 −1 −∞ −∞
−1 0 −2 −∞ −1
−1 −2 0 −2 −3
−∞ −∞ −2 0 −6
−∞ −1 −3 −6 0

 ,

W(3) =


0 −1 −1 −∞ −∞
−1 0 −2 −∞ −1
−1 −2 0 −2 −3
−∞ −∞ −2 0 −5
−∞ −1 −3 −5 0

 , L =


0 ∞ ∞ −∞ −∞
−1 0 ∞ ∞ −∞
−1 −2 0 ∞ −∞
−∞ −∞ −2 0 −∞
−∞ −1 −3 −5 0

 .
Let us focus on the (5, 3) entry of the matrix L. Looking at Figure 5.1, we see that
there are three paths through G(H) from vertex 5 to vertex 3,

σ1 = (5, 2, 3), σ2 = (5, 2, 1, 3), σ3 = (5, 4, 3).
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Fig. 5.1. Precedence graph G
(
H
)

for the matrix of Example 5.2.

None of these paths is a below 1 path but σ1 and σ2 are below 2 paths and σ3 is a below
4 path. Since W (σ1) = W (σ2) = −3 and W (σ3) = −8, the weight of the maximally
weighted below k path from 5 to 3 is equal to −3 for k ≥ 2 and −∞ for k < 2.

On the face of it, Algorithm 3 has no performance advantage over taking the
exact Cholesky factorization of the matrix H ∈ Rn×n. Its worst case cost is O(n3).

It is possible to speed up Algorithm 3 by using a drop tolerance to limit the
fill in, but again this is no different to classical Gaussian elimination applied to
H. However, unlike conventional Gaussian elimination, we can use Algorithm 1 to
compute a specially chosen subset of the columns L and then use these columns to
seed several independent instances of Algorithm 3 to compute the remaining columns
in a technique that we call cutting in.

A k-cut is a cut through G(H) that separates the vertices {1, . . . , k} from {k +
1, . . . , n}. Define the k-cut seed set by

C =
{
i ∈ N : min{c : hcj 6= −∞ for some j > k} ≤ i ≤ k

}
.

Thus C is a contiguous set of vertices containing all of the vertices in {1, . . . , k} that
are connected directly to a vertex in {k + 1, . . . , n}. Now if we use Algorithm 1
to compute the columns of L that correspond to vertices in C, that is we compute
{L·,c : c ∈ C}, then we can compute w(k)ij (as defined in (5.1)) for all i, j > k from
these columns using the following result. Once we have computed w(k)ij for i, j > k,
we can use this data to initialize an instance of Algorithm 3 at step k.

Lemma 5.3. Let H ∈ Rn×nmax be a Hungarian max-plus matrix and C be the k-cut
seed set then

w(k)ij = max
{

hij ,max
c∈C
{lic + ljc}

}
, i, j > k, (5.3)

with w(k)ij as in (5.1).
Proof. Let σ = σ(1), . . . , σ(`) and suppose that σ ∈ Σk(i, j,H). If ` = 2 then

W (σ) = hij . Otherwise if ` > 2 then consider s = max`−1
t=2 σ(t). By construction the

seed set must contain s. Now σ can be broken down into two paths σ1 = σ(1), . . . , σ(r)
from i to s and σ2 = σ(r), . . . , σ(`) from s to j, where r = arg max`−1

t=2 σ(t) is unique
since σ is an acyclic path. Clearly, we have W (σ) = W (σ1) + W (σ2) and since c is
the intermediate vertex of maximum index visited by σ we have σ1 ∈ ΣF (i, c,H) and
σ2 ∈ ΣF (c, j,H). Therefore,

w(k)ij ≤ max
{

hij ,max
c∈C
{lic + ljc}

}
, i, j > k.

To prove the reverse inequality note that Σ0(i, j,H) ⊆ Σk(i, j,H) and that for any
c ∈ C, any pair of paths σ1 ∈ Σk(i, c,H) and σ2 ∈ Σk(c, j,H) can be concatenated to
give a new path σ = (σ1, σ2) ∈ Σk(i, j,H).
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Example 5.4. We return to the matrix of Example 5.2. We can cut in at k = 3.
The seed set is given by C = {2, 3}. Using Algorithm 1 we compute

L·,2 = [−∞, 0,−2,−∞,−1]T , L·,3 = [−∞,−∞, 0,−2,−3]T ,

which we substitute into (5.3) to obtain

W(k)([4,5],[4,5]) = max

{[
0 −6
−6 0

]
,

[
−∞ −∞
−∞ −2

]
,

[
−4 −5
−5 −6

]}
=

[
0 −5
−5 0

]
,

which agrees with the calculation in Example 5.2. We can then apply Algorithm 3 to
compute columns 4 and 5 of L from this small matrix.

The cost of computing (5.3) will be O(
∑
c∈C n(c)2), where n(c) is the number of

finite entries in the cth column of L. As before, this technique is compatible with
using a drop tolerance or fixing a maximum number of entries per column so that this
cost should be around O(tm2), where m is the maximum allowed number of finite
entries per column and t is the number of vertices in the seed set. Thus if we are
able to find several cuts through G(H) , each of which has a small seed set, then this
hybrid approach has the potential to be fast. Finding cuts through graphs associated
with finite element problems should be a good case for this approach as cuts though
the matrix naturally correspond to partitions of the mesh.

6. Concluding remarks. We have described a novel approach for computing
the sparsity pattern of an IC preconditioner, which makes use of max-plus algebra.
Our numerical results demonstrate that this approach is able to produce effective
preconditioners for use with the PCG method. It is outside the scope of the present
study to develop an efficient implementation and more work is needed to obtain a
high-quality efficient parallel implementation that, in terms of the total solution time,
can compete with simpler established IC preconditioners. The max-plus IC problem
has some nice features that might lead one to think that this is possible. Importantly,
each column can be computed independently using Algorithm 1 and our alternative
algorithm based on Gaussian elimination that was discussed in Section 5 can also
exploit some parallelism. Having computed the max-plus preconditioner sparsity
pattern, the parallel approach of Chow and Patel [3] can be used to (approximately)
perform the incomplete factorization.

Finally, we note that the Factorized Sparse Approximate Inverse (FSAI)
preconditioner that was introduced more than 20 years by Kolotilina and Yeremin [23]
requires a pattern for the nonzero entries of the factors. Originally, this had to be be
set statically by the user (typically using small powers of A) although, more recently,
dynamic schemes have been proposed (see, for example, [11, 22] for further details
and references). Theory would suggest that the positions of the largest entries of
L−1 would be the ideal choice for the sparsity pattern; it remains an open question
whether we can use max-plus algebra in this case.
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[34] J. A. Scott and M. Tůma. HSL MI28: an efficient and robust limited-memory incomplete
Cholesky factorization code. ACM Transactions on Mathematical Software, 40(4):Article
24, 2014.
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