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Abstract. Stochastic textures with features spanning many length scales
arise in a range of contexts in physical and natural sciences, from nanos-
tructures like synthetic bone to ocean wave height distributions and cos-
mic phenomena like inter-galactic cluster void distributions. Here we used
a data set of 35 surface topographies, each of 2400 × 2400 pixels with
spatial resolution between 4 µm and 7 µm per pixel, and fitted trivariate
Gaussian distributions to represent their spatial structures. For these we
computed pairwise information metric distances using the Fisher-Rao
metric. Then dimensionality reduction was used to reveal the groupings
among subsets of samples in an easily comprehended graphic in 3-space.
The samples here came from the papermaking industry but such a re-
duction of large frequently noisy spatial data sets is useful in a range of
materials and contexts at all scales.

Keywords: Dimensionality reduction, information metric, surface to-
pography, trivariate Gaussian

1 Introduction

Stochastic textures with features spanning many length scales arise in a range of
contexts in physical and natural sciences. Whereas the features of interest may
differ when considering cosmological scale data for galactic density distributions,
from those at the global scale representation of oceanographic temperatures
or nanoscale features such as the surface topography of synthetic bone, the
common format for the data is as a two-dimensional array, which is typically
rendered as an image. In general, the challenge is the extraction of the features
of interest which may be obscured within an inherently noisy data set. Since
paper is made as a web from the continuous filtration of a stochastic dispersion
of cellulose fibres, there is a standard reference structure which can be used: a
planar isotropic Poisson process of the given fibres, for which the structure is
known [1].

Here, we use information geometry and dimensionality reduction to bypass
the extraction of features from textures and instead make a direct assessment of



whether they are different or not. We illustrate our approach using the example
of two-dimensional stochastic textures arising from measurements of the surface
topography of different grades of paper. Whereas paper represents a convenient
source of data available with a wide range of surface topographies, it turns out
that there is genuine interest in the papermaking industry in characterizing this
structural feature of the material and its influence on product performance [2].

Information geometry uses the Fisher information metric on smoothly para-
metrized families of probability density functions to provide a natural distance
structure. Gaussians parametrized by mean and standard deviation yield a 2-
dimensional curved surface and bivariate Gaussians yield a 5-dimensional curved
space, cf. Amari [3]. Thus, the information metric gives an arc length function
along any curve between two probability density functions in the given family.
The geometry of commonly occurring families of probability density functions is
well-known, see [4] for relevant examples. The technical algorithmic difficulty is
that, in the curved space of probability density functions, the true information
distance between two points is the infimum of arc length taken over all curves
joining the points. This infimum is the length of the geodesic between the points.

Materials scientists study the interdependence of the structure and properties
of materials and how these may be influenced by manufacturing processes. Typ-
ically, the properties of the material are the product specifications for end-use
and employed for quality control; examples include mechanical behaviour, ther-
mal or electrical conductivity, permeability, etc. Our focus here is identification
of differences in structure that may be difficult to identify using conventional
data handling methodologies.

We illustrate our approach using measurements of the surface topography
of paper. This is a particularly convenient material to study: almost all grades
of paper have principally the same chemical structure – they consist of natural
cellulosic fibres with length of order a millimeter or two and width a few tens
of micrometers; sheets may be filled or coated with minerals such as clay or
calcium carbonate. Structural variability in paper is observed at scales corre-
sponding to the fibre dimensions and above and, importantly, depends on the
fibre dimensions and the manufacturing processes employed; these dependen-
cies are discussed in detail in, e.g. [5,6]. Papermakers control global average
structural properties to influence the sheet properties for a given application, so,
for example, other than weight per unit area, the principle difference between
newsprint and bathroom tissue is the density of the sheet. Local average vari-
ability in such properties is far more difficult to characterize and control because
of the underlying stochastic variability [5] arising from the finite length fibres
and influencing the autocovariance function of the planar ensemble.

The stochastic variability of mass of paper, i.e. the distribution of local av-
erages of areal density in the plane of the sheet is a fundamental structural
property of paper and characterizes the extent to which fibres are clustered.
Recently, through analysis of simulated textures representing the distribution of
mass, we demonstrated that information geometry could be used to discriminate
variability arising from the size and intensity of clusters [7,8].



Fig. 1.Graphical representations of sample height data. Top left: coated board; top right:
uncoated packaging paper; bottom: bathroom tissue. Each image represent a square of
side 1500 pixels with approximate resolution 5 µm per pixel

In what follows we illustrate the differences of features in given data sets ob-
tained from measurements of the surface topography of different paper samples.
For each sample, our source information is an array of surface heights, which
we process to yield a 3×3 covariance matrix Σ and mean vector µ arising from
pixels and their first and second neighbours. We proceed to use dimensionality
reduction to extract the three most significant features from the set of samples
so that all samples can be displayed graphically in a 3-dimensional plot. The aim
is to reveal groupings of data points that distinguish among and within grades
of paper. The method depends on extracting the three largest eigenvalues and
their eigenvectors from a matrix of pairwise information distances among distri-
butions representing the samples in the data set. The number of samples in the
data set is unimportant, except for the computation time in finding eigenvalues.



2 Data sets

Data was acquired as local height values from the surfaces of paper samples
using a photometric stereo device; details of the measurement technique are
provided in [2]. Data were acquired at different times under subtly different
optical conditions; though in all cases we handled arrays of at least 2400× 2400
pixels with spatial resolution between 4 µm and 7 µm per pixel, which is smaller
than the expected width of the constituent fibres. All measurements were made
on industrially manufactured paper samples. Measurements were made on 3
groups of samples:

Group 1: Packaging and printing grades. Ten samples: coated packaging
paper and cardboard; uncoated packaging paper and cardboard; uncoated
wrapping grades. Measurements made on both sides of each sample.

Group 2: Tissue. Five samples of two-ply bathroom tissue. Measurements
made on one side only.

Group 3: Printing, writing and sack grades. Five samples: one high qual-
ity coated grade and three utility grades for printing and writing; one grade
for making paper sacks. Measurements made on one side only; two measure-
ments made of each sample.

Graphical representations of three examples of the surface height distribution
are provided in Figure 1. These show three very different surfaces: a coated board
surface, an uncoated packaging paper surface and the surface of a bathroom
tissue. In the figure, dark regions correspond to low height and vice versa; each
image represents a square of side 1500 pixels.

3 Information geometry model

Each of our source data sets consists of a two-dimensional array of local average
height values h̃i. From each of these, we generate two numbers: the average height
of the 8 first-neighbour pixels, h̃1,i and the average height of the 16 second-

neighbour pixels, h̃2,i. Thus, we have a trivariate distribution of the random

variables (h̃i, h̃1,i, h̃2,i) with h̄2 = h̄1 = h̄ and the marginal distributions of h̃i,

h̃1,i and h̃2,i are well approximated by Gaussian distributions.
The geodesic distance between two multivariate Gaussians, A,B, with prob-

ability density functions fA, fB mean vectors µA, µB and covariance matrices
ΣA, ΣB of the same number n of variables is known analytically in two partic-
ular cases [9]:

Common covariance matrix, different mean vectors:
µA 6= µB , ΣA = ΣB = Σ; fA = (n, µA, Σ), fB = (n, µB , Σ)

Dµ(fA, fB) =

√
(µA − µB)

T ·Σ−1 · (µA − µB). (1)



Common mean vector, different covariance matrices:
µA = µB = µ,ΣA 6= ΣB : fA = (n, µ,ΣA), fB = (n, µ,ΣB)

DΣ(fA, fB) =

√√√√1

2

n∑
j=1

log2(λj), with {λj} = Eig
(

(ΣA)−
1
2 ·ΣB · (ΣA)−

1
2

)
.

(2)

Here we shall take the simplest choice and sum the two components (1) and
(2) to give a net measure of distance between two arbitrary n-variate Gaussians
fA, fB

D(fA, fB) =
1

2

(
Dµ(fA, fB) +Dµ(fB , fA)

)
+DΣ(fA, fB) (3)

where we have to take the average of (1) using ΣA and ΣB so (3) gives an upper
bound on the true distance.

4 Dimensionality reduction

Now, our family of 35 data sets gives us a 35×35 symmetric matrix of pair-
wise information distances between pairs of samples, each sample represented
by a trivariate Gaussian distribution. Graphically, we can comprehend a 3-
dimensional representation of features so we need a method to reduce the feature
representation in our data set of 35 to fit into a 3-dimensional image. Accordingly,
we follow the methods described by Carter et al. [10,11] to reduce the dimen-
sionality of our data sets and hence identify clustering of data sets with similar
topographies through 3-dimensional rendering of the resultant plots. Briefly, we
follow a series of computational steps:

1. Obtain pairwise ‘information distances’ D(i, j) among the members of the
dataset of textures X1, X2, .., XN characterised by pixel arrays representing
height values.

2. The array of N × N distances D(i, j) is a symmetric matrix with diagonal
zero. This is centralized by subtracting row and column means and then
adding back the grand mean to give CD(i, j).

3. The centralized matrix CD(i, j) is again symmetric with diagonal zero. We
obtain its N eigenvalues ECD(i), which are necessarily real, and the N cor-
responding N -dimensional eigenvectors V CD(i).

4. Make a 3 × 3 diagonal matrix A of the first three eigenvalues of largest
absolute magnitude and a 3×N matrix B of the corresponding eigenvectors.
The matrix product A ·B yields a 3×N matrix and its transpose is an N×3
matrix T, which gives us N coordinate values (xi, yi, zi) to embed the N
samples in 3-space.



Of course, any pairwise divergence matrix could be used in this situation and
might yield different numerical values. However, the qualitative effect will be the
same due to a one-to-one monotonic relationship.

5 Results

We illustrate the effectiveness of the approach for the surface textures of the
three groups of samples described in §2. We consider first an application of the
theory from samples in cases when both µ and σ are known and then when µ is
disregarded. We proceed to show the reproducibility of the approach for discrim-
ination among samples and their position when embedded in 3-space. Finally,
we examine the influence of applying the algorithm to data subjected to a simple
high-pass filter, as applied in conventional image processing of such data.

5.1 Sensitivity to mean vector µ

The top row of Figure 2 shows the plot ofD(fA, fB) from equation (3) as a cubic-
smoothed surface (left), and as a contour plot (right), for trivariate Gaussian
information distances among our 35 data sets4. On first inspection it is clear
that there is structure in the assembled information and the three groups of
data can be readily identified from these graphics. The resultant 3-dimensional
embedding is shown on the bottom row of Figure 2; here we observe that the
data from Groups 1 and 3 occupy a different region from those for Group 2
which is consistent with the observed surface texture of tissue being manifestly
different from those of printing, writing and packaging grades of paper. The
first 10 eigenvalues arising from the dimensionality reduction are plotted as a bar
chart in Figure 3, showing clearly that the majority of the spectral information
is captured by the 3-largest eigenvalues, in this case approximately 75 %.

Figure 4 shows graphics corresponding to those in Figure (2) but computed
using only the covariances to estimate distances DΣ(fA, fB) from equation 2
among samples. We see that for this data set the influence on information dis-
tance of the changes in mean are rather minor compared with those of the
covariances.

5.2 Reproducibility

A potential application of the methods we present is the on-line monitoring of
change in manufacturing processes. For such applications, repeated sampling
and computation of the information distance will yield a surface representing
the operating region of the process. Through qualitative and quantitative cal-
ibration processes, we might anticipate that data sampled when the process is
manufacturing on-specification product would yield embedded data that pop-
ulate a well-defined region that surface, such that when data fall outside this

4 The small positive values visible in the diagonal in these and subsequent contour
plots are an artefact arising from the cubic interpolation.
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Fig. 2. Top row: Plot of D(fA, fB) from equation (3) as a cubic-smoothed surface
(left), and as a contour plot (right), for trivariate Gaussian information distances among
35 datasets of surface heights capturing all three data groups. Axes numbering corre-
sponds to data sets: 1–20, Group 1; 21–25, Group 2; 26–35, Group 3. Bottom row:
Dimensionality reduction embedding of the same data. Group 1 (small black), Group 2
(medium red), Group 3 (large blue)



2 4 6 8 10
0

5

10

15

20

25

30

Fig. 3. Bar chart of first 10 eigenvalues arising from dimensionality reduction shown
in Figure 2. Approximately 75 % of the information is captured by the 3-largest eigen-
values

region, operators may be alerted that the process may have altered to give out-
of-specification product.

Recall that the data in Group 3 consist of duplicated measurements made
on the same side of five different paper specimens. Further, since paper is an
inherently stochastic material, we expect some variability from region to region
when sampling its surface textures. Accordingly, we use the paired data within
Group 3 to investigate the reproducibility of the measurements made on nomi-
nally identical samples, which is a prerequisite for on-line monitoring processes
of the type proposed.

The plot of D(fA, fB) as a cubic-smoothed surface (left), and as a contour
plot (right), for trivariate Gaussian information distances among the 10 data sets
representing duplicate measurements from five samples is given in the top row of
Figure 5; the resultant 3-dimensional embedding is shown at the bottom of the
figure. Again, the first three eigenvalues captured about 75 % of the information

Discrimination among different paper samples within the embedded space
is clear and it is noteworthy that the three utility printing and writing grades
occupy a different region of the plot from the other grades, which are themselves
clearly differentiated. Note that the surface uniformity of these grades are also
very different and this manifests itself in the reproducibility of the paired data:
for the utility printing and writing grades the two points representing each pair
are close; for the high quality coated grade the surface is very smooth and the
pair of red points are almost coincident; finally, the structure of sack grade pack-
aging paper is highly non-uniform due to the long fibres used to achieve high
mechanical strength and in this case the data points exhibit the greatest separa-
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Fig. 4. Plot of DΣ(fA, fB) from equation (2) as a cubic-smoothed surface (left), and
as a contour plot (right), for trivariate Gaussian covariance only information distances
among 35 datasets of surface heights capturing all three data groups. Axes numbering
corresponds to data sets: 1–20, Group 1; 21–25, Group 2; 26–35, Group 3. Bottom row:
Dimensionality reduction embedding of the same data. Group 1 (small black), Group 2
(medium red), Group 3 (large blue)
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Fig. 5. Top row: plot of D(fA, fB) from equation (3) as a cubic-smoothed surface (left),
and as a contour plot (right), for trivariate Gaussian information distances among 10
datasets of surface heights arising from duplicated measurements of the five samples in
Group 3. Bottom: Dimensionality reduction embedding of the same data. High quality
coated paper (red), sack paper (green), three utility printing & writing grades (orange,
purple, blue)



tion, though still occupy a manifestly different region from the those representing
the other grades.

5.3 Filtered data

It is common in conventional image processing of stochastic data to apply a
high-pass filter to two-dimensional data prior to analysis to characterise features
of interest, in this case the surface roughness relevant to, e.g. printing. Indeed,
such processing was applied to the textures described in [2] which were similar
to those analysed here. Accordingly, we have applied our treatment to the data
in Group 3 after application of a high-pass filter.

Plots corresponding to those in Figure 5 are shown in Figure 6 and we ob-
serve a similar quality of discrimination among samples and a similar level of
reproducibility, with similar eigenvalue distribution.

Figure 7 shows the effect of using filtered data in comparison to unfiltered
data. On the top, the plot combines the embeddings shown at the bottom of
Figures 5 and 6; on the bottom the figure shows the embedding obtained by
combining the filtered and unfiltered data sets for all sampled to yield a group of
20 arrays (2 filter-states × 2 repeats × 5 samples) and computing the information
distance D(fA, fB) from equation (3). Note that although the different processes
yield different embeddings, each discriminates well between samples and yields
good reproducibility, indicating excellent potential for the use of raw, unfiltered
and noisy data in on-line monitoring by application of the approach described.

6 Random fibre networks

A natural choice of reference structure for the surface of heterogeneous fibrous
web-like materials such as paper is a thin network of fibres with uniform ori-
entation and with centres distributed according to a planar Poisson point pro-
cess [1,5,12]. In [8] §3 we outlined for such structures the analytic derivation of
the spatial variance function for local averages c̃ of the coverage by fibres all of
length λ and width ω, which tends to a Gaussian random variable. For sampling
of the process using, say square inspection pixels of side length x, the variance
of their density c̃(x) is the expectation of the point autocorrelation function α

V ar(c̃(x)) = V ar(c(0))

∫ √2x

0

α(r, ω, λ) b(r) dr (4)

where b is the probability density function for the distance r between two points
chosen independently and at random in the given type of pixel; it was derived
by Ghosh [13].

For practical variance computations we usually have the case of sampling
using large square pixels of side mx say, which themselves consist of exactly m2

small square pixels of side x. The variance V ar(c̃(mx)) is related to V ar(c̃(x))
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Fig. 6. Top row: plot of D(fA, fB) from equation (3) as a cubic-smoothed surface (left),
and as a contour plot (right), for trivariate Gaussian information distances among 10
datasets of surface heights arising from duplicated measurements of the five samples in
Group 3 subjected to a high-pass filter. Bottom: Dimensionality reduction embedding
of the same data. High quality coated paper (red), sack paper (green), three utility
printing & writing grades (orange, purple, blue)



Fig. 7. Combined dimensionality reduction embedding using D(fA, fB) from equation
(3) for unfiltered data (small circles) and data subjected to a high-pass filter (large
circles). High quality coated paper (red), sack paper (green), three utility printing &
writing grades (orange, purple, blue). Top: embedding shown in Figure 5 superimposed
on that shown in Figure 6; bottom: information distances & embedding calcuated for
combined data set of filtered and unfiltered data from Group 3 (2 × 2 × 5).



through the covariance Cov(x,mx) of x-pixels in mx-pixels [1]:

V ar(c̃(mx)) =
1

m2
V ar(c̃(x)) +

m2 − 1

m2
Cov(x,mx). (5)

Asm→∞, the small pixels tend towards points, 1
m2V ar(c̃(x))→ 0 so V ar(c̃(mx))

admits interpretation as Cov(0,mx), the covariance among points inside mx-
pixels, the intra-pixel covariance, precisely V ar(c̃(mx)) from equation (4).

Then by rearranging equation 5 the fractional between pixel variance for
x-pixels is

ρ̃(x) =
Cov(0, x)

V ar(c(0))
=
V ar(c̃(x))

V ar(c(0))
(6)

which increases monotonically with fibre length λ and with fibre width ω but
decreases monotonically with mx, see Deng and Dodson [5] for more details. In
fact, for a Poisson process of such rectangles the variance of coverage at points is
precisely the mean coverage, V ar(c(0)) = c̄, so if we agree to measure coverage
as a fraction of the mean coverage then equation (4) reduces to the integral

V ar(c̃(x))

c̄
=

∫ √2x

0

α(r, ω, λ) b(r) dr = ρ̃(x). (7)

The covariance among points inside mx-pixels, Cov(0,mx), is the expecta-
tion of the covariance between pairs of points separated by distance r, taken over
the possible values for r in an mx-pixel; that amounts to the integral in equa-
tion (4). By this means we have continuous families of 2× 2 covariance matrices
for x ∈ R+ and 2 < m ∈ Z+ given by

Σx,m =

(
σ11 σ12
σ12 σ22

)
=

(
V ar(c̃(x)) Cov(x,mx)
Cov(x,mx) V ar(c̃(x))

)
=

(
ρ̃(x) ρ̃(mx)
ρ̃(mx) ρ̃(x)

)
. (8)

which encodes information about the spatial structure formed from the Poisson
process of fibres, for each choice of fibre dimensions ω ≤ λ ∈ R+.

The embedding generated by applying equation (2) to compute DΣ from
analytic autocovariance matrices from equation 8 for a planar Poisson process
of fibres having width ω = 0.1, lengths λ = 0.5, 1.0, 1.5, for square pixels of
side length x = 0.1, 0.2, ..., 1.0. is shown in Figure 8. We see that fibre length
separates the three sets, and in each set the decreasing covariance with increasing
pixel size separates the points.



Fig. 8. Dimensionality reduction embedding for coverage autocovariances for planar
Poisson processes of fibres of lengths λ = 1.0, 1.5, 2.0 with width ω = 0.1, for sampling
with square pixels of side length x = 0.1, 0.2, ..., 1.0. For the three increasing fibre
lengths, the embeddings have respectively the endpoints, blue to pink, green to red,
and yellow to purple, with points and line thicknesses in increasing size.



References

1. C.T.J. Dodson. Spatial variability and the theory of sampling in random fibrous
networks. J. Roy. Statist. Soc. B 33(1):88-94, 1971.

2. M. Mettänen and U. Hirn. A comparison of five optical surface topography mea-
surement methods. Tappi J. 14(1):27-37, 2015

3. S. Amari. Information Geometry and Its Applications. Appl. Math. Sci.
194, Springer, Japan, 2016.

4. K. Arwini and C.T.J. Dodson. Information Geometry Near Randomness
and Near Independence. Lecture Notes in Mathematics. Springer-Verlag, New
York, Berlin, 2008.

5. M. Deng and C.T.J. Dodson. Paper: An Engineered Stochastic Structure.
Tappi Press, Atlanta, 1994.

6. W.W. Sampson. Materials properties of paper as influenced by its fibrous archi-
tecture. Int. Mater. Rev. 54(3):134-156, 2009.

7. C.T.J. Dodson and W.W. Sampson. Information geometry and dimensionality re-
duction for statistical structural features of paper. In Advances in Pulp and Pa-
per Research, Cambridge, 2013. Trans. XVth Fund. Res. Symp. (S.J. I’Anson,
ed.), pp55-69, FRC, Manchester, 2013.

8. C.T.J. Dodson and W.W. Sampson. Dimensionality reduction for classification of
stochastic texture images. In Geometric Theory of Information, (F. Nielsen,
ed.), Signals and Communication Technology Series, Springer International Pub-
lishing, Switzerland, 2014.

9. C. Atkinson and A.F.S. Mitchell. Rao’s distance measure. Sankhya: Indian Journal
of Statistics 48A(3):345-365, 1981.

10. K.M. Carter, R. Raich and A.O. Hero. Learning on statistical manifolds for
clustering and visualization. In 45th Allerton Conference on Communication,
Control, and Computing, Monticello, Illinois, 2007.
https://wiki.eecs.umich.edu/global/data/hero/images/c/c6/Kmcarter-
learnstatman.pdf

11. K.M. Carter Dimensionality reduction on statistical manifolds. PhD thesis,
University of Michigan, 2009.
http://tbayes.eecs.umich.edu/kmcarter/thesis

12. W.W. Sampson. Modelling Stochastic Fibre Materials with Mathematica.
Springer-Verlag, New York, Berlin, 2009.

13. B. Ghosh. Random distances within a rectangle and between two rectangles. Cal-
cutta Math. Soc. 43(1):17-24, 1951.


